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Introduction

Concerning the Freudenthal’s suspension homomorphism £, we have an exact

sequence :

e, (57 Ly (57— ma(s), §7) — oy
where £ (S"*') is the space of loops in S”*'. The group 7,(2(S""), S*) is canoni-
cally isomorphic to the homotopy group 7,,,(S*"1; E?*1 E#*1) of the suspension triad.
Denote by @, the class [12]* of finite abelian groups whose p-primary components
vanish. The following isomorphisms are due to James [8].

TuEOREM (2:10). 7,(2(S*™),S™) and 7;.1(S**Y) are isomorphic if n is odd.

(2.10)". 7, (2(S™), S") and m;,1(S*™Y) are Cy-isomorphic if n is even.

For an odd prime p, (2-10)” is not true. However we have a ©,-isomorphism
[12] between 7,(S”) and 7, (S" Y+, (S*1), (n: even). Then it becomes more
important to treat the double suspension

E2=FE-E: 7, 1(S"Y) —71,(S") —> 7,,1.(S"Y) for even #.
For the space of singular 2-spheres 22(S"*1) =02(2(S")), we have an exact sequence :
> ;1 (S £2> i (8™ ——= 7, 1 (Q2(S™), S*) —> 71, o (877 —> - .

Let Sf=S"U¢e* U - Ue* be a reduced product [7] of n-sphere S” relative its
point ¢,, S is canonically imbedded in £2(S™*), and the injection induces isomor-
phisms 7,(S)~7;(2(S"1)) for i < (k+1)n—1. We consider the following exact
sequenence involving the group 7,-;(£2(S"*1), S* 1) ;
= 7 (2(S"), ) — 1 (2S5, S"Y) —> 7 (22(SMT), ST —— e

Then the main results of this paper are the followings.

THEOREM (2-11). For even n and a prime p, the groups 7;,1(2(S™Y), S;_1) and
;42(S?Y) are @ ,~isomorphic.

THEOREM (7-6). For even n and a prime p, the groups m;,_1(2(Sp4), S"*) and
7;(S™Y) are @,-isomorphic.

Denote by 7;(X; p) and 7;(X, A; p) the p-primary components of 7,(X) and
7;(X, A) respectively.

THEOREM (8+3) For even n and for an odd prime p, we have an exact sequence
o (ST ) AL (SP1 ) —s 7 ( (ST, $71; ) —s e for i>pr—1,

* Numbers in brackets refer to the references at the end of the paper.
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where the homomorphism 4 satisfies the relation doE?=f,, for a map f,: S"*—>
S?-1 of degree p.

Let S}’Z‘l be a mapping-cylinder of the map f,, then

THEOREM (8+7). we have an exact sequence:

- — T (S, S p) —> ﬂi(SfZ'ly Sty — 7, 1 (@2(S"), S" ) —> e,
for even n and for an odd prime p.

As a corollary, we have an isomorphism

87D’ 7Z'i-1(92(5”+1),S"’I;P>%7I,~(Sf;‘“1, Stn-1y for (<p2n—2.

James has pointed out that the naturality (8-4) for the exact sequence (8:3)
implies the following relations:

THEOREM (8-10) E2(7;_y(S™™*; p)) D p2(7:1(S™; p))
and

(8-11) P (i (S™5 9)) =0
for even n, an odd prime p and for all i.

In §1, we consider a space X which has the same cohomological structure as the
product space Y X A, with a map 2 : X — Y which carries a subset A of X to a
single point. Then h induces isomorphisms of homotopy groups 7;(X, A)~x;(Y).
This is also true for the cohomology mod. p, and % induces C,-isomorphisms of
homotopy groups. In §2, this isomorphism theorem is applied to a map #,: (S&,
Sp1) — (S22, e), so-called the combinatorial extension [7] of a shrinking map %, :
(Sg, Sp-1) —> (S?",e0). Then the theorems (2-10), (2-10)" and (2-11) are verified.
In §3, we calculate the cohomology of the loop-space £2(Sj-1) and some other spaces.
In § 4, we prove that the group 7;(S;_,) is @,-isomorphic to the group z;(S*-%)
for >2. This means that there is a map g: S — S? | such that the corres-
pondence (a,8) —> Ea+g,(8) defines a @,~isomorphism of 7;_4/SY)+7,;(S*1) to
ﬂi(Sf_l). Conversely, for even #, if there exists a map g: S?"*— S, _ such that
the correspondence (z,8) — Ea+g,(B3) defines a (,-isomorphism of homotopy
groups, then n=2p" for an integer ». §5 and §6 are devoted to the preliminaries
for §7 and §8 in which the theorems (7:6), (8-3), (8:7) and (8-10) are proved.
In appendix, we list several values of 7;(S™; p) for unstable cases from results
for stable cases.

1. A theorem for a map h: (X, A) — (Y, yo).

Let X, A and x, be a topological space, its subspace and a point of A. Let
I=[0.1] be the unit interval. Denote by 2(X, A4, x,), or simply by 2(X, A), the
space of paths in X which start in A and end at x,, ie.,

QX, A={fT—X|fOEA fQ)=x},
where the topology in 2(X, A) is the compact-open topology.

Let I'=Ix -+ xI be the unit i-cube which is regarded as a face I‘x(0) of

I*'=Ix I. Denote by I*+* the boundary of I'*! and by J' the complementary face of
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I': Ji=[*1—(['—]%). The homotopy group 7;.4(X, 4, %) is the set of the homotopy
classes of maps g: (I**), I**1 Ji) —» (X, A, x,). For the map g, we associate a map
2g: (I') 1) —> (Q(X, A, x0),f) by the formula 2g &, -, t) (1) =g (ty, -, D),
then the correspondence g—> £g is one-to-one and we have an isomorphism
(fo(I) =10
a-1 2 : 71 (X, A, %) =7, (2(X,A%0), fo), 1> 0.

Amap h: (X, A, x) —> (Y, B, y,) defines a map of path-spaces which is denoted by

Dh: (X, A, x) — 2(Y, B, y0).

For the homomorphisms %, and £k induced by the maps 2 and £k, we have

the commutative diagram :

i1 (X, A) _hi 7;+1(Y, B)
12 le 4 e
(X, A)) — 7;(2(Y, B)).

If A=x,, 2(X, %0, %0) is the space of loops in X and it is denoted by 2(X, x,) or
simply by 2(X). Fora map g: (Ii+, [+ 'y — (X, A, x,) we associate a map 2'g:
(I, I, J71) — (Q(X, x0), 2(A, %0), fo) by the formula Qg (b, g, 8) (8) =g (b,
t;-1,1, 1), then the correspondence g— Qg is one-to-one and we have an isomorphism
a.n’ 2" mn(X, A, x0) ~7;(2(X, x0), 2(A4, x0), fo) for i>1.

