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Abstract
We prove that amenability of a discrete group is equivalent to dimension flatness

of certain ring inclusions naturally associated with measure preserving actions of the
group. This provides a group-measure space theoretic solution to a conjecture of
Lück stating that amenability of a group is characterized bydimension flatness of
the inclusion of its complex group algebra into the associated von Neumann algebra.

1. Introduction

The theory ofL2-invariants was re-formulated in terms of homological algebra by
Lück [5, 6] (see also [2]) in the late 1990s, and this promptedthe importance of inves-
tigating the ring-theoretical properties of the group ringC0 associated with a discrete
group0. In this context, one very natural question to ask is when theinclusion ofC0
into the group von Neumann algebraL0 is flat, but this turns out to be true only for
a very limited class of groups: it is the case when0 is virtually cyclic and conjec-
turally [7, Conjecture 6.49] only then. However, utilizingthe von Neumann dimension
dimL0(–) arising from the natural trace onL0, one can relax the definition of flatness,
arriving at the notion of dimension-flatness, which is simply defined by demanding that
the functorL0


C0

– maps injectiveC0-homomorphisms toL0-homomorphisms with
zero-dimensional kernel. This property turns out to be far less restrictive than actual
flatness of the inclusionC0 � L0, and in [6, Theorem 5.1] Lück proves that it holds
for all amenable groups and conjectures this to be a characterization of amenability. In
the present paper we investigate various group-measure space theoretic versions of this
conjecture—henceforth referred to asLück’s amenability conjecture. Our primary set-
ting will be that of translation groupoids arising from freeprobability measure preserv-
ing actions of discrete groups, and using Gaboriau–Lyons’ measure-theoretic solution
to von Neumann’s problem [4] we prove the following:
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Theorem (see Porism 5.4). A discrete group0 is amenable if and only if the
following holds: for any free, ergodic, probability measure-preserving action of0 on
a non-atomic standard Borel space(X,�) the inclusion of the corresponding groupoid
ring C[G ] into the groupoid von Neumann algebra L(G ) is dimension flat.

Furthermore, we obtain the following version of the above result which is some-
what more group theoretical in nature:

Theorem (see Theorems 4.7, 5.3 and Proposition 5.5). A discrete countable group
0 is amenable if and only if the following holds: For any finite cyclic group C and any
non-trivial systemB of Borel subsets in XWD

Q

0

C, which is stable under complements,
finite intersections and the Bernoulli0-action, the algebraC[B] generated by the cor-
responding indicator functions satisfies that inclusion ofthe algebraic crossed product
C[B] Ì0 into the von Neumann algebraic crossed product L1(X) NÌ0 is dimension flat.
Moreover, when0 is non-amenable the Borel systemB for which the the inclusion is
not dimension flat can be chosen such thatC[B] has countable linear dimension and is
finitely generated as a module overC0.

Our results are based on a detailed analysis of certain aspects of homological al-
gebra “relative to a dimension-function” and along the way we prove several results
of a general nature. When applied to the case of groupoid algebras they imply the
following theorem, which in turn will be the key to the two dimension-flatness the-
orems mentioned above.

Theorem (see Corollary 3.10 and Proposition 3.14). If H is a sub-groupoid of
a discrete measured groupoidG then the corresponding inclusionCH � CG is dimen-
sion flat relative to the von Neumann algebra of essentially bounded functions on their
common base space. Furthermore, for any CH -module K and any p> 0 we have

dimLG TorCH

p (LG , K ) D dimLG TorCG

p (LG , CG 

CH K ).

The rest of the paper is organized as follows. In Section 2 we recall the necessary
notions from the theory of discrete measured groupoids and introduce the module of
functions on the homogenous space arising from an inclusionof such groupoids. This
construction will turn out to be essential for the sections to come. In Section 3 we
develop the homological algebraic results needed in order to obtain our main results
which are proved in Sections 4 and 5.

NOTATION. Throughout the paper, all generic von Neumann algebras areassumed
to be finite and have separable predual and, unless explicitly specified otherwise,� will
denote a fixed normal, faithful tracial state on the von Neumann algebra in question.
Moreover, all generic discrete groups are implicitly assumed to be countable and all
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groupoids appearing will be assumed discrete and measured.We denote the unit, ei-
ther in a group or an algebra, by1 and the indicator function on a setF by 1F . For a
function f W X! E into a vector space we denote suppf WD {x 2 X j f (x)¤ 0}, i.e. we
do not automatically take the closure, even ifX might be a topological space. Finally,
we will need to distinguish between algebraic and von Neumann algebraic crossed prod-
ucts; the symbol “Ì” will therefore be used to denote the former while “NÌ” will denote
the latter.

2. Group actions and groupoids

Suppose that0 is a countable discrete group acting essentially freely andmeasure
preservingly on a standard diffuse (i.e. without atoms) probability space (X,�). Recall
that the freeness assumption means that for every 2 0n{e} we have�({x 2 X j  .x D
x})D 0, and that preservation of the measure means that the push-forward measure

�

�

equals� for all  2 0. The action of0 on X defines a standard, measure-preserving
equivalence relationR � X � X by setting x �R y if there exists 2 0 such that
yD  .x. We may think of the relationR as a groupoid, called the translation groupoid
of the action, and when doing so we often denote it byG instead ofR. The object
space isG 0

D X, there is an arrow (y, x)G , where we often leave out the subscript
“G ”, from x to y exactly when they are related inR, and the composition of arrows
is given by (z, y) Æ (y, x) D (z, x). On the relation we have the two natural projection
maps pri W X � X ! X and these are exactly the target mapt D pr1 and source map
s D pr2 on G . Recall [3, 9] thats and t give rise to a groupoid measure� on G

by setting

�(A) D
Z

X
#(t�1(y) \ A) d�(y) D

Z

X
#(s�1(x) \ A) d�(x)I

the two integrals being equal becauseR preserves�. Recall from [9] that thegroupoid
ring CG of G is the subspace ofL1(G , �) consisting of (classes of) functionsf such
that the functionsx 7! #{� 2 t�1(x) j f (�) ¤ 0} and x 7! #{� 2 s�1(x) j f (�) ¤
0} are both essentially bounded onX. On CG we consider theconvolution product
( f �g)( )D

P

�,�2G W D��

f (�)g(�); note that the sum is finite for almost every 2 G

so that the definition does in fact make sense. Furthermore,CG is equipped with an

involution by setting f �( ) D f ( �1) turning it into a unital�-algebra. Integration
against the measure� defines a faithful, positive trace� on CG and the corresponding
GNS-construction leads to an algebra of bounded operators whose weak closure (which
is therefore a finite von Neumann algebra known as thegroupoid von Neumann alge-
bra) will be denoted byLG in the following.

Our main aim in this section is to introduce a notion of “the homogenous space”
associated with an inclusion of groupoids and to study its basic properties. Consider
therefore a subgroupoidH of G with the same object spaceH 0

D X. For simplicity
of notation we assume thatH , whence alsoG , has infinite orbits onX and further-
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more that [G WH ] D1 almost everywhere, i.e. that there is noG -invariant setA� X
of non-zero measure such that eachG -orbit on A splits into finitely manyH -orbits on
A. We also fix isomorphisms of measure spaces

�G W X �N ! G and �H W X �N !H

such thatt Æ�
�

D prX and (mainly for convenience) such that�
�

((x,1))D (x,x)
�

D idx.
The existence of�

�

is implicit in [10, Lemma 3.2], where a full proof is given in the
ergodic case. In the case whereG is the translation groupoid of a free action we may
in fact take the domain of�G to be X � 0 and �(x,  ) D (x,  �1 . x)G . Now define

E1 D
[

j2N

E1, j where E1, j WD supp(1
�G (X�{1}) � 1�H (X�{ j })).

AssumingE1,:::,Ei�1 defined asE
�

WD

S

j2N E
�, j we define, recursively, setsEi ,� � G

as follows: For eachx 2 X denote byni (x) the smallestni (x) 2N such that (x,ni (x)) �
E1 [ � � � [ Ei�1. Denote bySi the graph{(x, ni (x)) j x 2 X} � X �N and put

Ei D
[

j2N

Ei , j where Ei , j D supp(1
�G (Si ) � 1�H (X�{ j }).

Then the setsEx
i WD t�1(x)\Ei are precisely the pointwise orbits of right-multiplication

by H on G , and the mapsx 7! ni (x) provides a measurable choice of representatives.
For notational convenience, we also denote the arrow�G (x, ni (x)) by �i ,x. Notice also
that the setsEi , j are pairwise disjoint with�(Ei , j ) D 1 andG D

S

i , j Ei , j .

REMARK 2.1. The construction of the setsEi might seem technical at first glance
but the underlying idea is quite simple. The setE1 simply consists of the arrows in
H . To constructE2, we choose for every pointx 2 X the first (relative to the chosen
numbering�G ) arrow in G nH with targetx. This is then�2,x and E2 then consists
of all arrows that can be obtained by composing the�2,x ’s from the right with arrows
from H . The setE3 is then constructed by choosing, for eachx 2 X, the first arrow in
G n (E1[ E2) with targetx. This is the arrow denoted�3,x and the setE3 consists of all
the arrows that can be obtained by multiplying the�3,x ’s from the right with arrows from
H . Note also that the setEi ,1 simply consists of the collection (�i ,x)x2X and thatEi j

consists of the arrows obtained by composing�i ,x ’s from the right with the j ’th arrow
from H with targets(�i ,x).

