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Abstract

In many problems of PDE involving the Laplace—Beltrami @per on manifolds
with ends, it is often useful to introduce radial or geodasicmal coordinates near
infinity. In this paper, we prove the existence of such camat#is for a general class
of manifolds with ends, which includes asymptotically ecaiand hyperbolic mani-
folds. We study the decay rate to the metric at infinity asgtedi to radial coord-
inates and also show that the latter metric is always cordtiynequivalent to the
metric at infinity associated to the original coordinatetsgs We finally give sev-
eral examples illustrating the sharpness of our results.

1. Introduction and result

The purpose of this note is to study the existence and sonpegies of radial (or
geodesic normal) coordinates at infinity on manifolds witldg for a general class of
ends. Our motivation comes from geometric spectral andesaag theory (see e.g. [10]
for important aspects of this topic), but our results may bendependent interest. The
kind of manifolds we consider is as follows. We assume thagyafrom a compact
set, they are a finite union of endsisometric to (R, +o0) x S, G) with § a compact
manifold (of dimensiom — 1 > 1 in the sequel) an& of the form

(1.1) G = adx? + 2b; dx d; /w(x) + g; d6; do;/w(x)?,

(using the summation convention) with coefficients saimgfy asx — oo,

12)  ax.0)—1 bi(x,0) >0 g;(x 6)—g;®) ::g(%’ %)
1 I

The nature of the end is determined by the functiornwhich we assume here to be
positive, smooth and, more importantly,

w(X) > 0, X — +oo,

meaning that we consider large ends. The two main importeamples are asymp-
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totically conical manifolds (or scattering manifolds) fahich w(x) = x~* and asymp-
totically hyperbolic manifolds for whichw(x) = € * for somec > 0. In (1.2),0s =
61, ...,0h-1): U Cc S — R"1 are local coordinates of so if 7: £ — S is the pro-
jection, we obtain local coordinates éhby considering X, 6107, ...,6,-10m) which,
for simplicity of the notation, we denote by,(64, ..., 6,_1). The precise meaning of
(1.2) is that the convergence holds@i°(0s(U)); such a statement is intrinsic in that it
is invariant under the change of coordinates&nWe call g the metric at infinity with
respect to this product decomposition.

For analytical purposes, it is often very useful to work inyatem of coordinates
such thata =1 andb; = 0, i.e. to replacex by a new coordinaté such that

G = dt? + h;j d6; do; /w(t)?,

9 9 as t— +
AA ' AN oo,
86," 0,

1.3) hij (t, 0) — ﬁij ®) =: ﬁ(

at the expense of changirinto a possibly different metri. One then says that

is a radial coordinate (see for instance [9] for the ternogy). Using such coordin-
ates, the Laplacian can then be reduced, up to conjugatioa $yitable function, to
an operator of the form-32 + Q(t) with Q(t) an elliptic operator onS asymptotic

to —w(t)?A ast — oo (see e.g. (1.1) in [4]). The absence of crossed term of the
form a9y, is convenient for Born—Oppenheimer approaches, i.e. tgiden—a2 + Q(t)

as a one dimensional Schrodinger operator with an operatioed potential (see for
instance [1] for applications in this spirit); in the spdc@@ase whenQ(t) is exactly
—w(t)?Ay, ie. if G = dt? + h/w(t)?, one can use separation of variables as is well
known. Important questions requiring such a reduction ef thetric also include re-
solvent estimates [2, 3, 4] (construction of Carleman wsigbr inverse problems [7, 8]
(reduction to a problem o).

In the works [2, 3, 4, 7, 8], the reduction @& to the normal form (1.3) is ei-
ther proved on particular cases [2, 7] (conical ends) andd8ymptotically hyperbolic
ends), or even taken as an assumption in [3, 4]. For this neasd also in the per-
spective of studying intermediate models between the ebrdaod the asymptotically
hyperbolic cases, we feel worth proving in detail the exisee of radial coordinates
for general manifolds with ends (i.e. associatedvtgatisfying the assumption (1.4) be-
low). Another motivation is that, although the existenceaadial coordinates may seem
intuitively clear, there are some subtleties on the rateasivergence to the asymptotic
metric. We shall in particular show that, even if the conesmcps in (1.2) are fast as
X — o0, it may happen that the decay in radial coordinates, i.erdke of convergence
to h in (1.3), is slow. We shall see how this dependswon This point is important
in scattering theory since it means that the reduction t8)(inay be at the price of
considering a long range type of decay. As a last point, wel stiso describe the
relationship betwee and h. For the class of functionsy we are going to consider,
we shall see thah is always conformally equivalent tg, as is well known in the
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asymptotically hyperbolic case. In certain situations;hsas the conical case, the con-
formal factor is equal to 1 (i.e. there is no conformal chareyed this will be covered
by our result.