For a map %: (X, A, x0)—> (Y, B,y,) and the induced map ©24: (2(X), 2(A), fo)
— (2(Y), 2(B), fv), we have the following commutative diagram:

T (X, A M, mav B
1-2)’ | o o

7,(2(X), 9(A) P, 1, (2(Y), 2(BY).

Define a map (projection) p: 2 (X, A) — A by p(f) =50, f € 2(X, A), then we
have the commutative diagram :

ﬂ,.+1<x,lA> 0, nw
(1-3) 2 pr -
7,(2(X, A)) /

where 0 is the boundary homomorphism.

Now we define a sort of mapping-cylinder Z of the map /% as follows: the space

Z=(X—-x)X[0,) UY

is the image of X'x JU Y under the identification 7: Xx IU Y— Z which is defined
by 7(x, 1) =7(h(x)),x € X and 7(xo, 1) =%(¥0), 1€ I. Define two injections iy: X —>
Zand iy: Y— Z by ix(x)=7n(x,0) and iy (y) =1(y), then XN Y=x,=3,€ Z. Asis
easily seen that Y is a deformation retract of Z and the retraction »:Z— Y
is given by r(n(x,t))=7(x,1)=n(x)) and »(n(y)) =71 (y), then the composition
roix: X—>Z—> Y is the map ». Consider the following diagram

Ixs iy (Z) __j—> 7tie(Z, X) 0 ce.
\”id-l XD Ry iY*Tl"'* ‘Ql \E) ﬂ:l(X)/ .
- raV) Lomezxn " S,
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where 4=Qcjoiy, . The commutativity of the diagram is easily verified. Since iy,
7, and @ are isomorphisms, the exacteness of the upper sequence implies that of
the lower sequence.

Next suppose that 2 maps A to the point y,. For a point x of A, we associate
a path f, € 2(Z, X) by the formula f,.(#)=7(x,1),t€ I, then we have an injection

ia: A—2(Z, X), ia(x)=fa

such that the composition pois: A—> 2(Z, X)—> X is the injection of A into X.
In the diagram

. p) .
e 7] 7Z';+1<X,A) — 71',-(/1 [ e
(1:4) SO0 {’ l h, Jia o> (XD
e T (V) 4 m(2Z X)) — N

the upper and lower sequences are exact and the first and third triangles are com-
mutative. For the second square, the anti-commutativity holds:
14 doh = —(i4,0°0).

Proof. By the isomorphism £ of (1-1), it is sufficient to prove that £71(i,,(9/5))
equals to —Q (4 (£))) =— 2Ly, (1)) )=y, (s (—/))) for arbitrary
BeEm(X, A). Let g: (I, I iy — (X, 4, %) be a map of 2, then the element
27162, (08)) €7:14(Z, X) is represented by a map G: (I**, I ] — (Z, X, %)
which is given by the formula

G<f1, e b, fo41) =”7(§(f1, e, 0), 841).

Next the element j(iy, (h.(—/£))) is represented by a map G’ given by the

formula
G,(l‘1, R~ tive) =77(h(g(t1, 7S 1=4+0))) =n(g(ty, - St 1—ti1), D).
Define a homotopy G;: (I'+1, i”l, J) — (Z, X, %) for 0 =7=1 by the formula

n(gth, - b, t=22),0,  0=tas,
Gi(ty, -+ b)) = —t t
(g, -, 1, 0), —215—_17‘), 5= tia=1,
and for 1=¢=2 by the formula
nCgtt, 6, 2 ), 0shasL
Gty - i) = ¢
(g, -+, 1, 0), 22— 1), 75 =1,

then we have that G=G, is homotopic to G'=G, and that 27(i4,(083)) = j(iy, (k.
(=£))). Therfore the formula (1-4) is proved. qg.e.d.
Let @ be a class of abelian groups in the sense of Serre [12]. The five lemma is
applicable to the diagram (1-4), and we have that
Lemma (1-5) the following two conditions are equivalent.
D da, (A — 7, (2(Z, X)) is C-isomorphic for i =N and QC-onto for i=N+1;
i) hy:mia(X, A) —>7,4(Y) is C-isomorphic for i=N and Q-onto for i=N-+1.
In the following, we suppose that a coefficient ring R is one of the ring of
integers Z and the field of p elements Z,(p: prime). We denote by @y the class
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©z=0C, (when R=2) of the trivial group, or the class Cz,=C, (when R=Z,) which
consists of finite groups with vanishing p-components. Then we recall a generali-
zation of J. H. C. Whitehead’s theorem from [12, Ch. III]:

(1-6) Let X and Y be arcwise connected and simply connected spaces and let
Fi: X— Y be a map such that fy: m:(X) —>m(Y) is onto. If Hi(X) and H;(Y)
have finite numbers of gemerators for all i, then the following two conditions are
equivalent :

D fu: mi(X) —>7,(Y) is a Cr-isomorphism for i = N and Cgr-onto for i=N+1,

i) f*: H(Y,R) — H'(X, R) is an isomorphism for i =N and an isomorphism
into for i=N+1.

Now consider the following conditions (1+7) for a map %: (X, A) — (Y, y0).

HypoTHESES (1:7),1) X, A and Y arve arcwise connected and simply connected,
To(X, A) =7 (Y)=0 and hy: m3(X, A) —> 715(Y) is onto;

i) H;(X),H;(A) and H;(Y) have finite numbers of genmerators for all i, and
H.(Y,R) is R-free,

iii) there exists subgroups B and F of H*(X, R) such that the cup-product induces
an isomovphism BQ F~ H*(X, R) ;

iv) the injection homomorphism i*:. H*(X,R) — H*(A, R) maps F isomorphically
onto H*(A, R) ;

v) the induced homomorphism h*: H*(Y,R) — H*(X, R) maps H*(Y, R) iso-
morphically onto B.

The main purpose of this § is to prove that

TrHEOREM (1-8) if the hypotheses(1+7),1)—v) are filfulled, then the homomorphisms
R 701(X, A) —> 7.4(Y) and ia, : 7:(A) — 7,(2(Z, X)) are @ r-isomorphisms for
all 1.

Proof. Let E be the space of paths in Z which start in X, i.e.,

E={f:I—Z|f(0)€eX}.

We regard X as a subset of £ whose points are paths f: I—> x € X, then X is
a deformation retract of E. Let p: E— Z be a projection defined by p(f)=r(),
then (E,p,Z) is a fibre-space with the fibre £(Z, X). The composition X f_, E
—i Z ", Y is the map k. By the homotopy equivalences {: X — E and 7: Z— Y,
the conditions (1:7), ii)—v) are rewritten as the followings:

1.7, ii) H;(E), H;(A) and H;(Z) have finite numbers of generators for all
i, and H«(Z, R) is R-free;

iii) there exist subgroups B and F of H*(E, R) such that the cup-product
induces an isomophism BRF~H*(E, R) ;

iv) the injection i4: A —> 2(Z, X) CE induces a homomorphism i,*: H*(E, R)
—> H*(A, R) which maps F isomorphically onto H*(A, R) ;

v) the (projection) homomorphism p*: H*(Z, R) — H*(E, R) maps H*(Z, R)
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isomorphically onto B.

