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Abstract
We give a simple characterization of the highest weighticest in the crystal
graph of the level Fock spaces. This characterization is based on the notion of
totally periodic symbols viewed as affine analogues of mvdattice words classic-
ally used in the decomposition of tensor products of fundaaiel,-modules. This
yields a combinatorial decomposition of the Fock spaceshairtirreducible com-
ponents and the branching law for the restriction of theduble highest weight

sleo-modules to?[e.

1. Introduction

To anyl-tuple se Z' is associated a Fock spa@g which is aC(q)-vector space
with basis the set of-partitions (i.e. the set df-tuples of partitions). This levdl Fock
space was introduced in [7] in order to construct the irrdaachighest weight repre-
sentations of the quantum grouptg(sA[e) and Uy (sl). It provides a natural frame for

the simultaneous study of the representation theorielslé(fﬁe) and Ug(sls). It more-
over permits to categorify the representation theory of Ahi&i—Koike algebras (some
generalizations of the Hecke algebras of the symmetric ggpin the nonsemisimple
case (see [1]).

The Fock spaceFs has two structures dﬂé(;[e) and Uq(sl~)-modules. For these
two structures, the emptypartition @ is a highest weight vector with dominant weights
Ase and As .. We denote bye(s) and V. (s) the corresponding highest Weigﬂvlg(ﬁe)
andlq(sls)-modules. In fact, any highest weight irreducib!@(?[e) or Uq(sls)-module
can be realized in this way as the irreducible component obek Space with highest
weight vector@. It is also known [2, 7] that the two modules structures armpat-
ible. This means that the action of any Chevalley generamt/{g(;[e) can be obtained
from the actions of the Chevalley generators#g(s!..). In particular,V,.(s) admits the
structure of d/&(?[e)-module.

The first purpose of this paper is to give a simple combinakatescription of the
decomposition ofFs in its irreducibleu(;(;[e) andify(sl.)-components. For thiy(sls)-
module structure, this problem is very similar to the decosiiion of a tensor product
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of fundamentalfy(sly)-modules into irreducible ones. It is well-known that tdiscom-
position can be obtained by using the notion of reverseckatfor Yamanouchi) words.
Here our description of the decomposition into irreduciisléased on the notion of to-
tally periodic symbols which can be regarded as affine ana@e@f reverse lattice words.

The Kashiwara crystal associated to the Fock spagadmits as set of vertices,
the setgs of all I-partitions. According to Kashiwara crystal basis thedguffices to
characterize the highest weight verticesdn to obtain the decomposition aofs into
its irreducible components. We prove in fact that the tgtakriodic symbols label the
highest weight vertices ofis. It is also worth mentioning that, according to recent pa-
pers by Gordon-Losev and Shan—-Vasserot [5, 12], there dlexigt a natural labelling
of the finite dimensional irreducible representations & thtional Cherednik algebras
by highest weight vertices dfs, thus by a subset of the set of totally periodic sym-
bols (see also [11, Remark 6.4]). Nevertheless the condyiahtharacterization of this
subset seems not immediate.

The setGs admits twou(;(sA[e) andUq(sl)-crystal structures. In [6] we established

that theu(;(f:\[e)-structure of graph o is in fact a subgraph of th&(sl.)-structure.
This implies that each,(s(.,)-connected component decomposes ln[;(f[e)—connected

components. Eachpartition then admits a{é(;[e) and alfy(sls)-weight. In particular,
We can consider the decomposition of #g(sl..)-connected componers .(9) with

highest weight verted in its L{[](?[e)-connected components, that is the decomposition
of the crystal graph o¥/,(s) in u&(;[e)-crystals. We prove that this decomposition gives

the branching law for the restriction of tli¢;(s(..)-module V. (s) to Z/l(;(;[e). Observe
this does not follow immediately from crystal basis theadncs the root system of affine
type Ag_)l is not parabolic in the root system of typge,. We also establish that the num-
ber of highest weighué(?[e)—vertices iNGs,00(@) with fixed Uy (sl )-weight is counted
by some particular (skew semistandard) tableaux we calllygperiodic. These tableaux
can be regarded as affine analogues of the usual semistasidavdableaux relevant for
computing the branching coefficients associated to theicgsh of the irreduciblegl,,-
modules togl,, & gl,_, With m < n some positive integers.

It also follows that the number df{(;(sA[e)-highest weight vertices igs with fixed
Uq(sls)-weight is finite and can be expressed in terms of the Kostkabers and the
number of totally periodic tableaux of fixed shape and weight

The paper is organized as follows. In Section 2, we introdiheenotion of sym-
bol of anl-partition. Section 3 is devoted to some backgroundfan its two mod-
ule structures and the corresponding crystal bases théorgection 4, we show that
the two crystal bases offs for Z/l(;(sA[e) and for Uy(slo) are compatible. This im-

plies that the decomposition d@fse(d) into its L{é(;[e)-connected components yields
the desired branching law. Section 5 characterizes theebiglveight vertices irgs
by totally periodic symbols. Finally in Section 6, we firstpegss the multiplicities of
the irreduciblelfy (sl )-modules appearing in the decomposition/&f in terms of the
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Kostka numbers. Next, we establish that the branching cosifis for the restriction
of V(9 to u(;(?[e) can be graded by th&(sl.)-weights and then counted by totally
periodic semistandard tableaux. This gives the decompnsitf F5 in its irreducible
u&(?[e)—components.

2. Preliminaries on multipartitions and their symbols

2.1. Nodes in multipartitions. LetneN, | e Z ands=(s,s,...,5-1) €Z'. A
partition A is a sequenceig,...,A,) of decreasing non negative integers. Apartition
(or multipartition) A is anl-tuple of partitions £°, ..., 2'"1). We write A - n when
is an|-partition of total rankn. The emptyl-partition (which is thel-tuple of empty
partitions) is denoted by.

If A is not the empty multipartition, thé@eight of A is by definition the minimal
non negative integer such that there exists € {0, ..., | — 1} satisfyingi{ # 0. By
convention, the height of is O.

For all A F n, we consider itsYoung diagram

Al ={@abca>1cef{0,..., -1}, 1<b<aS}.

