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Abstract
We prove that amenability of a discrete group is equivalenditmension flatness
of certain ring inclusions naturally associated with measareserving actions of the
group. This provides a group-measure space theoretici@oltd a conjecture of
Luck stating that amenability of a group is characterizeddopension flatness of
the inclusion of its complex group algebra into the assediaton Neumann algebra.

1. Introduction

The theory ofL2-invariants was re-formulated in terms of homological higeby
Luck [5, 6] (see also [2]) in the late 1990s, and this prompteslimportance of inves-
tigating the ring-theoretical properties of the group ri@i§f associated with a discrete
groupT'. In this context, one very natural question to ask is whenitiision of CT"
into the group von Neumann algebtd” is flat, but this turns out to be true only for
a very limited class of groups: it is the case whenis virtually cyclic and conjec-
turally [7, Conjecture 6.49] only then. However, utilizinge von Neumann dimension
dim_r(-) arising from the natural trace doI’, one can relax the definition of flatness,
arriving at the notion of dimension-flatness, which is simgéfined by demanding that
the functorLT” ® cr — maps injectiveCI'-homomorphisms tdI'-homomorphisms with
zero-dimensional kernel. This property turns out to be &sslrestrictive than actual
flatness of the inclusio€I" € LT", and in [6, Theorem 5.1] Llck proves that it holds
for all amenable groups and conjectures this to be a chaizatien of amenability. In
the present paper we investigate various group-measuce spaoretic versions of this
conjecture—henceforth referred to B8cks amenability conjectureOur primary set-
ting will be that of translation groupoids arising from frpeobability measure preserv-
ing actions of discrete groups, and using Gaboriau—Lyonsasure-theoretic solution
to von Neumann’s problem [4] we prove the following:
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Theorem (see Porism 5.4) A discrete groupl’ is amenable if and only if the
following holds for any free ergodic probability measure-preserving action ©f on
a non-atomic standard Borel spa¢&, 1) the inclusion of the corresponding groupoid
ring C[¥¢] into the groupoid von Neumann algebrg¥) is dimension flat.

Furthermore, we obtain the following version of the aboveutewhich is some-
what more group theoretical in nature:

Theorem (see Theorems 4.7, 5.3 and Proposition 5.5 discrete countable group
I' is amenable if and only if the following hotdBor any finite cyclic group C and any
non-trivial system# of Borel subsets in X= [ [ C, which is stable under complements
finite intersections and the Bernoulli-action the algebraC[£] generated by the cor-
responding indicator functions satisfies that inclusiontlué algebraic crossed product
C[ZA] = T into the von Neumann algebraic crossed produgt(X) < I' is dimension flat.
Moreover whenT is non-amenable the Borel syste## for which the the inclusion is
not dimension flat can be chosen such W§t4] has countable linear dimension and is
finitely generated as a module over.

Our results are based on a detailed analysis of certain @spétiomological al-
gebra “relative to a dimension-function” and along the wag prove several results
of a general nature. When applied to the case of groupoidbedgethey imply the
following theorem, which in turn will be the key to the two dimsion-flatness the-
orems mentioned above.

Theorem (see Corollary 3.10 and Proposition 3.14)f J# is a sub-groupoid of
a discrete measured groupoid then the corresponding inclusiabi.z” C C¥ is dimen-
sion flat relative to the von Neumann algebra of essentiadiyroled functions on their
common base space. Furthermofer any C.s#-module K and any = 0 we have

dim_y Torg” (LY, K) = dim_g Torg? (LY, C¥ ®c.r K).

The rest of the paper is organized as follows. In Section 2 eeall the necessary
notions from the theory of discrete measured groupoids atrdduce the module of
functions on the homogenous space arising from an inclusfosuch groupoids. This
construction will turn out to be essential for the sectionscome. In Section 3 we
develop the homological algebraic results needed in ordesbtain our main results
which are proved in Sections 4 and 5.

NOTATION. Throughout the paper, all generic von Neumann algebraasmemed
to be finite and have separable predual and, unless explagcified otherwiser will
denote a fixed normal, faithful tracial state on the von Newmmalgebra in question.
Moreover, all generic discrete groups are implicitly assdni@ be countable and all
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groupoids appearing will be assumed discrete and measWeddenote the unit, ei-
ther in a group or an algebra, Hyand the indicator function on a sét by 1¢. For a
function f: X — E into a vector space we denote supp= {x € X | f(x) # 0}, i.e. we
do not automatically take the closure, evenXifmight be a topological space. Finally,
we will need to distinguish between algebraic and von Neunsgebraic crossed prod-
ucts; the symbol %" will therefore be used to denote the former while™will denote
the latter.

2. Group actions and groupoids

Suppose that" is a countable discrete group acting essentially freely medsure
preservingly on a standard diffuse (i.e. without atoms)ophility space X, 1). Recall
that the freeness assumption means that for evesy"\ {e} we haveu({x € X | y.x =
x}) = 0, and that preservation of the measure means that the pushrfl measure,
equalsu for all y € I'. The action ofl" on X defines a standard, measure-preserving
equivalence relatiorR € X x X by settingx ~% y if there existsy € I such that
y = y.X. We may think of the relatiorR as a groupoid, called the translation groupoid
of the action, and when doing so we often denote it4yinstead of R. The object
space is%° = X, there is an arrowy(, X)¢, where we often leave out the subscript
“@” from x to y exactly when they are related iR, and the composition of arrows
is given by &, y) o (y, X) = (z, X). On the relation we have the two natural projection
maps pr: X x X — X and these are exactly the target map- pr;, and source map
s = pr, on ¢4. Recall [3, 9] thats andt give rise to a groupoid measutie on ¢
by setting

v(A) = /X # ) N A) duly) = /X #s1(x) N A) du(x):

the two integrals being equal becauBepreserves:. Recall from [9] that thegroupoid
ring C¥ of ¢ is the subspace df*°(¢, v) consisting of (classes of) functionfs such
that the functionsx — #{a € t™3(x) | f(a) # 0} and x > #a € s71(X) | f(a) #
0} are both essentially bounded ot On C¥ we consider theconvolution product
(f=g)(y) = Za’ﬂeg: y=ap T (@)9(B); note that the sum is finite for almost evepye ¥
so that the definition does in fact make sense. Furthern@,is equipped with an
involution by setting f*(y) = f(y~1) turning it into a unitalx-algebra. Integration
against the measune defines a faithful, positive trace on C¥ and the corresponding
GNS-construction leads to an algebra of bounded operatbosevweak closure (which
is therefore a finite von Neumann algebra known asdfmipoid von Neumann alge-
bra) will be denoted byL¥ in the following.

Our main aim in this section is to introduce a notion of “thartugenous space”
associated with an inclusion of groupoids and to study itsicoproperties. Consider
therefore a subgroupoig? of ¢ with the same object spac#”® = X. For simplicity
of notation we assume tha¥’, whence alsa, has infinite orbits onX and further-



908 D. KYED AND H.D. PETERSEN

more that ¢ : 7] = oo almost everywhere, i.e. that there is @oeinvariant setA € X
of non-zero measure such that eaérorbit on A splits into finitely many.2#-orbits on
A. We also fix isomorphisms of measure spaces

¢y XxN—=>9Y and ¢p: XxN =

such thatt o¢,. = pry and (mainly for convenience) such that((x, 1)) = (X, X). = idx.
The existence ob, is implicit in [10, Lemma 3.2], where a full proof is given ime
ergodic case. In the case whefeis the translation groupoid of a free action we may
in fact take the domain oy to be X x I and ¢(X, y) = (X, y 1. X)». Now define

Er=(J E1j where Epj:=Suppl,xxa) * lopxx(ip)-
jeN

AssumingE;,...,Ej_; defined asE, := UjeN E..; we define, recursively, sets; .. € ¥
as follows: For eaclkx € X denote byn;(x) the smallesh;(x) € N such that X,n;(x)) ¢
EiU..-UEj_1. Denote byS the graph{(x, nj(x)) | x € X} € X x N and put

Ei=|JEi; where Eij=supply,s)* Lo xxij))-
jeN

Then the set& :=t 1(x)NE; are precisely the pointwise orbits of right-multiplicatio
by 2 on ¢, and the mapx — n;(x) provides a measurable choice of representatives.
For notational convenience, we also denote the awaux, n;(x)) by «i x. Notice also
that the sets5; ; are pairwise disjoint withy(E; j) =1 and¥ = |, ; Ei;.