We now define the quotient space as (G =H )�� WD
S

i2N Ei ,1 with the Borel struc-
ture inherited fromG . Notice that this is actually independent of the choice of�H and
�G , in the sense that any other choices would give a canonicallyisomorphic space—
hence we drop the superscript onG =H in the sequel. Next we want to study certain



GROUPOID APPROACH TOLÜCK’ S AMENABILITY CONJECTURE 909

modules of functions onG =H . To this end, consider the sets

C[G ]t D { f 2 L1(G , �) j x 7! #t�1(x) \ supp(f ) is essentially bounded onX}I

C[G =H ]t D { f 2 L1(G =H , �) j

x 7! #t�1(x) \ supp(f ) is essentially bounded onX}.

Note thatC[G ]t is a left C[G ]-module for the natural convolution action. We may
define a map�G

H
W CGt ! CGt by setting

�

G

H
( f )(�) D

8

<

:

X

�2Ex
i

f (�), if 9x 2 X, i 2 N W � D �i ,xI

0, if not.

We note that the range of�G

H
is exactlyC[G =H ]t and defineC

�

G =H
�

WD �

G

H
(CG ).

Definition and Proposition 2.2. The spaceC[G =H ]t is endowed with the struc-
ture of a leftCG -module by setting

(1) f . � WD �G

H
( f � � ) for f 2 CG and � 2 C[G =H ]t .

The subsetC[G =H ] is a submodule for this structure and the map�G

H
is a CG -map

of CGt onto C
�

G =H
�

t mappingC[G ] onto C[G =H ].

Proof. To show that equation (1) does indeed define a module structure it is suf-
ficient to show that�G

H
( f � g) D �

G

H
( f � �G

H
(g)) for all f 2 C[G ] and g 2 CGt .

Expanding this, we need to show that for alli 2 N and almost everyx 2 X we have

(2)
X

�2Ex
i

( f � g)(�) D
X

�2Ex
i

( f � �G

H
(g))(�).

Computing the left-hand side of (2) we get

X

�2Ex
i

( f � g)(�) D
X

�2Ex
i

X

�2t�1(x)

f (�)g(��1
�) D

X

�2t�1(x)

f (�)

0

�

X

�2Ex
i

g(��1
�)

1

A,

and the right hand side of (2) expands as

X

�2Ex
i

( f � �G

H
(g))(�) D

X

�2t�1(x)

f (�)

0

�

X

�2Ex
i

(�G

H
g)(��1

�)

1

A.
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For fixed � there exists a uniquej 2 N such that� j ,s(�) 2 �
�1Ex

i and since�G

H
(g) is

only supported in the representatives we have

X

�2Ex
i

�

G

H
(g)(��1

�) D �G

H
(g)(� j ,s(�)) D

X

2Es(�)
j

g( ) D
X

�2Ex
i

g(��1
�),

The remaining statements follow directly from the definitions.

REMARK 2.3. Removing the assumption thatH has infinite index inG we can
write X as a disjoint union ofG -invariant setsX(n),n 2 N[{1} such that for alln we
have [G jX(n)

WH jX(n) ] D n. Then we may proceed as above on each of the piecesX(n),
getting setsE(n)

i , j and defining a factor map�G

H
and C

�

G =H
�

. Note also that if we

take H D G we getC
�

G =H
�

' L1(X) and that�G

G
is the usual augmentation map.

Thus in this case theCG -module structure coincides with the one considered in [9].

Below we will also need a further subdivision of theEi ,1. Namely, noting that
the projection mapss and t are countable-to-one we can partition eachEi ,1 into sets
on which both the target and the source map are injective (seee.g. [9, Lemma 3.1].)
That is, we can find subsetsI i � N such thatEi ,1 D

F

l2I i
E(i ,l ),1, �(E(i ,l ),1) > 0 and

such thats and t are both injective when restricted to eachE(i ,l ),1. For x 2 t(E(i ,l ),1)
we denote by�(i ,l ),x the unique arrow� in E(i ,l ),1 with x D t(�) and we denote by
�(i ,l ) the partial isomorphism ofX given by the collection of all these. We furthermore
denote byE(i ,l ), j the support of1E(i ,l ),1 � 1

�H (X�{ j }) and observe that the source and
target maps are still injective when restricted to theE(i ,l ), j .

For an inclusionH 6 G of groups, it is well-known that the group ringCG is
generated as a right-CH -module by a set of representatives for the cosets inG=H .
We now fix the last bit of notation and prove the groupoid analogue of this result.

DEFINITION 2.4. An elementf 2 CG is said to be onH -reduced form if there
exists a finite setJ �

F

i2N I i and (fi ,l )(i ,l )2J � CH such that

(3) f D
X

(i ,l )2J

1E(i ,l ),1 � fi ,l and t(supp(fi ,l )) � s(E(i ,l ),1) for all (i , l ) 2 J.

The condition on thefi ,l ’s just means that we have not trivially extended their
support. In particular, for anf on H -reduced form we have thatf D 0 if and only
if all the fi ,l D 0. To see this, first note that summands in (3) have disjoint support,
so f is zero if an only if1E(i ,l ),1 � fi ,l D 0 for every (i , l ) 2 J. Furthermore, if fi ,l is
non-zero on a setF �H of positive measure then the targets of this set is contained
in s(E(i ,l ),1), and hence for each� 2 F there exists a unique� 2 E(i ,l ),1 for which the
product�� is defined; this product is then in the support of1E(i ,l ),1� fi ,l which therefore
has positive measure as well.
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Lemma 2.5 (decomposition). Let f 2 CGt and 0 < " 6 1. Then there exists a
set Y� X with �(Y) > 1� " such that1Y � f is on H -reduced form.

An alternative formulation using the dimension function (see e.g. Section 3) is that
the right CH -span of the indicator functions1E(i ,l ),1 generates a rank dense (i.e. co-
dimension zero for dimL1(X)) submodule ofCGt .

Proof of Lemma 2.5. By the definition ofCGt we have�(supp f ) <1. If we put

F(i ,l ), j D E(i ,l ), j \ supp(f ) for i , j 2 N and l 2 I i ,

we therefore have
P

(i ,l ), j �(F(i ,l ), j )<1, so we may choose a finite setD �
�

F

i2N I i
�

�

N such that
P

((i ,l ), j )�D �(F(i ,l ), j ) < ". As

�(t(F(i ,l ), j )) D
Z

X
1t(F(i ,l ), j )(x) d�(x) 6

Z

X
#(t�1(x) \ F(i ,l ), j ) d�(x) D �(F(i ,l ), j ),

also
P

((i ,l ), j )�D �(t(F(i ,l ), j )) < " and we now chooseY D
�

S

((i ,l ), j )�D t(F(i ,l ), j )
�

{

. Then

supp(1Y � f ) �
S

((i ,l ), j )2D E(i ,l ), j and sinces is injective onE(i ,l ), j there existsf 0
(i ,l ), j 2

L1(X), ((i , l ), j ) 2 D, such that

1Y � f D
X

(i ,l ), j2D

1E(i ,l ), j � f 0
(i ,l ), j

D

X

(i ,l ), j2D

1E(i ,l ),1 � 1�H (X�{ j }) � f 0
(i ,l ), j

D

X

(i ,l )

1E(i ,l ),1 �

0

�

1s(E(i ,l ),1) �
X

j

1

�H (X�{ j }) � f 0
(i ,l ), j

1

A.

The functions fi ,l WD 1s(E(i ,l ),1) �
P

j 1�H (X�{ j }) � f 0
(i ,l ), j will therefore now do the job.

We single out the following consequence of the proof, which does not use the ex-
istence ofH at all.

Porism 2.6. For every f 2 CGt and every0 < " < 1 there is a Y� X with
�(Y) > 1� " such that1Y � f 2 CG .

3. Homological algebra in the presence of a dimension function

In this section we study certain basic homological algebraic concepts, in particular
flatness properties, replacing the usual notion of exactness with a weaker notion aris-
ing from the dimension function associated with a finite von Neumann algebra. We
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remind the reader that all generic von Neumann algebras are assumed to be finite and
have separable predual and furthermore to come equipped with a fixed faithful, normal,
tracial state denoted by� .

3.1. Lück’s dimension function. Let N be a tracial von Neumann algebra with
a fixed faithful, normal, tracial state� . Recall that Lück’s dimension function dimN
assigns to eachN-module L an extended positive real number

dimN L WD sup{dimN P j P � L finitely generated and projective submodule},

where dimN P is the usual von Neumann dimension of the projective moduleP. For
more details we refer to the monograph [7]; recall, in particular, the many nice prop-
erties listed in [7, Theorem 6.7]. A key technical observation that will be used repeat-
edly in the sequel, often referred to as ‘Sauer’s local criterion’, provides a very nice
characterization of zero-dimensional modules overN. We recall it here for the read-
ers convenience.

