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Abstract
We consider the class of manifolds with compact Lie group actions which restrict

to GKM-actions on the maximal torus. First, we see their GKM-graphs admit sym-
metry of the Weyl groups. And then, we study its combinatorial abstraction; starting
with abstract GKM-graphs with symmetry, we derive certain properties which reflect
topology in a purely combinatorial way.

1. Introduction

Let T be a compactn-dimensional torus acting on a closed orientedm-manifold
M with finite fixed points. If M satisfies certain conditions (see §2), it is called a
GKM-manifold. Goresky, Kottwitz and MacPherson ([4]) developed a powerful method
to compute the torus equivariant cohomologyH�

T (MI R) for a GKM-manifold M, by
associating it a combinatorial data called theGKM-graph.

What we focus on in this note are theGKM-manifolds with extended Lie group ac-
tions. Let G be a compact, simple, simply-connected Lie group with the maximal torus
T . If M admits aG-action whose restriction toT equips M a GKM-manifold struc-
ture, we call M a GKM-manifold with an extended G-action(see [9]). This class of
manifolds includes interesting examples of flag varieties,and more generally, maximal
rank homogeneous spaces. Our goal is to see what additional structures are imposed
on the GKM-graph, and to what extent the topology ofM is captured combinatorially.

The organization of this paper is as follows: After briefly recalling the GKM-
theory in §2, we see in §3 that the GKM-graph of a GKM-manifold with an extended
G-action has a symmetry of the Weyl groupW of G, and that the localization map
is compatible with it. In §4, we start with an abstract GKM-graph 0 with the sym-
metry of a finite Coxeter groupW. We discuss the cohomology ringH�(0I R) of the
graph and derive its properties combinatorially. In particular, we see a necessary con-
dition for 0 to admit the symmetry ofW. Finally in §5, we see that with our defin-
ition of the W-symmetry, a series of operators onH�(0IR) indexed byW are defined.
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They correspond topologically to theleft divided difference operators, and H�(0IR) is
equipped with an action of thenil-Hecke ring ([8]). As an application of this fact,
we obtain a retractionH�(0I R) ! H�(0I R)W, which is reminiscent of the Becker–
Gottlieb transfer ([1])� W H�

T (MI R)! H�

G(MI R).
We assume that the coefficients for the cohomology ring isR unless otherwise stated.

2. GKM theory

For a closed oriented manifoldM with a T-action, we consider itsT-equivariant
cohomologyH�

T (M) WD H�(ET�T M). Here ET�T M is the Borel construction, which
is the quotient space ofET�M by the equivalence relation (u, m) � (ut�1, tm), where
u 2 ET, m 2 M, and t 2 T . When M is a point, H�

T (pt) D H�(BT) is the symmetric
algebra over the dual Lie algebrat� of T .

M is said to be a GKM-manifold if it satisfies the following conditions:
• it admits aT-invariant almost complex structure,
• it is equivariant formal, i.e., H�

T (M) is a free H�

T (pt)-module,
• the fixed points setMT is finite,
• the weights of the isotropicT-action on the tangent space Tp(M) are pairwise lin-
early independent for8p 2 MT .
It follows (see [5]) that the set of the one-dimensional orbits {x 2 M j dim(T x) D 1} is
the disjoint union

F

Oe2 OE Xo
Oe, where OE is a finite index set and the closureX

Oe of each
componentXo

Oe is diffeomorphic toS2 containing exactly two fixed pointsep and eq at
the north and the south poles. Then, theGKM-graph 0(M) D (V, E, �, �) for M is
constructed as follows:
• The vertex setV is the fixed points setMT .
• The edge setE; for each two sphereX

Oe ( Oe2 OE), we draw an edgeep! eq.
• The axial function�W E! t� is defined by assigning toep! eq 2 E the weight of
the T-action onTep X

Oe. Note that�e annihilates the Lie algebra of the stabilizer group

of X
Oe. We graphically denote an edge with the value of axial function by p

�(e)
��! q.