REMARK 2.1. The construction of the sels might seem technical at first glance
but the underlying idea is quite simple. The $&t simply consists of the arrows in
. To constructE,, we choose for every point € X the first (relative to the chosen
numberinggy) arrow in ¢ \ 7 with targetx. This is thenayx and E; then consists
of all arrows that can be obtained by composing #g’s from the right with arrows
from J#. The setEs is then constructed by choosing, for eack X, the first arrow in
@\ (E1 U E,) with targetx. This is the arrow denoteds x and the seE; consists of all
the arrows that can be obtained by multiplying thg's from the right with arrows from
#¢. Note also that the sdf; ; simply consists of the collection{x)xex and thatE;;
consists of the arrows obtained by composing’s from the right with thej’th arrow
from 22 with targets(o; x).

We now define the quotient space &b/(#)% := |,y Ei.1 With the Borel struc-
ture inherited from¥. Notice that this is actually independent of the choicepgf and
¢«, in the sense that any other choices would give a canonitsdiporphic space—
hence we drop the superscript 6fy 7 in the sequel. Next we want to study certain



GROUPOID APPROACH TOLUCK'S AMENABILITY CONJECTURE 909

modules of functions oy /2#. To this end, consider the sets

Cl¥], = {f € L®(¢, v) | x — # 1(x) N supp(f) is essentially bounded oX};
Clg/#) ={f e LG/ A, V)|
X > #t~1(x) N supp(f) is essentially bounded oK}.

Note thatC[¥]; is a left C[¢]-module for the natural convolution action. We may
define a mapc?,: C% — C% by setting

Y f(B), if IeXieN:ia=ay
K5 (F)(@) = { peer
0, if not.
We note that the range aff, is exactlyC[¢/.#]; and defineC[¥¢ /]| := k%9,(CY).

Definition and Proposition 2.2. The spaceC[¥/.#]; is endowed with the struc-
ture of a leftC¥-module by setting

(1) f.e:=«%(fx&) for feC¥ and £eC[9/H].

The subseC[¥/.#] is a submodule for this structure and the m'aﬁ is a C¥-map
of C% onto C[¢/¢], mappingC[¥] onto C[¥/.7].

Proof. To show that equation (1) does indeed define a moduletste it is suf-

ficient to show thatc?,(f = g) = «Z.(f * «%,(g)) for all f € C[¢] and g € C%,.
Expanding this, we need to show that for Bk N and almost everx € X we have

@ D o(Fxg)e) = Y (f xx% (@)@

acES acEX

Computing the left-hand side of (2) we get

ok aeE) pet-i(x) pet-i(x) acE;

S(txg@=Y Y fBYB )= > f(ﬂ)(z g(ﬁla)).

and the right hand side of (2) expands as

acEf Bet=1(x) aeEx

do(F k@)= Y f(ﬁ)(Z(Ki’%Q)(ﬂla))-
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For fixed B there exists a uniqu¢ € N such thatej sz € B71EX and sincex?,(g) is
only supported in the representatives we have

D k@B ) = k5@ @isp) = Y. ) =) 9B ),

acEX yeE® acEX

J

The remaining statements follow directly from the defimigo ]

REMARK 2.3. Removing the assumption tha®’ has infinite index i we can
write X as a disjoint union of/-invariant setsX(™ n € N U{oo} such that for alln we
have [Z|xo : #|xw] = n. Then we may proceed as above on each of the pi¥¢8s
getting setsEi(l”j) and defining a factor map%, and C[¢/.#]. Note also that if we
take # = 4 we getC[¥ /] ~ L>(X) and thatc is the usual augmentation map.
Thus in this case th€¥-module structure coincides with the one considered in [9].

Below we will also need a further subdivision of thg ;. Namely, noting that
the projection maps andt are countable-to-one we can partition edghy into sets
on which both the target and the source map are injective ésge[9, Lemma 3.1].)
That is, we can find subsets € N such thatE;; = |_|,E,‘ E¢y.1, v(Egyy1) > 0 and
such thats andt are both injective when restricted to eakf)1. For x € t(E,1)
we denote byo ) x the unique arrowr in Eg 1 with x = t(e) and we denote by
o, the partial isomorphism oK given by the collection of all these. We furthermore
denote byE ) ; the support oflg,,, * 14, (xx(jj) and observe that the source and
target maps are still injective when restricted to gy ;.

For an inclusionH < G of groups, it is well-known that the group rinGG is
generated as a rigltH-module by a set of representatives for the coset&GjH .
We now fix the last bit of notation and prove the groupoid agatoof this result.

DEFINITION 2.4. An elementf € C¥ is said to be ons”-reduced form if there
exists a finite sett €| |,y i and (fi;)¢,yes S CHZ such that

@ f= > lg,, = fiy and t(supp(i,)) € s(Eg) forall (i,1)eJ.
@i,))ed

The condition on thefi,’s just means that we have not trivially extended their

support. In particular, for arf on -reduced form we have that = O if and only

if all the f; = 0. To see this, first note that summands in (3) have disjoipps,

so f is zero if an only iflg,,, * fiy = O for every (,I) € J. Furthermore, iff;, is
non-zero on a sefF C J# of positive measure then the targets of this set is contained
in s(Eg,y,1), and hence for each € F there exists a unique € Eg )1 for which the
productep is defined; this product is then in the supportigf . » fi; which therefore
has positive measure as well.

1
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Lemma 2.5 (decomposition) Let f € C4 and 0 < ¢ < 1. Then there exists a
set YC X with u(Y) = 1 —¢ such thatly % f is on s-reduced form.

An alternative formulation using the dimension functioeg<s.g. Section 3) is that
the right C7-span of the indicator functiongg,, generates a rank dense (i.e. co-
dimension zero for dim.(x)) submodule ofC%.

Proof of Lemma 2.5. By the definition @@%; we havev(suppf) < oco. If we put
Fini = Enj Nsupp(f) for i,j eN andl € |;,

we therefore hav@ " |, ; v(F ;) < oo, S0 we may choose a finite sBtC (|| i) x
N such thatz((i’|)’j)¢D v(Fiy,j) <e. As

w(t(Fa.i)) =/Xﬂt(Fa,'>,j>(X) du(x) $/x#(t’1(x)ﬁ Fn,i) du(x) = v(Fgy,j),

c
also Y .y.1y¢p “(t(Fn,j) < & and we now choos¥ = (U jy¢o t(Faa.j)) - Then
supply * f) € U1y j)ep Ean.j @nd sinces is injective onE ) ; there existsf?), ; €
L>°(X), ((i,1), j) € D, such that

Iy = f = Z e, - f(?yl)vi
(i1),jeD

0
= Z Tegys * Lo (xx(in - f(i,l),j
(ih,jeD

0
= Z ﬂE(i,l),l * HS(E(U);) * Z L e (xx(iy) - f(i,l),j
@ j

The functionsfi| := Tgg,,.) * 2_j Lo (xx(jy - f(?J)’j will therefore now do the job. [J

We single out the following consequence of the proof, whicesinot use the ex-
istence of 7 at all.

Porism 2.6. For every fe C% and every0 < ¢ < 1 there is a YC X with
u(Y) = 1—¢ such thatly = f € C9.

3. Homological algebra in the presence of a dimension funan

In this section we study certain basic homological algebcaincepts, in particular
flatness properties, replacing the usual notion of exastméth a weaker notion aris-
ing from the dimension function associated with a finite voauhhann algebra. We
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remind the reader that all generic von Neumann algebras ssamaed to be finite and
have separable predual and furthermore to come equipp&dawiked faithful, normal,
tracial state denoted by.

3.1. Lick’s dimension function. Let N be a tracial von Neumann algebra with
a fixed faithful, normal, tracial state. Recall that Liick’s dimension function djm
assigns to eaciN-module L an extended positive real number

dimy L :=supdimy P | P C L finitely generated and projective submodule

where diny P is the usual von Neumann dimension of the projective modileFor
more details we refer to the monograph [7]; recall, in pattic the many nice prop-
erties listed in [7, Theorem 6.7]. A key technical obsevatthat will be used repeat-
edly in the sequel, often referred to as ‘Sauer’s local @dte, provides a very nice
characterization of zero-dimensional modules oMer We recall it here for the read-
ers convenience.

