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Abstract
We give a simple characterization of the highest weight vertices in the crystal

graph of the levell Fock spaces. This characterization is based on the notion of
totally periodic symbols viewed as affine analogues of reverse lattice words classic-
ally used in the decomposition of tensor products of fundamental sln-modules. This
yields a combinatorial decomposition of the Fock spaces in their irreducible com-
ponents and the branching law for the restriction of the irreducible highest weight

sl
1

-modules tobsle.

1. Introduction

To any l -tuple s2 Zl is associated a Fock spaceFs which is aC(q)-vector space
with basis the set ofl -partitions (i.e. the set ofl -tuples of partitions). This levell Fock
space was introduced in [7] in order to construct the irreducible highest weight repre-

sentations of the quantum groupsU 0

q(bsle) andUq(sl
1

). It provides a natural frame for

the simultaneous study of the representation theories ofU 0

q(bsle) andUq(sl
1

). It more-
over permits to categorify the representation theory of theAriki–Koike algebras (some
generalizations of the Hecke algebras of the symmetric groups) in the nonsemisimple
case (see [1]).

The Fock spaceFs has two structures ofU 0

q(bsle) andUq(sl
1

)-modules. For these
two structures, the emptyl -partition; is a highest weight vector with dominant weights

3s,e and3s,1. We denote byVe(s) and V
1

(s) the corresponding highest weightU 0

q(bsle)

andUq(sl
1

)-modules. In fact, any highest weight irreducibleU 0

q(bsle) or Uq(sl
1

)-module
can be realized in this way as the irreducible component of a Fock space with highest
weight vector;. It is also known [2, 7] that the two modules structures are compat-

ible. This means that the action of any Chevalley generator for U 0

q(bsle) can be obtained
from the actions of the Chevalley generators forUq(sl

1

). In particular,V
1

(s) admits the

structure of aU 0

q(bsle)-module.
The first purpose of this paper is to give a simple combinatorial description of the

decomposition ofFs in its irreducibleU 0

q(bsle) andUq(sl
1

)-components. For theUq(sl
1

)-
module structure, this problem is very similar to the decomposition of a tensor product
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of fundamentalUq(sln)-modules into irreducible ones. It is well-known that thisdecom-
position can be obtained by using the notion of reverse lattice (or Yamanouchi) words.
Here our description of the decomposition into irreducibleis based on the notion of to-
tally periodic symbols which can be regarded as affine analogues of reverse lattice words.

The Kashiwara crystal associated to the Fock spaceFs admits as set of vertices,
the setGs of all l -partitions. According to Kashiwara crystal basis theory,it suffices to
characterize the highest weight vertices inGs to obtain the decomposition ofFs into
its irreducible components. We prove in fact that the totally periodic symbols label the
highest weight vertices ofGs. It is also worth mentioning that, according to recent pa-
pers by Gordon–Losev and Shan–Vasserot [5, 12], there should exist a natural labelling
of the finite dimensional irreducible representations of the rational Cherednik algebras
by highest weight vertices ofGs, thus by a subset of the set of totally periodic sym-
bols (see also [11, Remark 6.4]). Nevertheless the combinatorial characterization of this
subset seems not immediate.

The setGs admits twoU 0

q(bsle) andUq(sl
1

)-crystal structures. In [6] we established

that theU 0

q(bsle)-structure of graph onGs is in fact a subgraph of theUq(sl
1

)-structure.

This implies that eachUq(sl
1

)-connected component decomposes intoU 0

q(bsle)-connected

components. Eachl -partition then admits aU 0

q(bsle) and aUq(sl
1

)-weight. In particular,
We can consider the decomposition of theUq(sl

1

)-connected componentGs,1(;) with

highest weight vertex; in its U 0

q(bsle)-connected components, that is the decomposition

of the crystal graph ofV
1

(s) in U 0

q(bsle)-crystals. We prove that this decomposition gives

the branching law for the restriction of theUq(sl
1

)-module V
1

(s) to U 0

q(bsle). Observe
this does not follow immediately from crystal basis theory since the root system of affine
type A(1)

e�1 is not parabolic in the root system of typeA
1

. We also establish that the num-

ber of highest weightU 0

q(bsle)-vertices inGs,1(;) with fixed Uq(sl
1

)-weight is counted
by some particular (skew semistandard) tableaux we call totally periodic. These tableaux
can be regarded as affine analogues of the usual semistandardskew tableaux relevant for
computing the branching coefficients associated to the restriction of the irreduciblegln-
modules toglm� gln�m with m< n some positive integers.

It also follows that the number ofU 0

q(bsle)-highest weight vertices inGs with fixed
Uq(sl

1

)-weight is finite and can be expressed in terms of the Kostka numbers and the
number of totally periodic tableaux of fixed shape and weight.

The paper is organized as follows. In Section 2, we introducethe notion of sym-
bol of an l -partition. Section 3 is devoted to some background onFs, its two mod-
ule structures and the corresponding crystal bases theory.In Section 4, we show that

the two crystal bases onFs for U 0

q(bsle) and for Uq(sl
1

) are compatible. This im-

plies that the decomposition ofGs,e(;) into its U 0

q(bsle)-connected components yields
the desired branching law. Section 5 characterizes the highest weight vertices inGs

by totally periodic symbols. Finally in Section 6, we first express the multiplicities of
the irreducibleUq(sl

1

)-modules appearing in the decomposition ofFs in terms of the
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Kostka numbers. Next, we establish that the branching coefficients for the restriction

of V
1

(s) to U 0

q(bsle) can be graded by theUq(sl
1

)-weights and then counted by totally
periodic semistandard tableaux. This gives the decomposition of Fs in its irreducible

U 0

q(bsle)-components.

2. Preliminaries on multipartitions and their symbols

2.1. Nodes in multipartitions. Let n 2 N, l 2 Z andsD (s0,s1,: : : ,sl�1) 2 Zl . A
partition � is a sequence (�1,: : : ,�r ) of decreasing non negative integers. Anl-partition
(or multipartition) � is an l -tuple of partitions (�0, : : : , �l�1). We write � `l n when�
is an l -partition of total rankn. The emptyl -partition (which is thel -tuple of empty
partitions) is denoted by;.

If � is not the empty multipartition, theheight of � is by definition the minimal
non negative integeri such that there existsc 2 {0, : : : , l � 1} satisfying�c

i ¤ 0. By
convention, the height of; is 0.

For all � `l n, we consider itsYoung diagram:

[�] D {(a, b, c) a � 1, c 2 {0, : : : , l � 1}, 1� b � �c
a}.

The nodesof � are usually defined as the elements of [�]. However, by slightly abuse
the notation, they will be regarded in the sequel as the elements of the (infinite) set:

{(a, b, c) a � 1, c 2 {0, : : : , l � 1}, 0� b � �c
a}.

We define thecontentof a node
 D (a, b, c) 2 [�] as follows:

cont(
 ) D b� aC sc,

and theresidue res(
 ) is by definition the content of
 taken moduloe. An i -node
is then a node with residuei 2 Z=eZ. The nodes ofthe right rim of � are the nodes
(a, �c

a, c) with �c
a ¤ 0. We will say that
 is an i -node of� when res(
 ) � i (mod e).

