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Abstract
In many problems of PDE involving the Laplace–Beltrami operator on manifolds

with ends, it is often useful to introduce radial or geodesicnormal coordinates near
infinity. In this paper, we prove the existence of such coordinates for a general class
of manifolds with ends, which includes asymptotically conical and hyperbolic mani-
folds. We study the decay rate to the metric at infinity associated to radial coord-
inates and also show that the latter metric is always conformally equivalent to the
metric at infinity associated to the original coordinate system. We finally give sev-
eral examples illustrating the sharpness of our results.

1. Introduction and result

The purpose of this note is to study the existence and some properties of radial (or
geodesic normal) coordinates at infinity on manifolds with ends, for a general class of
ends. Our motivation comes from geometric spectral and scattering theory (see e.g. [10]
for important aspects of this topic), but our results may be of independent interest. The
kind of manifolds we consider is as follows. We assume that, away from a compact
set, they are a finite union of endsE isometric to ((R, C1) � S, G) with S a compact
manifold (of dimensionn� 1� 1 in the sequel) andG of the form

(1.1) G D a dx2
C 2bi dx d�i =w(x)C gi j d�i d� j =w(x)2,

(using the summation convention) with coefficients satisfying, asx!1,

(1.2) a(x, �)! 1, bi (x, �)! 0, gi j (x, �)! Ngi j (�) DW Ng
�

�

��i
,
�

�� j

�

.

The nature of the end is determined by the functionw which we assume here to be
positive, smooth and, more importantly,

w(x)! 0, x!C1,

meaning that we consider large ends. The two main important examples are asymp-
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totically conical manifolds (or scattering manifolds) forwhich w(x) D x�1 and asymp-
totically hyperbolic manifolds for whichw(x) D e�cx for somec > 0. In (1.2), �S D
(�1, : : : , �n�1) W U � S ! R

n�1 are local coordinates onS so if � W E ! S is the pro-
jection, we obtain local coordinates onE by considering (x, �1 Æ� , : : : , �n�1 Æ�) which,
for simplicity of the notation, we denote by (x, �1, : : : , �n�1). The precise meaning of
(1.2) is that the convergence holds inC1(�S(U )); such a statement is intrinsic in that it
is invariant under the change of coordinates onS. We call Ng the metric at infinity with
respect to this product decomposition.

For analytical purposes, it is often very useful to work in a system of coordinates
such thata� 1 andbi � 0, i.e. to replacex by a new coordinatet such that

(1.3)

G D dt2
C hi j d�i d� j =w(t)2,

hi j (t, �)! Nhi j (�) DW Nh
�

�

��i
,
�

�� j

�

as t !C1,

at the expense of changingNg into a possibly different metricNh. One then says thatt
is a radial coordinate (see for instance [9] for the terminology). Using such coordin-
ates, the Laplacian can then be reduced, up to conjugation bya suitable function, to
an operator of the form��2

t C Q(t) with Q(t) an elliptic operator onS asymptotic
to �w(t)2

1

Nh as t ! 1 (see e.g. (1.1) in [4]). The absence of crossed term of the
form �t��i is convenient for Born–Oppenheimer approaches, i.e. to consider��2

t CQ(t)
as a one dimensional Schrödinger operator with an operator valued potential (see for
instance [1] for applications in this spirit); in the special case whenQ(t) is exactly
�w(t)2

1

Nh, i.e. if G D dt2
C

Nh=w(t)2, one can use separation of variables as is well
known. Important questions requiring such a reduction of the metric also include re-
solvent estimates [2, 3, 4] (construction of Carleman weights) or inverse problems [7, 8]
(reduction to a problem onS).

In the works [2, 3, 4, 7, 8], the reduction ofG to the normal form (1.3) is ei-
ther proved on particular cases [2, 7] (conical ends) and [8](asymptotically hyperbolic
ends), or even taken as an assumption in [3, 4]. For this reason and also in the per-
spective of studying intermediate models between the conical and the asymptotically
hyperbolic cases, we feel worth proving in detail the existence of radial coordinates
for general manifolds with ends (i.e. associated tow satisfying the assumption (1.4) be-
low). Another motivation is that, although the existence ofradial coordinates may seem
intuitively clear, there are some subtleties on the rate of convergence to the asymptotic
metric. We shall in particular show that, even if the convergences in (1.2) are fast as
x!1, it may happen that the decay in radial coordinates, i.e. therate of convergence
to Nh in (1.3), is slow. We shall see how this depends onw. This point is important
in scattering theory since it means that the reduction to (1.3) may be at the price of
considering a long range type of decay. As a last point, we shall also describe the
relationship betweenNg and Nh. For the class of functionsw we are going to consider,
we shall see thatNh is always conformally equivalent toNg, as is well known in the
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asymptotically hyperbolic case. In certain situations, such as the conical case, the con-
formal factor is equal to 1 (i.e. there is no conformal change) and this will be covered
by our result.

Let us now state our main result precisely.
First, for simplicity and without loss of generality, we will assume thatM D E D

(R,1)�S equipped with a Riemannian metricG as in (1.1). We will use a quantitative
version of (1.2) given in term of symbol classesSm. Recall that, givenm 2 R and a
function f defined on a semi-infinite interval (M, C1) or on (M, C1) � V , with V
an open subset ofRn�1, we have

f 2 Sm def
� �

j
x �

�

�

f D O(hxim� j ),

on (M, C1) � K for all K b V . Occasionally we shall also say that a function or a
tensor defined on (M,C1)�S belongs toSm if its pullback by every coordinate chart
of an atlas ofS is in Sm.