The nodesof A are usually defined as the elements of. [However, by slightly abuse
the notation, they will be regarded in the sequel as the el&snef the (infinite) set:

{@/b,cya=1, ce{0,...,1-1},0=<b =215}
We define thecontentof a nodey = (a, b, ¢) € [A] as follows:
conty) =b—a+ s,

and theresidueresf’) is by definition the content off taken moduloe. An i-node
is then a node with residuec Z/eZ. The nodes othe right rim of A are the nodes
(a, A, c) with A5 # 0. We will say thaty is ani-node ofA when resg) =i (mod e).
Finally, We say that’ is removablewheny = (a,b,c) € A andA\ {y} is anl-partition.

Similarly y is addablewheny = (a, b, c) ¢ A andA U {y} is anl-partition.

2.2. Symbol of a multipartition. Let A - n. Then one can associate xoits
shifted s-symboldenoted byB(X, s). Our notation slightly differs from the one used
in [4, 85.5.5] because the symbols we use here are semiténfinith possible negative
values. Thus, the symb@(k, s) is thel-tuple

(B, 9% BQ, 9L ..., BR, 9
where for eactc € {0,1,...,1 —1}, andi =1, 2,..., we have

BQA, 9 =1 —i +s+ 1.
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This symbol is usually represented as larow tableau whose-th row (counted from
bottom) isB(A, s)°.

ExamMPLE 2.1. Withi = (3, 2.2.2, 2.1) and = (1, 0, 2), we obtain
-3 -2 -1 0 2 4
B@A,9)=--- -3 0 1 2
-3 -2 -1 0 4

We make the following observations.
e |t is easy to recover the multipartitioh and the multicharge from the datum of
B(X,9).
e Forallce{0,...,1 =1}, let jo be the maximal integer such th&(x, s)‘J?C #
—je + s+ 1, if it exists, we setjc := 0 otherwise. Then the entrieB(}, s); of the
symbol such that 6 ¢ <| —1 andj < j. are bijectively associated with the nodes
(j, AS, c) of the right rim of A.

2.3. Period in a symbol. We now introduce the notion of period in a symbol
which is crucial for the sequel.

DEFINITION 2.2. Consider a pairA(s) and its symbol3(i,s). We say thatX, )
is e-periodicif there exists a sequenceg,(C1), (i2,C2), ..., (ie,Ce) in Nx{0,1,...,1 -1}
andk € Z satisfying

BA, 9 =k BA, 97 =k—1,...,BQ, 9 =k—e+1

and such that
1L == =C,
2. forall0<c=<I|-1andi € N, we haveB(, s)° <k (i.e. k is the largest entry
of B(x, 9)),
3. givent € {1,...,¢€} and (j, d) such thatB(A, s)j-j =k —-t+ 1, we havec; < d.
(i.e. there is no entrk—t + 1 in B(A, s) strictly below than the one corresponding to
(it, &))-

The e-periodof B(A, s) is the sequenceis( A", ¢1), (i, A{?, C2), - . ., (ie, A7, Ce) @nd
the form of the e-period is the associated sequenkek(—1,...,k—e+ 1) which can
be read in the symbol.

2.4. Reading of a symbol. An e-period can be easily read on the symigi{,s)
associated with)| s) as follows. First, consider the truncated symBsi(x, s). It is
obtained by keeping only ifB(, s) the entries of the symbol of the forfB(x, s)‘]? for
i =1,...,hc+ e (whereh; denotes the height of°) andc =0, 1,...,1 — 1.
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Denote byw the word with letters irnZ obtained by reading the entries in the rows
of B'(x,s) from right to left, next from top to bottom. We say thatis the reading of
B'(x, s). Each letter ofw encodes a node irk(s) (possibly associated with a part 0).

When it exists, thee-period of B(A, s) is the sequence of nodes corresponding to
the subwordu of w of the formu = k(k—1)- - -(k—e+ 1) wherek is the largest integer
appearing inw (and thus also in the symbol) and each letera, a=20,...,e—1
in t is the rightmost lettek —a in w.

ExXAmMPLE 2.3. Fors=(0,-1, 1) andA = (3, 2.2.2, 2.1), the symbol
ee 4 -3 -2 -1 1 3
BA,9)=|-- -4 -1 0 1
-4 -3 -2 -1 3

admits no 4-period. Soi(s) is not 4-periodic.
Fors = (—1,—-1, 1) andv = (3.3, 4.3, 4.4.2), we have:

... -5 —4 -3 -2 14 5
B, )= -5 -4 -3 1 3 .
5 -4 -3 1 2

Thus . admits a 5-period with form (5, 4, 3, 2, 1). The word assodiatedescribed in
§2.4 is:

w = 54123456 3134567 21345678
where we writex for —x for any x € Z_q. So (v, S) is 5-periodic.

REMARK 2.4. A pair @, s) is alwayse-periodic with form of thee-period M,
M—-1,...,M—e+ 1 whereM = max@).

2.5. Removing periods in®3(4,s). Forl € N ande € N, we denote
Te=f{t=(to,....t 1) €Z [to<--- <t 1andt 1—to <e—1).
We now describe an elementary procedure which permits tucede to anyi-tuple
s e Z' an elementt € 7 such thatB(@, t) is obtained from®B(@, s) by deleting
e-periods.
If s=59 ¢ 7/, we setst) =< whereB(0,s) is obtained from3(8,s) by deleting
its e-period. More generally we defingP*V) from P ¢ 7 ¢ such thatsP+) = (sP)y.

Lemma 2.5. For anyse Z', there exists p> 0 such thats® e T/.
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Proof. First observe that for any=0,...,| — 2 such thats5,;1 —§ < 0, we
haves' ,; —§ > s;1—s with equality if and only ifs' = s ands,, = 1. For any
seZ, set

-2
f(s =) min0,s41-5).

i=0

For anyi =0,...,1 —2 with 5.1 —5 < 0, there is an integep such thatg(p) <5 (the
i-th coordinates of thé-tuplessP, p > 0 cannot be left all untouched by the iteration
of our procedure). Therefore, for suchpawe havef(s?) > f(s). Since f(s) <0 for
anyse Z', we deduce there exists an integay such thatf (™)) = 0 and thus such

thats”) —s™ > 0 for anyi = 0,...,I —2. We can thus assume that the coordinates of
se Z satisfys,i1—s >0 for anyi =0,...,1 —2. One then easily verifies that for any
p > 0, the coordinates ofP) also weakly increase. Observe that for any 0,...,1 -2

such thats ;1 —s > e, we haves,; —s < s,1—s Wwith equality if and only ifs = s
ands ; = s;1. Set

1-2

g9 = Y _min(O,e—1—(S+1—8))
i=0

Assumes ¢ 7 . Since a pair g, S+1) with 511 —§ > e cannot remain untouched by
the iteration of our procedure, there exists an integesuch thatg(s®?) > g(s). So
we have an integep, such thatg(s’™) = 0 and since the coordinates gf) weakly
increase, one has™ e 7 . as desired. O

ExAmMPLE 2.6. Considers = (5, 3,5, 0, 1) fore = 3. We obtain

9 =(5,3,50,1), P=(2,3,5,0,1), 2 =(2,23,0,1),
s®=(0,220,1), “=(-1,0,201) ands®=(-1,-1,0,0,1),

and we haves® e Ts a.