Theorem 3.1 ([9, Theorem 2.4]). Let N be a tracial von Neumann algebra and
let L be an N-module. ThendimN L D 0 if and only if for every x2 L there exists a
sequence of projections pn 2 N such thatlimn � (pn) D 1 and pn . x D 0 for all n.

Note that if pn 2 N is a sequence such that� (pn)! 1 and pnx D 0, then there
exists a sequence of projectionsp0n 2 N increasing to1 and such thatp0nx D 0. In
particular, zero-dimensionality is a property that is independent of the choice of trace
state onN.

3.2. Dimension flat basis change. In this section we develop some of the basic
properties of homological algebra “relative to” a finite vonNeumann algebra. The main
technical result obtained is a version of the well-known flatbase change formula [13,
Proposition 3.2.9] in this setting.

DEFINITION 3.1. Let R be a unital ring containing a finite von Neumann alge-
bra M.
(i) We say that a complex

� � �

diC2
��! PiC1

diC1
��! Pi

di
��! Pi�1

di�1
��! � � �

of R-modules is dimM -exact if its homology in each degree hasM-dimension zero,
i.e. if dimM (kerdi�1=di (PiC1)) D 0 for all i .
(ii) We say that (Pi , di )i2N0 is a projective dimM -resolution of anR-module L if the
Pi ’s are all projectiveR-modules and there exists anR-homomorphismP0 ! L such
that the augmented the complexP

�

! L ! 0 is dimM -exact.
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The following definition provides us with language to talk about these properties
in very general situations.

DEFINITION 3.2. Let (M1, �1) and (M2, �2) be tracial von Neumann algebras and
let F be a functor from the category ofM1-modules to the category ofM2-modules.
We say thatF is (M1,�1)!(M2,�2)exact if the image underF of any short dim(M1,�1)-exact
sequence ofM1 modules is dim(M2,�2)-exact.

Our main focus in the following will be on tensor functors andwe therefore adapt
the standard language from homological algebra to this setting.

DEFINITION 3.3. Let M � N be a trace preserving inclusion of finite von
Neumann algebras and letR be an intermediate�-algebra. The inclusionR � N is
said to beM!Nflat if N 
R – is M!Nexact. If M and N are clear from the context
we will often just refer to the inclusionR� N as being dimension flat.

REMARK 3.4. The notion of dimension flatness originates from Lück’swork in
[6] where it is proven that the inclusionC[0] � L(0) is

C!L(0)flat whenever0 is an
amenable group. Note also that dimension flatness of an inclusion R� N is independ-
ent of the choice of faithful, normal, tracial state onN. This follows from Sauer’s
local criterion (Theorem 3.1) and the remarks following it.

Next we recall from [11, 12] the notion of rank completion. Given a tracial von
Neumann algebraM and anM-module L we definethe rank of an element� 2 L as

[� ] WD inf{� (p) j p 2 Proj(M), p� D �}.

This induces a uniform structure onL and the Hausdorff completion, denotedcM (L), is
again anM-module. Hence there is a canonical mapc W L ! cM (L) and this turns out

[12, Theorem 2.7] to be a dimM -isomorphism; i.e. the sequence 0! L
c
�! cM (L)! 0

is dimM -exact. A moduleL is called rank complete ifc is an isomorphism; we remark
that the dimension function dimM (–) is faithful on the category of complete modules.

DEFINITION 3.5. Let M � N be a trace-preserving inclusion of finite von
Neumann algebras. An intermediate�-algebraR is said to beM-compatibleif for any
R-module L and anyr 2 R the action ofr on L is Lipschitz with respect to the rank
metric arising fromM.

The compatibility property is a mild strengthening of the property considered in [8,
Lemma 1.2]. The results in [8] came to our attention after submission of the present
paper, and the theory developed there provides a different approach to some of the
results in this section. We provide a self-contained account for the convenience of
the reader.
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REMARK 3.6. Note that if R is M-compatible and f W K ! L is a homo-
morphism of R-modules then bothcM (K ) and cM (L) are naturallyR-modules andf
is a contraction with respect to the rank-metric and therefore extends continuously to a
mapcM ( f ) W cM (K )! cM (L) which is also anR-homomorphism. We will primarily be
interested in the following two situations: Firstly, if0 Õ (X, �) is a free p.m.p. ac-
tion then R D L1(X) Ì 0 is L1(X)-compatible as a subalgebra ofL1(X) NÌ 0 [12,
Lemma 4.4]. Secondly, in the case of a groupoidG with object space (X,�) the groupoid
ringCG � LG is L1(X)-compatible. This follows from from the fact thatCG is spanned
(algebraically) as anL1(X)-module by partial isometries with range- and source projec-
tions in L1(X) [9, Lemma 3.3]; the details of the argument can be found in the proof of
[9, Lemma 4.8].

We record a few more properties of the rank completion that will turn out useful
in the sequel. These are slightly more technical versions of[12, Lemmas 2.6 and 2.8].

Lemma 3.7. Let M � N be a trace-preserving inclusion of finite von Neumann
algebras and let R� S be intermediate M-compatible�-algebras. Then the follow-
ing holds.
(i) The functor cM (–) mapsdimM -exact complexes of R-modules to(dim

C

-) exact com-
plexes of R-modules.
(ii) For any R-module L the natural mapid
 c W S
R L ! S
R cM (L) is a dimM -
isomorphism. In particular when SD N this is adimN-isomorphism as well.

Since M is always compatible over itself, (ii) implies that ifS is an M-compatible
�-algebra betweenM and N then S is also compatible as anM-bimodule in the sense
of [9, Definition 4.6]. That is, if L is a zero-dimensionalM-module then the same
is true for S
M L. Note that the latter property is exactly the one studied in [8,
Lemma 1.2].

Proof. To prove (i), consider a dimM -exact complexK
f
! L

g
! Q and the com-

mutative diagram

K L Q

cM (K ) cM (L) cM (Q).

 

!

f

 

!cK

 

!

g

 

!cL  

!cQ

 

!

cM ( f )
 

!

cM (g)

We then need to prove that ker(cM (g)) � rg(cM ( f )). Since the category of complete
modules is abelian [12, Theorem 2.7] it suffices to prove thatker(cM (g))=rg(cM ( f )) has
M-dimension zero. By Sauer’s local criterion, we therefore have to prove that for every
x 2 ker(cM (g)) and every" > 0 there exists a projectionp 2 M such that� (p?) < "

and px 2 rg(cM ( f )). First choosep1 2 M with � (p?1 ) < "=3 such thatp1x 2 rg(cL )
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and choosey 2 L such thatcL (y) D p1x. Then

cQg(y) D cM (g)cL (y) D cM (g)(p1x) D p1cM (g)(x) D 0.

As ker(cQ) is zero-dimensional there existsp2 2 M such that� (p?2 ) < "=3 and 0D
p2g(y) D g(p2y). By dimM -exactness of the upper row there existsp3 2 M such that
� (p?3 ) < "=3 and p3 p2y D f (z) for somez 2 K . Putting p D p1 ^ p2 ^ p3 we have
� (p?) < " and

px D pp1x D pcL (y) D pcL (p3 p2y) D pcL ( f (z)) D cM ( f )(cK (pz)),

and the proof of (i) is complete. To prove (ii), consider the map f W L ! S
R L
given by f (x) D 1
 x. This is anM-linear map so it extends to a mapNf W cM (L)!
cM (S
R L) which is R-linear. It therefore induces a map id
 Nf W S
R cM (L)! S
R

cM (S
R L) which after composition with the multiplication mapS
R cM (S
R L)!
cM (S
R L) yields anS-linear map Qf W S
RcM (L)! cM (S
R L) making the following
diagram commutative:

S
R cM (L) cM (S
R L)

S
R L

 

!

Qf

 

!id
c
 

!

c

Since c is dimM -injective the same is true for id
 c. To prove dimension-surjectivity
we need the following observation: For everys 2 S and every sequence of projections
pn 2 M with � (pn)! 1 there exists a sequence of projectionsqn 2 M with � (qn)! 1
such thatqns D qnspn. This follows easily from the compatibility assumption onS.
To see this explicitly, note that since multiplication withs is Lipschitz there exists a
C > 0 such that

[sp?n ] 6 C[ p?n ] D C� (p?n ).

Hence there existsqn 2 M with � (qn) > 1 � C� (p?n ) � 1=n and qnsp?n D 0. Hence
� (qn) ! 1 and qnspn D qns. Proving dimension-surjectivity of id
 c is now straight
forward: Given � D

Pm
iD1 r i 
 xi 2 S
R cM (L) and " > 0 there exist projections

p(n)
1 , : : : , p(n)

m 2 M such that limn � (p(n)
i )D 1 and p(n)

i xi D c(y(n)
i ) for somey(n)

1 , : : : , y(n)
m 2

L. By the observation, we can find projectionsq(n)
1 , : : : ,q(n)

m 2 M such that limn � (qn
i )D

1 andq(n)
i r i p(n)

i D q(n)
i r i . Then q(n)

D

Vm
iD1 q(n)

i satisfies limn � (q(n)) D 1 and

q(n)
� D

m
X

iD1

q(n)r i 
 xi D

m
X

iD1

q(n)r i 
 p(n)
i xi D (id
 c)

 

m
X

iD1

q(n)r i 
 yi

!