Finally, We say that
 is removablewhen
 D (a,b,c) 2 � and�n{
 } is an l -partition.
Similarly 
 is addablewhen 
 D (a, b, c) � � and � [ {
 } is an l -partition.

2.2. Symbol of a multipartition. Let � `l n. Then one can associate to� its
shifted s-symboldenoted byB(�, s). Our notation slightly differs from the one used
in [4, §5.5.5] because the symbols we use here are semi-infinite with possible negative
values. Thus, the symbolB(�, s) is the l -tuple

(B(�, s)0, B(�, s)1, : : : , B(�, s)l�1)

where for eachc 2 {0, 1, : : : , l � 1}, and i D 1, 2, : : : , we have

B(�, s)c
i D �

c
i � i C scC 1.
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This symbol is usually represented as anl -row tableau whosec-th row (counted from
bottom) isB(�, s)c.

EXAMPLE 2.1. With � D (3, 2.2.2, 2.1) andsD (1, 0, 2), we obtain

B(�, s) D

0

�

� � � �3 �2 �1 0 2 4
� � � �3 0 1 2
� � � �3 �2 �1 0 4

1

A.

We make the following observations.
• It is easy to recover the multipartition� and the multicharges from the datum of
B(�, s).
• For all c 2 {0, : : : , l � 1}, let jc be the maximal integer such thatB(�, s)c

jc
¤

� jc C sc C 1, if it exists, we setjc WD 0 otherwise. Then the entriesB(�, s)c
j of the

symbol such that 0� c � l � 1 and j � jc are bijectively associated with the nodes
( j , �c

j , c) of the right rim of �.

2.3. Period in a symbol. We now introduce the notion of period in a symbol
which is crucial for the sequel.

DEFINITION 2.2. Consider a pair (�,s) and its symbolB(�,s). We say that (�,s)
is e-periodic if there exists a sequence (i1, c1), (i2, c2), : : : , (ie, ce) in N �{0, 1,: : : , l �1}

and k 2 Z satisfying

B(�, s)c1
i1
D k, B(�, s)c2

i2
D k � 1, : : : , B(�, s)ce

ie
D k � eC 1

and such that
1. c1 � c2 � � � � � ce,
2. for all 0� c � l � 1 and i 2 N, we haveB(�, s)c

i � k (i.e. k is the largest entry
of B(�, s)),
3. given t 2 {1, : : : , e} and (j , d) such thatB(�, s)d

j D k � t C 1, we havect � d.
(i.e. there is no entryk� t C 1 in B(�, s) strictly below than the one corresponding to
(i t , ct )).

The e-periodof B(�, s) is the sequence (i1, �c1
i1

, c1), (i2, �c2
i2

, c2), : : : , (ie, �
ce
ie

, ce) and
the form of the e-period is the associated sequence (k, k� 1, : : : , k� eC 1) which can
be read in the symbol.

2.4. Reading of a symbol. An e-period can be easily read on the symbolB(�,s)
associated with (�, s) as follows. First, consider the truncated symbolBt (�, s). It is
obtained by keeping only inB(�, s) the entries of the symbol of the formB(�, s)c

j for
j D 1, : : : , hcC e (wherehc denotes the height of�c) andcD 0, 1, : : : , l � 1.
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Denote byw the word with letters inZ obtained by reading the entries in the rows
of Bt (�,s) from right to left, next from top to bottom. We say thatw is the reading of
Bt (�, s). Each letter ofw encodes a node in (�, s) (possibly associated with a part 0).

When it exists, thee-period ofB(�, s) is the sequence of nodes corresponding to
the subwordu of w of the formuD k(k�1)� � �(k�eC1) wherek is the largest integer
appearing inw (and thus also in the symbol) and each letterk � a, a D 0, : : : , e� 1
in t is the rightmost letterk � a in w.

EXAMPLE 2.3. ForsD (0,�1, 1) and� D (3, 2.2.2, 2.1), the symbol

B(�, s) D

0

�

� � � �4 �3 �2 �1 1 3
� � � �4 �1 0 1
� � � �4 �3 �2 �1 3

1

A

admits no 4-period. So (�, s) is not 4-periodic.
For s0 D (�1,�1, 1) and� D (3.3, 4.3, 4.4.2), we have:

B(�, s0) D

0

�

� � � �5 �4 �3 �2 1 4 5
� � � �5 �4 �3 1 3
� � � �5 �4 �3 1 2

1

A.

Thus� admits a 5-period with form (5, 4, 3, 2, 1). The word associated w described in
§2.4 is:

w D 541N2N3N4N5N6 31N3N4N5N6N7 21N3N4N5N6N7N8

where we write Nx for �x for any x 2 Z
>0. So (�, s0) is 5-periodic.

REMARK 2.4. A pair (;, s) is alwayse-periodic with form of thee-period M,
M � 1, : : : , M � eC 1 whereM D max(s).

2.5. Removing periods inB(;, s). For l 2 N and e2 N, we denote

Tl ,e D {t D (t0, : : : , tl�1) 2 Zl
j t0 � � � � � tl�1 and tl�1 � t0 � e� 1}.

We now describe an elementary procedure which permits to associate to anyl -tuple
s 2 Zl an elementt 2 Tl ,e such thatB(;, t) is obtained fromB(;, s) by deleting
e-periods.

If sD s(0)
� Tl ,e, we sets(1)

D s0 whereB(;,s0) is obtained fromB(;,s) by deleting
its e-period. More generally we defines(pC1) from s(p)

� Tl ,e such thats(pC1)
D (s(p))0.

Lemma 2.5. For any s2 Zl , there exists p� 0 such thats(p)
2 Tl ,e.
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Proof. First observe that for anyi D 0, : : : , l � 2 such thatsiC1 � si < 0, we
haves0iC1� s0i � siC1� si with equality if and only ifs0i D si and s0iC1 D siC1. For any
s2 Zl , set

f (s) D
l�2
X

iD0

min(0, siC1 � si ).

For any i D 0, : : : , l �2 with siC1�si < 0, there is an integerp such thats(p)
i < si (the

i -th coordinates of thel -tupless(p), p> 0 cannot be left all untouched by the iteration
of our procedure). Therefore, for such ap, we have f (s(p)) > f (s). Since f (s) � 0 for
any s2 Zl , we deduce there exists an integerp0 such that f (s(p0)) D 0 and thus such

that s(p0)
iC1�s(p0)

i � 0 for any i D 0,: : : , l �2. We can thus assume that the coordinates of
s2 Zl satisfysiC1�si � 0 for any i D 0,: : : , l �2. One then easily verifies that for any
p� 0, the coordinates ofs(p) also weakly increase. Observe that for anyi D 0,: : : , l �2
such thatsiC1�si � e, we haves0iC1�s0i � siC1�si with equality if and only ifs0i D si

and s0iC1 D siC1. Set

g(s) D
l�2
X

iD0

min(0, e� 1� (siC1 � si )).

