ON A RESULT OF KIYOTA, OKUYAMA AND WADA

JOHN MURRAY

(Received June 26, 2012)

Abstract

M. Kiyota, T. Okuyama and T. Wada recently proved that each 2-block of a symmetric group Σ_n contains a unique irreducible Brauer character of height 0. We present a more conceptual proof of this result.

1. Background on bilinear forms

According to the main result in [6], every 2-block of the symmetric group Σ_n has a unique irreducible Brauer character of height 0. This is not true for an arbitrary 2-block of a finite group. For example, let B be a real non-principal 2-block which is Morita equivalent to the group algebra of A_4 and which has a Klein-four defect group and a dihedral *extended defect group* (in the sense of [1]). Then one can show that B has three real irreducible Brauer characters of height 0. The non-principal 2-block of $((C_2 \times C_2) : C_2) : C_2$ is of this type.

In this note we place the results of [6] in a more general context using the approach to bilinear forms developed by R. Gow and W. Willems [2]. We use results and notation from [7] for representation theory, from [5] for symmetric groups, and from [8] for bilinear forms in characteristic 2.

Let G be a finite group and let (K, R, F) be a 2-modular system for G. So R is a complete discrete valuation ring with field of fractions K of characteristic 0, and residue field R/J = F of characteristic 2. Assume that K contains a primitive |G|-th root of unity, and that F is perfect. Then K and F are splitting fields for each subgroup of G.

The anti-isomorphism $g \mapsto g^{-1}$ on G extends to an involutory F-algebra antiautomorphism $\sigma \colon FG \to FG$ called the *contragredient map*. Let V be a right FGmodule. The linear dual $V^* := \operatorname{Hom}_F(V, F)$ is considered as a right FG-module via $(f.x)(v) := f(vx^{\sigma})$, for $f \in V^*$, $x \in FG$ and all $v \in V$. The Frobenius automorphism $\lambda \mapsto \lambda^2$ of the field F induces an automorphism $(a_{ij}) \mapsto (a_{ij}^2)$ of the group $\operatorname{GL}_F(V)$. Composing the module map $G \to \operatorname{GL}_F(V)$ with this automorphism endows V with another FG-module structure. This module is called the $Frobenius\ twist$ of V, and is denoted $V^{(2)}$.

²⁰¹⁰ Mathematics Subject Classification. 20C20, 20C30.

J. Murray

Let $V^* \otimes V^*$ be the space of bilinear forms on V and let $\Lambda^2(V^*)$ be the subspace of *symplectic bilinear forms* on V; a bilinear form $b \colon V \times V \to F$ is symplectic if and only if b(v, v) = 0, for all $v \in V$. The quotient space $V^* \otimes V^*/\Lambda^2(V^*)$ is called the *symmetric square* of V^* and is denoted $S^2(V^*)$.

A quadratic form on V is a map $Q: V \to F$ such that $Q(\lambda v) = \lambda^2 Q(v)$ and $(u, v) \mapsto Q(u + v) - Q(u) - Q(v)$ is a bilinear form on V, for all $u, v \in V$ and $\lambda \in F$. Now if b is a bilinear form, its diagonal $\delta(b): v \mapsto b(v, v)$ is a quadratic form. The assignment δ is linear with kernel $\Lambda^2(V^*)$. So there is a short exact sequence of vector spaces

(1)
$$0 \to \Lambda^2(V^*) \to V^* \otimes V^* \xrightarrow{\delta} S^2(V^*) \to 0.$$

We may identify $S^2(V^*)$ with the space of quadratic forms on V. If Q is a quadratic form, its *polarization* is the associated bilinear form $\rho(Q)$: $(u, v) \mapsto Q(u + v) - Q(u) - Q(v)$.