Applying (1-5) for the case €=, and N=1, we have from (1.7), i) that

17, 1) E, A, Z and Q(Z, X) are arcwise and simply connected and i, : 72(4)
— 7,(2(Z, X)) is onto.

Let (E?% be the cohomological spectral sequence over the coefficient ring R
associated with (E, p, Z). From (1-7)’, 1) and ii), we have isomorphisms (cf. [10,
Ch. 1I, Prop. 81)

EP'~H!*(Z, RYQH (2(Z, X), R).

The isomorphism of (1:7)’, iv) is divided into the composition : FC H*(E, R)—>
ES*CEy*~H*(2(Z X),R) — H*(A,R). Therefore F is a direct factor of H*
(2(Z, X),R) and d,(1® F)=0 for 2=7<co. Then d,(BQ F)=0 for 2=7. Consider
the image of BQFC E, into EZ which is a graded ring over H*(E,R) ~BQF.
Since IQ FCEY* and BR1CEY? we have that EZ~BRQF~EX°QEL*. Set
Fi=FNH{(Q(Z X),R) and suppose that HY(Q2(Z, X),R)=F? for qg<wmn, then
El?=FE? for ¢<n and the boundary operator d,: E!=»%""1 —s E»? has to be
trivial for ¢<<» and n=2. Therefore d,(E)") =0, E)"=H(E?") = E%" and H"(2
(Z,X),R)~EY"=E%"~F". The induction on the demension #z implies that i%:
H*(2(Z, X), R)=F~H*(A,R).

Since 7;(Z), 7;(X) and 7;(Z, X )~m;-1(2(Z, X)) have finite numbers of genera-
tors, H;(2(Z, X)) has also a finite number of generators for all 7. Applying (1-6)
to the injection is: A — 2(Z, X), we have that i,: 7;(A) — 7,(2(Z, X)) is a Cp-
isomorphism for all 7. Then the theorem follows from the lemma (1:5). q.e.d.

2. Reduced product of sphere and the group 7;(2(S™1), S;4)

According to [7] we denote by SZ the reduced product of the unit sphere S”
={(t,** tyr1) | £; : real numbers, X/£2=1} relative to its point e,=(1,0,:+,0), i.e.,, an
FM-complex generated by the points of S”—g¢, in the sense of [15]. SZ has the free
semi-group structure with the unit ¢, and its point x is represented by a product
x=x4 -+ x, for some x; €S”, i=1,--, 7. Denote that S/={x; - x|x, €S", i=1, -, k}
and that e*”=S;'— S/, then ¢*" is an open kn-cell and SZ=e,Ue"Ue*U - is a CW-
complex. Note that Sf=e¢, and S{=S". Define a map
2-1) d,:(S"xI, S"x TUeox I)—> (8", e0) which maps (S"—eo) X (I— i) homeomor-
Dhically onto S"™1—eo, n=0,
by the formulas d,((ty, - tyun), )= (1=20(1—1y), 2ty - 2t,.1 2(2(1—28) (1—£)) D)
and d,((ty, =, tyen), 1= ) =(1—=20(1—11), 2ts, -+ 24ty 1, —2(t(1—28) (1 —1))¥) for 0=t
=3(3=1—-t=1).

Define
(2+2) an extension d,: (SLxI,SLXI) —> (S™ e0) of dy=d,|SIx I,
by the formula d,(xy - xp, ¢—4-1)/(4,—24-9)) for 1=t=4 and for i=1,-,k
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where x; € S, x4+ x, € SFCSE, A=0 and /1,-=]_§p(xj, eo)/]illp(xj, e0) for the distance
function p. The map d, defines a continuous map
(2:2)" 7: SL—> 2(S™) =02(5", ).

As is easily seen 7 is one-to-one into and then 7 is an injection on S k< oo,
We define a suspension homomorphism E by setting
(2:2)" E=Qteiy: m;(S") —> m;(2(S"))~m;,1(S™).

By [71 and [15] we have that 7 induces isomorphisms of homology, cohomology
and homotopy groups :

(2:3) 1*: H*(Q(S™))~H*(S%) and iy : 7;(S2) ~ 7, (2(S™1)).

It is easy to see that
(2:3)" iy m(SL, S ~m(2(S™Y), Sp.

From the relations in the cohomology ring H*(2(S™*)) [10, Ch. IV, Prop. 18],
(2+4) for suitably chosen generators e; € H(SZ) we have the following relations (cup-
product) in them :

1) if n is even, then e;-e;=('}")e;.; and ey/=j! e;,

i) if n is odd, then es-esj=({)ea;rp, €2=0, €1°€s=0s,+01=0p;41 and ez’ =7 ! ez,

Next we introduce James’ combinatorial extension from [7]:

(2-5) a map f: (S}, St_1) —> (S&, &) can be extended over the whole of S% and
we have a combinatorial extension f: Si—> SZ of the map f such that f|SP=f. If
fi is a homotopy, then f; is also a homotopy.

The map f is defined briefly as follows. First we remark that f SHcSy for
some j< oo. For a point x=x; - %, (x; € S”,i=1, -+, £) of SZ, we define its image f(x)
by the formula f(x)=f (¥ - x) =I1f (%o - X,»), where o is a monotone in-
creasing function of (1, -+, k) intov(l, -+,1) and the order of the multiplication
II is an order of {s} such that ¢<o¢’ if and only if ¢(i)=0¢"(7), i=1,-,k —1 and
o(E") <o’ (k") for an integer k'=k. f(x) is independent of the representation x=x;
- x; and f is continuous.

For a given map f: (5% ¢) — (S™ e), we difine its suspension Ef: (S, eo)
—> (8™, &) by the formula Ef (d,(x,2)) =d,(f(x), 1), x € S*,¢€ I. The combinatorial
extension of f is a homomorphism:  f(x; - x)=f (%) - f(x:). Then
(2+6)  the compositions Q(Ef)ei : S&—> 2 (51— 0(S™) and i of : St,—> S& —>
R(S™Y) are homotopic to each other.

Proof. Define a homotopy F,: (S&xI, Stx ) — (S™+1 ¢,) by the formula
Fo i Gy oodtn, ) =dn(f (x5, (=20)/(A]—=4)) for 2]y=t=2{ and for i=1,-,k,
where x; € S’;, X1 X € SPCSE, AP=0 and 4)=(1-0) (J‘_Z:lp(xj, eg)/jélp (x;,0)) +0 (Jg}l
p(f(x)), e /,:21‘ P({(xj), eo))L Then F, defincs a homotopy fy: SZ — 2(S™1) such
that fo=2 (Ef)-¢ and fi=iof.