Assumes� Tl ,e. Since a pair (si , siC1) with siC1� si � e cannot remain untouched by
the iteration of our procedure, there exists an integerp such thatg(s(p)) > g(s). So
we have an integerp0 such thatg(s(p0)) D 0 and since the coordinates ofs(p0) weakly
increase, one hass(p0)

2 Tl ,e as desired.

EXAMPLE 2.6. ConsidersD (5, 3, 5, 0, 1) foreD 3. We obtain

s(0)
D (5, 3, 5, 0, 1), s(1)

D (2, 3, 5, 0, 1), s(2)
D (2, 2, 3, 0, 1),

s(3)
D (0, 2, 2, 0, 1), s(4)

D (�1, 0, 2, 0, 1) and s(5)
D (�1,�1, 0, 0, 1),

and we haves(5)
2 T5,3.

3. Module structures on the Fock space

We now introduce quantum group modules structures on the Fock space of levell
and describe the associated crystal graphs.

3.1. Roots and weights. Let e2 Z
>1[ {1}. Let U 0

q(bsle) (resp.Uq(sl
1

)) be the

quantum group of affine typeA(1)
e�1 (resp. of typeA

1

). This is an associativeQ(q)-
algebra with generatorsei , fi , ti , t�1

i with i D 0, : : : , e� 1 (resp.i 2 Z). We refer to
[4, Chapter 6] for the complete description of the relationsbetween these generators
since we do not use them in the sequel. To avoid repetition, wewill attach a labele
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to the notions we define. Whene is finite, they are associated withU 0

q(bsle) whereas
the caseeD1 corresponds toUq(sl

1

).
We write3i ,e, i D 0, : : : , e� 1 for the fundamental weights. The simple roots are

then given by:

�i ,e D �3i�1,eC 23i ,e�3iC1,e

for i D 0, : : : , e� 1. As usual the indices are taken moduloe. For s 2 Zl , we also
write 3s,e WD

P

0�c�l�1 3sc,e.

There is an action of the extended affine symmetric groupOSl on Zl (see [6, §5.1]).
This group is generated by the elements�1, : : : , �l�1 and y0, : : : , yl�1 together with
the relations

�c�cC1�c D �cC1�c�cC1, �c�d D �d�c for jc� dj > 1, �

2
c D 1,

ycyd D yd yc, �cyd D yd�c for d ¤ c, cC 1, �cyc�c D ycC1,

for relevant indices. Then we obtain a faithful action ofOSl on Zl by setting for any
sD (s0, : : : , sl�1) 2 Zl

�c(s) D (s0, : : : , sc, sc�1, : : : , sl�1) and yc(s) D (s0, : : : , sc�1, scC e, : : : , sl�1).

Given s, s0 2 Zl , we have3s,e D 3s0,e if and only if s and s0 are in the same orbit

modulo the action ofOSl . In this case, we denotes�e s0. Set

Vl ,e D {v D (v0, : : : , vl�1) 2 Zl
j 0� v0 � � � � � vl�1 � e� 1}.(1)

Given anys2 Zl there exists a uniquev in Vl such thats�e v.

3.2. Module structures. We fix s 2 Zl . The Fock spaceFs is theQ(q)-vector
space defined as follows:

FsD
M

n2Z
�0

M

�`l n

Q(q)�.

According to [13, §2.1], there is an action ofU 0

q(bsle) on the Fock space (see [4, §6.2]).

This action depends one and we will denote byFs,e the U 0

q(bsle)-module so obtained.
In Fs,e, each partition is a weight vector (with respect to a multicharges) with weight
given by (see [13, §4.2])

wt(�, s)e D 3s,e�
X

0�i�e�1

Ni (�, s)�i ,e,

where Ni (�, s) denotes the number ofi -nodes in� (where the residues are computed
with respect tos). For anye2 Z

>1[{1}, the empty multipartition is always a highest
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weight vector of weight3s,e. We write Ve(s) for the associatedU 0

q(bsle)-module. We
clearly haveVe(s) ' Ve(s0) if and only if s�e s0.

In general, the modules structures onFs are not compatible when we consider dis-
tinct values ofe. Nevertheless, we have the following proposition stated in[2, §2.1].

Proposition 3.1. Let e2 N
>0.

1. Any Uq(sl
1

)-irreducible component V
1

of Fs,1 is stable under the action of the

U 0

q(bsle)-Chevalley generators ei , fi , ti , i 2 Z=eZ. Therefore V
1

has also the structure

of a U 0

q(bsle)-module.

2. In particular, theUq(sl
1

)-module V
1

(s) is endowed with the structure of aU 0

q(bsle)-

module. Moreover Ve(s) then coincides with theU 0

q(bsle)-irreducible component of V
1

(s)
with highest weight vector the empty l-partition;.

REMARK 3.2. The algebrassl
1

and bsle can be realized as algebras of infinite

matrices (see [8]). Thenbsle is regarded as a subalgebra ofsl
1

. In particular, the

irreducible sl
1

-module of highest weight3s,1 admits the structure of absle-module

by restriction. The highestbsle-weights involved in its decomposition into irreducible
then coincide with those appearing in the decomposition ofV

1

(s) into its irreducible

U 0

q(bsle)-components.

3.3. Crystal bases and crystal graphs. We now recall some results on the crys-
tal bases ofFs,e established in [7] and [13]. LetA(q) be the ring of rational functions
without pole atq D 0. Set

L WD
M

n�0

M

�`l n

A(q)�

and

G WD {� (mod q) L) j � is an l -partition}.

Theorem 3.3(Jimbo–Misra–Miwa–Okado, Uglov). The pair (L, G) is a crystal
basis forFs,e andFs,1.

Observe that the crystal basis of the Fock space is the same for Fs,e and Fs,1.
Nevertheless, the crystal structuresGe,s and G

1,s on G do not coincide forFs,e and
Fs,1. To describe these crystal structures we begin by defining a total order on the
removable or addablei -nodes. Let
 , 
 0 be two removable or addablei -nodes of�.
We set


 �s 

0

def
�

�

either b� aC sc < b0 � a0 C sc0 ,
or b� aC sc D b0 � a0 C sc0 and c > c0.
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Let � be anl -partition. We can consider its set of addable and removablei -nodes.
Let wi (�) be the word obtained first by writing the addable and removable i -nodes of�
in increasing order with respect to�s next by encoding each addablei -node by the let-
ter A and each removablei -node by the letterR. Write Qwi (�)D ApRq for the word de-
rived fromwi by deleting as many subwords of typeR A as possible. The wordwi (�)
is called thei -word of � and Qwi (�) the reducedi -word of �. The addablei -nodes
in Qwi (�) are called the normal addablei -nodes. The removablei -nodes in Qwi (�) are
called the normal removablei -nodes. If p > 0, let 
 be the rightmost addablei -node
in Qwi . The node
 is called the good addablei -node. If q > 0, the leftmost removable
i -node in Qwi is called the good removablei -node. We set

(2) 'i (�) D p and "i (�) D q.

By Kashiwara’s crystal basis theory [9, §4.2] we have another useful expression for
wt(�, s)e

(3) wt(�, s)e D
X

i2Z=eZ

('i (�) � "i (�))3i ,e.