The dual $S^2(V)^*$ of the symmetric square $S^2(V)$ of V is the space of *symmetric bilinear forms* on V. As $\operatorname{char}(F) = 2$, each symplectic form is symmetric. If b is a symmetric bilinear form, $\delta(b)$ is additive and hence can be identified with a linear map $V^{(2)} \to F$. Thus there is a short exact sequence:

(2)
$$0 \to \Lambda^2(V^*) \to S^2(V)^* \stackrel{\delta}{\to} V^{(2)*} \to 0.$$

All of these F-spaces are FG-modules, and the maps are FG-module homomorphisms. It is a singular feature of the characteristic 2-theory that $S^2(V^*)$ and $S^2(V)^*$ need not be isomorphic as FG-modules.

Now let b be a bilinear form on V. We say that b is G-invariant if the associated map $v \mapsto b(v, \cdot)$ for $v \in V$, is an FG-module map $V \to V^*$. We say that b is nondegenerate if this map is an F-isomorphism. Taking G-fixed points in (2) we get a long exact sequence of the form

$$0 \to \Lambda^2(V^*)^G \to S^2(V)^{*G} \xrightarrow{\delta} V^{(2)*G} \to H^1(G, \Lambda^2(V^*)) \to \cdots$$

In particular, if $V^{(2)*G}=0$, then each G-invariant symmetric bilinear form on V is symplectic. Now the trivial FG-module equals its Frobenius twist. A simple argument then shows:

Lemma 1. If $V \cong V^*$, and V has no trivial G-submodules, then each G-invariant symmetric bilinear form on V is symplectic.

We will make use of Fong's lemma:

Lemma 2. Let V be an absolutely irreducible non-trivial FG-module. Then $V \cong V^*$ if and only if V affords a nondegenerate G-invariant symplectic bilinear form. In particular $\dim(V)$ is even.

For $h \in G$ define a quadratic form Q_h on FG by setting, for $u = \sum_{g \in G} u_g g \in FG$

(3)
$$Q_h(u) = \begin{cases} \sum_{\{g,hg\} \subseteq G} u_g u_{hg}, & \text{if } h^2 = 1, \\ \sum_{g \in G} u_g u_{hg}, & \text{if } h^2 \neq 1. \end{cases}$$

Then $Q_h = Q_{h^{-1}}$ and $\{Q_h \mid \{h, h^{-1}\} \subseteq G\}$ is a basis for the space of G-invariant quadratic form on FG.

2. Real 2-blocks of defect zero

Assume that G has even order, and that B is a real 2-block of G which has a trivial defect group. Equivalently B is a simple F-algebra which is a σ -invariant $FG \times G$ -direct summand of FG. Moreover, B has a unique irreducible K-character χ and a unique simple module S.

Let e_B be the identity element (or block idempotent) of B. Then

$$e_B = e_1 + e_2 + \cdots + e_d$$

where $d = \dim_F(S)$ and the e_i are pairwise orthogonal primitive idempotents in FG. Each e_iFG is isomorphic to S. In particular S is a projective FG-module.

Let M be an RG-lattice whose character is χ . Then $M/J(R)M\cong S$, as FG-modules. Now M has a quadratic geometry because χ has Frobenius-Schur indicator +1. Thus S has a quadratic geometry.

By [2] there exists an involution t in G such that the restriction of the form Q_t of (3) to e_1FG is non-degenerate. It follows that e_1 can be chosen so that $e_1 = e_1^{t\sigma}$ (where $e_1^{t\sigma} = (te_1t)^{\sigma} = te_1^{\sigma}t$). We note that it can be shown that $\langle t \rangle$ is an extended defect group of B and S is a direct summand of the induced module $F_{C_G(t)} \uparrow^G$.

As $e_B = e_B^{t\sigma}$, we have $e_B = e_1 + e_2^{t\sigma} + \cdots + e_d^{t\sigma}$, and each $e_i^{t\sigma}$ is primitive in FG and $e_1e_i^{t\sigma} = 0 = e_i^{t\sigma}e_1$, for i > 1.