• Let out(p) be the set of the outgoing edges fromp 2 V . The restriction ofT M
around p splits into the sum of the plane bundles

L

e02out(ep) Le0 , where the restriction
of Le0 at ep is isomorphic toTep X

Oe0 . For each edgee2 E, theconnection�eW out(ep)!
out(eq) is the bijection which assigns toe0 2 out(ep) the edge corresponding toLe0 jeq .

The relationship between the topology of a GKM-manifold and the combinatorics
of its GKM-graph is bridged by thelocalization map. The inclusion mapi W MT

,! M
is T-equivariant, and hence it induces a map on the equivariant cohomology. We call
the induced map

i � D
M

p2MT

i �p W H�

T (M)!
M

p2MT

H�

T (p) �
M

p2MT

H�(BT)

the localization map. We often denotei �p(h) by hp for h 2 H�

T (M).
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The main result in [4] states that the GKM-graph determines the image of the lo-
calization map, and thus encodes theT-equivariant cohomology:

Theorem 2.1 ([4]). The localization map gives the following isomorphism:

H�

T (M) �

(

M

p2MT

hp hp 2 H�(BT), hp � hq 2 (�(e)) if p
�(e)
��! q

)

,

wheret� is identified with H2(BT). Note that the right hand side is determined purely
combinatorially, and is often called the GKM-description of the equivariant cohomology.

3. Weyl group action

Let M be a GKM-manifold with an extendedG action, whereG is a compact,
simple, simply-connected Lie group with the maximal torusT . The Weyl groupW of
G is by definition N(T)=T , where N(T) is the normalizer of the maximal torus inG.
We denote the positive roots by5C, and the reflection corresponding to� 2 5C by
s
�

2 Aut(t�).
We define a right action ofW on ET �T M by w(u, x) D (uw, w�1x), which in

turn induces a left action onH�

T (M). In particular,W acts onH�

T (pt) D H�(BT). If
we regardH�(BT) as the symmetric algebra overt� D ht1, : : : , tni, the action is nothing
but the standard action on the variables:

w(h)(t1, : : : , tn) D h(wt1, : : : , wtn), w 2 W, h 2 H�(BT) D R[t1, : : : , tn].

Note that theW-action is trivial onEG�G M, and so is onH�

G(M).

REMARK 3.1. TheW action is notT-equivariant, and hence, it is well-defined
only on ET �T M but not onM.

We first investigate theW-action on H�

T (M) in terms of the GKM-description.

Lemma 3.2. For w 2 W, p 2 MT , and h2 H�

T (M), we have

w(h)p D w(h
w

�1 p) 2 H�(BT).

Proof. By the following commutative diagram

ET �T {p} ET �T {w�1 p}

ET �T M ET �T M,

 

!

w

 

! i p  

! i
w

�1 p

 

!

w

we obtaini �p Æ w D w Æ i �
w

�1 p.
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The GKM-graph0(M) admits the following symmetry ofW.

Theorem 3.3. (1) If there is an edge p
�(e)
��! q, then so iswp

w(�(e))
����! wq.

(2) If q D s
�

p for some� 2 5C, there is an edge p
�

�! q.
(3) w(�e(e0)) D �w(e)(w(e0)) for all e, e0 2 E andw 2 W.

Proof. (1) Assume thatTp(M) D
L

e2out p C�(e), whereC
�

is the complex one-
dimensionalT-module with the weight�(e). Then the tangent space atwp decomposes
to T

wp(M) D
L

e2out p Cw�(e).
(2) Let P

�

� G be the subgroup corresponding to the root�. The P
�

-orbit of p
is P

�

=T � S2 with p and q as its north and south poles. Since,Tp(P
�

=T) � C

�

by
definition, the assertion follows.

(3) The decomposition
L

e02out(p) Le0 in the definition of � is mapped byw to
L

e02out(p) wLe0 .