We denote byGe,s the crystal of the Fock space computed using the Kashiwara
operatorsQei and Qf i . By [7], this is the graph with
• vertices: thel -partitions� `l n with n 2 Z

�0

• arrows:�
i
�! � that is Qei� D � if and only if � is obtained by adding to� a good

addablei -node, or equivalently,� is obtained from� by removing a good removable
i -node.

Note that the order induced by�s does not change if we translate each component

of the multicharge by a common multiple ofe (nor does the associatedU 0

q(bsle)-weight).
Thus, if there existsk 2 Z such thatsD (s00,s01,:::,s0l�1)D (s0Ck.e,s1Ck.e,:::,sl�1Ck.e)
then the crystalGe,s andGe,s0 are identical.

The crystalGe,s has several connected components. They are parametrized byits
highest weight vertices which are thel -partitions� with no good removable node (that
is such that"i (�) D 0). Given such anl -partition �, we denote byGe,s(�) its associ-
ated connected component. One easily verifies that wt(;, s)eD 3s (mode). So the crystal
Ge,s(;) is isomorphic to the abstract crystalGe(3s (mode)). In general, for any highest
weight vertex�, Ge,s(�) is isomorphic to the abstract crystalGe(wt(�, s)e). By setting
3v (mode) D wt(�, s)e, we thus obtain a crystal isomorphismf e,�

s,v W Ge,s(�)! Ge,v(;).

3.4. Crystal graphs and symbols. Consideri 2 Z=eZ. The reducedi -word Qwi

of a multipartition � may be easily computed from its symbol. Letjlow 2 Z be the
greatest integer such thatjlow � i (mod e) and such that each row ofB(�, s) contains
all the integers lowest or equal tojlow. Such an integer exists since the rows of our
symbols are infinite. For anyj 2 Z such that j � i (mod e) and j � jlow let u j be
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the word obtained by reading in the rows ofB(�, s) the entries j or j C 1 from top
to bottom and right to left. Write

ui D

1

Y

tD0

u j0Cte

for the concatenation of the wordsu j . Here all but a finite number of wordsu j0Cte are
empty. We then encode inui each letterj by A and each letterj C1 by R and delete
recursively the factorsR A. Write Qui for the resulting word.

Lemma 3.4. We have Qwi D Qui .

Proof. For any j � i (mod e), write w j for the word obtained by reading the
addable or removable nodes with contentj (with respect tos) successively in the par-
titions �c, cD l�1,:::,0. Observe there is no ambiguity since each partition�

c contains
at most one node with contentj which is addable or removable. By definition of the
order�s, we have

(4) wi D

1

Y

tD0

w j0Cte

where all but a finite set of the wordswi are empty. Now we come back to the word
u j . The contribution to thec-th row of B(�, s)c of u j is one of the factors (j C 1) j ,
j C 1, j or ;. The factors (j C 1) j will be encodedR A so they will disappear during
the cancellation process and we can neglect their contribution. Write u0j for the word
obtained by deleting inu j the factors (j C 1) j corresponding to entries in the same
row. There is a bijection between the letters ofu0j and w j which associates to each
letter j C 1 (resp. j ) in u0j appearing in the rowc a node R (resp. A) of w j . This
easily implies thatQui D Qwi .

4. Compatibility of crystal bases and weight lattices

4.1. Crystal basis of theUq(bsle)-module V
1

(s). Considere 2 Z
>1 [ {C1}.

The general theory of crystal bases (see [9]) permits to define the Kashiwara operators
Qei , Qf i , i 2 Z=eZ on the whole Fock spaceFs,e by decomposing, for anyi 2 Z=eZ, Fs,e

in irreducibleU 0

q(bsle)i components. These operators do not depend on the decompos-
ition considered (see [9, §4.2]). This implies that the Kashiwara operators associated

with any U 0

q(bsle)-submoduleMe of Fs,e are obtained by restriction of the Kashiwara
operators defined onFs,e.

Set s2 Zl . By Proposition 3.1, we know thatV
1

(s) has the structure of aU 0

q(bsle)-
module. SetL

1

(s) D L \ V
1

(s) and B
1

(s) D L
1

(s)=qL
1

(s). It immediately follows
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from crystal basis theory that the pair (L
1

(s), B
1

(s)) is a crystal basis forV
1

(s) re-
garded as aUq(sl

1

)-module. In fact this is also true whenV
1

(s) is regarded as an

Uq(bsle)-module.

Proposition 4.1. The pair (L
1

(s),B
1

(s)) is a Uq(bsle)-crystal basis of theUq(bsle)-
module V

1

(s).

Proof. Observe first that we have the weight spaces decompositions

L
1

(s) D
M

�2Pe

L
�

\ V
1

(s) and B
1

(s) D
M

�2Pe

(L
�

=qL
�

) \ B
1

(s)

where Pe is the weight space of the affine root system of typeA(1)
e�1. By Theorem 3.3,

for any i 2 Z=eZ, Qei and Qf i stabilize L. They also stabilize theUq(bsle)-submodule
V
1

(s) by the previous discussion. Therefore, they stabilizeL
1

(s) and B
1

(s). More-
over, we have for anyb1, b2 2 B

1

(s), Qf i (b1) D b2 if and only if Qei (b2) D b1 since this
is true inB. This shows that the pair (L

1

(s), B
1

(s)) satisfies the general definition of

a crystal basis for theUq(bsle)-module V
1

(s).

Since (L
1

(s), B
1

(s)) is a crystal basis forV
1

(s) regarded as aUq(sl
1

)-module,
B
1

(s) has the structure of aUq(sl
1

)-crystal that we have denoted byG
1,s(;). By the

previous proposition,B
1

(s) (which can be regarded as the set of vertices ofG
1,s(;))

has also the structure of aU 0

q(bsle)-crystal that we denote byGe
1,s(;). This crystal is

also a subcrystal ofGe,s since the actions of the Kashiwara operators onGe
1,s(;) are

obtained by restriction fromGe,s. Let us now recall the following result obtained in [6,
Theorem 4.2.2] which shows thatGe,s is in fact a subgraph ofG

1,s

Proposition 4.2. Consider� and � two l-partitions such that there is an arrow

�

i
�! � in Ge,s. Let j 2 Z be the content of the node� n �. Then, we have the arrow

�

j
�! � in G

1,s.

By combining the two previous propositions, we thus obtain the following corollary.

Corollary 4.3. The Uq(sle)-crystal Ge
1,s(;) is a subgraph of theUq(sl

1

)-crystal

G
1,s(;). It decomposes intoUq(bsle)-connected components. This decomposition gives

the decomposition of V
1

(s) into its irreducibleUq(bsle)-components.
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4.2. Weights lattices. Let Pe and P
1

be the weight lattices ofU 0

q(bsle) and
Uq(sl

1

). We have a natural projection defined by

(5) � W

�

P
1

! Pe,
3 j ,1 7! 3 j mode,e.

Considers2 Zl and � an l -partition.

Lemma 4.4. We havewt(�, s)e D �(wt(�, s)
1

).