.

Hence id
 c is dimension-surjective and the proof of (ii) complete.
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Corollary 3.8. If M � N is a trace preserving inclusion of finite von Neumann
algebras and R is an intermediate M-compatible�-algebra then the inclusion R� N
is M!Nflat if and only if it is

C!Nflat.

Proof. Clearly M!Nflatness is stronger than
C!Nflatness. On the other hand, if

R� M is
C!Nflat and

0! K ! L ! Q! 0

is a dimM -exact sequence, then by Lemma 3.7 (i) theM-rank completion of this se-
quence is properly exact and hence

0! N 
R cM (K )! N 
R cM (L)! N 
R cM (Q)! 0

is dimN-exact. Applying Lemma 3.7 (ii), this complex ofN-modules is dimN-isomorphic
to the complex

0! N 
R K ! N 
R L ! N 
R Q! 0

which is therefore also dimN-exact; i.e. the inclusionR� N is M!Nflat.

The following lemma shows that a projective dimM -resolution is as good as an
honest projective resolution for computing Tor as long as weonly care about the di-
mension (compare also with [8, Lemma 1.4]).

Lemma 3.9. Let M � N be a trace-preserving inclusion of finite von Neumann
algebras and let R be an intermediate M-compatible�-algebra. Suppose that P

�

!

L ! 0 is a projectivedimM -resolution of the left R-module L. Then for all i> 0

dimN TorR
i (N, L) D dimN Hi (N 
R P

�

).

Proof. Let (Pi ) be a projective dimM -resolution ofL as in the statement and let
(Qi ) be an honest projective resolution ofL. By Lemma 3.7, bothcM (Pi ) and cM (Qi )
are therefore honest (not necessarily projective)R-resolutions ofcM (L). By the com-
parison theorem [13, Theorem 2.2.6] (see also [13, Porism 2.2.7]) we therefore get
chain mapsu

�

, v
�

making the following diagram, in which the arrows denotedc are
the canonical maps into rank completions, commute.

P
�

L 0

Q
�

L 0

cM (P
�

) cM (L) 0

cM (Q
�

) cM (L) 0

 

!

9u
�

 

!

 

!

id
 

! c

 

!

 

!

 

!

c

 

!

9v

�

 

!

 

!

c

 

!

cM (u
�

)

 

!

!

 c

 

!

id

 

!

 

!

!

 

c

 

!
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We first consider the upper part of the diagram. Sincec W P
�

! cM (P
�

) lifts c W L !
cM (L) and this lift is unique up to homotopy [13, Porism 2.2.7] we obtain that the
composition of induced maps

Hi (N 
R P
�

)
Nui
�! Hi (N 
R Q

�

)
� �� �

DTorR
i (N,L)

Nvi
�! Hi (N 
R cM (P

�

))

is the same map asNc W Hi (N 
R P
�

) ! Hi (N 
R cM (P
�

)). The latter is a dimN-
isomorphism since it is the map induced on homology by the chain map id
cW N
R

Pi ! N 
R cM (Pi ), which is a dimN-isomorphism by Lemma 3.7. In particular
dimN ker Nui D 0 for all i , proving the inequality “>” of the statement. For the other
inequality we note, similarly, that the composition of induced maps

Hi (N 
R Q
�

)
Nvi
�! Hi (N 
R cM (P

�

))
cM (ui )
���! Hi (N 
R cM (Q

�

))

is the same map asNcW Hi (N
R Q
�

)! Hi (N
R cM (Q
�

)) so that dimN ker Nvi D 0.

Corollary 3.10 (dimension flat base change). Let M � N be a trace-preserving
inclusion of finite von Neumann algebras and let R� S be intermediate M-compatible
�-algebras. Suppose that the functor S
R� from R-modules to S-modules isM!M exact.
Then for every R-module L and every i2 N0 we have

dimN TorR
i (N, L) D dimN TorS

i (N, S
R L).

Proof. Let P
�

! L ! 0 be a resolution ofL by free R-modules. Then

S
R P
�

! S
R L ! 0

is a free dimM -resolution of S
R L so the claim follows directly from the previ-
ous lemma.

Returning to the case of just one intermediate�-algebra R, we have the follow-
ing equivalent characterizations ofM!Nflatness of the ring inclusionR� N, which is
nothing but a straight forward dimension-adapted version of a classical result in homo-
logical algebra; see e.g. [13, Exercise 3.2.1].

Proposition 3.11. For the tower M� R � N, where R is M-compatible, the
following are equivalent.
(i) The inclusion R� N is M!Nflat; i.e. the functor N
R � is M!Nexact.
(ii) For every k> 1 and every left R-module K we havedimN TorR

k (N, K ) D 0.

Before returning to the case of groupoids we record a minor result which will turn
out useful in the sections to come.
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Lemma 3.12. Let M � N be a trace-preserving inclusion of von Neumann alge-
bras with an intermediate�-algebra R such that the inclusion R� N is M!Nflat, and
let 0 be a discrete countable group acting on N and preserving R globally. Then the
inclusion RÌ 0 � N Ì 0 is also M!Nflat.

Proof. Let 0! K
�

�! L
�

�! Q ! 0 be a short dimM -exact sequence ofR Ì 0-
modules. The statement in the lemma is then just the observation that we have a com-
mutative diagram ofN-modules

0 (N Ì 0)
RÌ0 K (N Ì 0)
RÌ0 L (N Ì 0)
RÌ0 Q 0

0 N 
R K N 
R L N 
R Q 0.

 

!

 

!

id
�
 

!

id
�
 

!

 

!

�

 

!id

 

!

 

!

�

 

!id

 

!

id
�

 

!

�

 

!id

 

!

id
�

 

!

�

 

!id

 

!

 

!

�

 

!id

REMARK 3.13. Note that if an inclusionR � N is dimension flat then for any
tracial inclusionN � QN into another finite von Neumann algebraQN the inclusionR�
QN is also dimension flat. This is due to the fact that the inclusion N � QN is faithfully

flat and the functorQN
N – is dimension preserving [7, Theorem 6.29]. Hence, dimen-
sion flatness of an inclusionR� N is equivalent to dimension flatness of the inclusion
of R into the von Neumann subalgebra it generates inN.

3.3. Applications to groupoids. We now return to the setup from Section 2.
More precisely, we consider an inclusion of discrete measured groupoidsH 6 G de-
fined on the same object space (X,�) and we wish to apply the results from Section 3
to the following diagram of inclusions.

CG LG

L1(X) CH LH

 - !

 - !

 
-

!

 - !

 
-

!

The following result is the analogue of the well-known observation that for an in-
clusion of groupsH 6 G the functorL 7! CG


CH L is exact fromCH -modules to
CG-modules, i.e. that the inclusionCH � CG is flat.

Proposition 3.14 (dimension-flatness of CH 6 CG ). The tensor functor
CG 


CH – is L1(X)!L1(X)exact from the category ofCH -modules to the category
of CG -modules.

For the proof the following observation will be convenient.
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Lemma 3.15. The maps'i ,l W CG ! CH given by'i ,l ( f )( ) WD (1�Ei ,l ,1 � f )( )
for  2H are right CH -linear and satisfy

'i ,l (1E(k,m),1) D

�

1s(E(i ,l ),1) if (i , l ) D (k, m),
0 otherwise.

Proof. Let f 2 CG and g 2 CH be given. Consider 2 H and put x D
t( ). There is at most one arrow inE(i ,l ),1 with sourcex. Assume first that this arrow
�(i ,l ),y 2 E(i ,l ),1 exists. Evaluating in we now get

'i ,l ( f � g)( ) D
X

��D

1E(i ,l ),1(�
�1)( f � g)(�)

D ( f � g)(�(i ,l ),y )

D

X

��D�(i ,l ),y

f (�)g(�)

D

X

�2H

f (�(i ,l ),y�
�1)g(�).

On the other hand,

('(i ,l )( f ) � g)( ) D
X

��D

(1�E(i ,l ),1
� f )(�)g(�)

D

X

�,�2H

��D

X

� ,�2G

��D�

1E(i ,l ),1(�
�1) f (�)g(�)

D

X

�,�2H

��D

f (�(i ,l ),y�)g(�)

D

X

�2H

f (�(i ,l ),y�
�1)g(�).

In the remaining case, i.e. whenE(i ,l ),1 \ s�1(x) is empty, both the above expressions
are seen to be zero and we conclude that'i ,l is right CH -linear. The orthogonality
relations follow in the same manner: If�(i ,l ),y exists we have

'i ,l (1
�

E(i ,l ),1
� 1E(k,m),1)( ) D

X

��D

1E(i ,l ),1(�
�1)1E(k,m),1(�) D 1E(k,m),1(�(i ,l ),y ).