Theorem 3.1([9, Theorem 2.4]) Let N be a tracial von Neumann algebra and
let L be an N-module. Thedimy L = 0 if and only if for every xe L there exists a
sequence of projections, N such thatlim, z(p,) =1 and p,.x = 0 for all n.

Note that if p, € N is a sequence such thaf{p,) — 1 and py,x = 0, then there
exists a sequence of projectiom§ € N increasing tol and such thatp,x = 0. In
particular, zero-dimensionality is a property that is ipeledent of the choice of trace
state onN.

3.2. Dimension flat basis change. In this section we develop some of the basic
properties of homological algebra “relative to” a finite vidleumann algebra. The main
technical result obtained is a version of the well-known Bate change formula [13,
Proposition 3.2.9] in this setting.

DerINITION 3.1. Let R be a unital ring containing a finite von Neumann alge-
bra M.
(i) We say that a complex

diy2 dis1 d di-1
I_> lJIJrlI—) |3| I_) Rill_)...

of R-modules is ding-exact if its homology in each degree hd&-dimension zero,
i.e. if dimy(kerd;_y/di(P 1)) = 0 for all i.

(i) We say that &, di)ien, IS @ projective dingy-resolution of anR-module L if the

P’s are all projectiveR-modules and there exists @-homomorphismPy — L such
that the augmented the compl& — L — 0 is dimy-exact.
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The following definition provides us with language to talkoab these properties
in very general situations.

DEFINITION 3.2. Let My, 1) and My, 12) be tracial von Neumann algebras and
let F be a functor from the category d#l;-modules to the category d¥l,-modules.
We say thatF is (v, «)—(M,)€Xact if the image undeF of any short dimgy, .,)-exact
sequence oM; modules is dimy,, .,)-exact.

Our main focus in the following will be on tensor functors and therefore adapt
the standard language from homological algebra to thisngett

DeriNITION 3.3. Let M € N be a trace preserving inclusion of finite von
Neumann algebras and I® be an intermediate--algebra. The inclusiorR € N is
said to bey_nflat if N ®r — is ynexact. If M and N are clear from the context

we will often just refer to the inclusiolr € N as being dimension flat.

REMARK 3.4. The notion of dimension flatness originates from Lick&rk in
[6] where it is proven that the inclusio@[I"] € L(T") is ¢—(r)flat wheneverT is an
amenable group. Note also that dimension flatness of ansiecilR € N is independ-
ent of the choice of faithful, normal, tracial state ®h This follows from Sauer’s
local criterion (Theorem 3.1) and the remarks following it.

Next we recall from [11, 12] the notion of rank completion.v&i a tracial von
Neumann algebraM and anM-module L we definethe rank of an element € L as

[£] ;= inf{z(p) | p € Proj(M), p& = &}.

This induces a uniform structure dnand the Hausdorff completion, denoted(L), is
again anM-module. Hence there is a canonical map. — cy(L) and this turns out

[12, Theorem 2.7] to be a digrisomorphism; i.e. the sequence-9 L 5 cu(L) =0
is dimy-exact. A moduleL is called rank complete i is an isomorphism; we remark
that the dimension function dig(-) is faithful on the category of complete modules.

DerINITION 3.5. Let M € N be a trace-preserving inclusion of finite von
Neumann algebras. An intermediatealgebraR is said to beM-compatibleif for any
R-module L and anyr € R the action ofr on L is Lipschitz with respect to the rank

metric arising fromM.

The compatibility property is a mild strengthening of theperty considered in [8,
Lemma 1.2]. The results in [8] came to our attention afternsisbion of the present
paper, and the theory developed there provides a differpptoach to some of the
results in this section. We provide a self-contained actdan the convenience of
the reader.



914 D. KYED AND H.D. PETERSEN

REMARK 3.6. Note that if R is M-compatible andf: K — L is a homo-
morphism of R-modules then botlty (K) and cu(L) are naturallyR-modules andf
is a contraction with respect to the rank-metric and theeefxtends continuously to a
mapcy (f): cm(K) — cu(L) which is also anR-homomorphism. We will primarily be
interested in the following two situations: Firstly, if ~, (X, u) is a free p.m.p. ac-
tion thenR = L*°(X) x I' is L*°(X)-compatible as a subalgebra bf°(X) x I' [12,
Lemma 4.4]. Secondly, in the case of a group@iavith object spaceX, 1) the groupoid
ring C¥ C LY is L*°(X)-compatible. This follows from from the fact th@t? is spanned
(algebraically) as ah.°°(X)-module by partial isometries with range- and source proje
tions in L*°(X) [9, Lemma 3.3]; the details of the argument can be found énpttoof of
[9, Lemma 4.8].

We record a few more properties of the rank completion thdit twin out useful
in the sequel. These are slightly more technical versionNd2f Lemmas 2.6 and 2.8].

Lemma 3.7. Let M € N be a trace-preserving inclusion of finite von Neumann
algebras and let R= S be intermediate M-compatible-algebras. Then the follow-
ing holds.

(i) The functor & (-) mapsdimy -exact complexes of R-modules(tim¢-) exact com-
plexes of R-modules.

(i) For any R-module L the natural mapd ® ¢: S®r L — S®g cum(L) is a dimy-
isomorphism. In particular when S N this is adimy-isomorphism as well.

Since M is always compatible over itself, (ii) implies that § is an M-compatible
x-algebra betwee and N then S is also compatible as akl-bimodule in the sense
of [9, Definition 4.6]. That is, ifL is a zero-dimensionaM-module then the same
is true for S®y L. Note that the latter property is exactly the one studied8n [
Lemma 1.2].

. . . f
Proof. To prove (i), consider a digrexact complexK — L 4 Q and the com-
mutative diagram

K— 1L —9% .0

R

cm(K) i cm(L) S cm(Q).

We then need to prove that keg{(g)) € rg(cm(f)). Since the category of complete
modules is abelian [12, Theorem 2.7] it suffices to prove kKeafcy (9))/rg(em(f)) has
M-dimension zero. By Sauer’s local criterion, we therefoagehto prove that for every
x € ker(cw(g)) and everys > O there exists a projectiop € M such thatr(pt) < ¢
and px € rg(cw(f)). First choosep; € M with 7(p;) < /3 such thatp;x € rg(c.)
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and choosey € L such thatc (y) = pix. Then

cQd(y) = cm(9)eL(y) = cm(9)(P1X) = picm(9)(x) = 0.

As ker(g) is zero-dimensional there exist® € M such thatr(py) < ¢/3 and 0=

p29(y) = g(p2y). By dimy-exactness of the upper row there exigtse M such that
7(p3) < ¢/3 and psppy = f(2) for somez € K. Putting p = p1 A p2 A ps we have
7(pt) < ¢ and

px = ppx = peL(y) = peL(psp2y) = pe(f(2) = cm(f)(ck (p2),

and the proof of (i) is complete. To prove (ii), consider thepmf: L —- S®g L
given by f(x) = 1® x. This is anM-linear map so it extends to a map: cy(L) —
cm(S®r L) which is R-linear. It therefore induces a map&df: S®grcu(L) - S®r
cm(S®Rg L) which after composition with the multiplication m&p®g cy(S®r L) —
cm(S®rL) yields anSlinear mapf: S®gcw(L) — cw(S®g L) making the following
diagram commutative:

S®rcm(L) SLEN cm(S®r L)

oo

S®rL

Since ¢ is dimy-injective the same is true for i® c¢. To prove dimension-surjectivity
we need the following observation: For evesy S and every sequence of projections
pn € M with 7(p,) — 1 there exists a sequence of projectigpse M with z(g,) - 1
such thatg,s = q,sp. This follows easily from the compatibility assumption &
To see this explicitly, note that since multiplication wishis Lipschitz there exists a
C > 0 such that

[spm] < Clpy] = Cz(py).

