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Abstract
We give a new proof of the characterization of self-bumping points on the space

of Kleinian once-punctured torus groups of Ito [8], based onsome recent work of
Bromberg [4].

1. Introduction

Let F be a finite type hyperbolic surface,AH(F) be the set of discrete faithful
representations of�1(F) into PSL2(C) up to conjugacy, under the condition that each
loop around a cusp ofF is mapped to a parabolic element inPSL2(C). Then AH(F)
admits a natural topology, named the algebraic topology. The interior of AH(F) is pa-
rameterized by the product of two Teichmüller spaces, i.e.,the quasi-Fuchsian space
QF (F) D T (F)�T (F), due to works of Ahlfors and Bers, see [10]. But the bound-
ary of AH(F) is fairly complicated. For example, there are self-bumping points in the
boundary ofAH(F) [2, 12, 5], and further more, there are non-locally-connected points
in the boundary ofAH(F) [4, 9]. We refer the reader to Canary [6] for a survey on the
pathological phenomena of the deformation spaces of hyperbolic structures on general
hyperbolic 3-manifolds.

In this note, we consider the simplest case,F D F1,1, the once-punctured torus. A
point � 2 �AH(F1,1) is self-bumpingif for any neighborhoodU of � in AH(F1,1), there
is a small neighborhoodV of � contained inU , such thatV \ (T (F1,1)�T (F1,1)) is
disconnected.

There is a one-to-one correspondence between the set of simple closed curves in
F1,1 andQ [1. We fix two oriented curves� (corresponding to1) and � (corres-
ponding to 0) inF1,1 which intersect in one point, they give us a marking of�1(F1,1).
Then AH(F1,1) is also the deformation space of marked hyperbolic structures onF1,1�

(�1, 1), with a rank-one cusp corresponding to the cusp ofF1,1.

Take AD
�

1 2
0 1

�

and B
�

D

�

i� i
i 0

�

in PSL2(C), then A and B
�

generate a free

group G
�

D hA, B
�

i in AH(F1,1) for suitable� 2 C, where AB
�

A�1B�1
�

is a parabolic
element which corresponds to the cusp ofF1,1.
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The set

(1.1) {� 2 C j =(�) > 0, hA, B
�

i 2 AH(F1,1)}

is called theMaskit slice, we denote it byM , which is homeomorphic toH2
� 1

(see [13]), but its boundary inC is highly complicated. In particular, the boundary is
fractal-like. By [15], if =(�) � 2, then� 2M .

The set

(1.2) {� 2 C j � D (pC 1)x C py, x, y 2M }

is denoted byM (p) for p 2 N, then from a simple calculation, we haveM (p) �
M (1)�M , see [8].

For any� 2 intM , the manifoldMG
�

D (H3
[�G

�

)=G
�

has two conformal bound-

aries, where�G
�

is the set of discontinuity ofG
�

on �H3
D

O

C. The thrice-punctured
sphere boundary ofMG

�

is quasi-conformally rigid, but the once-punctured torus bound-
ary is quasi-conformally flexible, and every marked conformal structure onF1,1 is real-
izable by a unique� 2 int M . MG

�

is a hyperbolic manifolds inAH(F1,1) which has
one more rank-one cusp than manifolds in intAH(F1,1), the new cusp corresponds to the
parabolic elementA. In other words, we can viewM � �AH(F1,1) if we choose the
marking onF1,1 suitably, i.e., when�(�) D A and�(�) D B

�

.
Our aim here is to reprove the following theorem of Ito [8]:

Theorem 1.1. � 2 M corresponds to a self-bumping point on AH(F1,1) if and
only if � 2M (1).

Given Theorem 1.1, it is easy to give a complete characterization of self-bumping
points on the space ofAH(F1,1) as what have done by Ito [8], see Theorem 2.4 in
next section.