Let us now state our main result precisely.

First, for simplicity and without loss of generality, we Wwdssume thatM = £ =
(R,00) xS equipped with a Riemannian meti@ as in (1.1). We will use a quantitative
version of (1.2) given in term of symbol class8%. Recall that, giverm € R and a
function f defined on a semi-infinite intervaM, +oc0) or on (M, +00) x V, with V
an open subset dk"!, we have

def . .
fesn &S alae f = o(x)™),

on (M, +o0) x K for all K € V. Occasionally we shall also say that a function or a
tensor defined onM, +00) x S belongs toS™ if its pullback by every coordinate chart
of an atlas ofS is in S™.

The precise assumptions @ are as follows. We assume first that, for soine 0
ande > 0,

7 ’
(1.4) weSH (3) csle,
w

where S" = S"(R, o0) for m = —1 and —1—¢. The condition on ¢’/w)" implies the
existence of the non positive real number

e W)
(1.5) K= Xﬂrpoo )
Notice thatk < 0. Otherwisew’ should be positive at infinity hence should be in-
creasing which would be incompatible with the fact that S (recall thatw > 0).
To state our second assumption, we Iset (b, ...,bn 1), g = (g;;) andg = (g;;) (see
(1.1) and (1.2)). We assume that

(1.6) a—1e€S* beS" g—-geST,

where S™ = S((R, 00) x 65(U)) (for all chartsés: U — 65(U) of some atlas ofS)
and with exponents satisfying

1+ 1+
> A >

z 5 zZ = with 7 > 0.

2.7 w>14+r1t, v

We finally define the outgoing normal geodesic flow. Gives R, denote byv, the
outgoing normal vector field to the hypersurfagg x S C M. Here outgoing means
that (dx, v) > 0. The outgoing normal geodesic floW; is then

N (t, ) := exp(ryw)(tvr), weS, t>0,
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namely the exponential map ol with starting point on{r} x S, initial speedy, and
nonnegative time.

Theorem 1. Assume(1.4), (1.6)and (1.7). Then for all r > 1, N; has the
following properties.
1. It is complete in the futurdi.e. is defined for all t= 0).
2. It is a homeomorphisnresp. a diffeomorphisjrbetweer]0,c0); xS (resp.(0,00) x
S) and [r, oo)x x S (resp. (r, co) x S).
3. There exists a diffeomorphisfa: S — S and a real functionp,: S — R such that

NG = dt? + w(t) 2h(t)
with (h(t));~0 a smooth family of metrics o§ such that
(1.8) h(t) —h e S ™) with h:= e > Qrg.

Note the dependence onin (1.8). In particular, if« = 0, there is no conformal
factor. Observe also that the decay ratehof h in (1.8) can in principle be worse
than the one ofy— g in (1.6). We shall see that this can be the case in some of the
examples below.

EXAMPLES. 1. Asymptotically conical metricsw(x) = x* (for x > R > 0).
We have obviously

On one handc = 0, so the metric at infinity is not affected by a conformal dacbut
on the other hand = 1 soh(t) is in general a long range perturbation haf Actually,
one can see that

(1.9) h(t) = (1 + 24t Hh + ot 1),

which shows that the decay rate bft) — h is only S (see the proof of Theorem 1
below in Subsection 2.2 for a justification of (1.9)).

2. Asymptotically hyperbolic metricsw(x) = e * (with ¢ > 0). In this case, we
can take

A > 0 arbitrarily large, ¢ > 0 arbitrarily large, « = c.

Here « # 0 hence the metric at infinity is only conformally equivaleéatthe original
one. On the other hand, sineecan be taken as large as we wish, in particular larger
than t, the decay rate oh to h cannot be worse than the one @fto g in (1.6).

3. An intermediate caseFor the functionw(x) = e with 0 < B < 1, we have

A > 0 arbitrarily large, ¢ =1—8, « =1.
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This suggests that both a conformal factor and a weaker dé@fcay< r) happen at the
same time. Actually the decay can indeed be weaker<f r, for one can show that

(1.10) h(t) = (1 + 28¢¢t" H)h + o(t” ) + O(t ™).
See again the proof of Theorem 1 below for a justification @ #xpansion.