The relationship between theG-equivariant cohomology and theT-equivariant co-
homology is summarized as follows.

Proposition 3.4. (1) H�

T (M) � H�(BT)
 H�(M) as H�(BT)-modules.
(2) H�

G(M) � H�(BG)
 H�(M) as H�(BG)-modules.
(3) H�

T (M) � H�(BT)
H�(BG) H�

G(M) as H�(BT)-algebras.
(4) H�

G(M) � H�

T (M)W as H�(BG)-algebras.

Proof. (1) Consider the fibrationM ,! ET�T M ! BT. SinceH�

T (M) is a free
H�(BT)-module by assumption, we haveH�

T (M) � H�(BT) 
 H�(M) by the Serre
spectral sequence.

(2) By Borel’s localization theorem,H�(M) should be concentrated in even de-
grees. Then by the Serre spectral sequence for the fibrationM ,! EG�G M ! BG,
we haveH�

G(M) � H�(BG)
 H�(M).
(3) Consider the following pullback diagram:

G=T G=T

M ET �T M BT

M EG�G M BG

 
-

!

(

(

 
-

!

 - !

(

(

 

!

 

!

 

!

 - !

 

!

The Eilenberg–Moore spectral sequence collapses atE2-term and we haveH�

T (M) �
H�(BT)
H�(BG) H�

G(M) as H�(BT)-algebras. Note that there are no extension prob-
lem in this case.
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(4) SinceW acts onH�

G(M) trivially, the assertion follows from the previous iso-
morphism.

EXAMPLE 3.5. We recover the well-known specialization formula for the double
Schubert polynomials. LetM be the flag varietyG=T , with theG-action induced by the
left multiplication. The fixed point set of the action restricted to the maximal torusT is
{wT=T j w 2 W}. SinceH�

G(G=T) D H�(BT), we haveH�

T (G=T) D H�(BT)
H�(BG)

H�(BT) by Proposition 3.4. It is well-known thatH�

T (G=T) admits a freeH�(BT)-
module basis indexed byW called theSchubert classes(see, for example, [6]). Let
S
w

(t I x) 2 R[t1, : : : , tn, x1, : : : , xn] be a polynomial representing a Schubert classS
w

2

H�

T (G=T), where ti ’s and xi ’s are the generators for the left and the right factors of
H�(BT)
 H�(BT). Then, the localization at a fixed pointv 2 W is the specialization
at xi D v

�1ti :

i �
v

(S
w

) D S
w

(t1, : : : , tnI vt1, : : : , vtn).

Proof. SinceEG �T {�} ! EG �G G=T induces the isomorphismH�(BT) �
H�

G(G=T), the localization map at the identity elementi �e is the identity map on the
right factor. Hence, by Lemma 3.2,

i �
v

(S
w

) D v Æ i �e Æ v
�1(S

w

)

D v Æ i �eSw(v�1t1, : : : , v�1tnI x1, : : : , xn)

D vS
w

(v�1t1, : : : , v�1tnI t1, : : : , tn)

D S
w

(t1, : : : , tnI vt1, : : : , vtn).

4. Abstract GKM-graph with symmetry

Modeled after the topological setting we have just seen, we consider an abstract
GKM-graph with the symmetry of a finite Coxeter group.

DEFINITION 4.1. Let t� be the vector space generated on a basist1, : : : , tn. A
connected, finite,m-valent graph0 D (V, E, �, �) with the following additional struc-
tures is said to be a GKM-graph:
(1) The axial function�W E! t� satisfies that{�(e) j e2 out(p)} are pairwise linearly
independent for allp 2 V .
(2) The connection� assigns for each edgee 2 E a bijection between out(ep) and
out(eq), satisfying that�(�e(e0)) � �(e0) is a scalar multiple of�(e) for any adjacent
edgese and e0.
We say that0 has the symmetry of a rankn finite Coxeter groupW if W acts as an
automorphism on the vertices and edges and further it satisfies
(1) �(w(e)) D w(�(e)) for 8e2 E.