Comparing to the proof in [8], where Ito emphasizes on exoticconvergence se-
quences of [2], our proof here depends on the result in [4], i.e., the local homeo-
morphism between the deformation space and the (nearly) product of a sub-manifold
of the Maskit slice and a sub-space ofOC. See also [14] for the generalization of Ito’s
result to high genus Kleinian surface groups.

2. Proof of the theorem

For a pointx 2M , we denote byS Æ

x,k the solution space of

(2.1) {z 2 C j x � kz2 int M ,x � (kC 1)z 2 int M
�

}

for k 2 Z
�0, and we denote bySx,k the solution space of

(2.2) {z 2 C j x � kz2M , x � (kC 1)z 2M
�

}
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for k 2 Z
�0, whereM

�

D �M as a subset ofC. Note thatSx,i \Sx, j D ; for any
0� i < j . If S Æ

x,k is non-empty, then the closure of it is contained inSx,k. A priori, it
is possible thatS Æ

x,k D ; but Sx,k ¤ ;, for example, ifSx,k is a sequence of discrete
points inC.

Proposition 2.1. A point x2M corresponds to a self-bumping point of AH(F1,1)
if and only if Sx,k is non-empty for some k2 N.

Proof. We first assume thatS Æ

x,k is non-empty for somek 2 N. Since for anyy 2
�M , we have 1� =(y) � 2 (see [15]). Then a simple calculation shows that=(x) � 3
provided S Æ

x,k is non-empty for somek 2 N, thus we havex 2 int M . We note that
S Æ

x,0 is non-empty, which is a translation of intM , so it is homeomorphic to an open
half-space ofC. It is easy to see that for anyy 2 C, we havey 2M if and only if
(yC 2) 2M .

If the solution spaceS Æ

x,k is non-empty for somek 2 N, by [15] and (2.1), for
any z 2 S Æ

x,k, we have

(2.3)
=(x C 1)

kC 1
� =(z) �

=(x � 1)

k
.

So S Æ

x,k is contained in an infinite length horizontal strip inC of bounded width,S Æ

x,k

is invariant under the translationz! zC 2, and which is a 2-dimensional manifold
(may be disconnected) inC. In particular,S Æ

x,0 and S Æ

x,k approach to1 2 OC simul-
taneously, this gives us the 2-dimensional bumping of all solution spaces corresponding
to x.

Now we can use a result of Bromberg (Theorem 4.13 of [4]), which said that there
is a small neighborhoodU of x in M , such that there is a local homeomorphism8
between

(2.4) {(y, w) j y 2 U , w 2 tk2Z
�0Sy,k}

andAH(F1,1) at (x,1), wheretk2Z
�0Sy,k is the one-point compactification oftk2Z

�0Sy,k

by the point1D1y for eachy. The local homeomorphism8 maps each (y,1y) to the
manifold MGy , maps each (y, w) to a manifold8((y, w)) in AH(F1,1), which is obtained
from a preferred Dehn filling of a manifoldMy,w. The holonomy group ofMy,w is gener-

ated by
�

1 2
0 1

�

,
�

iy i
i 0

�

and
�

1 w

0 1

�

. My,w is a manifold with a rank-two cusp, the Dehn

filling can be performed ifjwj=
p

2=w is large enough.8((y, w)) lies in intAH(F1,1) if
w 2 S Æ

y,k, and8((y, w)) lies in �AH(F1,1) if w 2 Sy,k �S Æ

y,k.
The solution spaceS Æ

y,k is continuous ony, so if S Æ

x,k is non-empty for some
k 2 N, then S Æ

y,k is non-empty for anyy which is near tox enough. Then from the
2-dimensional bumping of all solution spaces corresponding to y, it is easy to see the
self-bumping of8((x,1)) D MGx on AH(F1,1).
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If S Æ

x,k is empty for anyk 2 N, but Sx,k is non-empty for somek 2 N, we claim
that for any small neighborhoodU of x in M , there is a 2-manifoldV in U , such
that x lies in the boundary ofV , and for anyy in int V , S Æ