The precise assumptions onG are as follows. We assume first that, for some� > 0
and " > 0,

(1.4) w 2 S��,

�

w

0

w

�

0

2 S�1�",

where Sm
D Sm(R,1) for mD �� and�1� ". The condition on (w0

=w)0 implies the
existence of the non positive real number

(1.5) � WD lim
x!C1

w

0(x)

w(x)
.

Notice that� � 0. Otherwisew0 should be positive at infinity hencew should be in-
creasing which would be incompatible with the fact thatw 2 S�� (recall thatw > 0).
To state our second assumption, we setb D (b1, : : : , bn�1), gD (gi j ) and NgD (Ngi j ) (see
(1.1) and (1.2)). We assume that

(1.6) a� 1 2 S��, b 2 S�� , g� Ng 2 S�� ,

where Sm
D Sm((R,1) � �S(U )) (for all charts�S W U ! �S(U ) of some atlas ofS)

and with exponents satisfying

(1.7) � � 1C � , � �

1C �

2
, � �

1C �

2
, with � > 0.

We finally define the outgoing normal geodesic flow. Givenr > R, denote by�r the
outgoing normal vector field to the hypersurface{r } � S �M. Here outgoing means
that hdx, �r i > 0. The outgoing normal geodesic flowNr is then

Nr (t, !) WD exp(r,!)(t�r ), ! 2 S, t � 0,
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namely the exponential map onM with starting point on{r } � S, initial speed�r and
nonnegative time.

Theorem 1. Assume(1.4), (1.6) and (1.7). Then, for all r � 1, Nr has the
following properties.
1. It is complete in the future(i.e. is defined for all t� 0).
2. It is a homeomorphism(resp. a diffeomorphism) between[0,1)t�S (resp.(0,1)�
S) and [r,1)x � S (resp. (r,1) � S).
3. There exists a diffeomorphism�r W S! S and a real function�r W S! R such that

N�

r G D dt2
C w(t)�2h(t)

with (h(t))t>0 a smooth family of metrics onS such that

(1.8) h(t) � Nh 2 S�min(� ,"), with Nh WD e�2��r
�

�

r Ng.

Note the dependence on� in (1.8). In particular, if� D 0, there is no conformal
factor. Observe also that the decay rate ofh � Nh in (1.8) can in principle be worse
than the one ofg� Ng in (1.6). We shall see that this can be the case in some of the
examples below.

EXAMPLES. 1. Asymptotically conical metrics: w(x) D x�1 (for x > R > 0).
We have obviously

� D 1, " D 1, � D 0.

On one hand� D 0, so the metric at infinity is not affected by a conformal factor, but
on the other hand" D 1 so h(t) is in general a long range perturbation ofNh. Actually,
one can see that

(1.9) h(t) D (1C 2�r t
�1) NhC o(t�1),

which shows that the decay rate ofh(t) � Nh is only S�1 (see the proof of Theorem 1
below in Subsection 2.2 for a justification of (1.9)).
2. Asymptotically hyperbolic metrics: w(x) D e�cx (with c > 0). In this case, we
can take

� > 0 arbitrarily large, " > 0 arbitrarily large, � D c.

Here � ¤ 0 hence the metric at infinity is only conformally equivalentto the original
one. On the other hand, since" can be taken as large as we wish, in particular larger
than � , the decay rate ofh to Nh cannot be worse than the one ofg to Ng in (1.6).
3. An intermediate case: For the functionw(x) D e�x�x� , with 0< � < 1, we have

� > 0 arbitrarily large, " D 1� �, � D 1.
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This suggests that both a conformal factor and a weaker decay(if " < � ) happen at the
same time. Actually the decay can indeed be weaker if" < � , for one can show that

(1.10) h(t) D (1C 2��r t
��1) NhC o(t��1)C O(t�� ).

See again the proof of Theorem 1 below for a justification of this expansion.

2. The outgoing normal geodesic flow

2.1. The main estimates. In this subsection, we fix some notation and state in-
termediate results leading fairly directly to Theorem 1 which is proved in Subsection 2.2.
The more technical proofs are postponed to the next sections.

It will be convenient to use some fixed geodesic distanced( � , � ) on S associated to
an arbitrary Riemannian metric (which has nothing to do withNg). We then fix a cover
of S by finitely many coordinates patches. At any!0 2 S, there is a chart�S W U �
S ! V � Rn�1 and, if we set�0 D �S(!0), there is�

!0 such that

(2.1) B(�0, 4�
!0) b V,

where, here and below, the ballB(�0, �) refers to a fixed normj � j on Rn�1. By the
compactness ofS, we have

(2.2) S D
[

!02finite set

�

�1
S

(B(�0, �
!0)).

Furthermore, we can assume that, for some fixedC > 0 depending ond and the
cover (2.2),

(2.3) d(!, !0) � Cj�S(!) � �S (!0)j, !, !0 2 ��1
S

(B(�0, 3�
!0)),

with d the distance which was chosen above.
We next summarize the expressions of several important objects in the coordinate

patch of M associated to the patch��1
S

(B(�0, 4�
!0)) of S. We will study the geo-

desic flow through its hamiltonian expression on the cotangent bundle and thus need
to compute the dual metric. To this end, we recall that (1.1) can be recast in matrix
form as

(2.4) G �
�

1 0
0 w(x)

�

�1�
a bT

b g

��

1 0
0 w(x)

�

�1

.