3. Module structures on the Fock space

We now introduce quantum group modules structures on th& Bpace of level
and describe the associated crystal graphs.

3.1. Roots and weights. Let e € Z.; U {o0}. Let u(;(Ele) (resp.Uy(sls)) be the

quantum group of affine typ@@l (resp. of typeA,). This is an associativé(q)-
algebra with generators, fi, t, ti‘1 withi =0,...,e—1 (resp.i € Z). We refer to
[4, Chapter 6] for the complete description of the relatidmedween these generators
since we do not use them in the sequel. To avoid repetitionwilleattach a labele
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to the notions we define. Whea is finite, they are associated Wiﬂalc"(?[e) whereas
the casee = co corresponds t@4y(sls).

We write Aje, | =0,...,e—1 for the fundamental weights. The simple roots are
then given by:

Aje=—Aj_1e+ 2Ai,e —Ait1e

fori =0,...,e—1. As usual the indices are taken mod@o For s € Z', we also
Write Ase := D o<c<i_1 As.e-

There is an action of the extended affine symmetric gréupn Z' (see [6, §5.1]).
This group is generated by the elements..., 011 andyy, ..., yi_1 together with
the relations

0c0c410¢c = 0c410c0cs1, 0c0d = ogoe  for |c—d|>1, o2 =1,

C

YeYd = YaYe, OcYd = Yaoc for d#c,c+1, ocyeoe = Yei1s

for relevant indices. Then we obtain a faithful action $fon Z' by setting for any
s=(S,...,5-1) €Z

0c(9) = (S0, -+ -+ Ser -1, -+ S-1) and Ye(S) = (o, .-+ -1, S+ € ..., S-1).

Given's, s € Z', we have Ase = Age if and only if s and s are in the same orbit
modulo the action OS. In this case, we denote=. S. Set

1) Vie={v=(v0,...,01)€Z |0<wy<---<uy_<e—1}.
Given anys e Z' there exists a unique in Jj such thats =, v.

3.2. Module structures. We fix s € Z'. The Fock spaceFs is the Q(q)-vector

space defined as follows:
Fo= P P e@n.

NEZz=o AN

According to [13, §2.1], there is an action Mg(;[e) on the Fock space (see [4, 86.2]).

This action depends oa and we will denote byFse the Z/Ié(sA[e)-moduIe SO obtained.
In Fse, €ach partition is a weight vector (with respect to a muliicie s) with weight
given by (see [13, 84.2])

Wt()w S)e = Ase — Z N (X, S)ai,e,

O<i<e-1

where N; (A, s) denotes the number afnodes inA (where the residues are computed
with respect tos). For anye € Z.1 U {oc}, the empty multipartition is always a highest



904 N. ACON AND C. LECOUVEY

weight vector of weightAge. We write Ve(s) for the associate%(;[e)-module. We
clearly haveVe(s) >~ Ve(S) if and only if s=¢S.

In general, the modules structures & are not compatible when we consider dis-
tinct values ofe. Nevertheless, we have the following proposition statefRin§2.1].

Proposition 3.1. Let e€ N.g.
1. Any Uy(sls)-irreducible component ¥ of Fs, is stable under the action of the

Z/{é(sA[e)—Chevalley generators; ef;, tj, i € Z/eZ. Therefore \{, has also the structure
of a u(;(sA[e)-moduIe.
2. In particular, the Uy(sl.)-module \(s) is endowed with the structure oflaég](sA[e)-

module. Moreover )(s) then coincides with the{é(sA[e)-irreducible component of \(s)
with highest weight vector the empty |-partitiéh

REMARK 3.2. The algebrasl,, and ?[e can be realized as algebras of infinite
matrices (see [8]). Thelz”f[e is regarded as a subalgebra €f,. In particular, the
irreducible sl,-module of highest weightAg,, admits the structure of aA[e—moduIe
by restriction. The highes?[e-weights involved in its decomposition into irreducible
then coincide with those appearing in the decompositioV/gfs) into its irreducible
M&(?[e)—components.

3.3. Crystal bases and crystal graphs. We now recall some results on the crys-
tal bases ofF;e established in [7] and [13]. Let(q) be the ring of rational functions

without pole atqg = 0. Set
L:=P P a@n

n>=0 Akn
and
G:={x (modq) £) | A is anl-partition}.

Theorem 3.3 (Jimbo—Misra—Miwa—Okado, Uglov) The pair (£, G) is a crystal
basis for Fse and Fs .

Observe that the crystal basis of the Fock space is the samé&sfoand Fs ..
Nevertheless, the crystal structurss and G, s on G do not coincide forFse and
Fs- TO describe these crystal structures we begin by definingta brder on the
removable or addable-nodes. Lety, y’ be two removable or addablenodes ofA.
We set

DL either b—a+s <b' —a + s,
V=sY or b-a+s=b—-a+s and c>c.
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Let A be anl-partition. We can consider its set of addable and removiabledes.
Let wi(A) be the word obtained first by writing the addable and remievedmodes ofa
in increasing order with respect tos next by encoding each addableode by the let-
ter A and each removablenode by the letteR. Write w;(A) = APRY for the word de-
rived from w; by deleting as many subwords of typeA as possible. The word; (})
is called thei-word of A and w; (L) the reduced -word of A. The addable -nodes
in wj(A) are called the normal addablenodes. The removablenodes inw;j(A) are
called the normal removablenodes. Ifp > 0, let y be the rightmost addablenode
in wij. The nodey is called the good addablenode. Ifq > 0, the leftmost removable
i-node inwj is called the good removabienode. We set

&) ¢id)=p and &@Q)=aq.