The latter quantity is zero if (k, m) ¤ (i , l ) and if (k, m) D (i , l ) it attains the value
1 exactly when D ids(�(i ,l ),y) D idx, and is otherwise zero. Again, the remaining case

when E(i ,l ),1\ s�1(x) is empty runs similarly and the proof is complete.
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Proof of Proposition 3.14. Suppose that the sequence ofCH -modules

(4) 0! K
�

! L
�

! Q! 0

is dimL1(X)-exact. By Corollary 3.8 we may assume that the sequence (4) is in fact
(dim

C

-)exact. Then, since tensoring over a subring is always right-exact, it is enough
to show that

dimL1(X) ker(id
 �) D 0.

For this we use Sauer’s local criterion: Let� D
Pm

rD1 f (r )

 x(r )

2 ker(id
 �) and 0<
" 6 1 be given. By the decomposition lemma we can findYr � X such that�(Yr ) >
1� "=m and such that1Yr � f (r ) is on H -reduced form. That is, there exists a finite

set Dr �
�

F

i2N I i
�

�N and functions f (r )
i ,l 2 CH such that

1Yr � f (r )
D

X

(i ,l )2Dr

1E(i ,l ),1 � f (r )
i ,l .

By enlarging the expansion by zero-functions we may assumeD1 D � � � D Dm DW D.
Putting Y WD

Tm
iD1 Yr we have�(Y) > 1� " and furthermore

(5)

1Y . � D 1Y �

0

�

m
X

rD1

0

�

X

(i ,l )2D

1E(i ,l ),1 � f (r )
i ,l

1

A


 x(r )

1

A

D

X

(i ,l )2D

(1Y � 1E(i ,l ),1)


 

m
X

rD1

f (r )
i ,l xr

!

� �� �

DWyi l

.

As � 2 ker(id
 �) we therefore have

0D 1Y . (id
 �)(� )

D 1Y .

0

�

X

(i ,l )2D

1E(i ,l ),1 
 �(yi ,l )

1

A

D

X

(i ,l )2D

(1Y � 1E(i ,l ),1)
 �(yi ,l )

D

X

(i ,l )2D

(1Y\t(E(i ,l ),1) � 1E(i ,l ),1)
 �(yi ,l )

D

X

(i ,l )2D

1E(i ,l ),1 � 1�
�1
i ,l (Y\t(E(i ,l ),1)) 
 �(yi ,l )

D

X

(i ,l )2D

1E(i ,l ),1 
 �(1��1
i ,l (Y\t(E(i ,l ),1))yi ,l ).
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Slicing the first leg with the maps from Lemma 3.15 we therefore obtain for every
(i , l ) 2 D

0D �(1s(E(i ,l ),1)1
�

�1
i ,l (Y\t(E(i ,l ),1))yi ,l ) D �(1

�

�1
i ,l (Y\t(E(i ,l ),1))yi ,l ),

and thus1
�

�1
i ,l (Y\t(E(i ,l ),1)yi ,l D 0 for every (i , l ) 2 D. Performing the exact same manipu-

lations in (5) we obtain

1Y � � D
X

(i ,l )2D

(1Y � 1E(i ,l ),1)


 

m
X

rD1

f (r )
i ,l xr

!

D

X

(i ,l )2D

1E(i ,l ),1 
 1

�

�1
i ,l (Y\t(E(i ,l ),1))yi ,l D 0.

For an inclusion of groupsH 6 G one hasCG 

CH C ' C[G=H ]. Again we

have a similar result for groupoids which takes the following form.

Proposition 3.16. The composition

CG 

CH L1(X)

mult
��! CG

�

G

H

��! C[G =H ]

is a dimL1(X)-isomorphism. Heremult denotes the map f
 g 7! f � g.

For the proof we need the following observation.

Lemma 3.17. For all i 2 N, l 2 I i and f 2 CH we have�G

H
(1E(i ,l ),1 � f ) D

1E(i ,l ),1 � �
H

H
( f ), where both expressions are considered as functions onG .

The proof of Lemma 3.17 is a direct computation and we omit thedetails.

Proof of Proposition 3.16. Consider the augmentation map�

H

H
W CH ! L1(X)

(see Remark 2.3). This fits into a short (dim
C

-)exact sequence

0! ker�H

H
� �� �

DWK

�

�! CH
�

H

H

��! L1(X)! 0.

Applying the functorCG 

CH – to this short exact sequence, we obtain the follow-

ing commutative diagram in which the upper sequence is dimL1(X)-exact by Propos-
ition 3.14 and the lower one is (dim

C

-)exact:

0 CG 

CH K CG 


CH CH CG 

CH L1(X) 0

0 ker�G

H
CG C[G =H ] 0

 

!

 

!

id
�

 

! mult

 

!

id
�H

H

 

!

�

 

!mult

 

!

 

!

 

!

 

!

�

G

H  

!
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It is easy to see that the composition in the statement fits into this commutative dia-
gram, so by the 5-lemma for dimension-isomorphisms [9, p. 3]it suffices to see that
multW CG 


CH K ! ker�G

H
is a dimL1(X)-isomorphism. But this follows directly from

the decomposition lemma and Sauer’s local criterion: Takef 2 ker�G

H
and " > 0 and

chooseY � X with �(Y) > 1� " such that1Y � f is on H -reduced form:

1Y � f D
X

(i ,l )2D

1E(i ,l ),1 � fi ,l and t(supp(fi ,l )) � s(E(i ,l ),1).

Using Lemma 3.17 we now get

0D �G

H
(1Y � f ) D �G

H

0

�

X

(i ,l )2D

1E(i ,l ),1 � fi ,l

1

A

D

X

(i ,l )2D

1E(i ,l ),1 � �
H

H
( fi ,l ),

and as theE(i ,l ),1’s are disjoint this implies1E(i ,l ),1 � �
H

H
( fi ,l ) D 0 for all (i , l ) 2 D. But

since t(supp(fi ,l )) � s(E(i ,l ),1) we get supp(�H

H
( fi ,l )) � s(E(i ,l ),1) and hence�H

H
( fi ,l ) D

0 for all (i , l ) 2 D; i.e. fi ,l 2 K . Thus

1Y � f D mult

0

�

X

(i ,l )2D

1E(i ,l ),1 
 fi ,l

1

A

2 mult(CG 

CH K ).

This proves that mult is dimL1(X)-surjective. That it is also dimL1(X)-injective is clear
since ker(mult) is contained in the zero-dimensional module ker(id
 �).

4. From amenability to dimension flatness

As mentioned in the introduction, we are interested in the dimension flatness of
inclusions of the formC[0] � L(0) for a discrete group0, and, as was proven by
Lück [6], this inclusion is dimension-flat if0 is amenable. More generally, we may
ask for which subalgebrasR of L(0) the inclusionR� L(0) is dimension flat. In this
section we provide partial answers for subalgebras ofL(A0 o 0) when A0 is a finite
cyclic group and0 is amenable.

4.1. On wreath products with finite cyclic groups. Consider a finite cyclic
group A0 and put A D

L

0

A0. Recall that thewreath product A0 o 0 is defined as
the semi-direct productA Ì 0 where0 acts on A by translations in the0-direction.
Denote by OA the Pontryagin dual5

0

OA0 of A, and recall that the topology onOA is
generated by sets of the form

Q

20

U


, whereU


�

OA0 and U


D

OA0 for all but fi-

nitely many  2 0. By Tychonoff’s theorem this turnsOA into a compact Hausdorff
topological group, and by discreteness ofA0 the open sets in the canonical basis are
all compact open. Note also that the compactness ofOA implies that every compact
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open set is a finite union of compact open sets from the basis. We denote byBco the
family of compact open Borel subsets and byC[Bco] the algebra generated by the cor-
responding indicator functions inL1( OA). We briefly pause to remind the reader of the
standard fact that the algebraC[Bco] exactly corresponds to the group algebraC[ A]
under the Fourier transform:

Lemma 4.1. The Fourier transformF W L(A) ' L1( OA) mapsC[ A] onto the sub-
algebraC[Bco] generated by characteristic functions arising from compact open sub-
sets in OA.

For an amenable group0 it was proven by Lück in [6] that the inclusionC0 � L0
is dimension flat. SinceA0 is a finite cyclic group also the wreath productA0 o 0 is
amenable and the inclusionC[ A0 o0] � L(A0 o0) is therefore dimension flat as well. In
the dual picture, this corresponds to dimension flatness of the inclusionC[Bco] Ì 0 �
L1( OA) NÌ 0. In the following we show that this is also the case for crossed products
arising from other Boolean algebras thanBco. These results, however, are most natur-
ally formulated in a general measure space theoretic setting, so we abandon the partic-
ular space OA for the moment and consider instead an abstract standard Borel probabil-
ity space. Before entering the discussion regarding dimension flatness let us fix a bit
of notation.

DEFINITION 4.2. Let (X, �) be a standard, non-atomic Borel probability space.
Denote byBall the system of all Borel subsets ofX and by Bco the system of sets
which are both open and closed. For any systemB of Borel sets inX which is stable
under taking complements and finite intersections we denoteby C[B] the linear span
of the the indicator functions arising fromB.