Then the dual metric, obtained by inverting (2.4), is given by

�

1 0
0 w(x)

��

a bT

b g

��

1 0
0 w(x)

�
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with

(2.5) a D
1

a� bT g�1b
, bD �ag�1b, g D g�1

C ag�1bbT g�1.

Note that, by possibly increasingR and by (1.2), we may assume thata�bT g�1b does
not vanish. It is important to note that, by (1.6) and (1.7), we have

(2.6) a� 1 2 S�min(�,2�)
� S�1�� , b 2 S�� , g� Ng�1

2 S�� .

According to the notation (2.5), the dual metric, i.e. the principal symbol of the Laplac-
ian, reads

(2.7) p(x, � , �, �) WD a(x, �)�2
C 2w(x)�b(x, �) � �C w(x)2

� � g(x, �)�,

with � 2 R and � 2 Rn�1. We denote by (xt , � t , � t , �t ) the hamiltonian flow ofp,
namely the solution to

(2.8) Pxt
D

� p

��

, P

�

t
D

� p

��

, P�

t
D �

� p

�x
, P�

t
D �

� p

��

,

with initial condition at t D 0 to be specified. A simple calculation shows that the
outgoing normal to{r } � S is the vector field

�r D a1=2 �

�x
C w(x)

b

a1=2
�

�

��

,

wherea and b are evaluated at (r, �) D (r, �S(!)). The associated co-normal form�[r ,
i.e. such thatG(�r , � ) D �

[

r , is then

�

[

r D a�1=2 dx,

so the geodesic starting at (r,!) with �r as initial velocity, i.e. exp(r,!)(t�r ), is given in
these local coordinates by

(2.9) x
�r (t, �) WD xt=2(r, � , a�1=2, 0), �

�r (t, �) WD � t=2(r, � , a�1=2, 0).

Here the factor 1=2 on the time is due to the fact that we consider the Hamiltonian flow
of p rather than the one ofp1=2. We also note in passing that the conditionG(�r ,�r )D
1 reads

(2.10) p(r, � , a�1=2, 0)D 1.

The expression of the normal geodesic flow given by (2.9) is ofcourse meaningful only
as long as the geodesic remains in the coordinate patch. We shall see below that, if
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r is large enough and� is restricted toB(�0, 2�
!0) (which is technically more conve-

nient thanB(�0, �
!0), though the latter would be sufficient by (2.2)), then the geodesic

remains in the same coordinate patch for allt � 0 (thus is complete in the future) and
satisfies suitable estimates. To make the proof as clear as possible, we pick up its main
steps in the following propositions which will be proved in separate subsections.

Proposition 2 (the geodesic flow in a chart). Assume(1.4), (1.6)and (1.7). Then,
for all M > 1, there exists X> 0 such that, for all initial condition (x, � , �, �) of
(2.8) satisfying

(2.11) x � X, � 2 B(�0, 2�
!0), � 2 [M�1, M], j�j � M,

the hamiltonian flow of p is defined for all t� 0 and satisfies

(2.12) xt
� x C

t

M
, �

t
2 B(�0, 3�

!0).

Furthermore, for all j � 1 and all �
 D �k
x�

�

�

�

l
�

�

�

�

, we have the estimates

j�

j
t �


 (xt
� x � 2tp1=2)j . hx C ti��� j ,(2.13)

j�

j
t �


 (� t
� �)j . hx C ti��� j(2.14)

where pD p(x, � , �, �).

Proof. See Section 3.

We now derive here a proposition on the outgoing normal geodesic flow from which
Theorem 1 will follow easily. We introduce the notation

(2.15) Nr DW (xr , !r )

for the components ofNr on (R, C1) and S, respectively. Note the relationship be-
tween (2.15) and (2.9):

(2.16) xr (t, ��1
S

(�)) D x
�r (t, �), (�S Æ !r )(t, �

�1
S

(�)) D �
�r (t, �).

Proposition 3 (Global properties of the normal flow). For all r � 1, the follow-
ing properties hold.
1. For each t� 0, !r (t, � ) is a diffeomorphism fromS to S and

d(!, !r (t, !)) � Chr i�� , r � 1, t � 0, ! 2 S,

with C independent of r, t, !.
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2. The limit �r WD limt!1

!r (t, � ) exists and is a diffeomorphism fromS to S.
3. For any coordinate system�S associated to the cover(2.2), we have

�S Æ (��1
r Æ !r )(t, �

�1
S

(�)) D � mod S�� , � 2 B(�0, �
!0).

4. There exist�r 2 C1(S, R) such that

xr (t, !) D t C �r (!) mod S�� ,

for t � 0 and ! 2 S.
5. For all r � 1, Nr is a homeomorphism(resp. diffeomorphism) from [0,1) � S

onto [r, C1) � S (resp. (r, C1) � S).

This proposition will follow from Proposition 2 and the following lemma on per-
turbations of the identity (see Appendix A for the proof).

Lemma 4. Let Ft,r W S ! S be a family of smooth maps indexed by r� 1 and
t � 0, such that, for some C> 0,

(2.17) d(Ft,r (!), !) � Chr i�� , r � 1, ! 2 S, t � 0,

and, in each chart of the cover(2.2),

(2.18) kD(�S Æ Ft,r Æ �
�1
S

)(�) � I
R

n�1
k � Chr i�� , r � 1, � 2 B(�0, 2�

!0), t � 0.