Proof. By (3), for anye 2 Z
>1, the coordinate of wt(�, s)e on 3i ,e is also equal

to the number of lettersA in ui minus the number of lettersR. This is equal to the
sum over the integerj such that j � i (mod e) of the number of lettersA in u j minus
the number of lettersR. The coordinate of wt(�, s)e on 3i ,e is thus equal to the sum
of the coordinates of wt(�, s)

1

on the3 j ,1 with j � i (mod e) as desired.

One easily verifies that the kernel of� is generated by the!k WD3kC1,1�3k�eC1,1,
k 2 Z. The weight!k have level 0. In fact level 0 weights forUq(sl

1

) are theZ-linear
combinations of the elementary weights" j D 3 jC1,1 � 3 j ,1, j 2 Z. The contribution
of an entry j 2 Z of B(�, s) to the weight wt(�, s)

1

is exactly" j . We also have!k D

"k C � � � C "k�eC1.

5. A combinatorial characterization of the highest weight vertices

Our aim is now to give a combinatorial description of the highest weights vertices
of Ge,s, the crystal of the Fock spaceFe,s. Such a vertex is anl -partition without good
removablei -node for anyi 2 Z=eZ.

5.1. Removing a period in a symbol. Let � be an l -partition. We define the
l -partition �� and a multicharges� as follows:
• If � is not e-periodic then�� WD � and s� WD s.
• Otherwise, delete the elements of thee-period inB(�,s). This gives a new symbol
B(�, s0) which is the symbol of anl -partition associated with another multicharges0.
We then set�� WD � and s� WD s0.

Proposition 5.1. Let � be an e-periodic multipartition. For any i2 Z=eZ, write
Qui and Qu�i for the reduced words obtained from the symbols� and �� as in §3.4.
1. Qui D Qu�i .
2. 'i (��) D 'i (�) and "i (��) D "i (�).

Proof. 1: Write (ja, �ca
ja

, ca), a D 1, : : : , e for the e-period inB(�, s). Recall we
have by conventionc1 � � � � � ce. Consideri 2 Z=eZ. Let ui be the word constructed
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in §3.4. By definition, there exists a uniquea 2 {1, : : : , e} such thatB(�, s)ca
ja
� i

(mod e). Assume firsta > 1. Write xa�1 and xa for the letters ofui associated to
( ja,�ca�1

ja�1
,ca�1) and (ja,�ca

ja
,ca). We havexa�1D xaC1. Setui D u0i xa�1vxau00i whereu0i ,

v, u00i are words with letters inZ. By definition of thee-period,v is empty or contains
only letters equal toxa. Indeed,xa�1 should be the rightmost occurrence of the integer
xa�1 in ui . Therefore the contribution ofxa�1 and xa can be neglected in the compu-
tation of Qui since they are encoded by symbolsR and A, respectively. Now assume
a D 1. Write y1 and ye the letters ofui associated with (j1, �c1

j1
, c1) and (je, �

ce
je
, ce).

We haveye D y1 � eC 1. By definition of ui , we can writeui D u0i yevy1u00i where
u0i , v, u00i are words with letters inZ. By definition of thee-period,v is empty or con-
tains only lettersy1. Indeed,ye should be the rightmost occurrence of the integerye

in ui . Therefore the contribution ofye and y1 can be neglected in the computation of
Qui since they are encoded by symbolsR and A, respectively. By the previous argu-
ments, we see that the contribution of thee-period in ui can be neglected when we
compute Qui . This shows thatQui D Qu0i . Assertion 2 follows immediately from 1, (2) and
Lemma 3.4.

5.2. The peeling procedure. Given� an arbitraryl -partition ands a multicharge,
we define recursively thel -partition�Æ and the multichargesÆ as follows:
• If � is not e-periodic, or� is empty withs2 Tl ,e, then we set�Æ WD � andsÆ WD s.
• Otherwise we set�Æ WD (��)Æ and sÆ WD (s�)Æ.

REMARK 5.2. When� D ;, we havesÆ WD s only if s2 Tl ,e.

Lemma 5.3. The previous procedure terminates, that is the pair(�Æ, sÆ) is well-
defined. Moreover we havesÆ 2 Tl ,e if �Æ D ;.

Proof. If � is not empty and�� ¤ �, then j��j < j�j. So when we apply the
previous procedure to (�, s), we obtain after a finite number of steps an aperiodic pair
(�0, s0) or a pair (;, u). In the first case, we have (�0, s0) D (�Æ, sÆ) and the procedure
terminates. In the second case, we have already noticed in Remark 5.10 that (;, s0)
admits ane-period. The lemma then follows from Lemma 2.5.

DEFINITION 5.4. The pairB(�,s) is said to betotally periodicwhen�Æ D ; and
sÆ 2 Tl ,e.

EXAMPLE 5.5. Here are a couple of examples.
1. First, assume thateD 3, let sD (1, 1) and let� D (3.3, 4.4.3). We have

B(�, s) D
�

� � � �2 2 4 5
� � � �2 �1 3 4

�

.
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If we delete the 3-period we obtain the symbol:

B(�, s0) D
�

� � � �2 2 4
� � � �2 �1

�

which is the symbol of the bipartition�D �

�

D (;, 4.3) with multicharges� D (�1,0).
We don’t have any 3-period so�Æ D (1, 3.2) andsÆ D (�1, 0). Note that we have
(�1, 0)�e (0, 2).
2. Now takeeD 4, let sD (4,5) and�D (2.2.2.1.1,2). We obtain the following symbol

B(�, s) D
�

� � � �1 0 1 2 3 4 7
� � � �1 1 2 4 5 6

�

.

By deleting the 4-period, we obtain:

B(��, s�) D

�

� � � �1 0 1 2 3 4
� � � �1 1 2

�

.

Thus, we get�� D (1.1,;) and s� D (1, 4). Now deleting the 4-period, we have:

B((��)�, (s�)�) D

�

� � � �1 0 1 2
� � � �1

�

and we derive (��)� D (;, ;) and (s�)� D (�1, 2). Finally, we can delete the 4-period
2, 1, 0,�1 in the last symbol, this gives

B(�Æ, sÆ) D
�

� � � �1
� � � �1

�

�

Æ

D (��)� D (;, ;) and sÆ D (s�)� D (�1,�1).

5.3. Crystal properties of periods.

Proposition 5.6. Let s 2 Zl and let � `l n. Then for i2 {0, 1, : : : , e� 1}, we
have Qei (�) D 0 if and only if Qei (��) D 0

Proof. If �� is � or the emptyl -partition, the lemma is immediate. Otherwise it
follows from Lemma 5.1.

Proposition 5.7. Let � `l n be such that� ¤ ; and assume thatQei (�) D 0 for
any i 2 Ze=Z. Then� admits an e-period.

Proof. Considerc1 minimal such thatB(�,s)c1
1 D M is the largest entry ofB(�,s).

Let i 2 Z=eZ be such thatM � i C 1 (mod e). Then, in the encoding of the letters of
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ui by symbolsA or R, the contribution ofB(�, s)c1
1 is the rightmost symbolR of ui .