By Kashiwara’s crystal basis theory [9, 8§4.2] we have anotmeful expression for
wt(X, S)e

3 W, Se = D (¢i(A) —&i(A)Aie,

i€Z/eZ

We denote byGes the crystal of the Fock space computed using the Kashiwara
operatorsd and f;. By [7], this is the graph with
e vertices: thel-partitionsA - n with n € Zxg

o arows:i — u that is§ u = A if and only if u is obtained by adding ta a good
addablei-node, or equivalentlyA is obtained fromu by removing a good removable
i-node.

Note that the order induced bys does not change if we translate each component
of the multicharge by a common multiple ef(nor does the associaté@(?[e)—weight).
Thus, if there existk € Z such thats = (s),s},...,5_;) = (So+kesi+ke,...,5 1+ke)
then the crystaljos and Ge ¢ are identical.

The crystalGes has several connected components. They are parametrizéd by
highest weight vertices which are theartitionsA with no good removable node (that
is such thats;(A) = 0). Given such an-partition A, we denote byGes(A) its associ-
ated connected component. One easily verifies thall, 8l = Asmode). SO the crystal
Ges(9) is isomorphic to the abstract cryst@h(Asmode). IN general, for any highest
weight vertexi, Ges(A) is isomorphic to the abstract cryst@h(wt(x, S)e). By setting
Ay (mode) = WE(A, S)e, We thus obtain a crystal isomorphis@,‘: Ges(A) = Gev(9).

3.4. Crystal graphs and symbols. Consideri € Z/eZ. The reduced-word w;
of a multipartition A may be easily computed from its symbol. Lgi, € Z be the
greatest integer such that, =i (mode) and such that each row @(A, s) contains
all the integers lowest or equal tp,. Such an integer exists since the rows of our
symbols are infinite. For any € Z such thatj =i (mode) and j > jiow let u; be
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the word obtained by reading in the rows ®f(x, s) the entriesj or j + 1 from top
to bottom and right to left. Write

[e.¢]
Ui = 1_[ uj0+te
t=0

for the concatenation of the wordg. Here all but a finite number of words; e are
empty. We then encode iy each letterj by A and each lettej +1 by R and delete
recursively the factordlR A Write G; for the resulting word.

Lemma 3.4. We havew; = .

Proof. For anyj =i (mod e), write w; for the word obtained by reading the
addable or removable nodes with contgnfwith respect tos) successively in the par-
titions A%, c=1-1,...,0. Observe there is no ambiguity since each partitibicontains
at most one node with conterjt which is addable or removable. By definition of the
order <5, we have

(4) Wi = H Wio+te
t=0

where all but a finite set of the words; are empty. Now we come back to the word
uj. The contribution to thes-th row of B(X, s)° of u; is one of the factorsj(+ 1)j,

j +1,j or@. The factors [ + 1)j will be encodedR A so they will disappear during
the cancellation process and we can neglect their coniwiluiVrite u’j for the word
obtained by deleting iru; the factors { + 1)j corresponding to entries in the same
row. There is a bijection between the letters ujf and wj which associates to each
letter j + 1 (resp.j) in uj appearing in the rowc a nodeR (resp. A) of wj. This
easily implies thatl; = ;. O

4. Compatibility of crystal bases and weight lattices

4.1. Crystal basis of theL{q(;[e)-module Vs (S). Considere € Z.1 U {+00}.
The general theory of crystal bases (see [9]) permits to eléfie Kashiwara operators
&, fi,i € Z/eZ on the whole Fock spacgs. by decomposing, for anye Z/eZ, Fse
in irreducibleué(gle)i components. These operators do not depend on the decompos-
ition considered (see [9, 84.2]). This implies that the Kasha operators associated
with any L{é(ﬁe)-submoduleMe of Fse are obtained by restriction of the Kashiwara
operators defined offse.

Setse Z'. By Proposition 3.1, we know that,.(s) has the structure of b{é(?[e)-
module. SetlL () = £ N V. (S) and By (s) = Loo(9)/qL(s). It immediately follows



DECOMPOSITION OFHIGHER LEVEL FOCK SPACES 907

from crystal basis theory that the pait {(S), B (S)) is a crystal basis foN(s) re-
garded as dfy(sl,)-module. In fact this is also true whe¥i,.(s) is regarded as an
L{q(?[e)-module.

Proposition 4.1. The pair (L «(S), Bx(9)) is auq(;[e)-crystal basis of thé/{q(sA[e)-
module \(9).

Proof. Observe first that we have the weight spaces decotigrssi

Loo(8) = @D L1 NVl and Buo(s) = EP(L,/aL,) N Bso(9)

nePe HEPe

where P, is the weight space of the affine root system of tyﬁé}l. By Theorem 3.3,
for anyi € Z/eZ, & and f; stabilize £. They also stabilize thé{q(sA[e)-submodule
V. (9) by the previous discussion. Therefore, they stabilizg(s) and B..(s). More-
over, we have for anys, by € By (9), fi (b1) = by if and only if & (by) = by since this
is true in 5. This shows that the pailL¢,(), B (9)) satisfies the general definition of
a crystal basis for thé{q(ﬁe)-modulevoo(s). O

Since («(9), Bx(9) is a crystal basis folV,.(s) regarded as &/(sl.)-module,
B (s) has the structure of &(sl..)-crystal that we have denoted I8, s(9). By the
previous propositionB(S) (which can be regarded as the set of vertices;Qfs(9))
has also the structure of Za/q(?[e)—crystal that we denote bgs ((@). This crystal is
also a subcrystal ofjes since the actions of the Kashiwara operatorsdin(@) are
obtained by restriction frongjes. Let us now recall the following result obtained in [6,
Theorem 4.2.2] which shows thgt s is in fact a subgraph of. s

Proposition 4.2. ConsiderA and u two |-partitions such that there is an arrow
RN I in Ges. Let j € Z be the content of the node \ . Then we have the arrow
PYEN 1in Gy

By combining the two previous propositions, we thus obtam following corollary.