Then, for all r large enough and all t� 0, Ft,r is a smooth diffeomorphism onS.

In (2.18),k�k is a fixed norm on linear maps onRn�1. Note also that�S ÆFt,r Æ�
�1
S

is meaningful onB(�0, 2�
!0), since (2.17) implies, ifr is large enough, thatFt,r maps

�

�1
S

(B(�0, 2�
!0)) into ��1

S
(B(�0, 3�

!0)) which is contained in the domain of�S by (2.1).

Proof of Proposition 3. Forr large enough, (1.6) allows to assume that
a�1=2(r, �) 2 [1=2, 3=2] hence that the initial condition (r, � , a�1=2, 0) satisfies the as-
sumption (2.11). By (2.9), (2.12) and (2.16), we have then

! 2 �

�1
S

(B(�0, 2�
!0)) H) !r (t, !) 2 ��1

S
(B(�0, 3�

!0))

and, by (2.14),

j�

�r (t, �) � � j D

�

�

�

�

1

2

Z t

0
�s�

s=2(r, � , a�1=2, 0) ds

�

�

�

�

. hr i�� ,

r � 1, � 2 B(�0, 2�
!0), t � 0.
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This is a fortiori true if � 2 B(�0, �
!0). So we obtain, using (2.2) and (2.3), that

(2.19) d(!, !r (t, !)) � Chr i�� , r � 1, ! 2 S, t � 0.

Furthermore, by (2.14), we also see that�
�r (t, � ) D �S Æ !r (t, ��1

S
( � )) satisfies the

condition (2.18), since

(2.20)

j�

�

(�
�r (t, �) � �)j

D

�

�

�

�

1

2

Z t

0
(�s���

s=2)(r, � , a�1=2, 0)C (�s���
s=2)(r, � , a�1=2, 0)�

�

a�1=2 ds

�

�

�

�

. hr i�� ,

for all r � 1, t � 0 and� 2 B(�0, 2�
!0)

1. This proves the item 1.
We now consider the item 2. To prove the existence of the limitof !r (t, � ) as

t goes to infinity, it suffices to show that�
�r (t, �) has a limit for each� 2 B(�0, �

!0),
since we now that, by takingr large enough,!r (t, !) belongs to��1

S
(B(�0, 2�

!0)) if
! 2 �

�1
S

(B(�0, �
!0)). The existence of the limit will then follow from the integrability

of �t��r , which is an immediate consequence of

�t��r (t, �) D
1

2
�t�

t=2(r, � , a�1=2, 0)D O(hr C ti�1�� )

by (2.14). The derivatives with respect to� satisfy the same bounds in time, so the
limit as t !1 of �

�r (t, � ) is smooth. We can also lett go to infinity in (2.19) and
(2.20) to conclude that�r satisfies the assumptions of Lemma 4 and thus is a diffeo-
morphism forr large enough.

To prove the item 3, we start by choosingr large enough so that

�

�r (t, B(�0, �
!0)) � B

�

�0,
3

2
�

!0

�

.

Furthermore, since�r satisfies the same bound as!r (t, � ) in (2.19), this also holds
for ��1

r . So we may assume that

�

�1
r

�

B

�

�0,
3

2
�

!0

��

� B(�0, 2�
!0).

Thus, by setting2 WD �S Æ �
�1
r Æ �

�1
S

, it suffices to consider2 Æ �
�r . Since � D

1This is the interest of considering initial conditions with� 2 B(�0, 2�
!0).
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limt!1

2 Æ �

�r (t, �), we have

� �2 Æ �

�r (t, �) D
Z

C1

t
�s(2 Æ ��r )(s, �) ds

D

Z

C1

t
(D2)(�

�r (s, �)) � �s��r (s, �) dsD O(hti�� )

using (2.9) and (2.14). By differentiating this expressionin t and � , we conclude that
2 Æ �

�r � � belongs toS�� , which is the expected result.
To prove the item 4, we observe first that the existence of�r is equivalent to the

existence of limt!C1

(xr (t, � ) � t) which follows from the integrability of�t xr � 1.
This integrability in turn follows from (2.13) and (2.10) using the local expression of
xr given by (2.9) and (2.16). We actually have the following formula

(2.21)
x
�r (t, �) D t � r C

Z t

0
(�sx�r (s, �) � 1) ds

D t C (�r Æ �
�1
S

)(�) �
Z

1

t
(�sx�r (s, �) � 1) ds.

Since ��
�

(�t xr � t) is integrable in time for any�, we see that�r is smooth. It also
follows easily from (2.13) that the last term in (2.21) belongs to S�� .

It remains to prove the item 5. It is convenient to denote byOr (t, � ) W S ! S the
inverse map of!r (t, � ). Note that since!r is smooth on [0,1) � S, so is the map
Or W (t, !) 7! Or (t, !). Therefore, the map

Mr W (t, !) 7! (t, !r (t, !))

is a homeomorphism from [0,1) � S onto itself with inverse (t, !) 7! (t, Or (t, !)).
It is also obviously a diffeomorphism on the interior. It is thus sufficient to prove the
result for the mapPr WD Nr Æ M�1

r instead of Nr . Notice that Pr has the following
simpler form

Pr (t, !) D (xr (t, Or (t, !)), !).