2. The outgoing normal geodesic flow

2.1. The main estimates. In this subsection, we fix some notation and state in-
termediate results leading fairly directly to Theorem 1athis proved in Subsection 2.2.
The more technical proofs are postponed to the next sections

It will be convenient to use some fixed geodesic distagce-) on S associated to
an arbitrary Riemannian metric (which has nothing to do vgthWe then fix a cover
of S by finitely many coordinates patches. At amy € S, there is a charts: U C
S — V C R"1 and, if we setdy = 6s(wp), there ise,, such that

(21) B(GOI 46&)0) eV,

where, here and below, the ba(f, €) refers to a fixed nornj - | on R". By the
compactness of, we have

2.2) S= |J 05"(Bo, €

woefinite set

Furthermore, we can assume that, for some fixed~ O depending ond and the
cover (2.2),

(2.3) d(w, @) = Clbs(@) —0s(@)], , o' € 65 (B(bo, 3eu,)),

with d the distance which was chosen above.

We next summarize the expressions of several importantcizbja the coordinate
patch of M associated to the patofig®(B(6o, 4€.,,)) of S. We will study the geo-
desic flow through its hamiltonian expression on the cotahdpeindle and thus need
to compute the dual metric. To this end, we recall that (1d) be recast in matrix
form as

1 0 \Tfa b \(1 0\
(2.4) GE(o w(x)) (b g)(o w(X)) '

Then the dual metric, obtained by inverting (2.4), is given b

(5 4i0) (5 5)(o uio)
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with

1

— ~ b=-ag'h, g=glt+aglbb’g
ST g'b, g=g " +ag'bb'g

(2.5) a=

Note that, by possibly increasing and by (1.2), we may assume thatb"g'b does
not vanish. It is important to note that, by (1.6) and (1.7% have

(2.6) a—leSMw2) cglr phesv g-gleST.

According to the notation (2.5), the dual metric, i.e. thaengipal symbol of the Laplac-
ian, reads

2.7)  p(x, 8, p,n) = alx, 0)p® + 2w(x)pb(x, 6) - n + w(x)*n - g(x, &)n,

with p € R and n € R"™1. We denote by, 6, o', ') the hamiltonian flow ofp,
namely the solution to

op o _ P

2.8 ==, =", pl=-——, =——,
(2.8) i o’ 20

with initial condition att = 0 to be specified. A simple calculation shows that the
outgoing normal tofr} x S is the vector field

d d
— g2 — .
Vr = a 8X + w(X) a1/2 891

wherea and b are evaluated atr(0) = (r, fs(w)). The associated co-normal forpd,

i.e. such thaiG(v, -) = vf, is then

W = a2 dx,

so the geodesic starting at ¢) with v, as initial velocity, i.e. exp ,(tv), is given in
these local coordinates by

(2.9) X, (t, 0) := x/2(r,0,a7Y2,0), 6,(t,0):=0Y%r,0,a Y2 0).

Here the factor 12 on the time is due to the fact that we consider the Hamiltofiaw
of p rather than the one gf%?. We also note in passing that the conditi®w,,v;) =
1 reads

(2.10) p(r, 6, a Y2, 0) = 1.

The expression of the normal geodesic flow given by (2.9) isanfrse meaningful only
as long as the geodesic remains in the coordinate patch. Wk s&e below that, if
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r is large enough and is restricted toB(6p, 2¢,,) (which is technically more conve-
nient thanB(fo, €,,), though the latter would be sufficient by (2.2)), then thedgsic
remains in the same coordinate patch fortat O (thus is complete in the future) and
satisfies suitable estimates. To make the proof as clearssbpem we pick up its main
steps in the following propositions which will be proved ieparate subsections.

Proposition 2 (the geodesic flow in a chart) Assumg1.4), (1.6)and (1.7). Then
for all M > 1, there exists X> 0 such that for all initial condition (x, 6, p, ) of
(2.8) satisfying

(2.11) X=X, 0€B(0o 24.,), pc[MLM] |g <M,

the hamiltonian flow of p is defined for allt 0 and satisfies

t
(2.12) x> x + v 6" € B(6o, 3cu,)-
Furthermore for all j > 1 and all 3" = 999! 07, we have the estimates
(2.13) 9] a7 (xt — x — 2tpYA)| < (x + 1),
(2.14) 18097 (6" — )| < (x + 1)~

where p= p(x, 6, p, n).
Proof. See Section 3.

We now derive here a proposition on the outgoing normal gaodw from which
Theorem 1 will follow easily. We introduce the notation

(2.15) N =: (X, wr)

for the components o, on (R, +00) and S, respectively. Note the relationship be-
tween (2.15) and (2.9):

(2.16) X (t, 051(0)) = %, (t, 0), (Os o wx)(t, 651(0)) = 6,,(t, 6).