Suppose next that V is a B-module, equipped with a (possibly degenerate) G-invariant symmetric bilinear form \langle , \rangle . The G-invariance is equivalent to $\langle ux, v \rangle = \langle u, vx^{\sigma} \rangle$, for all $u, v \in V$ and $x \in FG$. Now $e_1e_i = 0$, for i > 1. So

$$\langle Ve_1, Ve_i^{\sigma} \rangle = 0$$
, for $i > 1$.

Following [6], we define a bilinear form b on the F-space Ve_1 by

$$b(ue_1, ve_1) := \langle ue_1, ve_1t \rangle$$
, for all $ue_1, ve_1 \in Ve_1$.

Then b is symmetric, as

$$b(ue_1, ve_1) = \langle ue_1t, ve_1 \rangle = \langle ve_1, ue_1t \rangle = b(ve_1, ue_1).$$

174 J. Murray

Now consider the radicals of the forms

$$rad(V) := \{ u \in V \mid \langle u, v \rangle = 0, \ \forall v \in V \},$$

$$rad(Ve_1) := \{ ue_1 \in Ve_1 \mid b(ue_1, ve_1) = 0, \ \forall ve_1 \in Ve_1 \}.$$

We include a proof of Lemma 4.5 of [6] for the benefit of the reader:

Lemma 3. $rad(Ve_1) = rad(V)e_1$ and $Ve_1/rad(Ve_1) \cong (V/rad(V))e_1$.

Proof. Let $u \in rad(V)$ and $ve_1 \in Ve_1$. Then

$$b(ue_1, ve_1) = \langle ue_1, ve_1t \rangle = \langle u, ve_1te_1^{\sigma} \rangle = 0.$$

So $rad(Ve_1) \supseteq rad(V)e_1$. Now let $ue_1 \in rad(Ve_1)$ and $v \in V$. Writing $v = \sum_{i=1}^d ve_i^{\sigma}$, we have

$$\langle ue_1, v \rangle = \sum_{i=1}^d \langle ue_1, ve_i^{\sigma} \rangle = \langle ue_1, ve_1^{\sigma} \rangle = b(ue_1, vte_1) = 0.$$

So $rad(Ve_1) \subseteq rad(V)e_1$. The stated equality follows.

We have an F-vector space map ϕ : $Ve_1 \to (V/\operatorname{rad}(V))e_1$ such that $\phi(ve_1) = ve_1 + \operatorname{rad}(V)$. Now $(v + \operatorname{rad}(V))e_1 = ve_1 + \operatorname{rad}(V)$ as $\operatorname{rad}(V)e_1 \subseteq \operatorname{rad}(V)$. So ϕ is onto. Moreover, $\ker(\phi) = \operatorname{rad}(V)e_1$. The stated isomorphism follows from this.

3. Brauer characters of symmetric groups

Let n be a positive integer. Corresponding to each partition λ of n, there is a Young subgroup Σ_{λ} of Σ_n and a permutation $R\Sigma_n$ -module $M^{\lambda} := \operatorname{Ind}_{\Sigma_{\lambda}}^{\Sigma_n}(R_{\Sigma_{\lambda}})$. This module has a Σ_n -invariant symmetric bilinear form with respect to which the permutation basis is orthonormal. The *Specht lattice* S^{λ} is a uniquely determined R-free $R\Sigma_n$ -submodule of M^{λ} cf. [5, 4.3]. Then $S^{\lambda} \otimes_R K$ is an irreducible $K\Sigma_n$ -module and all irreducible $K\Sigma_n$ -modules arise in this way.

Now S^{λ} is usually not a self-dual $R\Sigma_n$ -module; the dual module $S_{\lambda} := S^{\lambda*}$ is naturally isomorphic to $S^{[1^n]} \otimes_R S_R^{\lambda^t}$ where λ^t is the transpose partition to λ . Note that $S^{[1^n]}$ is the 1-dimensional *sign module*.