(2) If q D s
�

p and q ¤ p for some� 2 5C, there is an edgep
�

�! q.
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(3) w(�e(e0)) D �w(e)(w(e0)) for all e, e0 2 E andw 2 W.
In the above,W action ont� is given by the standard representation.

We see in §3, for a GKM manifoldM with an extended action of a Lie groupG,
the GKM-graph0(M) admits the symmetry of the Weyl group ofG.

The cohomology of0 is defined following Theorem 2.1:

DEFINITION 4.2. LetR[t1, : : : , tn] be the symmetric algebra overt�, where the
generatorsti ’s are considered to be of degree two.

H�(0) D

(

M

p2V

hp hp 2 R[t1, : : : , tn], hp � hq 2 (�(e)) if p
�(e)
��! q

)

.

We considerH�(0) as aR[t1, : : : , tn]-submodule of
L

p2V R[t1, : : : , tn], where the
module structure is diagonal.

Note that1D
L

p2V 1 is the generator forH0(0) � R.
If 0 has the symmetry ofW, then W acts on the cohomology.

Lemma 4.3. For h 2 H�(0), the elementw(h) 2
L

p2V R[t1, : : : , tn] defined by

(4.1) w(h)p D w(h
w

�1 p)

belongs to H�(0).

Proof. Suppose that there is an edgep
�

�! q. Then there should be an edge

w

�1 p
w

�1
�

���! w

�1q. w(h)p�w(h)q D w(h
w

�1 p�h
w

�1q) is divisible bywÆw�1
� D �.

The action reduces trivially on the “ordinary cohomology.”

Lemma 4.4. For h 2 H�(0) and � 2 5C, we have

h � s
�

(h) 2 (� � 1).

Proof. Since

(h � s
�

(h))p D hp � s
�

(hs
�

p) D (hp � hs
�

p)C (hs
�

p � s
�

(hs
�

p))

is divisible by �, the assertion follows.

Sincew1w2(h)�hD (w1w2(h)�w2(h))C(w2(h)�h) for w1,w2 2W, it follows that
w(h)�h 2 (RC[t1,:::,tn] �1) for anyw 2W, that is,W acts trivially onH�(0)=(t1,:::,tn).
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REMARK 4.5. Note that if0 is a GKM-graph of some GKMG-manifold, it is
an easy topological consequence; The fiber inclusions� W M ! ET �T M andw Æ � is
homotopic sinceG is connected and there exists a path from (a representative of) w
to the identity element. Therefore, they induces the same map H�

T (M) ! H�(M) �
H�

T (M)=(HC(BT)).

From this lemma, we deduce a necessary condition for0 to admit the symmetry
of W. For this purpose, we define a graph theoretical analogy for torus invariant sub-
manifolds. A connected subgraph3 of 0 is said to beclosed under the connection
� when �e(e0) 2 3 for 8e, e0 2 3. Since�e is bijection for all e 2 E, 3 is always a
regular graph. Let0k be the set of all thek-valent subgraphs which are closed under
the connection. For3 2 0k, we obtain the class� 2 H2m�2k(0) which is supported on
3 by

�p D

8

<

:

Y

e2out pn3

�(e) (p 2 3),

0 (p 62 3).

Note that� 2 H�(0) is clear from the definition of� . Suppose that another class�0 2
H2m�2k(0) has the same support as�, that is, �0p ¤ 0 iff p 2 3. Then it must be a
scalar multiple of�. To see this, observe that there existscp 2 R for each p 2 3 such
that �0p D cp�p. Take q 2 3 which is adjacent top by an edgee. Then (�0 � cp�)q

must be divisible by�(e)
Q

e02outqn3�(e0) and so must be 0 by degree reason. It follows
that cq D cp, and by the connectivity of3 all the cp’s for p 2 3 must be equal. Since
W permutes0k, we have

Proposition 4.6. W acts on the set{�� 2 H2m�2k(0) j 3 2 0k} as a signed
permutation.