This map is smooth up tot D 0 and it is thus not hard to see that the conclusion would
be a consequence of the fact that, for each! 2 S, the map

t 7! Xr,!(t) WD xr (t, Or (t, !))

is a bijection from [0,1) onto [r,1). Clearly, if t D 0 we haveXr,!(0)D r , so it is
sufficient to show that

(2.22) j�t Xr,!(t) � 1j �
1

2
,
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for r large enough andt � 0. Using (2.14) and (2.20), it is not hard to see that�t�S Æ

Or (t, � ) is of order hr i�� which, together with (2.13), implies (2.22) and completes
the proof.

2.2. Proof of Theorem 1. Item 1 follows from Proposition 2 and (2.9). The
item 2 is the item 5 of Proposition 3. We now prove the item 3. If�S D (�1, : : : , �n�1)
are coordinates onS, then (t, �1, : : : , �n�1) are coordinates on (0,1) � S and

Nt WD t Æ N�1
r , N

� j WD � j Æ N�1
r , j D 1, : : : , n� 1,

are coordinates onM which we work with. It is useful to note, by standard properties
of the local normal flow, thatNr is smooth up tot D 0 and N�1

r up to x D r . In
particular, this allows us to use the fact that the vector fields �=�t , �=�� j , �=�Nt and
�=�

N

� j are defined up to the boundary. We show first that

(2.23) N�

r G(t,!)

�

�

�t
,
�

�t

�

D 1, N�

r G(t,!)

�

�

�t
,
�

�� j

�

D 0.

To that end, we observe on one hand that

(2.24)
�

�

Nt

�

�

�

�

Nr (t,!)

D d Nr

�

�

�t

�

�

�

�

(t,!)

�

,
�

�

N

� j

�

�

�

�

Nr (t,!)

D d Nr

�

�

�� j

�

�

�

�

(t,!)

�

,

and, on the other hand that

(2.25)
�

�

Nt

�

�

�

�

Nr (t,!)

D

d

dt
Nr (t, !),

which is the tangent vector to the geodesic exp(r,!)(t�r ). In particular, att D 0, the
vector field in (2.25) is�r so (2.23) is true fort D 0. It then suffices to show that the
left hand sides in (2.23) are constant with respect tot . Using the standard properties
of the Levi-Civita connectionr and (2.25)

�

�t
N�

r G(t,!)

�

�

�t
,
�

�t

�

D

�

�t

�

G
�

�

�

Nt
,
�

�

Nt

��

�

�

�

�

Nr (t,!)

D

�

�

Nt
G
�

�

�

Nt
,
�

�

Nt

�

D 2G
�

r

�=�

Nt
�

�

Nt
,
�

�

Nt

�

D 0,

where, in the last two lines, we dropped the evaluation atNr (t,!) from the notation for
simplicity. This yields the first equality of (2.23) for allt � 0. For the second equality,
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we compute similarly

�

�t
N�

r G(t,!)

�

�

�t
,
�

�� j

�

D

�

�t

�

G
�

�

�

Nt
,
�

�

N

� j

��

�

�

�

�

Nr (t,!)

D

�

�

Nt
G
�

�

�

Nt
,
�

�

N

� j

�

D G
�

r

�=�

Nt
�

�

Nt
,
�

�

N

� j

�

CG
�

�

�

Nt
, r

�=�

Nt
�

�

N

� j

�

.

Here, using that the Levi-Civita connection is torsion free, we have

G
�

�

�

Nt
, r

�=�

Nt
�

�

N

� j

�

D G
�

�

�

Nt
, r

�=�

N

� j

�

�

Nt
C

�

�

�

Nt
,
�

�

N

� j

��

D

1

2

�

�

N

� j
G
�

�

�

Nt
,
�

�

Nt

�

D 0,

since the Lie bracket in the first line vanishes and since, in the second line, we are
differentiating a constant function. This completes the proof of (2.23).

To determineN�

r G(�=��i , �=�� j ) it suffices to compute the lastn�1 columns and
rows of the following block matrix decomposition ofN�

r G in local coordinates,

0

B

B

�

�x
�r

�t

�x
�r

��

��

�r

�t

��

�r

��

1

C

C

A

T

�

1 0
0 w

�

�1�
a bT

b g

��

1 0
0 w

�

�1

0

B

B

�

�x
�r

�t

�x
�r

��

��

�r

�t

��

�r

��

1

C

C

A

,

where a, b, g and w are evaluated at (x
�r , ��r )(t, �). After a simple calculation, the

matrix is

(2.26) w

�2

�

w

2a
�x

�r

��

T
�x

�r

��

Cw

�

�x
�r

��

T

bT ���r

��

C

��

�r

��

T

b
�x

�r

��

�

C

��

�r

��

T

g
��

�r

��

�

.

By (1.6), (1.7) and Proposition 3, the matrix (of the metric)inside{� � � } is of the form

(2.27) S�1��
C S�1��

C (��1
S

)���

r NgC S�� ,

where, for the last two terms, we used that�
�r (t, � ) D �S Æ�r Æ �

�1
S
C S�� as well as

the fact that��
S

g D NgC S�� . On the other hand, using the second condition of (1.4)
and (1.5), we havew0

=w � � 2 S�", from which it follows that

(2.28) w(t C b) D w(t)e�b exp

�

Z tCb

t
�

�"

(s) ds

�

,
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for some�
�"

2 S�". This identity and the item 4 of Proposition 3 imply that

w(x
�r (t, �)) D w(t)e�(�r Æ�

�1
S

)(�)(1C S�min(",� )).