Since Qei (�) D 0, there exists inui an entryB(�, s)c2
a2

encoded byA immediately to the
right of B(�, s)c1

1 (to have a cancellationR A). By maximality of M and definition of
ui , we must haveB(�, s)c2

a2
D M � 1 andc2 � c1. We can also choosec2 minimal such

that B(�, s)c2
a2
D M � 1 (or equivalently, the contribution ofB(�, s)c2

a2
is the rightmost

A in ui ). Then, the entries in any rowc with c < c2 are less thanM � 1. If we use
Qei�1(�)D 0, we obtain similarly an entryB(�, s)c3

a3
with B(�, s)c3

a3
D M �2, c3 � c2 such

that the entries in any rowsc with c < c3 are less thanM � 2. By induction, this gives
a sequence of entriesB(�, s)cm

am
D M �mC 1, for mD 1, : : : , e, c1 � � � � � ce and the

entries in any rowc < cm are less thanM �mC 1, that is the desirede-period.

Proposition 5.8. Let s2 Zl and let� `l n be such that�¤ ;. Assume that(�,s)
admits an e-period of the form M, M � 1, : : : , M � eC 1. We have
1. wt(�, s)e D wt(��, s�)e.
2. wt(�, s)

1

D wt(��, s�)
1

C !M .

Proof. 1: Recall that for any (�, s), we have by §3.3

wt(�, s) D
X

i2Z=eZ

('i (�) � "i (�))3i .

By assertion 2 of Proposition 5.1, we have"i (�) D "i (��) and 'i (�) D 'i (��) for all
i 2 Z=eZ. Therefore wt(�, s)eD wt(��, s�)e. Assertion 2 follows from the fact that the
contribution to each entryj 2 Z in B(�, s) to wt(�, s)

1

is " j . So

wt(�, s)
1

D wt(��, s�)
1

C "M C � � � C "M�eC1 D wt(��, s�)
1

C !M .

5.4. A combinatorial description of the highest weight vertices.

Theorem 5.9. Let s 2 Zl and let � `l n then (�, s) is a U 0

q(bsle)-highest weight
vertex if and only if it is totally periodic.

Proof. First assume that (�,s) is totally periodic, that is�Æ is the emptyl -partition

and sÆ 2 Tl ,e. An easy induction and Proposition 5.6 show that (�, s) is a U 0

q(bsle)-
highest weight vertex. In addition, the weight of (�,s) is equal to the weight of (�Æ,sÆ)
by Proposition 5.8. Conversely, if� is a U 0

q(bsle)-highest weight vertex, we know by
Proposition 5.7 that it admits a period and by Proposition 5.6 that�� is also a highest
weight vertex. Moreover, for anys � Tl ,e, we have seen in Remark 2.4 thatB(;, sÆ)
contains ane-period. By Lemma 5.3, this implies that�Æ is empty withsÆ 2 Tl ,e.

REMARK 5.10. 1. We can obtain the highest weight vertices ofGs,1 by adapt-
ing the previous theorem. It suffices to interpretGs,1 as the limit whene tends to in-
finity of the crystalsGs,e. Then (�, s) is a highest weight vertex if and only ifB(�, s)
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is totally periodic foreD1. A period for eD1 is defined as the natural limit of an
e-period whene tends to infinity. This is an infinite sequence of the formM, M � 1,
M � 2, : : : in B(�, s) where M is the maximal entry ofB(�, s). We say thatB(�, s)
is totally periodic foreD 1 when it reduces to the empty symbol after deletion of
its periods following the procedure described in §5.2. In this case, since these periods
are infinite, a row of the symbol disappears at each deletion of a period. In particular,
there arel infinite periods.
2. Recall that a wordw with letters inZ is a reverse lattice (or Yamanouchi) word if
it can be decomposed into subwords of the forma(a� 1) � � �min(w) where min(w) is
the minimal letter ofw. Let m be the maximal integer inB(�,s) such that each row of
B(�, s) contains all the integerk < m. One easily verify that the periodicity ofB(�, s)
for eD 1 is equivalent to say that the wordw obtained by reading successively the
entries greater or equal tom in the rows ofB(�,s) from left to right and top to bottom
is a reverse lattice word. Indeed, we always dispose in the symbol B(�, s) of integers
less thanm to complete any decreasing sequencea,a�1,:::,m into an infinite sequence.
Observe that this imposes in particular thatM �

Pl�1
cD0(sc�mC1). We will see in §6.2

that this easily gives the decomposition ofFs,1into its Uq(sl
1

)-irreducible components.

EXAMPLE 5.11. Takee D 4, l D 3, sD (3, 4, 6) and� D (;, 2.2, 2.2.1.1.1.1).
Consider the symbol

B(�, s) D

0

�

� � � �2 �1 0 2 3 4 5 7 8
� � � �2 �1 0 1 2 5 6
� � � �2 �1 0 1 2 3

1

A.

By deleting successively the 4-periods (pictured in bold),we obtain

B(��, s�) D

0

�

� � � �2 �1 0 2 3 4 5
� � � �2 �1 0 1 2
� � � �2 �1 0 1 2 3

1

A,

0

�

� � � �2 �1 0 2 3
� � � �2 �1 0 1 2
� � � �2 �1 0 1

1

A,

0

�

� � � �2 �1 0 2
� � � �2 �1 0 1
� � � �2 �1

1

A,

0

�

� � � �2 �1 0
� � � �2 �1
� � � �2

1

A.

Finally we obtain the empty 3-partition andsÆ D (�2, �1 � 0) 2 T3,4. So (�, s) is a
highest weight vertex.

6. Decomposition of the Fock space

Considers D (s0, : : : , sl ) 2 Zl . We can assume without loss of generality that
s 2 Tl ,1, that is s0 � � � � � sl�1. The aim of this section is to provide the decompos-

ition of Gs,e into its connectedU 0

q(bsle)-components. The multiplicity of an irreducible
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module inFs,e can be infinite. Nevertheless, we have a filtration of the highest weight
vertices inGs,1 by their Uq(sl

1

)-weights. We are going to see that the number of to-
tally periodic symbols of fixedUq(sl

1

)-weight is finite and can be counted by simple
combinatorial objects. We proceed in two steps. First, we give the decomposition of
Gs,1 into its Uq(sl

1

)-connected components, next we give the decomposition of each

crystal G
1

(v), v 2 Tl ,1 into its U 0

q(bsle)-connected components.

6.1. Totally periodic tableaux. Let t 2 Tl ,e such thatti � si for any i D 0, : : : ,
l � 1. We denote bys n t the skew Young diagram with rows of lengthsc � tc, c D
0, : : : , l � 1. By a skew (semistandard) tableau of shapes n t, we mean a filling�
of sn t by integers such that the rows of� strictly increase from left to right and its
column weakly increase from top to bottom. The weight of� is theUq(sl

1

)-weight

wt(� )
1

D

X

b2�

"c(b)

of level 0. Hereb runs over the boxes ofsn t and c(b) is the entry of the boxb in � .
The trivial tableau of shapesn t denoted�snt is the one in which thec-th row contains
exactly the letterstcC 1, : : : , sc.