Define a map

q. e. d.
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@-7) Vo (I I — (S" @), =1,
by setting ¥;(#) =do(—1,¢t) and A, (ty, -, tyeq, £) =dys (Vo (b, - Eas), £)  for
n=2. Then +r, maps I"— I homeomorphlcally onto S*—ep, Define a map
@' ki = (St, Shoy) — (S, e)
by the formula Ay (Jr,(t1 -+ £0) = Yu(Ee-vinss, =, Ben)) = Peu(ty, -,tea) then Ay maps
e*"=S7%—S%_, homeomorphiclally onto S**—e¢, Let
@2-n” h: (S&, k1) —> (S&, e0)
be the combinatrial extension of 4, .
For a given map f: (S ¢) — (S™ ¢,), we define a map
(2-8) (f)*: (S*, e)) —> (S*™, )
such that the diagram

Slz- Skn
— k
» w4

is commutative. Obviously such a map (f)* is determined uniquely and continuous.
(2:8)" If a€x,(S™ is represented by f, then (f)* represents (—1)E¢-1m

(@oE™go woo o EEDO=mq) €71, (S*), where e=%kn(n+m) (B—1) and we orient

the spheve S” such that the map ~Jr, preserves the orvientations.

Proof. Define a map

(2-8)" G, r: (S"XS7, SV ST) — (5", ¢p)

by the formula ¢, ,(Y.(t, =« 8D, YeCotg, o, 0,)) =gy (ty, -, g, - L), (-,

to) €1, (uy, -+ u,) €17, then ¢, , maps (S"—e) X (S"—e,) homeomorphically onto

S""—¢,. Then we have the following commutative diagram

Sy St-vyn_J X IX (f) T Smx Sk-1ym
\lﬁbn, Ce—1n l(;bm, (k=1)m
s

st _ D e
where (Fx (f)* D (x,y) = (fx),(*2(y)). In the notation of [2], the diagram
shows that the class a, of (f)* is the reduced join of ¢ and «,_;. By [2, Th. 3:2.],
ap=(—1)EDnem) pre=bmg o prg, o and then (2-8)7 is proved by the induction on k.
q. e d
Let F be the combinatorial extension of (f)* then from the definition of the

combinatorial extension it is easily verified that the diagram
Sn hk Solgn
Voo
Su M, sy
is commutative. From (1-1), (2:3) and (2:6), we have the following commutative
diagram
s (570 270 52y s (S, St B 7500y
(2-9) lEf* B A [E

7S 2 Sy —> (S, S 7 sty
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where Hj, = 9~1°;*°hk* 2 mi(Sh, Sh1) —> m(SE) — 7, (Q(SPY)) —> 7,1 (SFY)
for =mn, m and H} is equivalent to %,.

The following theorem is due to James [8].

TuroreM (2:10). If n is odd, then m,(2(S*™"), S*) and 7;,1(S**Y) are isomorphic.

Proof. If n=1, this follows from the fact that 7;,1(S2%) ~r;,1(S® +x,(S1) and
7,(SY) =0 for j > 1. Now suppose # = 3. By the isomorphisms of (1-1) and (2:3)’,
it is sufficient to prove that A&, : 7,(S%, S*) —> 7,;(S%) is an isomorphism for all .
The conditions i) and ii) of (1+7) are easily verified for the map 4, : (S%, S") —>
(S% ey). Take generators e¢; € H*(S%,) and ¢ € H?"(S%) such as in (2+4) and such
that %f(e}) =e,. From the relatinos in (2-4), ks, satisfies iii) and iv) of (1-7) when
we set F'={eo, e;} and B={eo, €, €4, - }. We have that Aj(e)) =e.; since GO RS (e))
=h¥((eD") = (hf(e))) = (es)'=(i)es;, Then the map %, satisfies all the conditions
of (1-7) for R = Z, and the theorem (1-8) implies that h,, : 7;(S%, S")—>7,(S%)
is an isomorphism for all 7 > 1. q. e d
It is also proved in [8] that
(2-10)" if n is even 7,(2(S™Y), S and m;.1(S2"Y) are Cu-isomorphic.

This is, however, contained in the following theorem as the case p = 2.

TueorEM (2-11) If n is even and p is a prime, then 7;(Q(S™), S% ) and
;1(SP" V) are @ ,-isomorphic.

Proof. By (1-1), (2:3) and (2-3), it is sufficient to prove that %, : 7,(S%, Sj-1)
—>71;(S%) is a @-isomorphism for all <. Since %, is of degree 1 on e, we may
take generators ¢; € H(S%) and ¢, € H*"(St) such as in (2+4) and such that %} (e}
=e,. Set B={eo, ey €25 ) ®Zy and F= {ey, -+ ,ep-1} ®Z,. Then the conditions
1), ii) and iv) are easily verified for the map %, : (ngo, S%.4) —> (S% e) and for
the coefficient field R=2, By i) of (2:4), ej,e;= ("’ e;p4 and (F2}) =1
(mod. p) for 0 =i<p. Next, in the integral coeficient, we have that %} (e}) =%(2§)
(8)e;, since (GRS (e)) =hy ((€)?) =y (€)) = (ep)= () - ("D)e;,. Since 5 (34) -
(5 =41 - (3 =1 (mod. p), we have an isomorphism Ak; : H*(S Z,) ~B.
Therefore the map %, satisfies the conditions of (1-7), and we have from the theorem
(1-8) that h,, : 7, (Sh, Sjiy) —> 7 (S&) is a @,-isomorphism for ¢>1. Then
the theorem is proved. q. e d.

CoroLLARY (2-12). We have an isomorphism of p-primary components :

Hy=Hjoi* 1= of ol oi* 1 7,(2(S™Y), St15 ) ~7m,(Sk, Sh1; p)

(St p) A (2(SPY) ; p) R T (S p)

3. Cohomology of some path spaces

In this §, we suppose that » is even.
First we calculate the cohomology ring of the space @(S%.4) of loops in S%.i.
The path-space £(S%4 S?,) is a fibre-space with the hase S7., and the fibre
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2(S7_y). Let (E?4 d,) be the (integral) cohomological spectral sequence associated
with this fibering. Since 2(S%-1, S{-1) is contractible, E21=0 for p+¢g>0. Since
S#_, is simply connected and since Hy(S}4) is free, E4‘~H?(S}-1) @ H'(2(S}-1).
If an element a of E# 7 is d.-cocycle for »=s<t, we denote by &% a its cohomology

class in E#4 If p=0,n, -, (k—1)n, then EL?=FEP?=0 for »=2 and d,(r=2)
is trivial when 7=¢#, 2n, -+ , (k=1)n. Therefore we have isomorphisms #2: E3
=E;, 6%y Efi=Efun, 1=1,2, - k=1 and &V E¥ 4y, =E%. Consider
elements a € H*1(2(S?4)) and b; € H/*2(Q(St1)),7=0,1,2, - , such that
@D, i) dFEAQa)=r;®L),

i) bo=1,

i) de-1a(f-0,1Q0)) =kl p4(e-1Qa-bj-1).