Proposition 3 (Global properties of the normal flow) For all r > 1, the follow-
ing properties hold.
1. For each t> 0, o (t, -) is a diffeomorphism frond to S and

dlw, o (t, W) <C{r)™", T>»1,t>0,weS,

with C independent of,t, w.
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2. The limit @, :=lim_ o (t, -) exists and is a diffeomorphism fro§1to S.
3. For any coordinate systerfis associated to the coveP.2), we have

05 0 (2 o )(t, 051(0)) =6 mod S, 6 € B(bo, €uy)-
4. There existp, € C*(S, R) such that
X (t, w) =t + ¢r(w) modST,
fort>0andw € S.
5. For all r > 1, N, is a homeomorphisnfresp. diffeomorphisinfrom [0, co) x S

onto [r, +00) x S (resp. (r, +00) x S).

This proposition will follow from Proposition 2 and the foling lemma on per-
turbations of the identity (see Appendix A for the proof).

Lemma 4. Let R,:S — S be a family of smooth maps indexed by>r1 and
t > 0, such that for some C> 0,

(2.17) d(Fir(@), ) <C{r)™, r>»1, weS, t>0,
and in each chart of the covef2.2),
(2.18) ||D(8s o Fir 005H)(©O) — lgn1]| < C(r)™", 1> 1, 0 € B(fo, 2€,,), t = 0.
Then for all r large enough and all t> 0, F;, is a smooth diffeomorphism af.
In (2.18), ||-|| is a fixed norm on linear maps d&"*. Note also thatso F 005"
is meaningful onB(6y, 2¢,,), since (2.17) implies, if is large enough, thaf;, maps
051(B(bo, 2€.,)) into O51(B(6o, 3€.,)) Which is contained in the domain 6f by (2.1).
Proof of Proposition 3. Forr large enough, (1.6) allows to assume that
a~Y2(r, 0) € [1/2, 3/2] hence that the initial conditiorr,(#, a=/?, 0) satisfies the as-
sumption (2.11). By (2.9), (2.12) and (2.16), we have then

w € 051(B(Bo, 2€4,)) = wx (t, ®) € O3 (B(fo, 3eu,))

and, by (2.14),

1

t
16, (t, 0) — 6] = E/ 3s0%2(r, 6, a~Y?, 0)ds| < (r)77,
0

r>>1, 0 € B(b, 2.,), t > 0.
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This is a fortiori true if & € B(0o, €4,). SO we obtain, using (2.2) and (2.3), that
(2.19) d(w, ox(t,w)) <C{r}) ", r>1, weS, t>0.

Furthermore, by (2.14), we also see tlggt(t, - ) = s o w(t, 951( -)) satisfies the
condition (2.18), since

|96 (6, (t, ) — )]

1 t
2200 = 5/ (35060%2)(r, 0, a2, 0) + (350,0%2)(r, 0, a Y2, 0)gpa Y2 ds
0

SE(IS

forallr > 1,t >0 and® € B(f, 2¢,,)*. This proves the item 1.

We now consider the item 2. To prove the existence of the lwhito (t, -) as
t goes to infinity, it suffices to show thak, (t, 0) has a limit for eachd € B(0, €4,),
since we now that, by taking large enough (t, ») belongs tod5(B (6o, 2¢,,)) if
w € 9;1(8(90, €x)). The existence of the limit will then follow from the inteapility
of 9:6,,, which is an immediate consequence of

1
&6, (t, 0) = Eatet/z(r, 9,a~ Y2, 0)= O(r +t)~17)

by (2.14). The derivatives with respect fosatisfy the same bounds in time, so the
limit as t — oo of 6, (t, -) is smooth. We can also létgo to infinity in (2.19) and
(2.20) to conclude thaf2; satisfies the assumptions of Lemma 4 and thus is a diffeo-
morphism forr large enough.

To prove the item 3, we start by choosingarge enough so that

3
9‘,' (t, B(Go, Gwo)) C B(@o, Eewo).

Furthermore, since, satisfies the same bound ag(t, -) in (2.19), this also holds
for 1. So we may assume that

3
er(B(GO, Eewo)) C B(fo, 2€4,).

Thus, by setting® := 6s o 2,1 0 651, it suffices to conside® o 6,,. Sincet =

1This is the interest of considering initial conditions withe B(6o, 2¢,,)-
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limi_. © 06, (t, ), we have
+o00
0—0o00,(t0) :/ 3s(® 0 0,)(s, 0)ds
t
=/WﬂD®Wm@9»ﬂﬁﬁsmdS=O«Uﬂ
t

using (2.9) and (2.14). By differentiating this expressiort and 6, we conclude that
® 06, —0 belongs toS™*, which is the expected result.