Hence there existg, € M with 7(gy) > 1 — Cz(p+) — 1/n and g,sp- = 0. Hence
7(gn) — 1 andgpsp = gnS. Proving dimension-surjectivity of i® ¢ is now straight
forward: Givené = Zim:lri ® X € S®r cm(L) and e > 0 there exist projections

p™....,pM e M such that lim z(p™) = 1 and p™x = c(y™) for somey™,...,y® ¢
L. By the observation, we can find projectioq@,...,qrﬁg‘) € M such that limz(g") =
1 andq™r; p™ = q™r;. Theng® = A™, o satisfies lim 7(q™) = 1 and

m m m
e =3 " g @x =Y g7 @ px = (d®«) (Z q"r; ® Yi)-
i=1

i=1 i=1

Hence id® ¢ is dimension-surjective and the proof of (ii) complete. ]
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Corollary 3.8. If M € N is a trace preserving inclusion of finite von Neumann
algebras and R is an intermediate M-compatiblelgebra then the inclusion B N
is mnflat if and only if it is c_ nflat.

Proof. Clearlyy_nflatness is stronger thag.yflatness. On the other hand, if
RC M is c_nflat and
0O-K—->L—->Q—>0

is a dimy-exact sequence, then by Lemma 3.7 (i) tderank completion of this se-
quence is properly exact and hence

0— N®rcm(K) > N®rcu(L) > N®rcu(Q) — 0

is dimy-exact. Applying Lemma 3.7 (ii), this complex df-modules is ding-isomorphic
to the complex
0> N®rK—>N®rL—>N®rQ—0

which is therefore also digrexact; i.e. the inclusiorR € N is y_ nflat. O

The following lemma shows that a projective dimresolution is as good as an
honest projective resolution for computing Tor as long asomly care about the di-
mension (compare also with [8, Lemma 1.4)).

Lemma 3.9. Let M C N be a trace-preserving inclusion of finite von Neumann
algebras and let R be an intermediate M-compatiklalgebra. Suppose that,.P—
L — 0 is a projectivedimy-resolution of the left R-module L. Then for alki0

dimy Tor?(N, L) = dimy Hi(N ®g P.).

Proof. Let () be a projective dimy-resolution ofL as in the statement and let
(Qi) be an honest projective resolution bf By Lemma 3.7, bottcy (P) and ey (Q;i)
are therefore honest (not necessarily projectiRefesolutions ofcy(L). By the com-
parison theorem [13, Theorem 2.2.6] (see also [13, Poris2t/R.we therefore get
chain mapsu,, v, making the following diagram, in which the arrows denotedre
the canonical maps into rank completions, commute.

P, L 0
L
Jv, \ l«c

: cu(P.) —— ou(l) ———— 0

Cm(y ¢ |d/

cm(Qx) em(l) ———— 0

Q.
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We first consider the upper part of the diagram. Siacd, — cyv(P,) lifts ¢: L —
cm(L) and this lift is unique up to homotopy [13, Porism 2.2.7] wietain that the
composition of induced maps

Hi(N ®g P,) 4, Hi(N ®r Q.) kN Hi (N ®r cm(Py))
N ——

=TorR(N,L)

is the same map a&: Hi(N ®r P,) - Hi(N ®g cu(Py)). The latter is a dig-
isomorphism since it is the map induced on homology by theéncheap id®c: N ®g

P — N ®r cu(P), which is a dimy-isomorphism by Lemma 3.7. In particular
dimy kerG; = 0 for all i, proving the inequality 2" of the statement. For the other
inequality we note, similarly, that the composition of iwéd maps

cm (ui)

Hi(N ®r Q.) = Hi(N @r cu(P)) 2% Hi(N @r cu(Q.))
is the same map as H;(N ®r Q.) — Hi(N ®rcm(Q.)) so that diny kery; = 0. [J

Corollary 3.10 (dimension flat base change)Let M C N be a trace-preserving
inclusion of finite von Neumann algebras and lel€RS be intermediate M-compatible
x-algebras. Suppose that the functo®l— from R-modules to S-modulesyis, v exact.
Then for every R-module L and everg iNg we have

dimy TorR(N, L) = dimy Tor*(N, S®r L).
Proof. LetP, — L — 0 be a resolution oL by free R-modules. Then
S®RrP: — S®rL—>0

is a free diny-resolution of S ®g L so the claim follows directly from the previ-
ous lemma. O

Returning to the case of just one intermediatalgebraR, we have the follow-
ing equivalent characterizations gf. \flatness of the ring inclusiofiR € N, which is
nothing but a straight forward dimension-adapted versiba olassical result in homo-
logical algebra; see e.g. [13, Exercise 3.2.1].

Proposition 3.11. For the tower MC R € N, where R is M-compatibjethe
following are equivalent.
(i) The inclusion RE N is y_flat; i.e. the functor N®g — is y_.nexact.
(i) For every k=1 and every left R-module K we hadémy Tor}(N, K) = 0.

Before returning to the case of groupoids we record a minsultevhich will turn
out useful in the sections to come.
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Lemma 3.12. Let M € N be a trace-preserving inclusion of von Neumann alge-
bras with an intermediate:-algebra R such that the inclusion ® N is y_nflat, and
let ' be a discrete countable group acting on N and preserving Bajlp Then the
inclusion RxI" € N x I' is also y_nflat.

Proof. Let 0— K = L Q — 0 be a short digy-exact sequence oR x I'-
modules. The statement in the lemma is then just the obsamvéitat we have a com-
mutative diagram ofN-modules

0 — (NxT)®grur K m—Qb;(NXF)@)RxFLi(@;T(NXF)@RXFQ_)0

zTid zTid zTid zTid ?Tid

0 —— N®K —  N@rL —2" 5 N®rQ —— 0. [
REMARK 3.13. Note that if an inclusiolR € N is dimension flat then for any

tracial inclusionN € N into another finite von Neumann algeba the inclusionR €

N is also dimension flat. This is due to the fact that the incnigil € N is faithfully

flat and the functoN ®y — is dimension preserving [7, Theorem 6.29]. Hence, dimen-

sion flatness of an inclusioR € N is equivalent to dimension flatness of the inclusion

of R into the von Neumann subalgebra it generatefNin

3.3. Applications to groupoids. We now return to the setup from Section 2.
More precisely, we consider an inclusion of discrete meabgreupoids.Z < ¢ de-
fined on the same object spack, (1) and we wish to apply the results from Section 3
to the following diagram of inclusions.

CY —— LY

J J

L®(X) —s CH < Loz

The following result is the analogue of the well-known olsd¢ion that for an in-
clusion of groupsH < G the functorL — CG ®cn L is exact fromCH-modules to
CG-modules, i.e. that the inclusio@H C CG is flat.

Proposition 3.14 (dimension-flathess of C# < C¥). The tensor functor
CY ®cw — IS Lo(x)»Lx(x)€Xact from the category of.s#-modules to the category

of C¥-modules.

For the proof the following observation will be convenient.
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Lemma 3.15. The mapspi,: C4 — C# given byei(f)(y) := (1g, 1 * f)(¥)
for y € 5 are right Cs#-linear and satisfy

IsEqyn If@,1) = (k,m),
¢ (L) = {O " otherwise
Proof. Let f € C¥4 and g € C be given. Considey € J# and putx =
t(y). There is at most one arrow iB 1)1 with sourcex. Assume first that this arrow
o,y € Eqn,1 exists. Evaluating iy we now get

ou(f ) = 3 Tegyule (T G)(B)

af=y

= (f * 9)(.1)yy)

= Z f(a)a(B)
af=a ) yy

=Y flagnyrB ).
BeA

On the other hand,

(Pan(H)* Q) = Y (g, * )@)a(B)

ap=y

= Z Z IlE(i,l),l(s_l) f(ma(B)

a,pe A Ened
af=y En=a

= > flegnya)9(p)
o

=Y flanyrBHIEB).

BesAt

In the remaining case, i.e. whef; )1 N s 1(x) is empty, both the above expressions
are seen to be zero and we conclude tpatis right C.sZ-linear. The orthogonality
relations follow in the same manner: df; ), exists we have

(pi,|(]1>lk3(i,|)‘1 * 11E(k,m),l)(y) = Z ]1E(i.l),l(a_l)]lE(k.m),l(ﬂ) = JlE(k,m),l(O‘(i,|),y7/)-
ap=y

The latter quantity is zero ifk{ m) # (i, 1) and if , m) = (i, |) it attains the value
1 exactly wheny = ids(,,) = idx, and is otherwise zero. Again, the remaining case
when Eg 1 N's}(x) is empty runs similarly and the proof is complete. 0
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Proof of Proposition 3.14. Suppose that the sequendc€.4f-modules
(4) 0-K->L5>Q—0

is dim_~(x)-exact. By Corollary 3.8 we may assume that the sequences(#) fact
(dimc-)exact. Then, since tensoring over a subring is alwayst-eghct, it is enough
to show that

dimp~(x) ker(id® ) = 0.