Combining this identity and (2.27) completes the proof of the item 3 of Theorem 1.

Justification of Example 1. Using the item 4 of Proposition 3, we see that the
term w(xr )�2 in front of (2.26) is of the form

w(xr )�2
D (t C �r C S�� )2

D t2(1C 2�r t�1
C o(t�1)),

which proves (1.9).

Justification of Example 3. In this case, (2.28) reads explicitly

(2.29)
w(t C b) D w(t)e�b exp

�

�

Z b

0
�(t C u)��1 du

�

D w(t)e�b(1� �bt��1
C o(t��1)),

where o(t��1) is uniform with respect tob as long asb remains in a compact set.
Using again the item 4 of Proposition 3 to writexr as t C b, (2.29) combined with
(2.26) and (2.27) implies (1.10).

3. Proof of Proposition 2

The proof will be reduced to the analysis of hamiltonians globally defined onR2n.
Indeed, by possibly increasingR and by (1.4), we may assume thatw is defined on
R and belongs toS��(R). Also, by (1.6), we can modify the coefficients ofp on
B(�0, 4�

!0) n B(�0, 3�
!0) so that

(3.1)
a� 1 2 S�min(�,2�)(R � Rn�1), b 2 S��(R � Rn�1),

g� Ng�1
2 S�� (R � Rn�1),

for some positive definite matrixNg�1 defined onRn�1 with C1

b coefficients, such that
Ng�1(�) � C > 0 for all � and which coincides with the originalNg�1 on B(�0, 3�

!0).
Then, we keep the notationp for the symbol

(3.2) p(x, � , �, �) D a(x, �)�2
C 2w(x)�b(x, �) � �C w(x)2

� � g(x, �)�,

which coincides with the principal symbol of the Laplacian on (R,C1)� B(�0, 3�
!0)�

R

n. We may assume that for someC0 � 1,

(3.3) C�1
0 (�2

C w(x)2
j�j

2) � p(x, � , �, �) � C0(�2
C w(x)2

j�j

2),
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everywhere onR2n.
We consider (xt ,� t ,� t ,�t ), the hamiltonian flow ofp with initial condition (x,� ,�,�)

at t D 0.

Proposition 5. Assume(1.4), (1.6)and (1.7). Then, for all M > 1, there exists
X1 > 0 such that, for all

(3.4) x � X1, � 2 R

n�1, � 2 [M�1, M], j�j � M,

the hamiltonian flow of p is defined for all t� 0 and satisfies

(3.5)

8

�

�

<

�

�

:

jxt
� x � 2t� t

j . hxi�� ,
j�

t
� � j . hxi�� ,

j�

t
j . 1,

j�

t
j . 1,

where pD p(x, � , �, �). Furthermore, for all t � 0

xt
� x C

t

M
,(3.6)

�

t
& 1,(3.7)

j�

t
� p1=2

j . hx C ti�1�� .(3.8)

Notice that (3.8) implies that

(3.9) lim
t!C1

�

t
D p1=2,

and also that, in the left hand side of the first estimate of (3.5), 2t� t could be replaced
by 2tp1=2.

Proof of Proposition 5. By boundedness ofw andw0, we have

(3.10) p(x, � , �, �) � C0

0, for j�j � M, j�j � M,

with C0

0 depending only onC0 and M. On the other hand, by (1.7) and (3.1), we have

(3.11)

8

�

�

<

�

�

:

j�

�

p� 2�j � C1hxi�1�� (j�j C j�j),
j�

�

pj � C2hxi�1�� (j�j C j�j),
j�x pj � C3hxi�2�� (�2

C j�j

2),
j�

�

pj � C4hxi�1�� (�2
C j�j

2),

on R

2n,

using that

min(�, 2�) � 1C � , �C � � 1C � , 2� � 1C � .



METRIC NORMAL FORM 1007

Given (x,� ,�,�) satisfying (3.4), denote by [0,T
C

) the domain of the maximal solution.
We shall prove thatT

C

D C1 and that

(3.12) xt
� x C

t

M
, j�t

j � 2M,

for all t 2 [0, T
C

). Introduce the set

I WD {T 2 [0, T
C

) j (3.12) holds on [0,T ]}.

This is obviously an interval containing 0 and we setT
CC

D supI , which is clearly
positive. Using (3.10), the conservation of energy and (3.3), we obtain a bound

j�

t
j � (C0C0

0)1=2

along the flow and see that there existC0

1, C0

3, C0

4 depending only onC1, C3, C4 and
M such that

j Pxs
� 2�s

j � C0

1hx
s
i

�1�� ,

j P�

s
j � C0

3hx
s
i

�2�� ,

j P�

s
j � C0

4hx
s
i

�1�� ,

for all s 2 I . Thus, if one choosesX1 large enough so that

C0

3

Z

1

0

D

X1C
s

M

E

�1��
ds<

1

4M
,

C0

4

Z

1

0

D

X1C
s

M

E

�1��
ds<

M

4
,

C0

1hX1i
��

<

1

4M
,

then, for all t 2 I ,

Pxt
� 2� t

�

1

4M
, j� t

� �j �

1

4M
, j�t

� �j �

M

4
.

