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Abstract
We consider the class of manifolds with compact Lie groufoastwhich restrict
to GKM-actions on the maximal torus. First, we see their GKMgirs admit sym-
metry of the Weyl groups. And then, we study its combinataalastraction; starting
with abstract GKM-graphs with symmetry, we derive certaioparties which reflect
topology in a purely combinatorial way.

1. Introduction

Let T be a compach-dimensional torus acting on a closed orientaemanifold
M with finite fixed points. If M satisfies certain conditions (see §2), it is called a
GKM-manifold Goresky, Kottwitz and MacPherson ([4]) developed a powerfathod
to compute the torus equivariant cohomolobly (M; R) for a GKM-manifold M, by
associating it a combinatorial data called B&M-graph

What we focus on in this note are tl@&KM-manifolds with extended Lie group ac-
tions Let G be a compact, simple, simply-connected Lie group with th&imal torus
T. If M admits aG-action whose restriction t@ equipsM a GKM-manifold struc-
ture, we callM a GKM-manifold with an extended G-actiqsee [9]). This class of
manifolds includes interesting examples of flag varietas] more generally, maximal
rank homogeneous spaces. Our goal is to see what additibmatuses are imposed
on the GKM-graph, and to what extent the topologyMfis captured combinatorially.

The organization of this paper is as follows: After brieflicaling the GKM-
theory in 82, we see in 83 that the GKM-graph of a GKM-manifoldrwan extended
G-action has a symmetry of the Weyl grov of G, and that the localization map
is compatible with it. In 84, we start with an abstract GKM{gnal” with the sym-
metry of a finite Coxeter groupV. We discuss the cohomology ring*(T"; R) of the
graph and derive its properties combinatorially. In palc, we see a necessary con-
dition for I' to admit the symmetry ofV. Finally in 85, we see that with our defin-
ition of the W-symmetry, a series of operators & (I"; R) indexed byW are defined.
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They correspond topologically to tHeft divided difference operatarand H*(I"; R) is
equipped with an action of thail-Hecke ring ([8]). As an application of this fact,
we obtain a retractioH*(I'; R) — H*(I"; R)Y, which is reminiscent of the Becker—
Gottlieb transfer ([1])r: H{(M;R) — HEZ(M; R).

We assume that the coefficients for the cohomology rirR is1less otherwise stated.

2. GKM theory

For a closed oriented manifol¥l with a T-action, we consider it -equivariant
cohomologyH;(M) := H*(ET x7 M). HereET x1 M is the Borel construction, which
is the quotient space dET x M by the equivalence relatioru(m) ~ (ut™,tm), where
ue ET, me M, andt e T. WhenM is a point, Hf(pt) = H*(BT) is the symmetric
algebra over the dual Lie algebta of T.

M is said to be a GKM-manifold if it satisfies the following cotidns:

it admits aT-invariant almost complex structure,

it is equivariant formal i.e., H¥(M) is a free H{(pt)-module,

the fixed points seMT is finite,

the weights of the isotropi@ -action on the tangent spacg(M) are pairwise lin-
early independent fo¥p € MT.

It follows (see [5]) that the set of the one-dimensional ik € M | dim(T x) = 1} is
the disjoint union|_ |, g Xg, where E is a finite index set and the closud of each
componentX? is diffeomorphic toS? containing exactly two fixed points, and e, at
the north and the south poles. Then, B&M-graphT'(M) = (V, E, «, 0) for M is
constructed as follows:

e The vertex seV is the fixed points seMT.

e The edge seE; for each two spher&s (& € E), we draw an edge, — €.