Set $\overline{S^{\lambda}} := S^{\lambda}/JS^{\lambda}$. Then $\overline{S^{\lambda}}$ is a Specht module for $F\Sigma_n$. It inherits an Σ_n -invariant symmetric bilinear form $\langle \ , \ \rangle$ from S^{λ} . This form is nonzero if and only if λ is 2-regular (i.e. if λ has different parts).

Suppose that λ is 2-regular. Then $D^{\lambda}:=\overline{S^{\lambda}}/\mathrm{rad}(\overline{S^{\lambda}})$ is a simple $F\Sigma_n$ -module, and all simple $F\Sigma_n$ -modules arise uniquely in this way. The D^{λ} are evidently self-dual. Indeed, $\langle \ , \ \rangle$ induces a nondegenerate form on D^{λ} , which by Fong's lemma is symplectic if D^{λ} is non-trivial. Note that $\overline{S^{[1^n]}}$ is the trivial $F\Sigma_n$ -module, as $\mathrm{char}(F)=2$.

It follows that the dual of a Specht module in characteristic 2 is a Specht module:

$$\overline{S_{\lambda}} \cong \overline{S^{\lambda^t}}.$$

Let *B* be a 2-block of Σ_n . Then *B* is determined by an integer *weight* w such that n-2w is a nonnegative triangular number k(k+1)/2. The partition $\delta := [k, k-1, \ldots, 2, 1]$ is called the 2-*core* of *B*. Each defect group of *B* is Σ_n -conjugate to a Sylow 2-subgroup of Σ_{2w} .

Recall that the 2-core of a partition λ is obtained by successively stripping removable domino shapes from λ . We attach to B all partitions of n which have 2-core δ .

Set m:=n-2w and identify $\Sigma_{2w}\times\Sigma_m$ with a Young subgroup of Σ_n . Now Σ_m has a 2-block B_δ of weight 0 and 2-core δ . This block is real and has a trivial defect group. Moreover, $S^\delta\otimes_R K$ is the unique irreducible $K\Sigma_m$ -module in B_δ and $D^\delta=\overline{S^\delta}$ is the unique simple B_δ -module. It is important to note that D^δ is a projective $F\Sigma_m$ -module and every $F\Sigma_m$ -module in B_δ is semi-simple.

Let e_{δ} be the block idempotent of B_{δ} . Following Section 2, choose an involution $t \in \Sigma_m$ and a primitive idempotent e_1 in $F\Sigma_m$ such that $e_1 = e_1 e_{\delta}$ and $e_1^{t\sigma} = e_1$. Note that $\dim_F(D^{\delta}e_1) = 1$.

Let μ be a 2-regular partition in B. Regard $V := \overline{S^{\mu}}e_{\delta}$ as an $F\Sigma_{2w} \times \Sigma_m$ -module by restriction. Then Ve_1 is an $F\Sigma_{2w}$ -module, as the elements of Σ_{2w} commute with e_1 . Indeed

$$V \cong Ve_1 \otimes_F D^{\delta}$$
 as $F\Sigma_{2w} \times \Sigma_m$ -modules.

Now $\overline{S^{\mu}}$ and hence V affords a $\Sigma_{2w} \times \Sigma_m$ -invariant symmetric bilinear form $\langle \ , \ \rangle$ such that $V/\mathrm{rad}(V) = D^{\mu}e_{\delta}$. It then follows from Lemma 3 that we may use the identity $e_1^{t\sigma} = e_1$ to construct a symmetric bilinear form b on Ve_1 . Moreover, $Ve_1/\mathrm{rad}(Ve_1) \cong D^{\mu}e_1$. So the $F\Sigma_{2w}$ -module $D^{\mu}e_1$ inherits a nondegenerate symmetric bilinear form b. Reviewing the construction of b from $\langle \ , \ \rangle$, we see that b is Σ_{2w} -invariant (as $t \in \Sigma_m$ commutes with all elements of Σ_{2w} , and $\langle \ , \ \rangle$ is Σ_n -invariant).