To prove the item 4, we observe first that the existence,ofs equivalent to the
existence of lim, (X (t, -) —t) which follows from the integrability ofo;x, — 1.
This integrability in turn follows from (2.13) and (2.10) ing the local expression of
X given by (2.9) and (2.16). We actually have the followingnfoita

X, (t,0)=t—r + [t(asxvr(s, 0) —1)ds
(2.21) 0

:LH@O%N@—[m@msﬁyims

Since 9y (d;x, — t) is integrable in time for anyr, we see thaw, is smooth. It also
follows easily from (2.13) that the last term in (2.21) bejerio S°.

It remains to prove the item 5. It is convenient to denote@yt, -): S — S the
inverse map ofw (t, -). Note that sinceao; is smooth on [0po) x S, so is the map
Or: (t, w) — O (t, w). Therefore, the map

M : (t, w) — (t, o (t, )

is a homeomorphism from [@&o) x S onto itself with inverse t( ) — (t, O (t, w)).
It is also obviously a diffeomorphism on the interior. It sus sufficient to prove the
result for the mapP, := N; o M;"! instead ofN;. Notice thatP, has the following
simpler form

P (t, w) = (%, O (t, »)), w).

This map is smooth up to= 0 and it is thus not hard to see that the conclusion would
be a consequence of the fact that, for each S, the map

t—> er(t) = Xr(t: Or(tr a)))

is a bijection from [0,00) onto [r, c0). Clearly, ift = 0 we haveX; ,(0)=r, so it is
sufficient to show that

(2.22) |0 Xrw(t) — 1] =

NI =



METRIC NORMAL FORM 1003

for r large enough and > 0. Using (2.14) and (2.20), it is not hard to see tha#s o
O (t, -) is of order (r)~® which, together with (2.13), implies (2.22) and completes
the proof. U

2.2. Proof of Theorem 1. Item 1 follows from Proposition 2 and (2.9). The
item 2 is the item 5 of Proposition 3. We now prove the item 36df= (01, ...,6h_1)
are coordinates o, then ¢, 04, ..., 6,_1) are coordinates on (@o) x S and

T:=toN% 6:=60oN? j=1,...,n=1,
are coordinates o which we work with. It is useful to note, by standard propesti
of the local normal flow, thatN, is smooth up tot =0 and N, > up tox =r. In

particular, this allows us to use the fact that the vectod$iél/at, 3/96;, 9/8t and
8/39_]' are defined up to the boundary. We show first that

3 9 3 9
2.23 NGron —, =) =1, NGy —, =) =0
(2:23) ' “"(at Bt) 4 (t')(at ae,—)

To that end, we observe on one hand that

0 d 0 d
(2.24) — :dNr(— ) — =dN (— )
AN, ) Mew/  99)In o) 30j |t
and, on the other hand that
d d
Un )

which is the tangent vector to the geodesic gxtvr). In particular, att = 0, the
vector field in (2.25) isyy so (2.23) is true fot = 0. It then suffices to show that the
left hand sides in (2.23) are constant with respect.tdJsing the standard properties
of the Levi-Civita connectioriV and (2.25)

a a 0 0 a 0
_Nr*G('[,w) —,y = — G -, =
at ot ot ot at ot

0] a 0

= —_G —y =

ot at ot

a 0
= ZG V t =, = = O,
( AT Bt)

where, in the last two lines, we dropped the evaluatiolNdt,w) from the notation for
simplicity. This yields the first equality of (2.23) for al> 0. For the second equality,

N (t, )
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we compute similarly

q . 3 0 9
o G(t'@(a' m) = a(
] N (t,w)
G

a 0 0 0]
=G V Tt =, — +G —_,V i— |-
( 8/0T 5% 801_) (at a/ot 89j)

Here, using that the Levi-Civita connection is torsion free have

ol 0 0 d a 0
G—_,V i — =G —_,V . = -, —
(at ”/“aej) (8t 8/96, 8t+[8t ae,—D
10 a 0
= ——_G(—_, —_) = O,
296; \ot’ ot

since the Lie bracket in the first line vanishes and since h& gecond line, we are
differentiating a constant function. This completes thegprof (2.23).

To determineN;"G(d/a6;, 3/d0;) it suffices to compute the last—1 columns and
rows of the following block matrix decomposition &G in local coordinates,

T

Xy, 0X,, Xy, Xy,
5t 90 (1 0)1(a bT)(l 0)1 . 90
36, 36, 0w b ¢ 0 w 30, a6, |
9t 00 ot 90

wherea, b, g and w are evaluated atx(,, 6,,)(t, ). After a simple calculation, the
matrix is

5 3%y, T X, %, T 130, 36, T 9x,\ 96, 30,
wfa— —L 4wl —- b4+ b—C )4t g1,
30 96 36 30 80 90 30~ 96