REMARK 4.3. Note that whenB is stable under complements and finite inter-
sections thenC[B] is a �-subalgebra ofL1(X). Note also that bothBall and Bco

have this property.

Theorem 4.4. Let B be a system of Borel sets in X which is stable under com-
plements and finite intersections and with the property thatfor any " > 0 and any A2
Ball there exists B2 B such that�(A4B) < ". Then the inclusionC[B] � L1(X)
dimension flat.

To prove Theorem 4.4 we will show that the inclusionC[B] � L1(X) satisfies
the strong Følner condition from [1], and dimension flatnessthen follows from [1, The-
orem 4.4]. For the convenience of the reader, we briefly recall the strong Følner con-
dition before giving the proof of Theorem 4.4. A weakly dense�-subalgebraA in a
finite tracial von Neumann algebra (M, � ) is said to satisfy the strong Følner condi-
tion (see [1, Proposition 3.3.]) if the following holds: Forany T1, : : : , Tr 2 A there
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exists a sequenceSn � Pn of non-zero finite dimensional subspaces inA such that the
following holds
(i) For every i 2 {1, : : : , r } and everyn 2 N we haveTi (Sn) � Pn.
(ii) lim n!1

dim
C

(Sn)=dim
C

(Pn) D 1.
(iii) The sequence of states'PnW M ! C given by'Pn(T)D Tr(PnT Pn)=dim

C

(Pn) con-
verges in norm to the trace� . Here Pn denotes the projection onto the subspacePn

and Tr denotes the semifinite trace inB(L2(M, � )).

Proof of Theorem 4.4. First note that the assumption that every Borel set can be
approximated arbitrarily well in measure by a set fromB implies thatC[B] is strongly
dense inL1(X). To see this, it is enough to show that every projection1F 2 L1(X)
is in the strong operator closure ofC[B]. But the assumption onB implies that we
can find a sequence of projections1Fn 2 C[B] converging in 2-norm to1F , and since
the strong operator topology coincides with the 2-norm topology on the unit ball of
L1(X), it follows that C[B] is strongly dense inL1(X). Thus, we are in the setup
from [1] and we now prove that the inclusionC[B] � L1(X) satisfies the strong
Følner condition

Let T1,:::,Tr 2 C[B] be given and assume, without loss of generality, thatkTi k1 6

1. Choose a sequenceÆn 2 ]0, 1] converging to zero. SinceB is stable under finite
intersections we can find a partitionF1, : : : , Fs 2B of X such that eachFi has positive
measure and such thatT1, : : : , Tr 2 span

C

{1Fi j 1 6 i 6 s}. Now choose, for each
i 2 {1, : : : , s}, a positive rational numberp(i )

n =qn such that 06 �(Fi ) � p(i )
n =qn WD

Æ

(i )
n < Æn=2s (we choose a common denominator right away) as well as a Borelset

H (i ,n)
1 � Fi of measure 1=qn. By the assumptions made onB, we can findG(i ,n)

1 2

B such that�(H (i ,n)
1 4G(i ,n)

1 ) < Æ

(i )
n =pnqn, where pn denotes the sum

Ps
iD1 p(i )

n . Upon

replacingG(i ,n)
1 with G(i ,n)

1 \ Fi we may furthermore assume thatG(i ,n)
1 � Fi . Moreover,

since�(H (i ,n)
1 ) D 1=qn we have

�

�

�

�

�(G(i ,n)
1 ) �

1

qn

�

�

�

�

<

Æ

(i )
n

pnqn

and hence

�(Fi n G(i ,n)
1 ) > �(Fi ) �

1

qn
�

Æ

(i )
n

pnqn
D Æ

(i )
n �

Æ

(i )
n

pnqn
C

p(i )
n � 1

qn
>

p(i )
n � 1

qn
.

So, if p(i )
n > 1 we can repeat the construction withFi replaced byFi nG(i )

1 and iterating

this process we obtainp(i )
n disjoint subsetG(i ,n)

1 , : : : , G(i ,n)

p(i )
n
2 B of Fi such that

�

0

�Fi n

p(i )
n
[

jD1

G(i ,n)
j

1

A

6 �(Fi ) � p(i )
n

�

1

qn
C

Æ

(i )
n

pnqn

�

6 2Æ(i )
n 6

Æn

s
.
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Relabeling theG(i ,n)
j ’s as G(n)

1 , : : : , G(n)
pn

(samepn as above) and denotingX n
Spn

jD1 G(n)
j

by G(n)
0 we have now obtained a familyG(n)

0 , : : : , G(n)
pn
2 B such that:

(i) G(n)
i \ G(n)

j D ; when i ¤ j ;

(ii) For 16 i 6 p we havej�(G(n)
i ) � 1=qnj 6 Æn=(2spnqn)

(iii) �(G(n)
0 ) D

Ps
iD1 �

�

Fi n
Sp(i )

n

jD1 G(i ,n)
j

�

6 Æn.
Now define

Pn D span
C

{

1G(n)
j

�

� 16 j 6 pn
}

� C[B].

Since theG(n)
j ’s are disjoint this is apn-dimensional subspace and since eachG j is

contained in exactly oneFi the operatorsTi map Pn into itself. To see thatC[B] �
L1(X) satisfies the strong Følner condition we therefore need to see that the sequence
'Pn converges to� in norm. Since the characteristic functions1G(n)

1
, : : : , 1G(n)

p
are or-

thogonal and spanPn, by normalizing them we obtain an orthonormal basis and for
T 2 (L1(X))1 we therefore have

j� (T) � 'Pn(T)j D

�

�

�

�

�

�

Z

X
T d� �

1

pn

pn
X

jD1

�(G(n)
j )�1




T1G(n)
j

, 1G(n)
j

�

�

�

�

�

�

�

6

�

�

�

�

�

�

Z

X
T d� �

1

pn

pn
X

jD1

qn

Z

X
T1G(n)

j
d�

�

�

�

�

�

�

C

�

�

�

�

�

�

1

pn

pn
X

jD1

qn

Z

X
T1G(n)

j
d� �

1

pn

pn
X

jD1

�(G(n)
j )�1




T1G(n)
j

, 1G(n)
j

�

�

�

�

�

�

�

6

�

�

�

�

�

Z

X
T d� �

qn

pn

Z

XnG(n)
0

T d�

�

�

�

�

�

C

1

pn

pn
X

jD1

jqn � �(G(n)
j )�1)j

�

�




T1G(n)
j

, 1G(n)
j

�

�

�

6 �(G(n)
0 )C

�

�

�

�

1�
qn

pn

�

�

�

�

C

1

pn

pn
X

jD1

jqn � �(G(n)
j )�1
j





1G(n)
j





2
2

6 Æn C

�

�

�

�

1�
qn

pn

�

�

�

�

C

qn

pn

pn
X

jD1

�

�

�

�

�(G(n)
j ) �

1

qn

�

�

�

�

6 Æn C

�

�

�

�

1�
qn

pn

�

�

�

�

C

qn

pn
pn

Æn

2spnqn
.

The latter expression is independent ofT and goes to zero sinceÆn ! 0 and 1�
pn=qn 6 Æn=2.
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REMARK 4.5. Note that whenX D OA (the dual of the infinite torsion groupAD
L

0

A0 from before) the conditions in Theorem 4.4 are fulfilled for every B containing
Bco (and being stable under complements and finite intersections). This follows from
the regularity of�.

We also record the following version of the dimension flat base change formula.

Corollary 4.6. Let 0 Õ (X, �) be a probability measure preserving action and
suppose thatB �Ball is a 0-stable system of Borel sets satisfying the assumptions in
Theorem 4.4. Then

dimL1(X) NÌ0 TorC[B]Ì0
p (L1(X) NÌ 0, K )

D dimL1(X) NÌ0 TorL1(X)Ì0
p (L1(X) NÌ 0, (L1(X) Ì 0)


C[B]Ì0 K )

for everyC[B] Ì 0-module K and every p> 0.

Note that the conditions in Corollary 4.6 are satisfied as soon as the systemB is
stable under complements, finite intersections and the0-action and furthermore con-
tains a setB which is neither null or co-null and for which1B has full central support
in L1(X) NÌ 0.

Proof. The assumption onB implies that B satisfies the assumptions in The-
orem 4.4 and by Lemma 3.12 the inclusionC[B] Ì 0 � L1(X) Ì 0 is therefore
dimL1(X)-flat. The statement now follows from Lemma 3.9 in the following way:

Choose a freeC[B] Ì 0-resolution F
�

d
�

! K ! 0. Then the induced complex

L1(X) Ì 0 

C[B]Ì0 F

�

id
d
�

���! L1(X) Ì 0 

C[B]Ì0 K ! 0

is dimL1(X)-exact, and by Lemma 3.9 we have

dimL1(X) NÌ0 TorL1(X)Ì0
p (L1(X) NÌ 0, (L1(X) Ì 0)


C[B]Ì0 K )

D dimL1(X) NÌ0 Hp(L1(X) NÌ 0 
L1(X)Ì0 (L1(X) Ì 0)

C[B]Ì0, id
 id
 d

�

)

D dimL1(X) NÌ0 TorC[B]Ì0
p (L1(X) NÌ 0, K ).