Lemma 4. Suppose that $\mu \neq [k+2w, k-1, \ldots, 2, 1]$. Then $D^{\mu}e_1$ affords a non-degenerate Σ_{2w} -invariant symplectic bilinear form.

Proof. In view of Lemma 1 and the discussion above, it is enough to show that $D^{\mu}e_1$ has no trivial $F\Sigma_{2w}$ -submodules. Suppose otherwise. Then $F_{\Sigma_{2w}}\otimes_F D^{\delta}$ is a submodule of the restriction of D^{μ} to $\Sigma_{2w}\times\Sigma_m$. But D^{μ} is a submodule of $\overline{S_{\mu}}$. So D^{δ} is a submodule of $\operatorname{Hom}_{F\Sigma_{2w}}(F_{\Sigma_{2w}},\overline{S_{\mu}})$ as $F\Sigma_m$ -modules.

We have F-isomorphisms

$$\operatorname{Hom}_{F_{\Sigma_{2w}}}(F_{\Sigma_{2w}}, \overline{S_{\mu}}) \cong \operatorname{Hom}_{F_{\Sigma_{n}}}(M^{[2w,1^{m}]}, \overline{S_{\mu}}), \text{ by Eckmann-Shapiro}$$

$$\cong \operatorname{Hom}_{F_{\Sigma_{n}}}(\overline{S^{\mu}}, M^{[2w,1^{m}]}), \text{ as } M^{[2w,1^{m}]} \text{ is self-dual.}$$

J. Murray

As μ is 2-regular, it follows from [5, 13.13] that $\operatorname{Hom}_{F\Sigma_n}(\overline{S^{\mu}}, M^{[2w,1^m]})$ has a basis of semistandard homomorphisms. The argument of Theorem 4.5 of [4] now applies, and shows that

$$\operatorname{Hom}_{F\Sigma_{2w}}(F_{\Sigma_{2w}},\overline{S_{\mu}})\cong\overline{S^{\mu^t\setminus[1^{2w}]}}$$
 as $F\Sigma_m$ -modules.

Here $\mu^t \setminus [1^{2w}]$ is a skew-partition of m; it is empty if $\mu_1 < 2w$ (in which case $\operatorname{Hom}_{F\Sigma_{2w}}(F_{\Sigma_{2w}},\overline{S_{\mu}}) = 0$). Otherwise its diagram is the set of nodes in the Young diagram of μ^t not in the top 2w rows of the first column. Now $\overline{S^{\mu^t \setminus [1^{2w}]}}$ has an $F\Sigma_m$ -submodule isomorphic to D^δ if and only if $S_K^{\mu^t \setminus [1^{2w}]}$ has an $K\Sigma_m$ -submodule isomorphic to S_K^δ , as $D^\delta = \overline{S^\delta}$, and using the projectivity of D^δ .

The multiplicity of S_K^{δ} in $S_K^{\mu^t \setminus [1^{2w}]}$ is the number of $\mu \setminus [2w]$ -tableau of type $\delta^t = \delta$ which are strictly increasing along rows and nondecreasing down columns. Suppose for the sake of contradiction that such a tableau T exists.

We claim that $\mu_i \leq k-i+2$ for $i=2,\ldots,k$, and $\mu_i=0$ for i>k+1. This is true for i=2, as the entries in the second row of T are different. Suppose that $i\geq 2$ and $\mu_{i-1}\leq k-i+3$. But $\mu_i<\mu_{i-1}$, as μ is 2-regular. So $\mu_i\leq k-i+2$, proving our claim.

On the other hand, $\mu_i \geq \delta_i = k - i + 1$, for i = 1, ..., k, as μ has 2-core δ . It follows that $\mu \setminus \delta$ consists of the last $\mu_1 - k$ nodes in the first row of μ , and a subset of the nodes (2, k), (3, k - 1), ..., (k, 2), (k + 1, 1). On the other hand, μ has 2-core δ . So $\mu \setminus \delta$ is a union of domino shapes. It follows that T does not exist if $\mu \neq [k + 2w, k - 1, ..., 2, 1]$. This contradiction completes the proof of the lemma. \square

Suppose that G is a finite group and that B is a 2-block of G with defect group $P \le G$. Then it is known that $[G:P]_2$ divides the degree of every irreducible Brauer character in B. Recall that a Brauer character in B has height zero if the 2-part of its degree is $[G:P]_2$. We now prove the main result of [6].