Then

(3+2), i) the elements a and b; are uniquely determined by (3-1),
ii) and b,ob; = (FTHbiy;.

Proof. Since EY)'=E%" =0 and E®%=E%°=0, the sequence O————>E2’”"_d_">
E»°—>0 is exact. Since &2 are always isomorphisms, we have an isomorphism
(£2) tod;tog2: EB® ——> En0——> EO"1—» F%»1  Then a is determined uniquely
by (3-1), i). Since E%%2,1=E2%7=0 if p+q=0, the boundary homomorphisms
da.-1» are always isomorphisms. Since d,: 0=E;777"1——s E%? is trivial, E®{
C EY»? and («%_yn)t: EQ 4y, —> EP? is defined and an isomorphism into. Since
d,(E&D"0) =0, g2 is defined on the whole of E{ %%  Therefore a homo-
morphism  (£%-1,) 7 o dGlpn o £%-1yn: EFPH1 —> EEPmt — > poatle-Dr-1__5
Eyor¢m1 g defined. Then 1®b; is the image of e,_1®a-b;,_y under this
homomorphism and b; is determined by ii) and iii) of (3-1) uniquely. Next we
prove the formula ii) of (3:2) by the induction on the total dimension i+j. Obviously
bo+bi=b,+by=>;, Suppose that 4, 7>0, biy+b;=CiDbirj 1 and b;-b; 4= (H"1)
bivjo1. Since 1@®b; and 1®b; are d,-cocycles for 2 =7 < (k—1)n, their product
AQb)-1Qb;)=(1ARb;+b;) is also d,-cocycle for 2=r< (k—1)n. Then

A (10 (K-, 1 @ 0;+0,))

=dG-0n -1 @ b)) * k%, 1 X b,))

= K%/e—1)n((ek—1®ﬂ b_p-( ®bj)) +’C%k—1)n((1 ®b): (er-1®a-b;_1))

= k-0 (1@ @+ (bi-1+Dj+bi*bj 1))

=63 1n (€1 @ (CHTD + (D) abiviy)

=d- 12 (K%, 1 & (iij) bivs)).

By operating the homomorphism (x%-1),) ‘edgly, we have that 1®b;+b; =1
& (*+9) b,,; and then the formula ii) of (3-2) is verified. e. q. d.

Let P'(a, b;) be a subring of H*(2(S%1) generated by the elements a, by, b2,
------ ,and set P'(a, b;) =H'(2(S%-1))NP*(a, b;). Then
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LemMA (3-3). the elements b; and a+b; j=0,1, 2, , are of infinite orders,
and H'(Q(S2.))/P(a, b)) € C, for a prime p=Fk and for all t (n: even).

As a corollary,

(3:3)’ H"(2(St4), Z,) =~ P*(a, b;) ®Z, for a prime p=*k.

Proof of (3:3). Obviously H°(2(S%-1))=F%a, b;) =b,, so that we prove (3:3)
by the induction on the dimension #>0. Suppose that (3:3) is true for dim. <# > 0.

1), The case t=jkn—2)+in—1 and t=xjkn—2)+ (G+1)n—2 for j=0 and for
1=<i<k In thiscase, t—in+1xj(kn—2) and ¢t — in+1=xjkn —2) +n —1, then
Eimt-milay =il (0(S2.4)) € @, and Ein!~™1¢ ©@,. Since the coboundaries in E%?
are trivial, EY*= EY*DE}!D -+ DEY'=E%'=0 and d,, maps E9°'/E%L,,, isomor-
phically into Ei%'-i**1¢ Q,. Then E%iy,€ C,implies E%? € @, for 1 =i<k. There-
fore we have that EQ'~H'(2(Si-1)) €C;.

i) The case t=j(kn—2)+n—1. Inthis case t—in+1=(G—1)(kn—2)+ (k—i+1)
n—2 and Eim'~ "1~ H7m1(Q(St)) €C, for 1 <i<k Similarly to the case 1),
E%/E%L,,€C, for 1 < i< k and this implies thet £3,'€ @, Since d,(x2(1Q®a-b;))
~d, (218 @) k51 ® b)) = k(e @by, the sequence : B3 —> EP /(1 ®ab)) I,
Ent=1/(x2(e, b)) = H ™1 (Q(S11))/{b;}) €C, is exact and #2(1Ra-b;) has to
be of infinite order. Then E¥!/k2(1Q®asb;) ~H'(2(St 1)) /{ab;} € @, and a<b;
is of infinite order.

iii) The case t= (j+1) (kn—2), j=0. In this case ¢t—in+1=jkn—2)+(k—i—1)n
+n—1 and Eim!= "1~ H'7"1(0(S1.1)) €Q, for 1=i<k—1. Similarly to the case
i), E%Y/E%E, €0, for 1=i<k—1 and this implics that E$*!/E%",,,€ C,. Since
din(E (=Dm t=G=Dt1y () the sequence E=i-bn,t=tk=i=Dn ﬁ)E;i—i)n,l—(lz—l)m—l i@%
E@qBmwt-G-bnel 50 jg exact. Since t—(k—i—1Dn=jkn—2)+(G+1)n-2,
Eék—i—pn,t—(k—-i—l)nth-—(k—i—l)n(‘Q(Sz_l)) €@, and E{--bnt-t-i-bng @, for 1=i<k
—1, and then «%,4,, is a @,-isomorphism for 1 =i<k—1. Therefore the homomor-
phism (£%-1),) od Ghon® £fpyn: ESnIED s D -G s BOL 4y >
E%* is a @,-isomorphism, since d -1y, is an isomorphism. This isomorphism maps
€1 ®ash; to 1@ b4, then H-*D»1(Q(SE 1)) /{ab;} € @, implies that H'(2(SE1)/
{b;+1} € @, and the element b;.; has an infinite order.

iv) The case t=j(kn—2)+in—1 or t=7(kn—2) +in—2 for j=0and for 1 <i<k.
Since d,(k}(e;-1®axb;)) =d,(£5(1Qa)) « £} (€;-1Qb;) = £5((1®1) « (¢;-1QD,)) = £} (1e;Qb;)
by (2-4), 1), the boundary homomorphism d,: ES V% itn=2n-1___5 Finitn=2 jg g
@©,-isomorphism for 1 =i < k. Then we have that E{D®itn=2+n-1c @ and Ein -1
€@, for r>n and for 1=:<k. It is easily seen that in this case the image of
din: E®? —> Eint-int1 helongs to @, for 1 =i<k. Then by the same argument as
the case i), we have that H'(2(S7.1)) € C,.