A tableau is a skew tableau of shapes n t where t is such thatt0 D � � � D tl�1.
In that case� D s n t is an ordinary Young diagram. Given a level 0 weight� D
P

j2Z � j " j (where all but a finite number of� j are equal to zero), we then denote
by K

�,� the Kostka number associated to� and�. Recall thatK
�,� is the number of

tableaux of shape� andUq(sl
1

)-weight �.

EXAMPLE 6.1. TakeeD 2, sD (2, 3, 6) andt D (0, 0, 1). Then

� D

0

�

2 4 5 7 8
1 3 6
2 5

1

A

is a tableau of shapesn t and weight� D !8C !6C !5C !3C !2.

The peeling procedure described in §5.2 can be adapted to theskew tableaux by
successively removing their periods. For a skew tableau� , denote by w(� ) the word
obtained by reading the entries in the rows of� from right to left and from top to
bottom. When it exists, thee-period of � is the subwordu of w(� ) of the form u D
u0 � � � ue�1 where for anyk D 0, : : : , e� 1
• uk D M � k with M the largest entry inw(� ),
• uk is the rightmost letter ofw(� ) equal toM � k.

When � is e-periodic, we write�� for the skew tableau obtained by deleting its
period. By condition on the rows and the columns of� , �� is also a skew tableau. Its
shape can be written on the forms0 n t with s0 2 Tl ,1.
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More generally, given a skew tableau� of shapesn t, define the skew tableau� Æ

of shapesÆ n t as the result of the following peeling procedure:
• If � is not periodic or� D �snt with s2 Tl ,e, then � Æ D � and sÆ D s.
• Otherwise,� Æ D (� Æ)0 and sÆ D (sÆ)0.

When � Æ D ; is the empty tableau, we have

wt(� )
1

D

X

T

!M(T )

where T runs over thee-periods of� and for any period,M(T) is the largest integer
in T . Write �Ce for the set ofUq(sl

1

)-weights which are linear combinations of the
! j , j 2 Z with nonnegative integer coefficients. When� Æ D ;, we have wt(� )

1

2 �

C

e .

DEFINITION 6.2. A totally periodic skew tableauof shapesn t is a skew tableau
� of shapesn t such that
1. Each rowcD 0, : : : , l � 1 contains integers greater thantc.
2. We have� Æ D ;.

We denote by Tabesnt the set of totallye-periodic skew tableaux of shapesn t. For

any 
 2 �Ce , let Tabesnt,
 be the subset of Tabe
snt of tableaux withUq(sl

1

)-weight 
 .

EXAMPLE 6.3. By applying the peeling procedure to the tableau� of Example 6.1,
we first obtain the sequence of tableaux

� D

0

�

2 4 5 7 8
1 3 6
2 5

1

A, �

(1)
D

0

�

2 4 5
1 3 6
2 5

1

A, �

(2)
D

0

�

2 4 5
1 3
2

1

A

and

�

(3)
D

0

�

2
1 3
2

1

A.

The tableau� (3) has shapes(3)
n t with t D (0, 0, 1) ands(3)

D (1, 2, 2). Since� (3)
¤ �snt ,

the peeling procedure goes on. We obtain

�

(4)
D

0

�

2
1

1

A

which has shapes(4)
n t with s(4)

D (0, 1, 2). Nows(4)
� Tl ,e, so the procedure finally

yields � (5)
D �

Æ

D ;. Therefore,� is totally 2-periodic.
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6.2. Decomposition ofGs,1. In the sequel we assumes 2 Tl ,1 is fixed. By a
slight abuse of notation, we will identify each vertex (�, s) of Gs,1 with its symbol
B(�, s). For any v 2 Tl ,1, let Hv

s,1 be the set of highest weight vertices inGs,1 of
highest weight3v,1.

ConsiderB(�, s) 2 Hv
s,1. For any fixedk 2 Z, the contribution of all the integers

k in B(�, s) to wt(B(�, s))
1

is equal todk"k where dk is the number of occurrences
of k in B(�, s). Each row contains at most a letterk, thereforedk � l and dk D l
if and only if k appear in each row ofB(�, s). SinceB(�, s) has weight3v,1, we
must havedk D l for any k � v0 and dk < l otherwise. This means that the maximal
integer m such thatB(�, s) contains each integerk < m defined in Remark 5.10 is
equal tov0C 1. Let B(�, s)v be the truncated symbol obtained by deleting inB(�, s)
the entries less or equal tov0. By Remark 5.10 (2), the reading ofB(�,s)v is a reverse
lattice word.

EXAMPLE 6.4. One verifies that

B(�, s) D

0

B

B

�

� � � �1 0 1 2 3 5 6
� � � �1 0 1 2 4
� � � �1 1 2 3
� � � �1 0

1

C

C

A

with sD (0,2,3,5) is of highest weight3v,1 with vD (�1,2,3,6). Then the reading of

(6) B(�, s)v D

0

B

B

�

0 1 2 3 5 6
0 1 2 4
1 2 3
0

1

C

C

A

is the reverse lattice word

w D 65321042103210.

Set t(v)D (v0, : : : ,v0) 2 Zl . Set�D vn t(v). Then� can be regarded as an ordinary
Young diagram. We define�� has the conjugate diagram of�. We now associate to
B(�, s)v a tableauT of shape�(v) D �� and weight

�(v) D
l�1
X

cD0

�c"c

where for anycD 0, : : : , l � 1, �c D sc� v0 is the length of thec-th row of B(�, s)v.
Observe that�� is simply the sequence recording the number of occurrences of each
integerk > v0 in B(�, s)v (see the example below). Our procedure is a variant of the
one-to-one correspondence (reflecting the Schur duality) described in [10] between the
highest weight vertices of theUq(sln)-Fock spaces and the semi-standard tableaux.
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First normalizeB(�, s)v by translating its entries by�v0. Write B(�, s)t
v for the

resulting truncated symbol. It has entries inZ
>0 and its reading is a reverse lattice

word. Let T (0) be the tableau with one column containing�0 letters 1. Assume the
sequence of tableauxT (0), : : : , T (c�1), c < l � 1 is defined. ThenT (c) is obtained by
adding in T (c�1) exactly �c letters c C 1 at distance from the top row given by the
nonnegative integers appearing in thec-th row of B(�,s)t

v. Since the reading ofB(�,s)t
v

is a reverse lattice word,T (c) is in fact a semi-standard tableau. We setT D T (l�1).

EXAMPLE 6.5. Let us computeT for B(�, s)v as in (6). We havev0 D �1

B(�, s)t
v D

0

B

B

�

1 2 3 4 6 7
1 2 3 5
2 3 4
1

1

C

C

A

and we successively obtain for the tableauxT (c)

T (0)
D

�

1
�

, T (1)
D

0

B

B

�

1
2
2
2

1

C

C

A

, T (2)
D

0

B

B

B

B

B

�

1 3
2 3
2 3
2
3

1

C

C

C

C

C

A

and T (3)
D

0

B

B

B

B

B

B

B

B

B

�

1 3 4
2 3 4
2 3 4
2 4
3
4
4

1

C

C

C

C

C

C

C

C

C

A

.