In some cases, this imposes a cohomological restriction on what kind of W can
act on0.

EXAMPLE 4.7. Assume that the classes corresponding to0m�1 gives a free ba-
sis for H2(0). Since H2(0) containst� � 1, the action is faithful. Furthermore, each
reflections

�

2 W fixes all but one or two elements. To see this, first observe that the
trace of the action ofs

�

on t� is n� 2 since it is a reflection. In addition, by the pre-
vious Lemma,s

�

acts trivially on H2(0)=t�. Therefore, the trace of the action ofs
�

on H2(0) must be two less than the rank ofH2(0). It follows that we can choose a
subset of{�� 2 H2(0)} of cardinality equal to or less than 2(nC1), on whichW acts
faithfully as a signed permutation. In particular, suchW is restricted to of classical
types. (Readers also refer to [12] and [10]).
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5. Divided difference operators

In this section, we construct a series of operators onH�(0). Topologically, they
coincide with the left divided difference operators.

First, we need the following lemma:

Lemma 5.1. (h � s
�

(h))=� is in H�(0).

Proof. First see

(h � s
�

(h))p � (h � s
�

(h))q D hp � hq C s
�

(hs
�

q � hs
�

p).

If q¤ s
�

p and p
�

�! q, it follows s
�

p
s
�

(�)
���! s

�

q. Hence, bothhp�hq ands
�

(hs
�

q�hs
�

p)
is divisible by� and since the labels are pairwise linearly independent, (h�s

�

(h))p=��

(h� s
�

(h))q=� is divisible by�. If q D s
�

p and p
�

�! q, we puthp�hs
�

p D � � f with
f 2 R[t1, : : : , tn]. Then we see

hp � hq C s
�

(hs
�

q � hs
�

p) D � � f C s
�

(� � f ) D �( f � s
�

( f ))

is divisible by �2.

Now, we can define the operators.

DEFINITION 5.2. The left divided difference operatorassociated to� 2 5C is
defined to be

�

�

W H�(0)! H��2(0),

h 7!
h � s

�

(h)

�

,

or equivalently,

�

�

(h)p D
1

�

(hp � s
�

hs
�

p).

It is well-known (see [8], for example) that they satisfy thebraid relation forW,
and hence, we can define�

w

for w 2 W as the composition�
�1��2 � � � ��l , wherew D

s
�1s�2 � � � s�l is a reduced decomposition forw.

Let us recall the definition of thenil-Hecke ring from [8]: Let SD R[t1, : : : , tn]
be the symmetric algebra overt� and Q be its quotient ring. We denote the smash
product of the group ringR[W] and Q by QW. Then the nil-Hecke ringR is the sub
ring of QW generated freely as a leftS-module by�

w

’s for 8w 2 W.

Theorem 5.3. Let 0 be a GKM-graph with the symmetry of a finite Coxeter group
W (Definition 4.1). Then, H�(0) is a module over the nil-Hecke ring R.
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EXAMPLE 5.4. WhenM D G=T , the left divided difference operator�
w

exhibits
the hierarchy of the Schubert classes: (We use the same notation as in Example 3.5.)

�

v

(S
w

) D

�

S
vw

(v � w),
0 (otherwise).

This is easily seen by comparing the support, since the Schubert classes are known to
be characterized by the upper-triangularity of the support(see, for example, [6]). Note
that the operators here are so-called theleft divided difference, and in [8] they consider
the right divided difference.

Now we consider theW-invariant subalgebra ofH�(0).