e Theaxial functiona: E — t* is defined by assigning te, — e; € E the weight of
the T-action onTe, Xes. Note thatee annihilates the Lie algebra of the stabilizer group

of Xe. We graphically denote an edge with the value of axial furctoy p ﬂ qg.
e Let out(p) be the set of the outgoing edges frome V. The restriction ofT M
around p splits into the sum of the plane bundi€be o, Le. Where the restriction
of Le¢ atey is isomorphic toTe, X¢. For each edge € E, the connectiorde: out(e,) —
out(gq) is the bijection which assigns € € out(ep) the edge corresponding 10 |e, -
The relationship between the topology of a GKM-manifold ahd tombinatorics
of its GKM-graph is bridged by théocalization map The inclusion map: MT < M
is T-equivariant, and hence it induces a map on the equivariambroology. We call
the induced map

i*= P iy Hi(M) > P Hi(p) = €P H*(BT)

peMT peMT peMT

the localization map. We often denatg(h) by h, for h € Hy(M).
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The main result in [4] states that the GKM-graph determinesithage of the lo-
calization map, and thus encodes theequivariant cohomology:

Theorem 2.1([4]). The localization map gives the following isomorphism

Hi(M) = {@ hp

hy € H*(BT), hp — hq € (@(®)) if p 2% q},
peMT

wheret* is identified with H(BT). Note that the right hand side is determined purely
combinatorially and is often called the GKM-description of the equivarianhemology.

3. Weyl group action

Let M be a GKM-manifold with an extende@ action, whereG is a compact,
simple, simply-connected Lie group with the maximal tofus The Weyl groupW of
G is by definition N(T)/T, where N(T) is the normalizer of the maximal torus @.
We denote the positive roots bit, and the reflection corresponding &oe T+ by
Sy € Aut(t*).

We define a right action o on ET x1 M by w(u, X) = (uw, w—x), which in
turn induces a left action ol{(M). In particular, W acts onH{(pt) = H*(BT). If
we regardH*(BT) as the symmetric algebra over= (t;,...,t,), the action is nothing
but the standard action on the variables:

wh)(te, . .., t) = h(wty, ..., wty), weW, he HY(BT) =R[t, ..., ta].

Note that theW-action is trivial onEG x¢ M, and so is onHg(M).

REMARK 3.1. TheW action is notT-equivariant, and hence, it is well-defined
only on ET x1 M but not onM.

We first investigate th&V-action onH; (M) in terms of the GKM-description.
Lemma 3.2. For w e W, pe MT, and he H#(M), we have

w(h)p = w(h,1,) € H*(BT).
Proof. By the following commutative diagram

ET x7 {p} —2 ET x7 {w™lp}

I o

ETxt M —2— ET x7 M,

- B .
we Obtalnlp ow=woliy,.
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The GKM-graphI'(M) admits the following symmetry ofV.

Theorem 3.3. (1) If there is an edge poﬂ g, then so iswp —>w(a(e)) w

(2) If g = s,p for somea € TTT, there is an edge §3 qg.
(3) w(be(€)) = Oue(w(€)) for all e, e E andw e W.

Proof. (1) Assume thalTp(M) = Decoutp Cue)r WhereC, is the complex one-
dimensionalT -module with the weightx(e). Then the tangent space @ap decomposes
to Typ(M) = @eeoutp Cua(e)-

(2) Let P, C G be the subgroup corresponding to the raotThe P,-orbit of p
is P,/T = S with p andq as its north and south poles. Sincg(P,/T) =~ C, by
definition, the assertion follows.

(3) The decompositior@e,eout(p) Le in the definition of6 is mapped byw to

@e’eout(p) wle. O

The relationship between th@-equivariant cohomology and thHE-equivariant co-
homology is summarized as follows.

Proposition 3.4. (1) Hf(M) = H*(BT) ® H*(M) as H*(BT)-modules.
(2) HE(M) = H*(BG) ® H*(M) as H*(BG)-modules.
(3) Hf(M) = H*(BT) ®n+@Be) HE(M) as H*(BT)-algebras.
(4) HE(M) = H¥ (M)W as H*(BG)-algebras.