Corollary 4.3.  The Uqy(sle)-crystal G, ((9) is a subgraph of thé{y(sl.)-crystal
Goo,s(9). It decomposes intmq(?[e)—connected components. This decomposition gives
the decomposition of Ms) into its irreducibIeL{q(sA[e)-components.
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4.2. Weights lattices. Let P, and P, be the weight lattices ouc"(?[e) and
Uy(sls). We have a natural projection defined by

Py — Pe,
5 T
®) {Aj,oo = Aj modee-

Considers € Z' and A an |-partition.
Lemma 4.4. We havewt(}, s)e = 7 (Wt(A, S)s0)-

Proof. By (3), for anye € Z.,, the coordinate of Wi S)e On A ¢ is also equal
to the number of letterdA in u; minus the number of letterR. This is equal to the
sum over the integej such thatj =i (mod €) of the number of lettersA in u; minus
the number of letterk. The coordinate of wi(, S)e On A is thus equal to the sum
of the coordinates of Wi(, S)o, 0N the Aj , with j =i (mod €) as desired. O

One easily verifies that the kernel ofis generated by they := Ak+1.00 — Ak—et+1,00s
k € Z. The weightw, have level 0. In fact level 0 weights féf,(sl..) are thezZ-linear
combinations of the elementary weights = Aji10 — Aj,, ] € Z. The contribution
of an entryj € Z of B(}, s) to the weight wik, ), is exactlye;. We also havey, =
& + o+ Ek—et1-

5. A combinatorial characterization of the highest weight \ertices

Our aim is now to give a combinatorial description of the leigthweights vertices
of Ges, the crystal of the Fock spacg:s. Such a vertex is ah-partition without good
removablei-node for anyi € Z/€Z.

5.1. Removing a period in a symbol. Let A be anl-partition. We define the
|-partition A~ and a multicharges™ as follows:
e If A is note-periodic thenA™ := A ands :=s.
e Otherwise, delete the elements of #period inB(,s). This gives a new symbol
B(u, S) which is the symbol of an-partition associated with another multichargje
We then sefA,™ := u ands :=5.

Proposition 5.1. Let A be an e-periodic multipartition. For any € Z/eZ, write
G; and G- for the reduced words obtained from the symhobland A~ as in §3.4
1 G =40
2. A7) =@@A) and & (A7) = & ().

Proof. 1: Write Ga,kl?:,ca), a=1,...,efor the e-period inB(A,s). Recall we
have by conventiort; > - -+ > c.. Consideri € Z/€eZ. Let u; be the word constructed
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in 83.4. By definition, there exists a uniquee {1, ..., e} such that®B(a, s)‘j’: =i
(mod e). Assume firsta > 1. Write x,_1 and x, for the letters ofu; associated to
(ja;A31,Ca1) @nd (ja, A2, Ca). We havexa 1 = Xa+1. Setu; = s 1vXau]’ whereu;,

v, u’ are words with letters irZ. By definition of thee-period, v is empty or contains
only letters equal to¢,. Indeed,x,_; should be the rightmost occurrence of the integer
Xa—1 In U;. Therefore the contribution of,_; and x, can be neglected in the compu-
tation of G; since they are encoded by symbdfsand A, respectively. Now assume
a = 1. Write y; andy. the letters ofu; associated with jg, Aﬁ c1) and (je, )»?Z, Ce)-
We havey. = y; — e + 1. By definition of u;, we can writeu; = ujyevyiu; where
u, v, u are words with letters irfZ. By definition of thee-period, v is empty or con-
tains only lettersy;. Indeed,y. should be the rightmost occurrence of the integer
in u;. Therefore the contribution of, and y; can be neglected in the computation of
G; since they are encoded by symbdksand A, respectively. By the previous argu-
ments, we see that the contribution of tageriod in u; can be neglected when we
computed;. This shows thafi = 0. Assertion 2 follows immediately from 1, (2) and
Lemma 3.4.

5.2. The peeling procedure. Given an arbitraryl -partition ands a multicharge,
we define recursively thiepartition A° and the multicharge® as follows:
e If A is note-periodic, orA is empty withse 7 ¢, then we sek® := A ands’ :=s.
e Otherwise we sek’ :=(A7)° ands’ := (s7)°.

REMARK 5.2. Wheni = @, we haves’ :=sonly if s€ Tje.

Lemma 5.3. The previous procedure terminatebat is the pair(A°, s°) is well-
defined. Moreover we haw € T if A° = 0.

Proof. If A is not empty and.™ # A, then |A"| < |A|]. So when we apply the
previous procedure tak(s), we obtain after a finite number of steps an aperiodic pair
(A, ) or a pair @, u). In the first case, we have(s) = (A°, s°) and the procedure
terminates. In the second case, we have already noticed nmaike5.10 that ¢, s')
admits ane-period. The lemma then follows from Lemma 2.5. O

DEFINITION 5.4. The pairB(},s) is said to betotally periodicwheni® =@ and
S eTe.

ExampPLE 5.5. Here are a couple of examples.
1. First, assume that = 3, lets= (1, 1) and letA = (3.3, 4.4.3). We have

sa9=( 2 %50



910 N. ACON AND C. LECOUVEY
If we delete the 3-period we obtain the symbol:
e =2 2 4
swo-( 5 57

which is the symbol of the bipartitiop = A~ = (0, 4.3) with multicharges- = (-1, 0).
We don’t have any 3-period sd° = (1, 3.2) ands’ = (-1, 0). Note that we have
(=1, 0)=¢ (0, 2).

2. Now takee =4, lets= (4,5) andA = (2.2.2.1.1,2). We obtain the following symbol

. 210123 47
%(X’S)_(--- 11245686 )

By deleting the 4-period, we obtain:

o -+ =1 0 1 2 3 4
%(X,S)—(‘” 11 2 )
Thus, we get,™ = (1.1,0) ands = (1, 4). Now deleting the 4-period, we have:
N -+ =1 0 1 2
3@ 6= (10 ) )

and we derive X7)~ = (4, 0) and 6 )~ = (-1, 2). Finally, we can delete the 4-period
2,1,0,—1 in the last symbol, this gives

so= (0 )
A=QA") =9, 0) ands’ = (s)” = (-1, -1).