Theorem 5. Let B be a 2-block of Σ_n . Then B contains a unique irreducible Brauer character of height 0.

Proof. Suppose as above that B has weight w and 2-core δ , and let θ be a height zero irreducible Brauer character in B. Then θ is the Brauer character of D^{μ} for some 2-regular partition μ of n belonging to B.

Let P be a vertex of D^{μ} . Then P is a defect group of B. We may assume that P is a Sylow 2-subgroup of Σ_{2w} . It is easy to show that $N_{\Sigma_n}(P) = P \times \Sigma_m$, a subgroup of $\Sigma_{2w} \times \Sigma_m$.

Let B_0 denote the principal 2-block of Σ_{2w} . Then $B_0 \otimes B_\delta$ is the Brauer correspondent of B with respect to $(\Sigma_n, P, \Sigma_{2w} \times \Sigma_m)$. So the Green correspondent of D^μ with respect to $(\Sigma_n, P, \Sigma_{2w} \times \Sigma_m)$ has the form $U^\mu \otimes D^\delta$, where U^μ is an indecomposable

 Σ_{2w} -direct summand of $D^{\mu}e_1$ which belongs to B_0 . Moreover, U^{μ} is the unique component of $D^{\mu}e_1$ that has vertex P.

If $\mu = [k+2w, k-1, \ldots, 2, 1]$ it can be shown that U^{μ} is the trivial $F\Sigma_{2w}$ -module. Suppose that $\mu \neq [k+2w, k-1, \ldots, 2, 1]$. Lemma 4 implies that $D^{\mu}e_1$ has a symplectic geometry. It then follows from the first proposition in [3] that U^{μ} has a symplectic geometry. In particular $\dim(U^{\mu})$ is even.

Now the 2-part of $\dim(U^{\mu} \otimes D^{\delta})$ divides $2|\Sigma_m|_2 = 2[\Sigma_n : P]_2$. A standard result on the Green correspondence implies that the 2-part of $\dim(D^{\mu})$ divides $2[\Sigma_n : P]_2$. This contradicts the assumption that θ has height zero, and completes the proof.

ACKNOWLEDGEMENT. B. Külshammer drew my attention to the preprint [6] during a visit to Jena in April 2011. S. Kleshchev suggested I look at the restrictions of dual Specht modules, and D. Hemmer clarified the 'fixed-point functors' used to prove Lemma 4. G. Navarro gave me the example of the group of order 72 which has a 2-block with 3 real irreducible Brauer characters of height 0.

References

- [1] R. Gow: Real 2-blocks of characters of finite groups, Osaka J. Math. 25 (1988), 135-147.
- [2] R. Gow and W. Willems: Quadratic geometries, projective modules, and idempotents, J. Algebra 160 (1993), 257–272.
- [3] R. Gow and W. Willems: A note on Green correspondence and forms, Comm. Algebra 23 (1995), 1239–1248.
- [4] D.J. Hemmer: Fixed-point functors for symmetric groups and Schur algebras, J. Algebra 280 (2004), 295–312.
- [5] G.D. James: The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics 682, Springer, Berlin, 1978.
- [6] M. Kiyota, T. Okuyama and T. Wada: The heights of irreducible Brauer characters in 2-blocks of the symmetric groups, J. Algebra 368 (2012), 329–344.
- [7] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989.
- [8] W. Willems: Duality and forms in representation theory; in Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progr. Math. 95, Birkhäuser, Basel, 1991, 509–520.

Department of Mathematics & Statistics National University of Ireland Maynooth Co. Kildare Ireland

e-mail: John.Murray@maths.nuim.ie