Using (3.4), this implies clearly that, for allt 2 I ,

j�

t
j �

5M

4
, �

t
�

3

4M
, xt

� x C
5

4

t

M
,

yielding a contradiction with the fact thatT
CC

< T
C

(one could otherwise obtain (3.12)
beyondT

CC

). Thus T
CC

D T
C

and T
C

D C1, since (3.11) and (3.12) imply that the
flow cannot blow up in finite time. We have thus shown the completeness of flow on
[0,C1) as well as the third and fourth estimates of (3.5), (3.6) and(3.7). In particular,
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using thatxt
!1 as t !C1, we also deduce (3.9) from the conservation of energy

and the positivity of� t . Integrating P�s for s 2 [t,1), we obtain the quantitative bound
(3.8), using the third estimate of (3.11) and (3.12). It remains to prove the first two
estimates of (3.5). For the first one, it suffices to observe that

j�t (x
t
� x � 2t� t )j D j Pxt

� 2� t
� 2t P� t

j . hx C ti�1�� ,

using the third estimate of (3.5), the first and third estimates of (3.11) and (3.12). The
second one is obtained similarly from the second estimate of(3.11).

REMARK . As one can see from this proof, the completeness of the flow aswell
as the estimates (3.5) (third and fourth) to (3.7) could be obtained even if we only had
�� and �1 � � rather than�1 � � and �2 � � in the first and third lines of (3.11)
respectively. Furthermore, in this case we also would have alower bound similar to
(3.6). The powers�1�� and�2�� play a role only when we prove the first estimate
of (3.5).

For future reference, we note here the following elementaryfact. Assuming that
the initial conditions satisfy (3.4) withX1 large enough, we can freely modify the
Hamiltonian vector field ofp for j�jCj�j large (e.g. cutoff) by conservation of energy.
More precisely, using the last two estimates of (3.5), we workon a domain where we
can assume that the Hamilton equations (2.8) read

(3.13)

8

�

�

<

�

�

:

Pxt
D 2� t

C a1(xt , � t , � t , �t ) D a0(xt , � t , � t , �t ),
P

�

t
D a2(xt , � t , � t , �t ),
P�

t
D a3(xt , � t , � t , �t ),

P�

t
D a4(xt , � t , � t , �t ),

with

a1, a2, a4 2 S���1, a3 2 S���2, a0 2 S0.

This remark will be useful below. In the next proposition, werecall that�
 D �k
x�

�

�

�

l
�

�

�

�

.

Proposition 6. Assume(1.4), (1.6)and (1.7). Then, for all M > 0, there exists
X1 > 0 such that, on the domain defined by(3.4), we have

(3.14)

8

�

�

<

�

�

:

j�


 (xt
� x � 2t� t )j . hxi�� ,

j�


 (� t
� �)j . hxi�� ,

j�


 (� t
� �)j . hxi���1,

j�


 (�t
� �)j . hxi�� ,
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and, for j � 1,

(3.15)

8

�

�

�

<

�

�

�

:

j�

j
t �


 (xt
� x � 2t� t )j . hx C ti��� j ,

j�

j
t �


 (� t
� �)j . hx C ti��� j ,

j�

j
t �


 (� t
� �)j . hx C ti���1� j ,

j�

j
t �


 (�t
� �)j . hx C ti��� j .

Notice that� may be omitted in the third line of (3.15) or even be replaced by
p1=2. From this remark, we obtain the additional useful estimates, for j � 0,

(3.16) j�

j
t �


 (� t
� p1=2)j . hx C ti���1� j .

Proof of Proposition 6. Let us introduce

ut
WD xt

� 2t� t , 8

t
D (ut , � t , � t , �t ).

Clearly, (3.14) follows by integration in time of (3.15) since ut
� x, � t

� � , � t
� � and

�

t
� � vanish att D 0. It is thus sufficient to prove (3.15), which we consider now.

Using the identity

Put
D Pxt

� 2� t
� 2t P� t ,

and (3.13), one checks that8t satisfies an ODE of the form

(3.17)

8

�

�

<

�

�

:

Put
D (b1C t Qb1)(xt , � t , � t , �t ),
Pyt
D b2(xt , � t , � t , �t ),
P�

t
D

Qb3(xt , � t , � t , �t ),
P�

t
D b4(xt , � t , � t , �t ),

with

b1, b2, b4 2 S���1, Qb1, Qb3 2 S���2.

Independently, (3.13) again and a simple induction onj show that

(3.18) a 2 Sm
H) �

j
t a(xt , � t , � t , �t ) D Qa(xt , � t , � t , �t ) for some Qa 2 Sm� j .

Assume for a while that we have proved the bounds

(3.19) j�




8

t
j � C




, j
 j � 1.

Then, for j
 j � 1,

(3.20) j�


 xt
j . hti, j�
 � t

j C j�




�

t
j C j�




�

t
j . 1,
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and let us show how it leads to the result. By applying� j�1
t to (3.17) and using (3.18),

we see first that

(3.21)

8

�

�

�

<

�

�

�

:

�

j
t ut
D (c1C t Qc1)(xt , � t , � t , �t ),

�

j
t �

t
D c2(xt , � t , � t , �t ),

�

j
t �

t
D Qc3(xt , � t , � t , �t ),

�

j
t �

t
D c4(xt , � t , � t , �t ),

with

c1, c2, c4 2 S��� j , Qc1, Qc3 2 S���1� j .