Consequently, for all dimension >0, H(2(S%-1))/P*(a,b;) € @, for s <timplies
H'(Q(S%-0)/P'(a, b;) 3@, and the lemma (3-3) is proved by the induction.
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Next we prove that
(B+4) H'(2(St1, Sp2)) ~H *D"1(Q(St1)) and H;(2(St-1, St-2)) ~ H ;i (r-1n11(2
(SE) for i>0.

Proof. Let E?? be the spectral sequence associated with the fibering (2(S%-4,
St1), 2(8%1, St2)) —> (St4, Si-») whose fibre is 2(S%_4). Since the pair (S},
S%_5) is acyclic, the spectral sequence E#¢ is trivial for » = 2. Then H*D"1(Q
(St1, S1-0), 9(Sty, Sp2)) = EE=Pm1 = Ef=Dmt ~ HED" (St 4 St ) @ H (2(Sk-1)
~H'(2(S%1). Since the space 2(S%-4, St-1) is contractible, the coboundary homo-
morphism §: H* D" (Q(S)y, Sis)) —> HE D™ (Q(Sty, St0), 2(Sta, St-2)) is
an isomorphism for (A—1)n+g—1>0. Therefore, by setting i = (A—Dn-+g—1, we
have the isomorphism (3-4). For the homology the proof is similar. q. e d

Let i: 2(St9) —> 2(S%4, St-2) be the injection, then
(3-5)  the injection homomorphism i* . H*2(Q(S% 4, St_5)) —> H*"2(Q(S?.4)) is
a @ -isomorphism for a prime p=k=2.

Proof. Let E2? be the spectral sequence mod. p associated with the fibering
0(Sty, Sp_2) —> Si_», then Ep =~ H*(S} o, Z,) Q H'(2(S%4), Zp). By (3:3)", E?
=0 when En—2=s+q=kn—1, (s,q) >, kn—2) and (s, )=, (+1)n-—-3). Then
the operator d, is trivial in E$? if s+qg=Fkn—2, thus EY*2=E%#k~2 and EQkr2-s
=0 if s>0. Since the injection homomorphism ¢* is represented by the composition
H"2(0(St4, St-9), Zp) —> ER2CEY 2~ H*"2(Q(St4), Z,), i* is an isomor-
phism with the coefficient Z,. By (3:3) and (3-4) the groups H*(2(S%4)) and
H*(2(S7-1, Si2)) have no p-torsions. Then the injection homomorphism ¢*: H* (2
(Sty, Sp2))—> H*2(Q(S%1)) is a Cj-isomorphism. q. e. d.

ReMaArk. It may be proved that the homomorphism (£%_1y,) Tedgiyioki—1ya:
EfDme s Ehaort-be-t g equivalent to the homomorphism i*og~t: HEDw1(9
(St.q, St-1,), 2(St4, 2_o)) A HEDma(g(S2 4 S1 o)) —=>HEDra1(9(Sz 1)), Then
the isomorphism of (3-4) maps b;.; to @-b, and, in (3-5), by is the image of a
generator of H* 2(Q(S}_1, Si2)).

Consider a complex K’'=S5% sUe". Then
(3-6) the following two conditions ave equivalent (p = k)

1) eh=0 in H*"(K', Z,).

i) H"2(QK"), Z,)=0.

Proof. ey-e, 1=te, for an integer # and for a generator ¢, of H*(K’). Since
ei1=(k—1) e,y and (k—1)!# 0 (mod. p), the condition i) is equivalent to

)’ ¢t#0 (mod. p).

Let E$ 7 be the cohomological spectral sequence mod. p associated with the fibering
QK',K')—>K’, then Ey?~ H(K’, Z,) QH (Q(K"), Z,) and E¥ is trivial. As
the proof of (3:3), we see that H'(Q(K"), Z,) =0 for n—1<i<kn—2. Since
d,: EQ™2 —— Epk == g trivial for 2= r<(k—1)n, we have an isomorphism #2,_1),:

iz . N o . .
EY* 2 2 EQMi52 . Since E¥My2 4= E$-Bmn' =0, we have an isomorphism d(s1»
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E%kn52 =~ E%-Bmr1 Since the coboundary operator d, is trivial in E%*-0%"1 for
n<r<(k—1)n, we have an isomorphism &%%,,: E%P"" 1~ E%-Bn*1  Since
d,(Ef"22) =0 if k> 2, the sequence 0 —> E V"1 — s Elk-Dnn-1l__, Fkn,0 jg
exact if £#>2. If k=2 the sequence 0 — E¥ %2 Em»l__, F2w0 jg exact.
Consequently we have that H**(Q(K"), Z,) =~ E»*2=0 if and only if d,:
E-0mn-t ___, Fkno ig an isomorphism. Since d,(k2(e;_1 @ a)) =£2(e1+e,-1Q® 1) =t£2(e;
®1) and since 2 are isomorphisms, the conditions i)’ and ii) are equivalent.

q. e d.

4. The group 7;(S%;), n: even

In this § we suppose that » is even.

First we consider the case # = 2. Let M, 4 be the (k—1)-dimensional complex
projective space. There is a fibre bundle (S*, po, M;_1) with the fibre S. Then
we have an isomorphism 7;(My_1) ~7;(S2# 1) 47, 4(SY) for all { and 7,(M,-1) =0 for
2<i<2k—1. Since the dimension of S%_y is 2k£—2, the identity on S? is extended
over a map

f: S%~1 — M
and these maps f are homotopic to each other.

TueorREM (4:1) The map f induces a C,isomorphism fu: 7,(S5_4) —> 7, (M 1)
~7;(S* V) +1;_1(SY) for a prime p=k=2.

Proof. By (1:6), it is sufficient to prove that

f*: H* My, Z,) ~ H*(S34, Z,).

Let e;,2=1,--,k—1, be generators of H#*(S%_;) such as in (2-4). From the
definition of f, there is a generator e of H2(M;-1) such that f*(e) =e¢;. Asis well
known, ¢’ is a generator of H? (M, ;) for 0=i=<k—1. Since f*(e") = (f*(e))'=(es)’
—ile, and since i! £ 0 (mod. p) for 0=i=k—1<p, we have that f* is a ©,-iso-
morphism for all dimensions. Then f* is an isomorphism of mod. p. q. e d.

(4+2) Theve is a map g: S**— S} 1 whose class in 72,_1(S3_1) is not divisible
by p for a prime p=rk. Then g.: 7,(S*™) —> 7,(S%.y) is a Cuisomorphism for
1>2. (k= 2).