(2.26) wz{
By (1.6), (1.7) and Proposition 3, the matrix (of the metiitdide{-- -} is of the form
(2.27) ST+ ST (O3 Qg+ ST,

where, for the last two terms, we used tlgi(t, -) = s o Q, 0951 + S* as well as

the fact thatdzg = g + S*. On the other hand, using the second condition of (1.4)
and (1.5), we havev’'/w — x € S¢, from which it follows that

t+b
(2.28) w(t + b) = w(t)e® exp( / o_+(9) ds),
t
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for someo_, € S*. This identity and the item 4 of Proposition 3 imply that
w(X,, (t, 0)) = w(t)e @)1 4 g mine0)y
Combining this identity and (2.27) completes the proof af ttem 3 of Theorem 1[]

Justification of Example 1. Using the item 4 of Proposition 3, we see that the
term w(x; )2 in front of (2.26) is of the form

wX) 2= (t+¢ + ST =t31+ 24t +o(t™h),
which proves (1.9).

Justification of Example 3. In this case, (2.28) reads explicitly

b
w(t +b) = w(t)e™® exp(—/ Bt +u)yf du)
0

= w(t)e™®(1 — Bbt’~t + ot 1)),

(2.29)

where o(t#~1) is uniform with respect td as long asb remains in a compact set.
Using again the item 4 of Proposition 3 to writg ast + b, (2.29) combined with
(2.26) and (2.27) implies (1.10).

3. Proof of Proposition 2

The proof will be reduced to the analysis of hamiltoniansbglty defined oriR?".
Indeed, by possibly increasinB and by (1.4), we may assume thatis defined on
R and belongs toS™*(R). Also, by (1.6), we can modify the coefficients @f on
B(6o, 4€u,) \ B(o, 3€,,) SO that

a—1leSMMW2)(RxR™), be SR xR™D,

3.1
1) g—0 e ST(RxR"D,

for some positive definite matrig™ defined onR™* with Cye coefficients, such that
g 1(6) = C > 0 for all & and which coincides with the origindl™* on B(6o, 3c.,)-
Then, we keep the notatiop for the symbol

(3.2) p(x, 6, p, n) = a(x, 0)p% + 2w(x)pb(x, 6) - n + w(x)*n - g(x, O)n,

which coincides with the principal symbol of the Laplaciam @, 400) x B(6p, 3¢,,) X
R". We may assume that for son@ > 1,

(3-3) Co(p* + w(x)?[nl?) = p(x, 6, o, ) = Colp? + w(x)?(nl?),
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everywhere orR?",
We consider X!,6%, ot,n'), the hamiltonian flow ofp with initial condition .6, 0,1)
att =0.

Proposition 5. Assume(1.4), (1.6)and (1.7). Then for all M > 1, there exists
X1 > 0 such that for all

(3.4) x> X1, R, pe[MLM] [n =M,
the hamiltonian flow of p is defined for all> 0 and satisfies
X' —x—2tp'| < (x) 7,

o' — 6] < (x) 7,

'l S 1,
Il <1,

(3.5)

where p= p(x, 8, p, n). Furthermore for all t > 0
t

3.6 t> —,

(3.6) X > X+ v

(3'7) IOt Z 11

(3.8) lpt — p¥? < (x + 1)~

Notice that (3.8) implies that

(3.9) lim o' = p¥?,

t—-+4o00

and also that, in the left hand side of the first estimate &)(3 ' could be replaced
by 2tp'/2.

Proof of Proposition 5. By boundedness wfand w’, we have
(3.10) p(x, 0, 0,m) =Cq, for |p|=M, [n|=M,
with C| depending only orCy and M. On the other hand, by (1.7) and (3.1), we have

18,p —2p| = Co{x) (o] + Inl),
|3, pl = Ca{x) (o] + Inl),
|axpl < Ca(x)"277(0* + [nf),
|86 Pl = Ca(x)7+77 (0 + [nf?),

(3.12) on R?,

using that
min(e, 2v) >1+1t, A+v>1+1, 22>1+r.
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Given .0, p,n) satisfying (3.4), denote by [0,.) the domain of the maximal solution.
We shall prove thafl;, = +o0o0 and that

t
(3.12) xtzx+m, In'| < 2M,
for all t € [0, T,). Introduce the set
| :={T €[0, T}) | (3.12) holds on [0T]}.