5.3. Crystal properties of periods.

Proposition 5.6. Letse Z' and letA - n. Then for ie {0, 1,...,e—1}, we
haveg(A) =0 if and only if§(A7) =0

Proof. If A~ is A or the emptyl-partition, the lemma is immediate. Otherwise it
follows from Lemma 5.1. O

Proposition 5.7. Let A F n be such that. # @ and assume tha& (1) = 0 for
any i € Ze/Z. Theni admits an e-period.

Proof. Consider; minimal such thatB()»,s)i1 = M is the largest entry oB(1,s).
Leti € Z/eZ be such thaM =i + 1 (mode). Then, in the encoding of the letters of
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u; by symbolsA or R, the contribution ofB(, ) is the rightmost symboR of u;.

Since& (A) = 0, there exists iy an entryB(4, )22 encoded byA immediately to the
right of B(A, 97 (to have a cancellatioR A). By maximality of M and definition of
Ui, we must haveB(}, )2 = M —1 andc; < ¢;. We can also choose minimal such
that B, 92 = M — 1 (or equivalently, the contribution dB(A, s)g2 is the rightmost
Ain uj). Then, the entries in any row with ¢ < ¢, are less tharM — 1. If we use
&-1(2) = 0, we obtain similarly an entr3(x, )2 with B(&,s)z2 = M —2, ¢3 < ¢ such
that the entries in any rows with ¢ < c3 are less tharM — 2. By induction, this gives

a sequence of entrieB(A, s)jr =M —m+1,form=1,...,€ ¢ >--- > Ce and the
entries in any rowc < ¢y, are less thatM —m + 1, that is the desired-period. O

Proposition 5.8. Letse Z' and letA - n be such thak # @#. Assume thaf),s)
admits an e-period of the form MM —1,..., M —e+ 1. We have
1. W@, e = WI(A ", S7)e.
2. WtQA, oo = WHA™, S)oo + wi-

Proof. 1. Recall that for anyA(s), we have by 83.3

Wi, 8 = Y (Bi(h) — e (W)Ai.

i€Z/eZ

By assertion 2 of Proposition 5.1, we hawgl) = &(A7) and ¢;(A) = ¢ (A7) for all
i € Z/eZ. Therefore wtk, S)e = Wt(L~, S )e. Assertion 2 follows from the fact that the
contribution to each entry € Z in B(A, s) to Wt(A, S) iS &j. SO

WA, S)oo = WEA™, ST )oo + M + + - + EM—er1 = WEA ™, S )oo + @m. 0
5.4. A combinatorial description of the highest weight verices.

Theorem 5.9. Letse Z' and letA - n then(), s) is a Z/l(;(?[e)-highest weight
vertex if and only if it is totally periodic.

Proof. First assume thak s) is totally periodic, that is\° is the emptyl -partition
and s’ € 7je. An easy induction and Proposition 5.6 show thaf d) is au’q(sA[e)—
highest weight vertex. In addition, the weight af, §) is equal to the weight ofA(,s")
by Proposition 5.8. Conversely, X is aL{[](gA[e)-highest weight vertex, we know by
Proposition 5.7 that it admits a period and by PropositidghthatA~ is also a highest
weight vertex. Moreover, for ang ¢ 7, ., we have seen in Remark 2.4 th&{(d, s°)
contains ane-period. By Lemma 5.3, this implies thaf is empty withs’ € 7/o. [

REMARK 5.10. 1. We can obtain the highest weight verticeggf, by adapt-
ing the previous theorem. It suffices to interpgkt,, as the limit whene tends to in-
finity of the crystalsGse. Then @, s) is a highest weight vertex if and only iB(A, s)
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is totally periodic fore = co. A period fore = oo is defined as the natural limit of an
e-period whene tends to infinity. This is an infinite sequence of the foh M — 1,

M —=2,...1in B(x, s) where M is the maximal entry of3(1, s). We say thatB(a, s)

is totally periodic fore = oo when it reduces to the empty symbol after deletion of
its periods following the procedure described in 85.2. lis tase, since these periods
are infinite, a row of the symbol disappears at each deletfom period. In particular,
there arel infinite periods.

2. Recall that a wordv with letters inZ is a reverse lattice (or Yamanouchi) word if
it can be decomposed into subwords of the faxa — 1)- - - min(w) where ming) is
the minimal letter ofw. Let m be the maximal integer if5(X,s) such that each row of
B(A,s) contains all the integek < m. One easily verify that the periodicity @B(A, s)
for e = oo is equivalent to say that the wond obtained by reading successively the
entries greater or equal t in the rows of3(1,s) from left to right and top to bottom
is a reverse lattice word. Indeed, we always dispose in thebeyB(X, s) of integers
less tharm to complete any decreasing sequeage—1,...,m into an infinite sequence.
Observe that this imposes in particular that< 'C;lo(sc—m+1). We will see in §6.2
that this easily gives the decomposition Bf ..into its U, (sl)-irreducible components.

EXAMPLE 5.11. Takee= 4,1 =3,s= (3,4, 6) andA = (¢, 2.2, 2.2.1.1.1.1).

Consider the symbol
4 57 8
5 6 .
3

.o =2
BA,9)=1[--- -2 -1
By deleting successively the 4-periods (pictured in bold, obtain

o O O

2
1
1

NN W

-2 -1

... 2 -1 02 345
BA,s)=|-» -2 -1 0 1 2 ,
.. -2 -1 012 3
2 -1 0 -1 0 2 e -2 -1 0
2 -1 0 ( 10 1), e 22 1 )
2 -1 0 1 -1 )

Finally we obtain the empty 3-partition argl = (-2, -1 —0) € 734. S0 @, 9) is a
highest weight vertex.

6. Decomposition of the Fock space

Considers = (S, ..., S) € Z'. We can assume without loss of generality that
S€ 7o, that issp < --- < §_;. The aim of this section is to provide the decompos-
ition of Gse into its connected/{(;(s/,\[e)-components. The multiplicity of an irreducible
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module inFse can be infinite. Nevertheless, we have a filtration of the édglweight
vertices inGs o, by their Uy(sl.)-weights. We are going to see that the number of to-
tally periodic symbols of fixed/{y(sl.)-weight is finite and can be counted by simple
combinatorial objects. We proceed in two steps. First, we dhe decomposition of
Usoco INtO its Uy(sle)-connected components, next we give the decompositiorach e

crystal G (V), V € T « Into its Z/{é(sA[e)—connected components.