For this we use Sauer’s local criterion: Let= Y /1, O @ x®) € ker(id® ) and 0<
¢ < 1 be given. By the decomposition lemma we can fpd< X such thatu(Y;) >
1—¢/m and such thatly, f() is on s#-reduced form. That is, there exists a finite

setDr € (Ll 1i) x N and functionst{]) € C.# such that

ﬂyr * f(r) = Z ﬂE(i,l),l * fi(y|r).
(@i,1)eDy

By enlarging the expansion by zero-functions we may assime= --- = D, =: D.
PuttingY := N", Y, we haveu(Y) = 1—¢ and furthermore

m

1y E = 1y % Z Z ]lE(i.I),l * fiﬂr) [ X(r)
r=1 \(.DeD
(5) m
= Z (Iy * 1g,,,) ® (Z fiflr)xr> .
(.)eD r—1

N——
=il

As & € ker(id® ¢) we therefore have

0=1y.(id® (&)

=1lv. Z ﬂE(l.l),l ® L(yi,|)

@i,)eD
= Z (]lY * IlE(i,|),1) ® L(yi,l)
@i,)eD
= Z (ﬂYﬂt(E(ivU'l) * HE(”)J) ® L(yi,|)
@i,)eD
= Z ]lE(IJ),l * ]lalfll(Yﬂt(E(H)'l)) ® L(Yi,l)
(i,)eD

= Z ]lE(i.I),l ® L(]laijl(Yﬂt(E(ml))yi,l)-
(.)eD
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Slicing the first leg with the maps from Lemma 3.15 we therefobtain for every
(i,l)eD
0 = tlls(eq Ly eyt = Wlapevnteqnm Yin)s

and thusl a (YNt (Eq ) Yid =0 for every {,1) € D. Performing the exact same manipu-
lations in (5) we obtain

Iy & = Z (Iy = HE(||)1) ® (Z f|(Ir)xr>
@i,)eD

= Z Tep, ® ﬂaﬁl(Yﬁt(E(i,l),l))Mv' =0. O
(i.eD

For an inclusion of groupdd < G one hasCG ®cy C >~ C[G/H]. Again we
have a similar result for groupoids which takes the follayviiorm.

Proposition 3.16. The composition

mult

C¥Y% Qcw L¥(X) — C¥ L, Cl[¥ 7]
is a dim_=x)-isomorphism. Herenult denotes the map ® g+— f xg.

For the proof we need the following observation.

Lemma 3.17. For alli € N, | € I; and f € C.# we havex?,(lg,,, * f) =
1g,,., * k52 (), where both expressions are considered as function&on

The proof of Lemma 3.17 is a direct computation and we omitdbtails.

Proof of Proposition 3.16. Consider the augmentation mﬁx CH — L=(X)
(see Remark 2.3). This fits into a short (difexact sequence

%)
0— kerc7 Lot L*°(X) — 0.
N——
=:K
Applying the functorC¥ ®cs» — to this short exact sequence, we obtain the follow-
ing commutative diagram in which the upper sequence is djgy-exact by Propos-
ition 3.14 and the lower one is (dign)exact:

0—>Cg®c%Kﬂ>C%®c%Cﬁf s

lmult multlz

Kié
0 —— ker«?, CcY 2z Cl49)#] ——— 0

CY ®cow L®(X) — 0




922 D. KYED AND H.D. PETERSEN

It is easy to see that the composition in the statement fits tins commutative dia-
gram, so by the 5-lemma for dimension-isomorphisms [9, pt 3uffices to see that
mult: C¥Y Qc.» K — kencf;ip is a dim_~(x)-isomorphism. But this follows directly from

the decomposition lemma and Sauer’s local criterion: Takekerx?, ande > 0 and
chooseY C X with u(Y) = 1—¢ such thatly * f is on s#-reduced form:

Iy« = > lg,, * fiy and t(supp(fi,)) S s(Eq.,)-
(i,))eD

Using Lemma 3.17 we now get

O=w%(y* F) =k | D Leg,* fir | = D Teg,, x <7 (fin),
(i,))eD (i,))eD

and as theEg ) 1's are disjoint this implieslg,, *Kjf;(fu) =0 for all (i,1) € D. But
sincet(supp(fi)) < s(Eg,).1) we get suppZ (fii)) € s(Eg,y1) and hencec 2 (i) =
0 for all (i,1) € D; i.e. fj; € K. Thus

Iy« f=mult| > 1g,, ® fiy | € MUCY ®cr K).
(iHeD

This proves that mult is dime(x)-surjective. That it is also dip(x)-injective is clear
since ker(mult) is contained in the zero-dimensional meddr(id® ¢). O

4. From amenability to dimension flatness

As mentioned in the introduction, we are interested in theediision flatness of
inclusions of the formC[T'] € L(T") for a discrete groud”, and, as was proven by
Luck [6], this inclusion is dimension-flat if" is amenable. More generally, we may
ask for which subalgebraR of L(I') the inclusionR C L(T") is dimension flat. In this
section we provide partial answers for subalgebrad f ¢ I') when Ap is a finite
cyclic group andl” is amenable.

4.1. On wreath products with finite cyclic groups. Consider a finite cyclic
group Ag and putA = @ As. Recall that thewreath product A: I' is defined as
the semi-direct producA x I where" acts onA by translations in thd -direction.
Denote byA the Pontryagin duallrAy of A, and recall that the topology oA is
generated by sets of the forfi], .. U,, whereU, € Ay andU, = A, for all but fi-
nitely many y € I'. By Tychonoff’s theorem this turnd\ into a compact Hausdorff
topological group, and by discreteness &f the open sets in the canonical basis are
all compact open. Note also that the compactnesdidfnplies that every compact

yel
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open set is a finite union of compact open sets from the bastssd&¥ote by%., the
family of compact open Borel subsets and ®%.,] the algebra generated by the cor-
responding indicator functions ih°°(A). We briefly pause to remind the reader of the
standard fact that the algebf&%..] exactly corresponds to the group algelT@A]
under the Fourier transform:

Lemma 4.1. The Fourier transformF: L(A) ~ L°°(A) mapsC[A] onto the sub-
algebra C[ %] generated by characteristic functions arising from contpagen sub-
sets inA.

For an amenable group it was proven by Lick in [6] that the inclusic@l’ € LT’
is dimension flat. Sincél is a finite cyclic group also the wreath produsg? I is
amenable and the inclusiaB[ Ag? '] € L(AgeT") is therefore dimension flat as well. In
the dual picture, this corresponds to dimension flatnes@firiclusionC[ %] xI' C
LOO(A) x T'. In the following we show that this is also the case for crdspeoducts
arising from other Boolean algebras thafy,. These results, however, are most natur-
ally formulated in a general measure space theoretic getsim we abandon the partic-
ular spaceA for the moment and consider instead an abstract standae Bababil-
ity space. Before entering the discussion regarding dinanfatness let us fix a bit
of notation.

DEFINITION 4.2. Let (X, u) be a standard, non-atomic Borel probability space.
Denote by %, the system of all Borel subsets & and by %, the system of sets
which are both open and closed. For any syst@nmof Borel sets inX which is stable
under taking complements and finite intersections we debgt€[%] the linear span
of the the indicator functions arising frows.

REMARK 4.3. Note that whenZ is stable under complements and finite inter-
sections thenC[4] is a x-subalgebra ofL>°(X). Note also that both#,, and %,
have this property.

Theorem 4.4. Let & be a system of Borel sets in X which is stable under com-
plements and finite intersections and with the property thatany ¢ > 0 and any Ae
PBa there exists Be #Z such thatu(AAB) < ¢. Then the inclusiorC[#] € L*°(X)
dimension flat.