This is obviously an interval containing O and we Jet, = supl, which is clearly
positive. Using (3.10), the conservation of energy and)(3s& obtain a bound

|p'] = (CoCp)*?

along the flow and see that there ex@f, C;, C, depending only orC;, Cz, C4 and
M such that

%8 = 2p°| = Cx7) 1,
9] = Cye) 2,

|i1°] < CH(x°) 7+,

for all se |. Thus, if one chooseX; large enough so that

oA /oo (% + 3>_H ds <
0

M am’
o0 S \—1-t M
7
04/0 <x1+ |v|> ds< =,
1
C’l(Xl)_T < m,

then, for allt € |,

_ 1 1
X'=2p' == |p'—pl=—, |n\—n|=

M
4M’ T 4M’ 4°

Using (3.4), this implies clearly that, for alle I,

=M s 3y 28
T 47 ~4M’ - 4M'
yielding a contradiction with the fact thdt, ; < T, (one could otherwise obtain (3.12)
beyondT, ). ThusT,, =T, and T, = 400, since (3.11) and (3.12) imply that the
flow cannot blow up in finite time. We have thus shown the comepless of flow on
[0,400) as well as the third and fourth estimates of (3.5), (3.6) &hd). In particular,
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using thatx' — co ast — +oc0, we also deduce (3.9) from the conservation of energy
and the positivity ofp!. Integratingp® for s € [t, 0o), we obtain the quantitative bound
(3.8), using the third estimate of (3.11) and (3.12). It remeao prove the first two
estimates of (3.5). For the first one, it suffices to obsere th

(' —x —2tp")| = X' =2p" = 2p'| S (x + 1) 1T,

using the third estimate of (3.5), the first and third estesadf (3.11) and (3.12). The
second one is obtained similarly from the second estimat(3.4fL). O

REMARK. As one can see from this proof, the completeness of the flowedls
as the estimates (3.5) (third and fourth) to (3.7) could biiakd even if we only had
—t and —1 — 7 rather than—1 — t and —2 — 7 in the first and third lines of (3.11)
respectively. Furthermore, in this case we also would havewar bound similar to
(3.6). The powers-1—t and—2—1t play a role only when we prove the first estimate
of (3.5).

For future reference, we note here the following elemenfacg. Assuming that
the initial conditions satisfy (3.4) withX; large enough, we can freely modify the
Hamiltonian vector field ofp for |p| + |n| large (e.g. cutoff) by conservation of energy.
More precisely, using the last two estimates of (3.5), we wammka domain where we
can assume that the Hamilton equations (2.8) read

xt=2p' +ay(x, 6%, p', ') = ao(x", 6, o, 1Y),
0 = ay(x', 6", o', ),
pt = ag(x", 6", p', nY),
f]t — a4(Xt, 9'[, pt, )7t)7

(3.13)

with
a, @, €S, ageST? aeS.
This remark will be useful below. In the next proposition, veeall thatd” = 8)'285‘%8,’;’.

Proposition 6. Assume(1.4), (1.6)and (1.7). Then for all M > 0, there exists
X1 > 0 such that on the domain defined b{8.4), we have

|87 (x' —x —2tp")] < ()7,
|87 (0" —0)] S ()77,

197 (0 — )| S (X) 77,
187 (" — )| S (x)77,

(3.14)
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and for j > 1,

10087 (xt — x — 2tpt)| < (x + t)~7,
8007 (61 — )] < (x +t) ",
18007 (o' — p)| < (X +t)~2,
18007 (n' — )] < (x +t) 7.

(3.15)

Notice thatp may be omitted in the third line of (3.15) or even be replacgd b
pY2. From this remark, we obtain the additional useful estimater j > 0,

(3.16) |97 (0" = pY2) S (x+1) .
Proof of Proposition 6. Let us introduce
uti=x"=2tp', @' = (U, 6 o' nY).

Clearly, (3.14) follows by integration in time of (3.15) s@u' —x, ' — 6, p' — p and
nt — n vanish att = 0. It is thus sufficient to prove (3.15), which we consider now
Using the identity

ut = xt —2pt = 2tp",
and (3.13), one checks thdt! satisfies an ODE of the form

at = (by + thy)(x, 6%, pt, 1),
yt = bZ(Xt! gt, pt' nt)a
pt = ba(xt, 6%, ot, nY),
0t = ba(x4, 64, o', nY),

(3.17)

with
b1, by, by € Sril, 61, 63 €S2

Independently, (3.13) again and a simple inductionjoshow that

(3.18) ae S"= dla(xt, o, o', nt) = a(x', 8%, p', ') for some de S™I.
Assume for a while that we have proved the bounds

(3.19) 07" <C,, |y|=1.

Then, for|y| > 1,

(3.20) "X < (1), [870'| + 07" + |87 '] £ 1,
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and let us show how it leads to the result. By apply&l;ig1 to (3.17) and using (3.18),
we see first that

Ut = (o1 + te)(x, 64, o', '),
30" = co(x', 6, o', "),
3 pt = a(x', 6%, p', nY),
o' = ca(x', 6, o', "),

(3.21)

with
Cy1, Co, Cq € S_T_j, €, G e S
On the other hand, the Faa Di Bruno formula (see for instaBfeyields
(3.22)
3”@, 6", p', ")
= 3ad”’x' + 329" 0" + 9,a9" p' + 9,a9" n'
ns t

+ linear combination of {95 3,0/a) ] a7'x'[] a"" 6! [To7 o' [0 ut.
i 5.