6.1. Totally periodic tableaux. Lett e 7 such thatt <s for anyi =0,...,
| —1. We denote bys\ t the skew Young diagram with rows of length —t., c =
0,...,1 —1. By askew(semistandar}l tableau of shapes\ t, we mean a fillingc
of s\ t by integers such that the rows of strictly increase from left to right and its
column weakly increase from top to bottom. The weightrois the U4 (sl.)-weight

WH(T)oo = ) o)

bet

of level 0. Hereb runs over the boxes af\ t and c(b) is the entry of the bo in .
The trivial tableau of shaps\t denotedrs is the one in which the-th row contains
exactly the letterdc + 1,..., .

A tableau is a skew tableau of shapg t wheret is such thatty = --- = t,_;.
In that caser = s\ t is an ordinary Young diagram. Given a level 0 weight=
Y jez 4j€j (where all but a finite number of.; are equal to zero), we then denote
by K, . the Kostka number associated toand . Recall thatK, , is the number of
tableaux of shape and q(sl.)-weight .

EXAMPLE 6.1. Takee=2,s= (2, 3, 6) andt = (0, 0, 1). Then

2 4 5 7 8
t=|1 3 6
2 5
is a tableau of shapg\ t and weightyu = wg + we + ws + w3 + ws.

The peeling procedure described in 85.2 can be adapted tekdwe tableaux by
successively removing their periods. For a skew tableadenote by w¢) the word
obtained by reading the entries in the rows woffrom right to left and from top to
bottom. When it exists, the-period of ¢ is the subwordu of w(r) of the formu =
Ug---Ue 1 Where for anyk =0,...,e—1
e U =M —k with M the largest entry inu(z),

e Uy is the rightmost letter oiw(zr) equal toM — k.

When t is e-periodic, we writet~ for the skew tableau obtained by deleting its
period. By condition on the rows and the columnszofr~ is also a skew tableau. Its
shape can be written on the forsh\ t with s € 7/ .
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More generally, given a skew tableauof shapes\ t, define the skew tableatf
of shapes’ \ t as the result of the following peeling procedure:
e If 7 is not periodic ort = g With s€ Tj¢, thent® = r ands’ =s.
e Otherwise,t° = (r°) and s’ = (5°).

When t° = @ is the empty tableau, we have

Wt(1)oo = Za)M(T)
T

where T runs over thee-periods oft and for any periodM(T) is the largest integer
in T. Write 7 for the set ofi/y(sl«)-weights which are linear combinations of the
wj, j € Z with nonnegative integer coefficients. Wheh= @, we have wtt)., € 7.

DEFINITION 6.2. Atotally periodic skew tableaof shapes\t is a skew tableau
7 of shapes\t such that
1. Each rowc=0,...,| —1 contains integers greater than
2. We haver® = 0.

We denote by T@[ the set of totallye-periodic skew tableaux of shame t. For
anyy € /", let Talf, , be the subset of Tgh of tableaux withifg(sl-)-weight y.

ExAMPLE 6.3. By applying the peeling procedure to the tableani Example 6.1,
we first obtain the sequence of tableaux
2 4 5 2 4 5
3 6 , 1@ = 3
5

4 57 8
T = 6 @ =

2
3 , 1
5 2

2
@=11 3.
2

The tableaur® has shape®\t with t = (0,0, 1) ands® = (1, 2,2). Sincer® # g,
the peeling procedure goes on. We obtain

1
2

and

@=11

which has shapa® \ t with s = (0, 1, 2). Nows® ¢ T/, so the procedure finally
yields t®) = r° = @. Therefore,r is totally 2-periodic.
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6.2. Decomposition ofGs,,. In the sequel we assunge 7| , is fixed. By a
slight abuse of notation, we will identify each vertek, §) of G5 Wwith its symbol
B(A, s). For anyv € 7, let H¢ , be the set of highest weight vertices {3, of
highest weightAy .

ConsiderB(d, s) € H{ . For any fixedk € Z, the contribution of all the integers
k in B}, s) to Wt(B(4, ) is equal todiex wheredy is the number of occurrences
of k in B(A, s). Each row contains at most a lettky thereforedx < | and dx = |
if and only if k appear in each row o#3(X, s). SinceB(X, s) has weightA, «, we
must havedy = | for any k < vy and d¢ < | otherwise. This means that the maximal
integer m such thatB(, s) contains each integek < m defined in Remark 5.10 is
equal tovg + 1. Let B(A, s), be the truncated symbol obtained by deletingBiix, s)
the entries less or equal 19. By Remark 5.10 (2), the reading &(A,s), is a reverse
lattice word.

EXAMPLE 6.4. One verifies that

1012 35 6
101 2 4

B, ) = 11 2 3
10

with s= (0, 2,3,5) is of highest weight, », with v =(—1,2,3,6). Then the reading of
3 5 6
4

(6) BQ, 9) =

or oo
N R
w NN

is the reverse lattice word
w = 65321042103210.

Sett(v) = (vo,...,v0) € Z'. Seti =v\t(v). Thenx can be regarded as an ordinary
Young diagram. We defing* has the conjugate diagram af We now associate to
$B(A, S)y a tableauT of shapei(v) = A* and weight

1-1
nv) = Y pete
c=0

where for anyc =0,...,I —1, uc = & — vp is the length of thec-th row of B(A, s)y.
Observe thatv* is simply the sequence recording the number of occurrenteaah
integerk > vg in B(X, s), (see the example below). Our procedure is a variant of the
one-to-one correspondence (reflecting the Schur dualéggribed in [10] between the
highest weight vertices of th&ly(sl,)-Fock spaces and the semi-standard tableaux.
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First normalize®B(, s), by translating its entries by-vo. Write B(a, s),, for the
resulting truncated symbol. It has entriesZno and its reading is a reverse lattice
word. Let T@ be the tableau with one column containipg letters 1. Assume the
sequence of tableauX@, ..., TC¢ D ¢ < | —1 is defined. TherT© is obtained by
adding in TV exactly u. lettersc + 1 at distance from the top row given by the
nonnegative integers appearing in th row of B(1,s)!,. Since the reading dB(1,s)},
is a reverse lattice wordl © is in fact a semi-standard tableau. We Jet= T(-3,

EXAMPLE 6.5. Let us comput&d for B(%, s), as in (6). We havey = —1
4 6 7
5

2 3
2 3
t

BQ, 9, = 3 4

RN R R

and we successively obtain for the tableali®

13 4
1 13 2 3 4
2 3 2 3 4
TO=(1), TW= ; T@=12 3| and T@=|2 4
5 2 3
3 4
4

We verify thatT® = T has shape.(v) = (3,3,3,2,1,1,1) and weight(v) = (1,3,4,6).