DEFINITION 5.5. Let H�

W(0) D H�(0)W. More explicitly, it is described as fol-
lows: Fix a set of representativesp1, : : : , pk for the right W-cosetsWnV of W Õ V
and denote byWpi

D {w 2W j wpi D pi } the isotropy subgroup atpi . Since, by (4.1),
h
wp D w(hp) for h 2 H�(0)W, we have

H�

W(0) D

(

k
M

iD1

hpi hpi 2 R[t1, : : : , tn]Wpi , hpi � whp j 2 (�(e))

if 9w 2 W=Wp j s.t. pi
�(e)
��! wp j

)

.

REMARK 5.6. SinceH�

G(M)�H�

T (M)W by Proposition 3.4, we haveH�

W(0(M))�
H�

G(M). The above definition gives a combinatorial description for H�

G(M).

As an application of the left divided difference operators,we can define theBecker–
Gottlieb transfer. Let w0 2 W be the longest element.

DEFINITION 5.7. Define

� W H�(0)! H�

W(0)

by

� (h) D �
w0(d1 � h),

whered D
Q

�25

C

�.

Then, we recover the famous theorem by Brumfiel and Madsen ([2]).

Proposition 5.8. � is given by

� (h) D
X

w2W

w(h).
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In particular, �=jWj is a left inverse to the inclusion� W H�

W(0) ,! H�(0), that is,
� Æ �=jWj is the identity map.

Proof. Fix a reduced expressionw0 D s
�1s�2 � � � s�l (w0) . It is well-known (see [3],

for example) that

�

w0 D �
�1
1 (1� s

�1)�
�1
2 (1� s

�2) � � � �
�1
l (w0)(1� s

�l (w0) ) D
1

d

X

w2W

(�1)l (w)
w.

Sincew(d) D (�1)l (w)d, we have the assertion.

EXAMPLE 5.9. In [7, §7], it is shown that

1

jWj
� (S

w

) D (�1)l (w)s
w

�1,

whereS
w

is the equivariant Schubert class associated tow 2W ands
w

�1 is the ordinary
Schubert class associated tow�1

2 W as in Example 3.5.

References

[1] J.C. Becker and D.H. Gottlieb:The transfer map and fiber bundles, Topology14 (1975), 1–12.
[2] G. Brumfiel and I. Madsen:Evaluation of the transfer and the universal surgery classes, Invent.

Math. 32 (1976), 133–169.
[3] M. Demazure:Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21

(1973), 287–301.
[4] M. Goresky, R. Kottwitz and R. MacPherson:Equivariant cohomology, Koszul duality, and the

localization theorem, Invent. Math.131 (1998), 25–83.
[5] V. Guillemin and C. Zara: 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math.

J. 107 (2001), 283–349.
[6] S. Kaji: Schubert calculus, seen from torus equivariant topology, Trends in Mathematics – New

Series12, (2010), 71–90.
[7] S. Kaji: Equivariant Schubert calculus of Coxeter groups, Proc. Steklov Inst. Math.,275 (2011),

239–250
[8] B. Kostant and S. Kumar:The nil Hecke ring and cohomology of G=P for a Kac–Moody group

G, Adv. in Math. 62 (1986), 187–237.
[9] S. Kuroki: GKM graphs induced by GKM manifolds with SU(l C 1)-symmetries, Trends in

Mathematics – New Series12, (2010), 103–113.
[10] M. Masuda:Symmetry of a symplectic toric manifold, J. Symplectic Geom.8 (2010), 359–380.
[11] M. Masuda and T. Panov:On the cohomology of torus manifolds, Osaka J. Math.43 (2006),

711–746.
[12] M. Wiemeler: Torus manifolds with non-abelian symmetries, Trans. Amer. Math. Soc.364

(2012), 1427–1487.



WEYL GROUP SYMMETRY ON GKM GRAPH 41

Department of Mathematical Sciences
Faculty of Science
Yamaguchi University
1677-1, Yoshida, Yamaguchi 753-8512
Japan
e-mail: skaji@yamaguchi-u.ac.jp