0 pn
1<i<k 8.

where all derivatives in the products of the second line dretictly smaller order
than |y| and satisfy

PP IAE DML DIEES?
i 8,0 i 8,
and where all derivatives af are of course evaluated at'(0t, p',n'). If a€ S", using
(3.6), we deduce from (3.20) and (3.22) that

07 @(x", 6%, o' 1| S (X + O™ HE) + (X + 1T + Y (x4 1))k
k<|y|

S{x+t)m

Therefore, by applying?” to (3.21), (3.15) is a straightforward consequence of (3.19
It thus remains to prove (3.19), which we do now by induction|p|. By (3.21), we
can introduce

B.=B+tB, BeST®, BeS™1
which areR?" valued so that
(3.23) ' = B(x', 6", p', n").
By applying 87 to this equation (withjy| = 1 first) and using that

07X < (18" X', [976"| + [87 p'| + |97 n'| < 187 X,
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we obtain

t
|07 ®'| < 97 DO + / (X +8)727(s)]8” | + (x +s) 17|97 %] ds
0

using also (3.6). By the Gronwall Lemma, this yields (3.1®) [fr| = 1. Then, assum-
ing |y| = 2 and that (3.19) has been proved for lower orders, we obtain

t
7 | < / (X + )72 (8)]97 D% + (x +8)"7F]97 &% ds
0

4

t
+ (x 4+ s) T K(s)k ds,
>

by applyingd” to the equation (3.23) and using (3.22). Then (3.19) folldkesn the
Gronwall lemma. The proof is complete. O

Proof of Proposition 2. The localization properties in @.1ollow from (the sec-
ond line of) (3.5) and (3.6). Note in particular that withihet domain K, oo) %
B(6o, 3€,,) xR" (with X3 > 1), the hamiltonian flow of the globally defined hamilton-
ian p in (3.2) does indeed represent the geodesic flow in a chad.eBtimates (2.13)
and (2.14) follow directly from (3.15). ]

A. Proof of Lemma 4

Let us prove first thaf;, is injective forr large enough. Assume that ' € S
satisfy Fi((w) = Fir(«'). Then, by the triangle inequality

d(w, @) < d(w, Fir(®)) + d(Fir (@), Fir(@)) + d(Fi (@), o) <2C(r)".

Forr large enough, we can thus insure thati 65(B(0o, €.,)) then«’ € 651(B(6o,
2¢,,))- In particular, they belong to the same coordinate patclve can considef :=
Os(w) and 0’ := Os(w’). Furthermore, using thdis o F;(w) = s o F ('), we have

6 —6'] = |(I =65 0 Fer 005(0) — (I — 65 0 Fir 065)(0")]
<C(r)le -0
the second line following from (2.18) on the bal(, 2¢,,) which is convex. Ifr is
large enough, this implies th&t= 6’ hence thatw = «'.
We next prove thatm , is surjective. More precisely, we show thatrifis large

enough, then for ath € 51(B(6o,€.,)) in the cover (2.2), there exisse 651(B(6o, 2¢4,))
such that

Os(w) = s o Fir 0 05%(9),
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which we rewrite as the following fixed point equation
(A.1) 0 =T (0) := (I —6Os 0 Fir 005Y)(0) + Os(w).

Indeed, we observe that the estimate (2.18) still holdsBéfy, 2¢,,) by (2.1) which
implies that, forr large enough, the map, is 1/2-Lipschitz onB(6p, 2¢,,). Further-
more, forr large enough, (2.17) implies that

10 — (Bs o Fry 0051)(0)] < €0y 0 € B(60, 2€.),

hence thafl;, mapsB(6o, 2¢.,) into B(Ao, 2¢,,), since|ds(w)—6bo| < €,,. We can thus
use the Picard fixed point Theorem to solve (A.1) and this detep the proof of the
surjectivity of F .

All this shows that, forr large enoughF;, is (smooth and) bijective fron to
S. The smoothness of the inverse map follows from the invensetion theorem and
(2.18). More precisely, by (2.18), we may assumerfdarge enough that the differen-
tial of 05 o Fr 1065t is invertible at any point 0B (6o, €.,) hence thabis o F 065t is
a local diffeomorphism close to any point &6, €,,). By (2.2), we thus see that, for
any w € S, F, is a diffeomorphism from a neighborhood af onto a neighborhood
of Fi(w), which proves the smoothness Bf. O
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