y,k is non-empty. This
is true from the Bers–Sullivan–Thurston density theorem inour case:AH(F1,1) is the
closure of intAH(F1,1), which is from Minsky [13]. Now, ifS Æ

y,k is empty for anyy
in U which is near tox, then8((x, w)) is a manifold in �AH(F1,1) which can not
be approached by a sequence of quasi-Fuchsian manifolds forw 2 Sx,k when <(w)
is large enough (due to the fact thatw 2 Sx,k if and only if (w C 2) 2 Sx,k, we can
assume<(w) is large enough, and thenjwj=

p

2=w is large enough). Since intAH(F1,1)
is 4-dimensional, intM is 2-dimensional, andC is 2-dimensional, our claim holds.
Then, similar to the case thatS Æ

x,k is non-empty, sinceS Æ

y,k is non-empty for each
y 2 int V , we havex corresponds to a self-bumping point of8((x,1)) D MGx on
AH(F1,1).

Conversely, ifSx,k is empty for allk 2 N, then Sy,k is empty for allk 2 N and
y near enough tox, then again by the theorem of Bromberg, we havex does not cor-
respond to a self-bumping point ofAH(F1,1).

Proof of Theorem 1.1. Ifx 2 M (1), then by definitionx D 2u C v for some
u,v 2M . Let zD uCv, then x� z2M and x�2z 2M

�

. In other words,Sx,1¤ ;,
so x corresponds to a self-bumping point by Proposition 2.1.

Conversely, ifx corresponds to a self-bumping point, thenSx,k is non-empty for
somek 2 N, i.e., there is az2 C such thataCbi D x�kz2M andcCdi D x� (kC
1)z 2M

�

. Now let u D aC bi 2M and v D �c� di 2M , then (kC 1)uC kv D x.
So x 2M (k) �M (1).

Proposition 2.2. If � 2 �AH(F1,1) is a self-bumping point, then � is geometric-
ally finite and has exactly one accidental parabolic class.

Proof. Recall that a representation� 2 AH(F1,1) is non-wrappingprovided that
for any sequence of representations�n converging algebraically to� and geometrically
to a Kleinian group0, then there is a compact core forM

�

which embeds inM
0

under
the covering map.

If � is not geometrically finite with exactly one accidental parabolic class, i.e., if�
is geometrically infinite or� is geometrically finite but�M

�

is quasi-conformally rigid,
then there is no accidental parabolic class since� is an once-punctured torus group.
From [1], Corollary B, we have� is a non-wrapping group. Then by Theorem 3 of [7],
non-wrapping implies non-self-bumping on once-puncturedtorus Kleinian groups.

REMARK 2.3. Proposition 2.2 can also be obtained from the proof of Theorem 1.1
and Theorem 1.3 of [3], even in the statement of their theorems the hyperbolic 3-manifold
M should be compact with incompressible boundary or an trivial I -bundle over a closed
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surfaceS, but the proofs can extend word-by-word to the deformation space of once-
punctured torus Kleinian groups. The proofs use some results on hierarchy path of Masur–
Minsky [11], which holds in the once-punctured torus case more simply than the general
case. Actually, this approach is overkilled.

From Proposition 2.2, if� is a self-bumping point, then intM
�

is homeomorphic
to F1,1� (�1, 1) and�M

�

has two components, one of them is homeomorphic toF1,1

and the other one is a thrice-punctured sphere, which corresponds to cuttingF1,1 along
a curve, we denote it by� D1. So M

�

is isometric toMG
�

for some� 2M by the
Ending Lamination Theorem of once-punctured torus groups [13] (re-choosing a mark-
ing on M

�

, and the isometry may be orientation-reversing), then fromTheorem 1.1
and Proposition 2.2, all self-bumping points inAH(F1,1) can be characterized, see also
Section 7 of [8] for a more precise formulation:

Theorem 2.4. � 2 �AH(F1,1) is a self-bumping point in AH(F1,1) if and only if
M

�

is isometric to MG
�

for some� 2M (1).
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