Proof. (1) Consider the fibratioM < ETxt M — BT. SinceH{ (M) is a free
H*(BT)-module by assumption, we hawé;(M) = H*(BT) ® H*(M) by the Serre
spectral sequence.

(2) By Borel's localization theoremiH*(M) should be concentrated in even de-
grees. Then by the Serre spectral sequence for the fibrdlien EG xg M — BG,
we haveHE(M) = H*(BG) @ H*(M).

(3) Consider the following pullback diagram:

G/T G/T

[ !

Mc—— ETxtT M —— BT

ll I !

Me——s EGxgM —— BG

The Eilenberg—Moore spectral sequence collapseB,germ and we haveH{(M) =
H*(BT) ®u+@ce HE(M) as H*(BT)-algebras. Note that there are no extension prob-
lem in this case.
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(4) SinceW acts onHE(M) trivially, the assertion follows from the previous iso-
morphism. ]

ExaMPLE 3.5. We recover the well-known specialization formula foe double
Schubert polynomials. Le¥l be the flag varietyG /T, with the G-action induced by the
left multiplication. The fixed point set of the action rested to the maximal torug is
{wT/T | we W}. SinceHE(G/T) = H*(BT), we haveH{(G/T) = H*(BT) ®u+(g)
H*(BT) by Proposition 3.4. It is well-known thatl;(G/T) admits a freeH*(BT)-
module basis indexed bW called theSchubert classetsee, for example, [6]). Let
Su(t; X) € R[ty, ..., th, X1, ..., Xn] be a polynomial representing a Schubert cl&sse
Hf(G/T), whereti’s and x;'s are the generators for the left and the right factors of
H*(BT) ® H*(BT). Then, the localization at a fixed pointe W is the specialization
atx, = v ;:

I:(Sw) = Sw(t]_, ey tn; Utl, ey Utn).
Proof. SinceEG x1 {*} - EG xg G/T induces the isomorphisni*(BT) =~

HE(G/T), the localization map at the identity elemeijtis the identity map on the
right factor. Hence, by Lemma 3.2,

i*(Sy) = voilov}S,)

=vo i:Sw(vfltl, U M X, e, Xn)
=0S,(v My, .. v M, L )
=Sw(t1, ...,tn;vtl, ey Utn). O

4. Abstract GKM-graph with symmetry

Modeled after the topological setting we have just seen, wesider an abstract
GKM-graph with the symmetry of a finite Coxeter group.

DEFINITION 4.1. Lett* be the vector space generated on a bgsis. ., t,. A
connected, finitem-valent graphl' = (V, E, «, 8) with the following additional struc-
tures is said to be a GKM-graph:

(1) The axial functionn: E — t* satisfies thafa(e) | e € out(p)} are pairwise linearly
independent for allp € V.

(2) The connectiord assigns for each edge € E a bijection between outf) and
out(ey), satisfying thatx(Pe(€')) — a(€) is a scalar multiple otx(e) for any adjacent
edgese and €.

We say thatl" has the symmetry of a rank finite Coxeter groupWV if W acts as an
automorphism on the vertices and edges and further it sstisfi

1) a(w(e)) = w(x(e)) for Vee E.

(2) If g=s,p andqg # p for somea € I, there is an edgqai g.
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(3) w(be(€)) = Oy (w(€)) for all e, € € E andw € W.
In the above W action ont* is given by the standard representation.

We see in 83, for a GKM manifold/ with an extended action of a Lie group,
the GKM-graphI"(M) admits the symmetry of the Weyl group &.
The cohomology ofl" is defined following Theorem 2.1:

DEFINITION 4.2. LetR[ty, ..., t,] be the symmetric algebra ovéf, where the
generatorg;’s are considered to be of degree two.

H*(I) = {EB hp

hp € Rlts, . tol, Np g & (e(&)) i pﬂq}_
peV

We considerH*(I") as aR[ty, ..., ty]-submodule ofEBpev R[ty, ..., ty], where the
module structure is diagonal.