The previous procedure is reversible (farv € 7)o, fixed). Starting fromT a
tableau of shape(v) and weightu(v), we can construct a truncated symiBB(a, s)!,
next B(A, s)y by translating the entries by,. This proves that the cardinality 6
is finite and equal tdK, ) .y the number of tableaux of shapgv) and weightu(v).
We thus obtain the following theorem.

Theorem 6.6. Considers € 7| . As alfy(sls)-module the Fock spaceFs,, de-
composes as

Fooo = @ Voo (V) EKI000),

VET %

6.3. Branching rule for the restriction of V(s) to u(;(?[e). Considerse 7| .

We now give the decomposition @i, s(d) into its u&(;[e)—connected components. By
Corollary 4.3, this reflects the branching rule for the liegtm of V() from Uy (sl)
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to the ug](;[e) action. By our assumption we hawg < --- < §_;. It is then easy
to describe the symbols associated with thgartitions appearing it s(9). Indeed,
B(A,9) € Guo s(9) if and only if it is semistandard (see [6]). This means thatcolumns
weakly increase from top to bottom.

Assume thatB(A, s) is totally periodic iNGy s(P). Sets’ = (S5, ...,871) € Tie.
We define the level-part of the symboB(A, s) as the symbolB(d, s) = B(9, s°)
which can be regarded as a subsymbol&(iA, s) in a natural sense. The level O-part
of B(%, 9) is then

B(A, 5o =B, 9\ B, s).
For anyt € 7/ ¢, we set
S = {BQ, 9) € G 5(9) totally periodic| s° = t}.

The following lemma is immediate from the definitions of theepng procedures on
symbols and tableaux.

Lemma 6.7. Fix t € 7/e. The mapy: B, s) — B(A, s)o iS a one-to-one cor-
respondence between the setsafid Talf,. We have moreover

@) WA, S)oo = At.0o + WEH(B(X, 9)o).

EXAMPLE 6.8. Takee=2,s= (2, 3, 6) and

2 4 5 7
3 6 .
5

2 457 8
B, o=|1 3 6 € Talg,
2 5

with t = (0, 0, 1). We have Wi(, 9)x = At + ws + ws + ws + w3 + .

2 -1 0
B 9=| -2 -1 0
2 -1 0

N B

We obtain

Let Pssbe the subset oP,, of weightsv which can be written on the form

@) v=Aqeot+y() with t)eTe and y()= Y awcer

k>to(v)+e

where all but a finite number of the coefficierdg are equal to 0. Observe that the
previous decomposition is then unique. Indeed, for aay7; . and anyk > ty + €, the
weight A¢ oo + wx cannot be written on the formy o, with t' € 7/ .. Let B(A, s) a
highest weight vertex ofe s with weight v.
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Lemma 6.9. The (sl )-weight of B(A, s) belongs to B.. Moreovey we have
tv) =5 and y(v) = wt(B(1, 9o)
wheres® and B(}, s)o are obtained by the peeling procedure as(i).
Proof. In view to (7), the weight decomposes on the form
V= Ag o +WH(B(, S)o

where by Theorem 5.9 and Lemma 6.7, we haves 7/ and wt@B(A, s)o € 7. Set
WE(B(A, S)o = Y,z &wk. The entries ofB(A, s)o are those of the periods @ (1, 9)
and ay is the number of period§k, ..., k—e+ 1} in B(A, S)o. Let kg be the minimal
integer such thagy, # 0. By definition of the peeling procedure, the addition of the
letters{ko—e+1,...,ko} in the symbol5(9,s°), yields a symbotB (9, u) with u € 7j
butu ¢ Tie. Sinceu e 7y, we must haveko —e + 1 > 55, that isky > 55 +e. We
cannot haveky = 57 +e€, otherwiseu = (s},...,5°,55+¢€) € Tje. Thusky > s5+e€. Since
the decomposition (8) is unique, this imposes tha) = s° and y(v) = Wt(5(%, S)o)
as desired. O

Proposition 6.10. Consider a totally periodic symbofB(, s) in G () of
Uq(sl)-weight v.
1. The successive symbols appearing during the peeling pmeedf 5(x, s) of
Goo,s(9) remain semistandard.
2. The number of highest weight verticesdn, s(9) with U (sl )-highest weight €
Pe, Is finite equal to r, = |Tab(),)!-

Proof. Assertion 1 follows from the fact that the columns®fi,s) increase from
top to bottom and each entkyin a period is the lowest possible occurrence of the inte-
gerk in the symbol considered. Consid#(1, s) of highest weightv. By Lemma 6.9,
we have the decomposition= s° + wt(*8(A, S)o). Then the restriction of the bijection
Y defined in Lemma 6.7 to the symbols of weightyields a one-to-one correspond-
ence between the symbofs(i, s) of highest weightv and the tableau® (A, s)o of
shapes\ s° and weighty (v). Assertion 2 follows. O

We thus obtain the following theorem.

Theorem 6.11. Assume e is finite and considekE 7| «.
1. The crystalG,, () decomposes into irreducib[e(;(E[e)—components whose highest
weight vertices are also weight vertices for thg(sl)-structure.
2. Thely(sl)-weight of such a vertex belongs tq P.
3. The number of highest weight verticesdn, s(9) with (sl )-highest weighty €
Pe~ is finite equal to the cardinality &) = |Tabs),,o)l-
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By combining with Theorem 6.6, this yields the decompositad the Fock space

in its irreducibleu(;(sA[e)—components.

Theorem 6.12. Assume e is finite and consideE 7 .

1. The crystalGse decomposes into irreduciblél(;(;[e)-components whose highest
weight vertices are also weight vertices for tig(sl.)-structure G ..

2. Thely(sl)-weight of such a vertex belongs tq P

3. The number ou(;(?[e)—highest weight vertices iGe with Uq(sle)-highest weight
v € Peo is finite equal to M, = Zveﬁx Ko@) ummg -

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
&l
(10]
[11]
(12]

(13]

(14]
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