To prove Theorem 4.4 we will show that the inclusi@j#] € L*°(X) satisfies
the strong Fglner condition from [1], and dimension flatnises follows from [1, The-
orem 4.4]. For the convenience of the reader, we briefly rehal strong Falner con-
dition before giving the proof of Theorem 4.4. A weakly denssubalgebrad in a
finite tracial von Neumann algebraVi( ) is said to satisfy the strong Fglner condi-
tion (see [1, Proposition 3.3.]) if the following holds: Fany Ty, ..., T, € A there
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exists a sequencs, € P, of non-zero finite dimensional subspacesAnsuch that the
following holds

(i) For everyi € {1,...,r} and everyn e N we haveT;(S,) € Pn.

(i) 1im 500 dime(Sp)/dime(Pr) = 1.

(ii) The sequence of statesp,: M — C given bygp, (T) = Tr(P,T B,)/dimc(Pn) con-
verges in norm to the trace. Here P, denotes the projection onto the subspéte
and Tr denotes the semifinite trace B{L%(M, 1)).

Proof of Theorem 4.4. First note that the assumption thatyeBerel set can be
approximated arbitrarily well in measure by a set freghimplies thatC[4] is strongly
dense inL*>°(X). To see this, it is enough to show that every projectighe L*°(X)
is in the strong operator closure @f[%]. But the assumption o8 implies that we
can find a sequence of projectiofis, € C[#] converging in 2-norm tdlg, and since
the strong operator topology coincides with the 2-norm kogy on the unit ball of
L>°(X), it follows that C[4] is strongly dense inL*°(X). Thus, we are in the setup
from [1] and we now prove that the inclusio@[%] < L*>°(X) satisfies the strong
Falner condition

Let Ty,...,T, € C[#] be given and assume, without loss of generality, &, <
1. Choose a sequendg € ]0, 1] converging to zero. Since? is stable under finite
intersections we can find a partitidh, ..., Fs € £ of X such that eachir has positive
measure and such thdy, ..., T, € spag{lg | 1 <i < s}. Now choose, for each
i €{1,...,s}, a positive rational numbep)/q, such that 0< u(F) — pd)/q, :=
80 < 8,/2s (we choose a common denominator right away) as well as a Betel
Hl(i'”) C F of measure Aq,. By the assumptions made o#, we can finng’”) €
2 such thatu(H{"™ AG!™) < 50/ pagn, where p, denotes the suny"*_, p@. Upon
replacingG{"™ with G{"” N F; we may furthermore assume th@af"” C F;. Moreover,
since u(H{"™) = 1/q, we have

) 1 s®
G(l,n) ) n
‘M( i) On PnOn
and hence
, 1 Ol ) Ol p —1  p—1
FA\GIM) > u(F)— = - =00 4 I >
(R AGLT) = n(R) On  Pnln : Pn0n On On

So, if p¥) > 1 we can repeat the construction with replaced byF,; \Gg) and iterating
this process we obtaip{) disjoint subsetG{", ..., G(F')g{)‘) € % of F; such that

pd) i
- a1 s L8
ul FAL G ) < u(R) - g>(— + ) <2s®) < 2,

iZ1 On Pn0n S
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Relabeling theG(i’”)’s asG!, .. .,G{) (samep, as above) and denoting \ U}", G(j”)
by GI” we have now obtained a famllgz(”) ..., G € # such that:

i c™ DG(”) @ wheni # j;

(i) For 1<i < p we have|u(G™) — 1/0n| < 8n/(2SMan)

(i) 1(GP) = X5y u(F \UE; G{™) < oo,

Now define

Po = spa{lgn | 1< < pa} < C[#].

Since theG(j“)’s are disjoint this is ap,-dimensional subspace and since e&h is
contained in exactly ond; the operatorsl; map P, into itself. To see thaC[%#] C
L°°(X) satisfies the strong Falner condition we therefore neeckéotisat the sequence
¢p, converges tor in norm. Since the characteristic functiobge, . .., Igp are or-
thogonal and sparP,, by normalizing them we obtain an orthonormal basis and for
T € (L*°(X))1 we therefore have

[7(T) — op,(T)| = [ Tdu — F Z ,lL(G(“)) (THGm) ]le))

njl

/A

1 ﬂ
Tdu— — /T]lnd
/x 1 pn;% « al L

1 pn
+ | — Z On / TﬂG(nJ du — p— Z /L(G(n)) (TﬂG(nJ IlG(n))

Nj=1 N =1

/ Tdu— 0 / T du
X Pn Jx\GI

1 Pn B
e, > lan = (G I|(Tlgo, 1gn)

n =1

/A

Pn

q 1 _ 2

< Gy + ‘1 FRE L G | HE
n n j=1

Pn
1
< n ‘1—% %ZM(G(;‘))——‘
n nJ:1 qn
On On On
<On4|l— ) .
" ‘ onl " oo " 25pc

The latter expression is independent Dfand goes to zero sinc&, — 0 and 1—
Pn/0n < 6n/2. O
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REMARK 4.5. Note that wherX = A (the dual of the infinite torsion group =
- Ao from before) the conditions in Theorem 4.4 are fulfilled foely % containing
B (and being stable under complements and finite intersexjtiorhis follows from
the regularity ofu.

We also record the following version of the dimension flatebakange formula.

Corollary 4.6. LetT ~ (X, u) be a probability measure preserving action and
suppose that’? C %, is a I'-stable system of Borel sets satisfying the assumptions in
Theorem 4.4 Then

dimp(xyzr TOrSET (L>(X) 3 T, K)
= dimL~(xysr Torg O (L®(X) 2 T, (L®(X) @ ') ®cpaggur K)

for everyC[%4] x '-module K and every g 0.

Note that the conditions in Corollary 4.6 are satisfied amsa® the systen# is
stable under complements, finite intersections andItkection and furthermore con-
tains a setB which is neither null or co-null and for whichg has full central support
in LX) xT.

Proof. The assumption oB implies that%# satisfies the assumptions in The-
orem 4.4 and by Lemma 3.12 the inclusi@[%#] x I’ € L*(X) x I' is therefore
dim_~(xy-flat. The statement now follows from Lemma 3.9 in the follogiway:

Choose a freeC[#4] x I'-resolution F, kel K — 0. Then the induced complex

LX) % T @cpapur Fr o L¥(X) % T @cpapr K — 0

is dim_~(x)-exact, and by Lemma 3.9 we have

dim_xyar Torg P T(L®(X) % T, (L®(X) x T) ®craggur K)
= dim s Hp(L¥(X) X T @ ~(xpur (L(X) x I ®cqayur id ® id ® d,)
= dimg(xysr TOGPT(L®(X) % T, K). O

Theorem 4.7. Let(X,u) be a standard probability space without atoms andIlet
be an amenable group acting freely and measure preservimylX. If Z is a family of
Borel subsets satisfying the assumptiong eorem 4.4then the inclusiorC[ %] xT" C
L>°(X) x T is dimension flat.
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Proof. Sincel’ is amenable, by [1, Corollary 6.6] the inclusidr™®(X) x I' <
L>(X) % T is dimension flat and applying Corollary 4.6 we obtain

dim_(xysr TorS T (L>(X) % T, K)
= dimp(gsr Torg O (L®(X) 2 T, L¥(X) @ T ®cpagpur K) =0

for any C[%4] x '-module K and anyp > 1. ]

5. From dimension flatness to amenability

The aim of this section is to prove a converse to the statenmeiiheorem 4.7.
That is, we aim to show that if' is a non-amenable group then there exists a non-
atomic Borel probability spaceX( ) and a free p.m.p. actioll ~, (X, ) and a stable
family # of Borel sets inX such that the inclusiol€[%#] x I’ € L>(X) X " is not
dimension flat. More precisely, we will show that there exiatginite cyclic group
Ao and a stable system of Borel subsetsfin(as before A denotes@ Ay and A
its Pontryagin dual) such that the inclusi@#] x T € L®(A) % T is not dimension
flat (see e.g. Definition 4.2 for details on the terminologyl artation). The crucial
ingredient is Gaboriau—Lyons’ striking “measure thearetnverse” to von Neumann'’s
problem which we recapitulate in the following.

5.1. Gaboriau-Lyons’ theorem. The main result in [4] is the following

Theorem 5.1([4]). If [ is a countable discrete non-amenable group then the orbit
equivalence relation of the Bernoulli actidh ~, [0, 1]" contains the orbit equivalence
relation of an essentially free action &%.

For our purposes the following discrete-base-space wversidl also turn out
relevant.