Note thatl = EBpGV 1 is the generator foH(I") ~ R.
If T has the symmetry ofV, then W acts on the cohomology.

Lemma 4.3. For h € H*(T'), the elementw(h) € P,y R[ts, .. ., tn] defined by
(4.2) w(h)p = w(hy-1p)
belongs to H(I).

Proof. Suppose that there is an edge5> g. Then there should be an edge

wlp o w™lg. w(h)p—w(h)qg = w(h,-1,—h,1q) is divisible bywow™te =a. O
The action reduces trivially on the “ordinary cohomology.”
Lemma 4.4. For he H*(') and o € T1T, we have
h—s,(h) € (a-1).
Proof. Since
(h—s,(h))p = hp —su(hs,p) = (hp —hs,p) + (Ns,p — (N, p))
is divisible by «, the assertion follows. ]

Sincewiwz(h)—h = (wiwa(h) —w2(h)) + (w2 (h)—h) for wi,w, € W, it follows that
w(h)—h € (R*[ty,...,t,]-1) for anyw € W, that is,W acts trivially onH*(I")/(ty,...,t,).
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REMARK 4.5. Note that ifl" is a GKM-graph of some GKMG-manifold, it is
an easy topological consequence; The fiber inclusiond — ET xt M andw o ¢ is
homotopic sinceG is connected and there exists a path from (a representatjve o
to the identity element. Therefore, they induces the samp Eg(M) — H*(M) =
H7(M)/(H*(BT)).

From this lemma, we deduce a necessary conditionlfdo admit the symmetry
of W. For this purpose, we define a graph theoretical analogydiarstinvariant sub-
manifolds. A connected subgraph of I" is said to beclosed under the connection
0 when 6¢(€) € A for Ve, € € A. Sincef, is bijection for alle € E, A is always a
regular graph. Lelx be the set of all thé&-valent subgraphs which are closed under
the connection. Fon e I'y, we obtain the class € H2™2(I") which is supported on
A by

[T «@© (en),

Ap = { ecoutp\A

0 (P& A).

Note thati € H*(T") is clear from the definition 0®. Suppose that another classe
H2™2K(T") has the same support as that is, 1}, # 0 iff p € A. Then it must be a
scalar multiple ofr. To see this, observe that there existsc R for eachp € A such
that A|, = cprp. Takeq € A which is adjacent top by an edgee. Then ¢ — cpi)q
must be divisible bw(e)]'[eeoutq\,\a(e/) and so must be 0 by degree reason. It follows
that cy = cp, and by the connectivity oA all the cp’s for p € A must be equal. Since
W permutesl’y, we have

Proposition 4.6. W acts on the sef+xr € H™ (') | A € Iy} as a signed
permutation.

In some cases, this imposes a cohomological restriction loat \wind of W can
act onT.

EXAMPLE 4.7. Assume that the classes correspondind'to; gives a free ba-
sis for H3(I"). Since H2(I") containst* - 1, the action is faithful. Furthermore, each
reflections, € W fixes all but one or two elements. To see this, first observe ttiea
trace of the action of, on t* is n —2 since it is a reflection. In addition, by the pre-
vious Lemma,s, acts trivially on H?(I")/t*. Therefore, the trace of the action &f
on H(I") must be two less than the rank &f?(T"). It follows that we can choose a
subset of{+x € H?(I")} of cardinality equal to or less thanr2¢ 1), on whichW acts
faithfully as a signed permutation. In particular, sudh is restricted to of classical
types. (Readers also refer to [12] and [10]).
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5. Divided difference operators

In this section, we construct a series of operatorsHif(I"). Topologically, they
coincide with the left divided difference operators.
First, we need the following lemma:

Lemma 5.1. (h —s,(h))/«a is in H*([).
Proof. First see

(h—s,(h))p — (h = 5,(N))q = hp — hg + Su(Ns,q — hs, p)-

If q# s pand pi g, it follows s, p ﬂ $d. Hence, botthp,—hq ands,(hg,q—hs,p)
is divisible by 8 and since the labels are pairwise linearly independénts((h)),/a—

(h—sy(h))g/« is divisible by 8. If g =s,p and pi> g, we puthp—hg,p =« f with
f e R[ty, ..., t]. Then we see

hp —hg + su(hgq —hsp) = f +s(x- ) = a(f —s(F))
is divisible by o?. O
Now, we can define the operators.

DEFINITION 5.2. Theleft divided difference operatoassociated tax € IT* is
defined to be
0. H*(T) — H* (D),

. h —s,(h)
—

h

or equivalently,
1
% (p = ~(hp —S,hs p)

It is well-known (see [8], for example) that they satisfy theaid relation forWw,
and hence, we can defirtg, for w € W as the compositiod,, 0y, - - 0, Wherew =
S, Sy, - Sy IS @ reduced decomposition far.

Let us recall the definition of thail-Hecke ringfrom [8]: Let S=R]ty, ..., ty]
be the symmetric algebra oveét and Q be its quotient ring. We denote the smash
product of the group rin@R[W] and Q by Qw. Then the nil-Hecke ringR is the sub
ring of Qw generated freely as a le§module byad,’s for Vw € W.

Theorem 5.3. LetT" be a GKM-graph with the symmetry of a finite Coxeter group
W (Definition 4.1) Then H*(T") is a module over the nil-Hecke ring R.
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ExamMPLE 5.4. WhenM = G/T, the left divided difference operatad, exhibits
the hierarchy of the Schubert classes: (We use the samdamotst in Example 3.5.)

S (v =w),
31;(811)) = {O (otherwise)-

This is easily seen by comparing the support, since the Schalasses are known to
be characterized by the upper-triangularity of the supfeee, for example, [6]). Note
that the operators here are so-called l#fe divided difference, and in [8] they consider
the right divided difference.

Now we consider thaN-invariant subalgebra oH*(T).

DEFINITION 5.5. Let Hy(I") = H*(I")W. More explicitly, it is described as fol-
lows: Fix a set of representativas, . .., px for the right W-cosetsW\V of W ~, V
and denote byWP = {w € W | wp; = p;} the isotropy subgroup gt. Since, by (4.1),
hup = w(hp) for h € H*(T)W, we have

k
H\Tv(l_‘) = {@ hpi

hp € R[ty, ..., ta]"", hy —why, € (a(e))
i=1

if 3w e W/WP st p <& ij}.
REMARK 5.6. SinceHg(M) = H; (M)W by Proposition 3.4, we have,; (I'(M)) =
H&(M). The above definition gives a combinatorial descriptionHig (M).

As an application of the left divided difference operatars, can define th8ecker—
Gottlieb transfer Let wg € W be the longest element.

DEFINITION 5.7. Define

7: H*(I') — Hy (")
by

7(h) = du,(d1-h),
whered =[]+ .

Then, we recover the famous theorem by Brumfiel and Madsei ([2]
Proposition 5.8. t is given by

z(h) = Y w(h).

weW
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In particular, z/|W| is a left inverse to the inclusiom: Hy, (') < H*(T"), that is
T ot/|W] is the identity map.

Proof. Fix a reduced expression = Sy, Sy, ** - Swq,- It is well-known (see [3],
for example) that

- — — 1 w
Buo = 01— 8) 05 (1= 80) -+ oy (L= Suy) = 5 D (1) .
weW

Since w(d) = (—1)™)d, we have the assertion. O]

ExXAMPLE 5.9. In [7, 8§7], it is shown that

T = (DS,

whereS,, is the equivariant Schubert class associated oW ands,-: is the ordinary
Schubert class associatedto! € W as in Example 3.5.
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