Theorem 4.7. Let (X,�) be a standard probability space without atoms and let0

be an amenable group acting freely and measure preservinglyon X. If B is a family of
Borel subsets satisfying the assumptions inTheorem 4.4then the inclusionC[B]Ì0 �
L1(X) NÌ 0 is dimension flat.
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Proof. Since0 is amenable, by [1, Corollary 6.6] the inclusionL1(X) Ì 0 �
L1(X) NÌ 0 is dimension flat and applying Corollary 4.6 we obtain

dimL1(X) NÌ0 TorC[B]Ì0
p (L1(X) NÌ 0, K )

D dimL1(X) NÌ0 TorL1(X)Ì0
p (L1(X) NÌ 0, L1(X) Ì 0 


C[B]Ì0 K ) D 0

for any C[B] Ì 0-module K and anyp > 1.

5. From dimension flatness to amenability

The aim of this section is to prove a converse to the statementin Theorem 4.7.
That is, we aim to show that if0 is a non-amenable group then there exists a non-
atomic Borel probability space (X,�) and a free p.m.p. action0Õ (X,�) and a stable
family B of Borel sets inX such that the inclusionC[B] Ì 0 � L1(X) NÌ 0 is not
dimension flat. More precisely, we will show that there existsa finite cyclic group
A0 and a stable system of Borel subsets inOA (as beforeA denotes

L

0

A0 and OA

its Pontryagin dual) such that the inclusionC[B] Ì 0 � L1( OA) NÌ 0 is not dimension
flat (see e.g. Definition 4.2 for details on the terminology and notation). The crucial
ingredient is Gaboriau–Lyons’ striking “measure theoretic converse” to von Neumann’s
problem which we recapitulate in the following.

5.1. Gaboriau–Lyons’ theorem. The main result in [4] is the following

Theorem 5.1 ([4]). If 0 is a countable discrete non-amenable group then the orbit
equivalence relation of the Bernoulli action0 Õ [0, 1]0 contains the orbit equivalence
relation of an essentially free action ofF2.

For our purposes the following discrete-base-space version will also turn out
relevant.

Theorem 5.1 ([4]). Let 0 be a finitely generated non-amenable group. Then there
is an n2 N and a non-empty open interval(p1, p2) � [0, 1] such that for every p2
(p1, p2) there is an essentially free, ergodic action� of F2 on

Qn
1({0, 1},�p)0 such that

the orbit equivalence relationR
�

is contained(almost everywhere) in the orbit equiva-
lence relationR

0

of the diagonal Bernoulli action.

We elaborate on the proof of [4, Corollary 4] in order to get the 0-action in a
more convenient form. First note that we have a0-equivariant isomorphism of meas-
ure spaces

' W ({0, 1}n, �
n
p )0 !

n
Y

1

({0, 1}, �p)0,

'(x)(k)( ) D x( )(k), 16 k 6 n,  2 0.
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Thus we may assume that we have ourR
�

on Y0

0 whereY0 D {0, 1}n with the prod-
uct measure�
n

p . Next we may assume thatpD s=t is a rational number,s,t 2 N. Then
there is a surjective (but not necessarily injective) measure-preserving map 0W Z=tn

Z!

Y0 where the domain is equipped with the equi-distributed probability measure�tn . This,
in turn, then induces a measure-preserving,0-equivariant map W (X0 WD Z=tn

Z,�tn)0!
(Y0, �
n

p )0. We now use to pull back the action ofF2 as follows. WriteX D X0

0 ,

Y D Y0

0 , andF2D ha,bi. Then there are measurable partitionsY D
F

20

A


D

F

20

B


such that for all 2 0 and (almost) ally 2 A


we havea . y D  . y, and similarly for
all y 2 B



we haveb . y D  . y. Now define partitions ofX by taking pre-images
Ao


WD  

�1(A


) and Bo


WD  

�1(B


). We get an action� o of F2 on X by defining
�

o(a) . x D  . x for x 2 Ao


and similarly forb. This clearly gives two well-defined
measure-isomorphisms since0 acts by measure-isomorphisms, whence an action since
F2 is a free group. Finally, the action is essentially free since if � o(w)jZo

D idjZo for
some setZo

� X and somew 2 F2 we would have� (w)j
 (Zo) D idj

 (Zo) and hence
 (Zo) has measure zero inY. But Zo

�  

�1( (Zo)) and since is measure preserv-
ing, Zo must have measure zero inX. Note also that is an F2-equivariant map by
construction of theF2-action onX.

We summarize all this as:

Corollary 5.2 ([4]). Let0 be a non-amenable finitely generated group. Then there
is a k 2 Z such that the orbit equivalence relationR

0

of the Bernoulli action of0
on (Z=kZ, �k)0 contains the orbit equivalence relation of an essentially free, measure-
preserving action ofF2.

5.2. Non-dimension flatness. In this section we show how one can obtain non-
dimension flat inclusions from the Gaboriau–Lyons theorem discussed above. The main
result is as follows.

Theorem 5.3. Let 0 be a finitely generated non-amenable group and let A0 be
the finite cyclic group obtained fromCorollary 5.2. Denote by A the direct sum

L

0

A0,

by OA its Pontryagin dual and byBall the system of all Borel subsets inOA. Then the
inclusionC[Ball ] Ì 0 � L1( OA) NÌ 0 is not dimension flat.

Proof. Denote byG the translation groupoid of the Bernoulli action of0 on OA
and byH the sub-groupoid arising from the action ofF2. We now get

1D �(2)
1 (F2)

D dimLH TorCH

1 (LH , L1( OA)) ([9, Theorem 5.5])

D dimLG TorCH

1 (LG , L1( OA)) ([7, Theorem 6.29])

D dimLG TorCG

1 (LG , CG 

CH L1( OA)) (Proposition 3.14 and Corollary 3.10)
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D dimLG TorL1( OA)Ì0
1 (LG , CG 


CH L1( OA)). ([9, Theorem 4.11])

In the last line of the above computation we may, by [9, Lemma 4.1], replace the mod-
ule CG 


CH L1( OA) with any otherL1( OA)Ì0-module which is dimL1( OA)-isomorphic
to it without changing theLG -dimension of the Tor-module. In order to apply [9,
Lemma 4.1] we need to know thatL1( OA) Ì 0 is dimension-compatible as anL1( OA)-
bimodule, but this follows from the remarks proceeding Lemma 3.7. Appealing to
Proposition 3.16, we have a dimension-isomorphism

CG 

CH L1( OA) ' C[G =H ].

Furthermore, the decomposition lemma shows thatC[G ] is rank dense inC[G ]t and
since �G

H
is an L1( OA)-homomorphism (in particular rank continuous) the inclusion

C[G =H ] � C[G =H ]t is also a dimL1( OA)-isomorphism. Thus we obtain that

1D dimLG TorL1( OA)Ì0
1 (LG , C[G =H ]t ).(6)

Since L1( OA) NÌ0 D LG , if the inclusionC[Ball] Ì0 � L1( OA) NÌ0 were dimension flat
then, for an arbitraryC[Ball] Ì 0-module K , we would have

0D dimL1( OA) NÌ0 TorC[Ball]Ì0
1 (L1( OA) NÌ 0, K )

D dimLG TorC[Ball]Ì0
1 (LG , K )

D dimLG TorL1( OA)Ì0
1 (LG , L1( OA) Ì 0 


C[Ball]Ì0 K ),

where the last equation follows from the dimension flat base change formula in Corol-
lary 4.6. In order to prove thatC[Ball] Ì 0 � L1( OA) NÌ 0 is not dimension flat it
therefore suffices, by (6), to show that there exists aC[Ball] Ì 0-module K and a
homomorphism of leftL1( OA) Ì 0-modules

L1( OA) Ì 0 

C[Ball]Ì0 K ! C[G =H ]t ,(7)

which is a dimL1( OA)-isomorphism. To this end, we define

K WD span
C

{1E j E � G =H and 1E 2 C[G =H ]t } � C[G =H ]t

It is easy to see that this becomes a module for the action (via�

G

H
) of C[Ball] Ì0 �

C[G ] and we now claim that the multiplication map

multW L1( OA) Ì 0 

C[Ball]Ì0 K ! C[G =H ]t

is a dimL1( OA)-isomorphism.
To see that mult is dimension-surjective, observe first that

�

G

H
(L1( OA) Ì 0) D (L1( OA) Ì 0) . 1

OA � rg(mult).
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By [9, Lemma 5.4] and Lemma 2.5 the inclusions

L1( OA) Ì 0 � C[G ] � C[G ]t

are dimL1( OA)-isomorphism and�G

H
(L1( OA)Ì0) is therefore rank dense in�G

H
(C[G ]t )D

C[G =H ]t . Thus mult is dimension-surjective.
To prove dimension-injectivity, letT 2 ker(mult) be given. We actually aim to

prove that mult is properly injective; i.e. thatT D 0. Write T as
Pn

iD1 fi 
mi where

fi 2 L1( OA) and mi 2 K ; since the family of target-bounded Borel subsets inG =H

is stable under finite intersections, we can find mutually disjoint, target-bounded, Borel
subsetsF1, : : : , Fr in G =H such that eachmi can be written as

mi D

r
X

jD1

mi (F j )1F j

for somemi (F j ) 2 C. SinceT 2 ker(mult) and�G

H
acts like the identity onC[G =H ]t

we have

0D mult(T) D �G

H

 

n
X

iD1

fi �mi

!