On the other hand, the Faà Di Bruno formula (see for instance [5]) yields
(3.22)
�


 (a(xt , � t , � t , �t ))

D �xa�
 xt
C �

�

a�
 � t
C �

�

a�
 � t
C �

�

a�
 �t

C linear combination of (�k
x�

�

�

�

l
�

�

�

�

a)
Y

1�i�k

�




x
i xt

Y

Æ,i

�




�

Æ

i
�

t
Æ

Y

i

�




�

i
�

t
Y

Æ,i

�




�

Æ

i
�

t
Æ

,

where all derivatives in the products of the second line are of strictly smaller order
than j
 j and satisfy

X

i




x
i C

X

Æ,i




�

Æ

i C
X

i




�

i C
X

Æ,i




�

Æ

i D 
 ,

and where all derivatives ofa are of course evaluated at (xt ,� t ,� t ,�t ). If a 2 Sm, using
(3.6), we deduce from (3.20) and (3.22) that

j�


 (a(xt , � t , � t , �t ))j . hx C tim�1
hti C hx C timC

X

k�j
 j

hx C tim�k
htik

. hx C tim.

Therefore, by applying�
 to (3.21), (3.15) is a straightforward consequence of (3.19).
It thus remains to prove (3.19), which we do now by induction on j
 j. By (3.21), we
can introduce

Bt D BC t QB, B 2 S�� , QB 2 S���1,

which areR2n valued so that

(3.23) P

8

t
D Bt (x

t , � t , � t , �t ).

By applying �
 to this equation (withj
 j D 1 first) and using that

j�


 xt
j . htij�
 Xt

j, j�
 � t
j C j�




�

t
j C j�




�

t
j . j�


 Xt
j,
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we obtain

j�




8

t
j . j�




8

0
j C

Z t

0
hx C si�2��

hsij�
8s
j C hx C si�1��

j�




8

s
j ds

using also (3.6). By the Gronwall Lemma, this yields (3.19) for j
 j D 1. Then, assum-
ing j
 j � 2 and that (3.19) has been proved for lower orders, we obtain

j�




8

t
j .

Z t

0
hx C si�2��

hsij�
8s
j C hx C si�1��

j�




8

s
j ds

C

j
 j

X

kD0

Z t

0
hx C si�1���k

hsik ds,

by applying�
 to the equation (3.23) and using (3.22). Then (3.19) followsfrom the
Gronwall lemma. The proof is complete.

Proof of Proposition 2. The localization properties in (2.12) follow from (the sec-
ond line of) (3.5) and (3.6). Note in particular that within the domain (X1, 1) �
B(�0, 3�

!0)�R
n (with X1� 1), the hamiltonian flow of the globally defined hamilton-

ian p in (3.2) does indeed represent the geodesic flow in a chart. The estimates (2.13)
and (2.14) follow directly from (3.15).

A. Proof of Lemma 4

Let us prove first thatFt,r is injective for r large enough. Assume that!, !0 2 S

satisfy Ft,r (!) D Ft,r (!0). Then, by the triangle inequality

d(!, !0) � d(!, Ft,r (!))C d(Ft,r (!), Ft,r (!
0))C d(Ft,r (!

0), !0) � 2Chr i�� .

For r large enough, we can thus insure that if! 2 ��1
S

(B(�0, �
!0)) then!0 2 ��1

S
(B(�0,

2�
!0)). In particular, they belong to the same coordinate patch so we can consider� WD

�S(!) and � 0 WD �S(!0). Furthermore, using that�S Æ Ft,r (!) D �S Æ Ft,r (!0), we have

j� � �

0

j D j(I � �S Æ Ft,r Æ �
�1
S

)(�) � (I � �S Æ Ft,r Æ �
�1
S

)(� 0)j

� Chr i�� j� � � 0j

the second line following from (2.18) on the ballB(�0, 2�
!0) which is convex. Ifr is

large enough, this implies that� D � 0 hence that! D !0.
We next prove thatFt,r is surjective. More precisely, we show that ifr is large

enough, then for all! 2 ��1
S

(B(�0,�
!0)) in the cover (2.2), there exists� 2 ��1

S
( NB(�0,2�

!0))
such that

�S (!) D �S Æ Ft,r Æ �
�1
S

(�),
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which we rewrite as the following fixed point equation

(A.1) � D Tt,r (�) WD (I � �S Æ Ft,r Æ �
�1
S

)(�)C �S(!).

Indeed, we observe that the estimate (2.18) still holds onNB(�0, 2�
!0) by (2.1) which

implies that, forr large enough, the mapTt,r is 1=2-Lipschitz on NB(�0, 2�
!0). Further-

more, for r large enough, (2.17) implies that

j� � (�S Æ Ft,r Æ �
�1
S

)(�)j � �
!0, � 2

NB(�0, 2�
!0),

hence thatTt,r maps NB(�0, 2�
!0) into NB(�0, 2�

!0), sincej�S(!)� �0j < �!0. We can thus
use the Picard fixed point Theorem to solve (A.1) and this completes the proof of the
surjectivity of Ft,r .

All this shows that, forr large enough,Ft,r is (smooth and) bijective fromS to
S. The smoothness of the inverse map follows from the inverse function theorem and
(2.18). More precisely, by (2.18), we may assume forr large enough that the differen-
tial of �S Æ Fr,t Æ �

�1
S

is invertible at any point ofB(�0, �
!0) hence that�S Æ Fr,t Æ �

�1
S

is
a local diffeomorphism close to any point ofB(�0, �

!0). By (2.2), we thus see that, for
any ! 2 S, Ft,r is a diffeomorphism from a neighborhood of! onto a neighborhood
of Ft,r (!), which proves the smoothness ofF�1

t,r .
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