Theorem 5.1([4]). LetT be a finitely generated non-amenable group. Then there
is an ne N and a non-empty open intervép;, p2) < [0, 1] such that for every
(p1, p2) there is an essentially freergodic actiono of F, on [T1({0, 13, wp)" such that
the orbit equivalence relatiofk,, is contained(almost everywhejein the orbit equiva-
lence relationR of the diagonal Bernoulli action.

We elaborate on the proof of [4, Corollary 4] in order to ge¢ firaction in a
more convenient form. First note that we havéd aquivariant isomorphism of meas-
ure spaces

o: ({0, 3", 13" — [ J(0, 1, )",
1

p(X)K)(y) = x(¥)(K), l<k<n, yeTl.
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Thus we may assume that we have &y on 'Y, whereY, = {0, 1" with the prod-
uct measurqu%”. Next we may assume that= s/t is a rational numbes,t € N. Then
there is a surjective (but not necessarily injective) meagueserving mago: Z/t"Z —
Yo where the domain is equipped with the equi-distributed abiltiy measurex.. This,
in turn, then induces a measure-preservinggquivariant mapy: (Xo 1= Z/t"Z, )" —
(Yo, u%”)r. We now usey to pull back the action of, as follows. WriteX = X{,
Y =Yy, andF; = (a,b). Then there are measurable partitiohs=| | . A, = ||, B,
such that for ally € I and (almost) ally € A, we havea.y = y .y, and similarly for
all y e B, we haveb.y = y . y. Now define partitions ofX by taking pre-images
A = y7Y(A,) and BY := y~!(B,). We get an action® of F, on X by defining
0°@).x =y .x for x € AS and similarly forb. This clearly gives two well-defined
measure-isomorphisms sin¢eacts by measure-isomorphisms, whence an action since
F, is a free group. Finally, the action is essentially free siifco®(w)|ze = id|z. for
some setZ® € X and somew € F, we would haves (w)|y(ze) = id|y(ze) and hence
¥ (Z°) has measure zero M. But Z° € ¢~(y(Z°)) and sincey is measure preserv-
ing, Z° must have measure zero ). Note also thaty is anF,-equivariant map by
construction of theéF,-action onX.

We summarize all this as:

Corollary 5.2 ([4]). LetI" be a non-amenable finitely generated group. Then there
is a k € Z such that the orbit equivalence relatioRr of the Bernoulli action ofl"
on (Z/KZ, v)" contains the orbit equivalence relation of an essentiaigefmeasure-
preserving action off,.

5.2. Non-dimension flatness. In this section we show how one can obtain non-
dimension flat inclusions from the Gaboriau—Lyons theoréssussed above. The main
result is as follows.

Theorem 5.3. Let I be a finitely generated non-amenable group and lgth&
the finite cyclic group obtained froi@orollary 5.2 Denote by A the direct su@ Ao,
by A its Pontryagin dual and byZ, the system of all Borel subsets /. Then the
inclusion C[%a] x T € L*(A) X T is not dimension flat.

Proof. Denote by¥ the translation groupoid of the Bernoulli action Bfon A
and by .# the sub-groupoid arising from the action Bf. We now get

1= BP(F2)
= dim_y Tor$ 7 (L7, L*(A)) ([9, Theorem 5.5])
= dim o Tor$” (LY, L=(A)) ([7, Theorem 6.29))

=dim g Tor‘lw(L%, CY Qc.r LOO(A)) (Proposition 3.14 and Corollary 3.10)
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= dim_y Torr" (LY, €4 ®c.r L¥(A)). ([9, Theorem 4.11])

In the last line of the above computation we may, by [9, Lemnid, 4eplace the mod-
ule C¥ ®c.» L™(A) with any otherL>(A) x I'-module which is din.. 4 -isomorphic
to it without changing theL¥-dimension of the Tor-module. In order to apply [9,
Lemma 4.1] we need to know thdi1°°(A) x I" is dimension-compatible as ano"(A)-
bimodule, but this follows from the remarks proceeding Lenf7. Appealing to
Proposition 3.16, we have a dimension-isomorphism

CY Qc.w LX(A) ~ C[¥¢/.H#].

Furthermore, the decomposition lemma shows if¥] is rank dense inC[¢]; and
since k%, is an L>°(A)-homomorphism (in particular rank continuous) the inidns
Cl|¥9 /] C C|¥4 )] is also a dir’gx(A)—isomorphism. Thus we obtain that

(6) 1 = dimey Tors " @ (Lg, C[9/.2),).

SinceL®(A) XTI = L%, if the inclusionC[Zy]xT € L>®(A)xI" were dimension flat
then, for an arbitraryC[ %] x I'-module K, we would have

0 =dim a5 Torf[(%a”]xr(l—oo('&) X I, K)
= dim_ g Tors!?a" " (Le, K)
= dimiy Tors " ™ (LY, L2(A) % T ®cpyur K),

where the last equation follows from the dimension flat bdsange formula in Corol-
lary 4.6. In order to prove thaC[%Bq] x T C L°°(A) x T" is not dimension flat it
therefore suffices, by (6), to show that there exist€[@8, ] x '-module K and a
homomorphism of leftL>°(A) x I'-modules

(7 L*(A) % T @crauper K — C[9/.7],
which is a dim .. 3 -isomorphism. To this end, we define
K :=span{lg | E € ¥/ andlg € C[¥/#)} C C[9 /)

It is easy to see that this becomes a module for the actionk(féj;a of C[Bal] xT" C
C[¥] and we now claim that the multiplication map

mult: LOO(A) XTI Qcrzaxr K — C[9 /7

is a dim . 4-isomorphism.
To see that mult is dimension-surjective, observe first that

K9, (L®(A) xT) = (L®(A) % T). 14 C rg(mult).
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By [9, Lemma 5.4] and Lemma 2.5 the inclusions
L¥(A)x T < C[¥] < C[¥];

are dim . 4-isomorphism anekfjif(Lo"(A) xT) is therefore rank dense i/, (C[¥];) =
C[¥ /). Thus mult is dimension-surjective.

To prove dimension-injectivity, lell e ker(mult) be given. We actually aim to
prove that mult is properly injective; i.e. that = 0. Write T as) " ; fi ® m where
fi € L*(A) andm; € K; since the family of target-bounded Borel subsets4ip#
is stable under finite intersections, we can find mutuallyodis, target-bounded, Borel
subsetsF, ..., F in ¢/ such that eacim; can be written as

r
m; = Z m; (Fj)1r
=1

for somem;(Fj) € C. SinceT e ker(mult) and;cfj} acts like the identity orC[¥ /. 57];
we have

0= mult(T) = @@(Z fi mi> => (Z fimi(Fj)) * 1F,.

i=1 j=1 \i=1

As the F;’s are disjoint this implies that the restriction 3f;'; fimi(F;j) to t(Fj) is
zero for everyj € {1,...,r}. Moreover, since each of ther, € K we may rewrite
T as

T = Z( fimi(Fj)) ® I,
1

j=1 \i=

= Z (Z fi mi(Fj)) ® Ly * 1
i—1

r
j=1

r n
=> ( fi mi(Fj))ﬂt(F,) ® 1f = 0. 0

j=1 \i=1

We remark that a converse to Theorem 4.7 could have beemebtavithout ref-
erence to the finite groupy, by simply using the continuous base space version (The-
orem 5.1) of Gaboriau—Lyons’ theorem in the statement ambfpof Theorem 5.3.
However, in the following section we will investigate howldse” to a group algebra
we can choose the crossed prod@t#] x I' exhibiting the non-dimension flatness,
and the construction above shows that at least the measace spn be chosen, natur-
ally, to arise from a discrete group. Returning to the puralyasure theoretic context
we obtain the following groupoid solution to Liick’s ameri#yiconjecture.
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Porism 5.4. A discrete groupl’ is amenable if and only if the following hotds
for any free ergodic p.m.p. action ofl" on a non-atomic standard Borel spa¢X, )
the inclusion of the corresponding groupoid rin@[Rr~x] into the groupoid von
Neumann algebra (Rr~ x) is dimension flat.

Proof. If I is amenable then by [1, Corollary 6.6] the inclusiaf°(X) x ' C
L>(X) x " is dimension flat and applying [9, Theorem 4.11] we get, foraalitrary
C[Rr~x]-module K and p = 1, that

dim (g, TOrs ™ (L(Rrax), K) = dimig,.. o Tors T (L(Rr %), K)
T _ L®(X)xI (] oo z _
= dimy~(x)sr Tory (L*(X)xT, K)=0.