D

r
X

jD1

 

n
X

iD1

fi mi (F j )

!

� 1F j .

As the F j ’s are disjoint this implies that the restriction of
Pn

iD1 fi mi (F j ) to t(F j ) is
zero for every j 2 {1, : : : , r }. Moreover, since each of the1F j 2 K we may rewrite
T as

T D
r
X

jD1

 

n
X

iD1

fi mi (F j )

!


 1F j

D

r
X

jD1

 

n
X

iD1

fi mi (F j )

!


 1t(F j ) � 1F j

D

r
X

jD1

 

n
X

iD1

fi mi (F j )

!

1t(F j ) 
 1F j D 0.

We remark that a converse to Theorem 4.7 could have been obtained without ref-
erence to the finite groupA0, by simply using the continuous base space version (The-
orem 5.1) of Gaboriau–Lyons’ theorem in the statement and proof of Theorem 5.3.
However, in the following section we will investigate how “close” to a group algebra
we can choose the crossed productC[B] Ì 0 exhibiting the non-dimension flatness,
and the construction above shows that at least the measure space can be chosen, natur-
ally, to arise from a discrete group. Returning to the purelymeasure theoretic context
we obtain the following groupoid solution to Lück’s amenability conjecture.
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Porism 5.4. A discrete group0 is amenable if and only if the following holds:
for any free, ergodic, p.m.p. action of0 on a non-atomic standard Borel space(X, �)
the inclusion of the corresponding groupoid ringC[R

0ÕX ] into the groupoid von
Neumann algebra L(R

0ÕX) is dimension flat.

Proof. If 0 is amenable then by [1, Corollary 6.6] the inclusionL1(X) Ì 0 �
L1(X) NÌ 0 is dimension flat and applying [9, Theorem 4.11] we get, for anarbitrary
C[R

0ÕX ]-module K and p > 1, that

dimL(R
0ÕX ) TorC[R

0ÕX ]
p (L(R

0ÕX), K ) D dimL(R
0ÕX ) TorL1(X)Ì0

p (L(R
0ÕX), K )

D dimL1(X) NÌ0 TorL1(X)Ì0
p (L1(X) NÌ 0, K ) D 0.

Conversely, if0 is not amenable then by Theorem 5.1 the Bernoulli action of0 on
X WD [0, 1]0 contains a free action ofF2; hence we haveC[R

F2ÕX ] � C[R
0ÕX ] and,

like in the proof of Theorem 5.3, we therefore get

1D �(2)
1 (F2)

D dimL(R
F2ÕX ) Tor

C[R
F2ÕX ]

1 (L(R
F2ÕX), L1(X)) ([9, Theorem 5.5])

D dimL(R
0ÕX ) Tor

C[R
F2ÕX ]

1 (L(R
0ÕX), L1(X)) ([7, Theorem 6.29])

D dimL(R
0ÕX ) TorC[R

0ÕX ]
1 (L(R

0ÕX), C[R
0ÕX ] 


C[R
F2ÕX ] L1(X)),

where the last equality follows from Proposition 3.14 and Corollary 3.10. Thus the
inclusionC[R

0ÕX ] � L(R
0ÕX) cannot be dimension flat.

5.3. Improving the subalgebra. In the previous section we saw that whenever
0 is a finitely generated non-amenable group then there existsa finite abelian groupA0

such that the Bernoulli action of0 on the dual OA of A WD
L

0

A0 contains an action of

F2, and as a consequence the inclusionC[Ball] Ì0 � L1( OA) NÌ0 is not dimension flat.
It would of course be desirable to be able to replaceC[Ball] with C[Bco] and thereby
obtain non-dimension flatness of the, somewhat more natural, inclusion C[ A0 o 0] �
L(A0 o 0). Although we were not able to show this, certain improvements are still
possible. As a first step we show that one can replaceC[Ball] with an algebra of step
functions with a countable linear basis.

Proposition 5.5. Let 0 be finitely generated and non-amenable and let A0, A
and OA be as above. Then there exists a countableB � Ball such thatC[B] Ì 0 is
finitely generated as aC0-module and for which the inclusionC[B]Ì0 � L1( OA) NÌ0
is not dimension flat.

Proof. By Theorem 5.3 there exists aC[Ball] Ì 0-module L such that

dimL1( OA) NÌ0 TorC[Ball]Ì0
1 (L1( OA) NÌ 0, L) > 0,
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and by an inductive limit argument1 we may assume thatL is finitely presented. We
can therefore find a presentation

(C[Ball] Ì 0)k �T
�! (C[Ball] Ì 0)l

! L ! 0,

where T D (Ti j ) is a k � l matrix with entries fromC[Ball] Ì 0. Hence there exists a

finite Borel partitionF1, : : : , Fr of OA such that every elementTi j can be written as

Ti j D

r
X

kD1

1Fk

0

�

X

2Sk

r (i j )


u


1

A

for some finite subsetsSk � 0 and somer (i j )


2 C. If there are at least twoFi ’s we
defineB to be the family of subsets obtained by closing the finite family

{F1, : : : , Fr }

under finite intersections, complements and0-translates. If there is only oneFi we
simply add an artificial subsetF0 with measure neither zero nor one and close{F0, F1}

under complements, finite intersections and0-translates. Since the Bernoulli action of
0 is free, ergodic and p.m.p. the crossed product von Neumann algebra L1( OA) NÌ 0
is a II1-factor and hence the assumptions in Corollary 4.6 are satisfied. SinceTi j 2

C[B] Ì 0 we have, by right-exactness of the tensor product, that

L1( OA) Ì 0 

C[Ball]Ì0 L D L1( OA) Ì 0 


C[Ball]Ì0
(C[Ball] Ì 0)l

(C[Ball] Ì 0)kT

D

(L1( OA) Ì 0)l

(L1( OA) Ì 0)kT

D L1( OA) Ì 0 

C[B]Ì0

(C[B] Ì 0)l

(C[B] Ì 0)kT
� �� �

DWL 0

.

Using the dimension flat base change formula (Corollary 4.6)twice we therefore obtain

0< dimL1( OA) NÌ0 TorC[Ball]Ì0
1 (L1( OA) NÌ 0, L)

D dimL1( OA) NÌ0 TorL1( OA)Ì0
1 (L1( OA) NÌ 0, L1( OA) Ì 0 


C[Ball]Ì0 L)

D dimL1( OA) NÌ0 TorL1( OA)Ì0
1 (L1( OA) NÌ 0, L1( OA) Ì 0 


C[B]Ì0 L 0)

D dimL1( OA) NÌ0 TorC[B]Ì0
1 (L1( OA) NÌ 0, L 0).

1See e.g. the last part of the proof of Theorem 6.37 in [7] for the details.
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It would be desirable to have more information about the algebra C[B] Ì 0 from
the previous proposition. Ideally, we would like to know whether or not we can re-
place it with the group algebra ofA0 o 0, or if it is the complex group algebra of any
countable discrete group. In fact, we do not know of any general criteria to decide
whether an algebra of this form is a group algebra or not. The following proposition
provides such a criterion.

Proposition 5.6. Let 0 Õ (X, �) be a measure preserving action on a standard
probability space such that each element 2 0n{1} acts ergodically. Let XD

FN
nD1 Fn

be a finite partition of X and let R be the0-invariant unital �-algebra generated by
the step functions1Fn . Then there exists a finite abelian group A0 such thatC[ A0o0] '
RÌ 0 � L1X NÌ 0 if for every m¤ n and every ¤ 1 we have�(Fm \  (Fn)) > 0.

Proof. Let � be a primitive N-th root of unity and letA0 D h� i D Z=NZ. We
claim that the assignment� 7! u WD

PN
nD1 �

n
1Fn extends to the desired isomorphism.

The map is seen to be surjective. To see injectivity we must show that, enumerat-
ing 0 D {k}k2N , for any K 2 N

dim
C

span
C

{1(ui1) � � � K (ui K ) j 16 ik 6 N} D NK.

But this is clear because the subspace is spanned linearly by

{

1

TK
iD1 i (F j (i ))

�

� j W {1, : : : , K } ! {1, : : : , N}
}

and the hypothesis is seen to imply that these are linearly independent.

Corollary 5.7. Let 0 Õ (X, �) be a measure preserving action on a standard
probability space by homeomorphisms and such that each element  2 0 n {1} acts
ergodically. Let R be the0-invariant unital �-algebra generated by the two step func-
tions 1C and 1U where C� X is a compact set with empty interior, �(C) > 1=2, and
U D C{ is an open dense set. Then RÌ 0 ' C[Z=2Z o 0].
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