Proof. The first part of (4-2) is easily verified from (4-1). Since po, : 72p-1
(S%*) — 79,1 (M,_4) is an isomorphism, there is a map g’: S*'——= 5%~ such
that the compositions pyog” and fog are homotopic to each other. Then the degree of
g’ is not divisible by p. Since g’ induces @ ,-isomorphisms of the cohomology groups,
g’ induces ©,-isomorphisms of the homotopy groups by (1:6). Then po, °g%=fiogx
is a ©j-isomorphism. Since po, is an isomorphism for 7> 2 and since f; and g% are
@ ,-isomorphisms, g, is a ©,-isomorphism for > 2. q. e. d.

(4-3) There is a map go: S*2—— Q(S%,) such that (p=Fk)

gk sz'z(.Q(S%_l), Zp) %szmz(szk%’ Z,).
Proof. Let T be the universal covering space of 2(S%.y) and let ¢:7—>
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2(S2_)) be the projection. Then we have that H(2(S%2_1), Z,) ~ H (T, Zy)+H'™
(T, Zp) and o*: H*2(Q(S%y), Zy) ~ H**(T, Z,) (cf. [10, Ch. I, Prop. 4, Cor. 1.
By (3:3)’, H' (T, Z,) ~ H'(S*"2, Z,) for i <4k—4. Then there is a map g’: S*2
—— T such that g*: H**(T, Z,) ~ H¥**(S**2 Z,). Then (4-3) is proved by
setting gy = dgog’. q. e d

ProposiTioN (4-4). Let n be even and let p be a prime=k=2. If there is
a map g: St —— Sty such that (29)*: H"2(Q(St v, Z,) ~ H"2(Q(S"™), Z,),
then the correspondence (a, §) —> Ea-+g./ defines a C,-isomorphism 7;_1(S™™) +7;
(S*r 1y —> 7, (S?_, i>1.

Proof. First consider the case # =2 and consider the universal covering space
T of £(S2_y) as in the proof of (4-3). Then there exists a map g’ : S¥2— T
such that peg’ = Qg|S%*2 Since H'(T, Z,) =~ H'(S*72, Z,) for i < 4k —4, gi: Tap»
(S%#-2) —> 71y, 5 (T) is a Cyisomorphism. Therefore the class of £g|S*™ in
Tan2(2(S%.4)) is not divisible by p. Since 7;_1(S1) =0 for > 2, 7,(S*™*) =0 and
11 (SY) ~ 1,(S%_1), (4-4) is proved, for n=2, by (4-2).

Next consider the case #=4. Define a map G: S"'x2(S* 1) — 2(Sty) by
the formula G(x, y) =i(x) * 2¢(y) where = indicates the product in loops and i is
the injection of (2-2)’. It is easy to see that the induced homomorphism Gi:
i1 (S* X (S —=7;_1(2(S%y)) is equivalent to the correspondence given in
(4-4). By (1-6), it is sufficient to prove that G* : H*(2(S7_)) —>H*(S"1x 2(S¥*1))
=H*(S"YH Q H*(2(S* 1)) is a Cpisomorphism. Let e; be generators of H/**=2
(2(S*1)) such as in (2-4) and let @ and b; be the elements of (3-2). We may
set G*(0;) =1Qg*(,) =1Qt;e; for some integers f;, By the assumption of (4-4),
%0 (mod. p). By the assertion of (2-4), and (3-2), ii), we have that 1®#jle;
=1Q (ke = (G* (b)) =G* (b)) =G*(j'b,) =1Q®t;jle;. Therefore t;=¢{%0 (mod. p).
Obviously G*(a) is a generator @' ®1 of H*(S*1x2(S*™)) and G*(a-b,) =t;(a’
®e;). Then it follows from (3-3) that G* is a ©,-isomorphism. q. e d

Lemva (4+5) Let n be ecven =4 and let p be a prime =k =2. Then the fol-
lowing two conditions ave equivalent,

i) there is a map g: S* ' —> St 4 such that (2% : H"2(Q(Sty), Z,)
~ H"2(Q(S"™), Zy),

i) there is a complex K= St 1Ue™ such that ek=0 in H"(K, Z,).

Proof. Consider a map g’ : S**—- S7_;and a complex K’'=S% ;Ue* in which
¢* is attached by the map g’. Let G’ : S*%——> 0(S74) be the restriction of Qg’
on S*ECQ(S* 1), Define a space 2'=2(S%1) Ue™™ by attaching a cell ¢** with
the map G’. Let d: 2(S%-1) X I—> S%_; be defined by setting d (x, ) =x(¢), then
d is extendable over d: @’ x [—> K’ such that d maps ¢ x (I—I) homeomorphically
onto ¢*. This shows that £’ is imbedded in Q(K’). Let ¢;: 2 —> S 1 and ¢,:
K’ —> S* be maps which pinch 2(S?_,) and S%_, respectively. In the diagram
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’

iy ~ ”
7 (2, Q(Si1)) —> 7, (2(K), 2(Si-1)) & 7 (K, Sip)

¢1* ‘¢2>.<
. (Sh1) E 7,04 (S

the commutativity holds, where i is the injection. By making use of [3, Th II], the
homomorphisms ¢y, ¢.,, E and also i* are isomorphisms for i= (k+1)n—4. Then
14 77;(Q) —>7;(Q(K’)) is an isomorphism for i< (k+1)n—4. By (1-6), i*: H!
WQEN~H Q) for i< (k+1)n—4. In the exact sequence-—>H'(Q’, Z;) —>
H(2(S1-0), Zp) O, miny, Q2(St_), Z,) —> +-- the coboundary homomorphism §
is equivalent to the homomorphism (Qg)* : H (Q(S%.4,) Z,) —= H' (2(S*™™), Z,)
for i < (#+1)n—4 since we have the {ollowing commutative diagram

H (9S40, Z0 -2, H*1(@", 9(S1)), Z))

A\t

‘G’* Hi+1(skn—1, Zp)
7

(Rg"H*
Hi((S"1),Z,) G™* Q
HI(S"2,Z,) i’ Hiv1(Eb=1 Ghn-2 7.

¥
N

where G’ is a characteristic map of ¢ such that G'=G’|S*2 and the map
i is the injection. Therefore H*2(Q(K"), Z,) =H"2(Q’, Z,) =0 if and only if
(QgH*: H"2(Q(St1), Z,) —> H"2((S*1), Z,) is an isomorphism. Then (3:6)
implies the lemma (4+5). q. e d.

THEOREM (4:6). 1) If p >k, then theve is a map g: S —= Sy such that
the correspondence (a, 8) —> Ea+g.(8) induces a Csisomorphism : m,_1(S*™) +7;
(S —>7,(S2_1) for all i >1 (n: even).