Conversely, ifI" is not amenable then by Theorem 5.1 the Bernoulli actiorl” abn
X :=[0, 1]" contains a free action df,; hence we have&[Ry,x] € C[Rr~x] and,
like in the proof of Theorem 5.3, we therefore get

1= gP(F2)
= diMy(rs, 0 TON 2™ (L (R ) L¥(X)) (9, Theorem 5.5])
= dim_(z,,_ Tor, 2 (L (R x), L2(X)) ([7, Theorem 6.29])

= dim(ry..,) TOr " L(Rrax), C[RrAx] ®cirs, ] LE(X)),

where the last equality follows from Proposition 3.14 andrdllary 3.10. Thus the
inclusion C[Rr~x] € L(Rr~x) cannot be dimension flat. OJ

5.3. Improving the subalgebra. In the previous section we saw that whenever

I is a finitely generated non-amenable group then there exifitéte abelian groupAg
such that the Bernoulli action df on the dualA of A := Pr Ao contains an action of
F,, and as a consequence the inclusiofZy] T € L®(A)%T is not dimension flat.

It would of course be desirable to be able to repl@fed, ] with C[%.o] and thereby
obtain non-dimension flatness of the, somewhat more natimelusion C[Aq: '] C
L(Ag: I'). Although we were not able to show this, certain improvetnesre still
possible. As a first step we show that one can replap®,] with an algebra of step
functions with a countable linear basis.

Proposition 5.5. Let I' be finitely generated and non-amenable and lgt A
and A be as above. Then there exists a countalec PBa such thatC[H] x T is
finitely generated as &'-module and for which the inclusioB[%] xT" € L®(A)% T
is not dimension flat.

Proof. By Theorem 5.3 there exists®{ %] x I'-module L such that

dimy s Tors @ (L>2(A) 2T, L) > 0,
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and by an inductive limit argumehtwe may assume thdt is finitely presented. We
can therefore find a presentation

(C[Bar] % D)< > (C[Ba] xT) — L — 0,

where T = (Tjj) is ak x| matrix with entries fromC[Za] x I'. Hence there exists a
finite Borel partitionF, ..., F of A such that every elemerf; can be written as

r
DB DB
k=1

rek

for some finite subset§ € I' and somer,(,”) € C. If there are at least twd~’'s we
define # to be the family of subsets obtained by closing the finite fami

{Fi,.... F}

under finite intersections, complements andranslates. If there is only ong we
simply add an artificial subsé¥, with measure neither zero nor one and cl¢bg, F1}
under complements, finite intersections dndranslates. Since the Bernoulli action of
I is free, ergodic and p.m.p. the crossed product von Neuméyebra L>(A) x I

is a ll;-factor and hence the assumptions in Corollary 4.6 arefigatis SinceT;; €
C[%] » T we have, by right-exactness of the tensor product, that

|
L®(A) % T ®cigapur L = L¥(A) x T ®cpayjxr %
_ (L(Axry
(LA u DT
(C[#] % T)
CZEDER
CLZ] =« DT

=L’

= L®(A) x T ®cagjur

Using the dimension flat base change formula (Corollary #wée we therefore obtain
0 < dimy . ayzr Torg T (L>(A) T, L)
= dimy iy TOrE T (L(A) 5T, L¥(A) % T @cpagypor L)
= dim, . gayar TOrs AT (L*(A) 5T, L¥(A) % T ®cpzar L)
= dim_ gy T (L°(A) % T, L), O

1See e.g. the last part of the proof of Theorem 6.37 in [7] fer details.
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It would be desirable to have more information about the laig€[ %] x " from
the previous proposition. Ideally, we would like to know wlinier or not we can re-
place it with the group algebra of, ¢ T, or if it is the complex group algebra of any
countable discrete group. In fact, we do not know of any ganeriteria to decide
whether an algebra of this form is a group algebra or not. Tieviing proposition
provides such a criterion.

Proposition 5.6. LetI' ~, (X, 1) be a measure preserving action on a standard
probability space such that each elemeng I'\ {1} acts ergodically. Let %= [_]2':l Fn
be a finite partition of X and let R be thé-invariant unital x-algebra generated by
the step functiongg,. Then there exists a finite abelian group such thatC[ AgT'] ~
RxT € L*X % T if for every m# n and everyy # 1 we haveu(Fy, N y(F,)) > 0.

Proof. Let¢ be a primitive N-th root of unity and letAy = (¢) = Z/NZ. We
claim that the assignment+— u := Zr'f:l ¢"1g, extends to the desired isomorphism.

The map is seen to be surjective. To see injectivity we mustvsiat, enumerat-
ing T = {&J}ken, for any K € N

dime span. {y1(u'?) - - - p (U%) | 1 < iig < N} = NK,
But this is clear because the subspace is spanned linearly by
{ﬂﬂiK:qu(Fi(i)) jt{l... K} = {1,...,N}}
and the hypothesis is seen to imply that these are lineadgpendent. L]

Corollary 5.7. LetI' ~, (X, u) be a measure preserving action on a standard
probability space by homeomorphisms and such that eacheaeme I' \ {1} acts
ergodically. Let R be thé&-invariant unital x-algebra generated by the two step func-
tions 1c and 1y where CC X is a compact set with empty interige(C) = 1/2, and
U = Cl is an open dense set. ThenxR™ ~ C[Z/2Z : T.

ACKNOWLEDGEMENTS The authors would like to thank Ryszard Nest and
Andreas Thom for valuable comments and conversations viexplaround Lick’s
amenability conjecture.

References

[1] V. Alekseev and D. Kyed:Amenability and vanishing of %Betti numbers an operator alge-
braic approach J. Funct. Anal263 (2012), 1103-1128.



934

(2]
(3]
(4]
(5]
(6]
(7]

(8]
9]
(10]

(11]
(12]

(13]

D. KYED AND H.D. PETERSEN

M.S. Farber:Homological algebra of Novikov—Shubin invariants and Moisequalities Geom.
Funct. Anal.6 (1996), 628—665.

J. Feldman and C.C. MooreErgodic equivalence relationscohomology and von Neumann
algebras I, Trans. Amer. Math. So234 (1977), 289-324.

D. Gaboriau and R. LyonsA measurable-group-theoretic solution to von Neunsmmoblem
Invent. Math.177 (2009), 533-540.

W. Lick: Hilbert modules and modules over finite von Neumann algearaks applications to
L2-invariants Math. Ann.309 (1997), 247-285.

W. Liick: Dimension theory of arbitrary modules over finite von Neumalgebras and E-Betti
numbers |, Foundations J. Reine Angew. Math495 (1998), 135-162.

W. Liick: L2-Invariants: Theory and Applications to Geometry afdrheory, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Mod&irveys in Mathematicé4,
Springer, Berlin, 2002.

S. Neshveyev and S. Rusta@n the definition of B-Betti numbers of equivalence relatigns
Internat. J. Algebra Compui9 (2009), 383—396.

R. Sauer: L2-Betti numbers of discrete measured grouppibigernat. J. Algebra Compul5
(2005), 1169-1188.

R. Sauer and A. ThomA spectral sequence to computé-Betti numbers of groups and
groupoids J. Lond. Math. Soc. (281 (2010), 747-773.

A. Thom: L2-cohomology for von Neumann algebr&eom. Funct. Anall18 (2008), 251-270.
A. Thom: L2-invariants and rank metricin C*-Algebras and Elliptic Theory I, Trends Math,
Birkhauser, Basel, 2008, 267—-280.

C.A. Weibel: An Introduction to Homological Algebra,a@bridge Studies in Advanced Math-
ematics38, Cambridge Univ. Press, Cambridge, 1994.

David Kyed
Department of Mathematics and Computer Science
University of Southern Denmark

Campusvej 55

DK-5230 Odense M

Denmark

e-mail: dkyed@imada.sdu.dk

URL: htt p: // ww. i mada. sdu. dk/ ~dkyed

Henrik Densing Petersen
SB-MATHGEOM-EGG, EPFL
Station 8, CH-1015, Lausanne
Switzerland

e-mail: henrik.petersen@epfl.ch
URL: ww. mat h. ku. dk/ ~hdp