We verify thatT (3)
D T has shape�(v)D (3,3,3,2,1,1,1) and weight�(v)D (1,3,4,6).

The previous procedure is reversible (fors, v 2 Tl ,1 fixed). Starting fromT a
tableau of shape�(v) and weight�(v), we can construct a truncated symbolB(�, s)t

v,
next B(�, s)v by translating the entries byv0. This proves that the cardinality ofHv

s,1
is finite and equal toK

�(v),�(v) the number of tableaux of shape�(v) and weight�(v).
We thus obtain the following theorem.

Theorem 6.6. Considers2 Tl ,1. As aUq(sl
1

)-module, the Fock spaceFs,1 de-
composes as

Fs,1 D
M

v2Tl ,1

V
1

(v)�K
�(v),�(v) .

6.3. Branching rule for the restriction of V
1

(s) to U 0

q(bsle). Considers2 Tl ,1.

We now give the decomposition ofG
1,s(;) into its U 0

q(bsle)-connected components. By
Corollary 4.3, this reflects the branching rule for the restriction of V

1

(s) from Uq(sl
1

)
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to the U 0

q(bsle) action. By our assumption we haves0 � � � � � sl�1. It is then easy
to describe the symbols associated with thel -partitions appearing inG

1,s(;). Indeed,
B(�,s) 2 G

1,s(;) if and only if it is semistandard (see [6]). This means that its columns
weakly increase from top to bottom.

Assume thatB(�, s) is totally periodic inG
1,s(;). Set sÆ D (sÆ0, : : : , sÆl�1) 2 Tl ,e.

We define the levell -part of the symbolB(�, s) as the symbolB(�, s)l D B(;, sÆ)
which can be regarded as a subsymbol ofB(�, s) in a natural sense. The level 0-part
of B(�, s) is then

B(�, s)0 D B(�, s) nB(;, sÆ).

For any t 2 Tl ,e, we set

St D {B(�, s) 2 G
1,s(;) totally periodicj sÆ D t}.

The following lemma is immediate from the definitions of the peeling procedures on
symbols and tableaux.

Lemma 6.7. Fix t 2 Tl ,e. The map W B(�, s) 7! B(�, s)0 is a one-to-one cor-
respondence between the sets St and Tabe

snt . We have moreover

(7) wt(�, s)
1

D 3t,1 C wt(B(�, s)0).

EXAMPLE 6.8. TakeeD 2, sD (2, 3, 6) and

B(�, s) D

0

�

�2 �1 0 1 2 4 5 7 8
�2 �1 0 1 3 6
�2 �1 0 2 5

1

A.

We obtain

B(�, s)0 D

0

�

2 4 5 7 8
1 3 6
2 5

1

A

2 Tab2
snt

with t D (0, 0, 1). We have wt(�, s)
1

D 3t,1 C !8C !6C !5C !3C !2.

Let Pe,1be the subset ofP
1

of weights� which can be written on the form

(8) � D 3t(�),1 C 
 (�) with t(�) 2 Tl ,e and 
 (�) D
X

k>t0(�)Ce

ak!k 2 �
C

e

where all but a finite number of the coefficientsak are equal to 0. Observe that the
previous decomposition is then unique. Indeed, for anyt 2 Tl ,e and anyk > t0Ce, the
weight 3t,1 C !k cannot be written on the form3t0,1 with t 0 2 Tl ,e. Let B(�, s) a
highest weight vertex ofGe,s with weight �.
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Lemma 6.9. TheUq(sl
1

)-weight ofB(�, s) belongs to Pe,1. Moreover, we have

t(�) D sÆ and 
 (�) D wt(B(�, s)0)

wheresÆ and B(�, s)0 are obtained by the peeling procedure as in(7).

Proof. In view to (7), the weight� decomposes on the form

� D 3sÆ,1 C wt(B(�, s)0

where by Theorem 5.9 and Lemma 6.7, we havesÆ 2 Tl ,e and wt(B(�, s)0 2 �
C

e . Set
wt(B(�, s)0 D

P

k2Z ak!k. The entries ofB(�, s)0 are those of the periods ofB(�, s)
and ak is the number of periods{k, : : : , k� eC 1} in B(�, s)0. Let k0 be the minimal
integer such thatak0 ¤ 0. By definition of the peeling procedure, the addition of the
letters{k0�eC1,: : : ,k0} in the symbolB(;,sÆ), yields a symbolB(;,u) with u 2 Tl ,1

but u � Tl ,e. Sinceu 2 Tl ,1, we must havek0 � eC 1 > sÆ0, that is k0 � sÆ0 C e. We
cannot havek0D sÆ0Ce, otherwiseuD (sÆ1,: : : ,sÆl ,sÆ0Ce) 2 Tl ,e. Thusk0 > sÆ0Ce. Since
the decomposition (8) is unique, this imposes thatt(�) D sÆ and 
 (�) D wt(B(�, s)0)
as desired.

Proposition 6.10. Consider a totally periodic symbolB(�, s) in G
1,s(;) of

Uq(sl
1

)-weight �.
1. The successive symbols appearing during the peeling procedure of B(�, s) of
G
1,s(;) remain semistandard.

2. The number of highest weight vertices inG
1,s(;) with Uq(sl

1

)-highest weight� 2
Pe,1 is finite equal to me

s,� D jTabsnt(�),
 (�)j.

Proof. Assertion 1 follows from the fact that the columns ofB(�,s) increase from
top to bottom and each entryk in a period is the lowest possible occurrence of the inte-
ger k in the symbol considered. ConsiderB(�, s) of highest weight�. By Lemma 6.9,
we have the decomposition� D sÆCwt(B(�, s)0). Then the restriction of the bijection
 defined in Lemma 6.7 to the symbols of weight� yields a one-to-one correspond-
ence between the symbolsB(�, s) of highest weight� and the tableauxB(�, s)0 of
shapesn sÆ and weight
 (�). Assertion 2 follows.

We thus obtain the following theorem.

Theorem 6.11. Assume e is finite and considers2 Tl ,1.

1. The crystalG
1,s(;) decomposes into irreducibleU 0

q(bsle)-components whose highest
weight vertices are also weight vertices for theUq(sl

1

)-structure.
2. TheUq(sl

1

)-weight of such a vertex belongs to Pe,1.
3. The number of highest weight vertices inG

1,s(;) with Uq(sl
1

)-highest weight� 2
Pe,1 is finite equal to the cardinality mes,� D jTabsnt(�),
 (�)j.
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By combining with Theorem 6.6, this yields the decomposition of the Fock space

in its irreducibleU 0

q(bsle)-components.

Theorem 6.12. Assume e is finite and considers2 Tl ,1.

1. The crystalGs,e decomposes into irreducibleU 0

q(bsle)-components whose highest
weight vertices are also weight vertices for theUq(sl

1

)-structureGs,1.
2. TheUq(sl

1

)-weight of such a vertex belongs to Pe,1

3. The number ofU 0

q(bsle)-highest weight vertices inGe with Uq(sl
1

)-highest weight
� 2 Pe,1 is finite equal to Me

s,� D
P

v2Tl ,1
K
�(v),�(v)me

v,� .
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