If the assertion of 1) is true for the case p = k, then n/2 has to be a power of p.

Proof. 1) is proved from (4:5), (4-4) and (2:3) by seiting k= S?. If n=2,
i) is true for the case p=Fk since (4-2). Suppose that n=4 and %k =p. Consider
the map G which is defined in the proof of (4:4). Then from the assertion of i),
G, induces C,-isomorphisms of the homotopy groups. By (1-6), we have an
isomorphism G*: H*(Q(S} ), Z,) ~ H*(S*"*x 2(S"™), Z,). Then (Qg*: H*2
(S350, Zy) ~ H™2(Q(S*Y), Z,). By (4-5), there is a complex K= 5% { Ue”
such that e?=0 in H’(K, Z,). For the Steenrod’s operation P"Z we have
that Pv?: H"(K, Z,) ~H" (K, Z,) since P"*e;=e?. Consider the map d,: (S7_4
X1, S14x 1) —> (S™1 ¢p) of (2-2). We construct a complex L=S""1U e and
amap D': (K x I, Kx I)—>(L,e) such that d, = D’'|S7_;x I and that I’ maps
e’ x (I-1) homeomorphically onto e?**!. Identifying the subset KX TUexIof KxI
to a single point, we obtain a suspension EK of K, and the identification defines
a map D: EK——> L such that D*: H' (L, Z,) ~H'(EK, Z,) for i=n+1 and
i=pn-+1. From the commutativity of the Steenrod’s operation P%? with D* and
the suspension homomorphism (isomorphism), we have that P%?: H"''(L, Z ,) ~ H"**
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(L,Z,). If n/2 is not a power of p, then by the Adem’s relations in P/ [1], [6],
P2 is a linear combination of iterations of P’ for 0<j<n/2. Since P/(H"(L, Z,))
C H"2C (L, Z,) =0 for 0<j<mn/2, P/ and hence P"% are trivial. This cont-
radicts with the fact that P"2 is an isomorphism. Therefore #/2 has to be a power
of p. q. e d.
REMARK We have that (4¢6) is true for the case p=~% and n=2p. This
follows from the fact that the cokernel of E2: may2_o(S271; p) —> 70,2 (S p) s

Z, (see appendix).

5. Relative Hopf invariant and applications

Let A and B be spaces and let @, and b, be points of A and B respectively.
Denote by AV B the subset A XbyUayX B of AXB. Let i3: A—> A Xb,CAXB
and iy: B—> a3 x BCAX B be the injections and let p1: AV B—> Aand p,: AV B
—> B be the projections. It was proved in [16, § 4] that the injection homomor-
poisms iy, : 7;(A) —>1,(AV B) and i, : 7,(B) —> 7 (AV B) and the boundary
homomorphism @ : 7;,1(AX B, AV B) —> 71;(AV B) are isomorphisms into and that
we have a direct sum decomposition
5.1 m(AV B) =iy, 7w (A)+is, 7,(B) + 073 (AXB, AV B) for i>1.

A homomorphism
5:2) Q: 71 (AVB)—> 7 s(AX B, AV B) given by the formula Q(a)=0"1(a —i1,
(P1,(@)) =12, (Po, (@) is the projection to the thivd factor of (5-1).

It follows from the exactness of the homotopy sequence of the pair (A V B, A)
that the injection homomorphism j.: 7;(AV B) —> 71,(AV B, A) is onto and its
kernel is 71,7,(A). Therefore
(5-1)" m(AV B, A) = j(i5,7:(B)) + ju (0m:4(A X B, AV B)) for i > 1.

Similarly, from the exact squence of the triad (AV B; B, A) we have an isomorphism

(5-1)” F%ojuod : mia(AXB, AVB)~mn,(AV B; B, A) Jor i > 2,

where jli: 7;(AVB; B, A)—>n;(AV B; B,A) is the injection homomorphism.
Projections

(5-2)7 Q : 1,(AVB, A) —> 7;,1(AXB, AV B)

(5:2)" and  Q": m (AN B; B, A)—> i1 (AXB, AV B)

are defined such that the diagram

7.(AVB) 7%, 7. (AVB, A) 7, 7.(AVB: B, A 29

(5-3) \Q lQ’ / Q"
> i1 (AX B, AV B) ©
is commutative. Then Q"= (ji0jw00)™, Q' =Q"ji and Q=Q7cj}oj,.
Let K, be an (n—1)-connected finite cell complex and let ¢, be a vertex, n=2.

Attaching an 7-cell ¢" to K, by a characteristic map
we (I, I, 70 —> (Kyw e, Ko, e,  7=2,
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such that 2 maps =i homeomorphically onto ¢, we have a CW-complex
K=K,wv¢. Denote by 1 and I7 subsets of I' given by If.={(ty,,t) €I |t, = —12—}
and I"={(ty,, ) € I" |}, = —%-}. The image of 77 under the map p is a closed 7-
cell E” and its boundary is an (r—1)-sphere S”! containing e, Set Ko=Kow ¢
1), then Ko E"=K and Ko~ E*=S5""1 As is easily seen, K, is a deformation
retract of K, and 7, (K, Ko) ~ 7;(K, Ko) for all . Define a map
¢: (K; E", Ko) —> (KV S"; 57, K)
by the formula ¢(x) = (x, ¢, for x € K, and

(et troa, 21, €0), 0=t=1

@(ﬂ(t P tr— 5 tr)) = B
' ! (50» "L"r(tlv"'vtr—-ly 2t7_1)>7 %’étr =1

for (t4,--, t,_y, t,) €17, where +r,: (I7, I —> (57, ey) is a map of (2:7). Then ¢
pinches the sphere S to a single point eyxey of KV S”. Let
¢, (KXS", KV S) — (E'K, ey)
be a map which maps (K—ep) X (S"—¢,) homeomorphically onto E"K-—e° A space
EX is called a suspension of X rel. xo € X if there is a map
d: (XxI, XxI O xoxI) —> (EX, %)
which maps (X—x¢) X (I —I') homeomorphically onto EX—x,. The sphere S7*!
is a suspension of S” rel.e¢, by the map d, of (2-1). The space E™K is a
suspension of E’K, if we define a map d: E"KxI —> E™K by setting d(¢,(x,y),
D=¢,ualx, d,(y, 1)), x€K, yeS”, t€l.  Therefore E’K is an 7-fold suspension of
K.
Now we define homomorphisms H, H’ and H” by
(5+4) H=d,4oQo00y: 7,()) —>m;(KV 8)—>m1(KXS", KV S§)——>1m1,1(E"K),
(56:4) H=¢,oQ copy: 7 (K, Ko)—>m(KV S, K)—>m;1(Kx5", KV §8)—
71 (E7K),
(5:4)" H'=,40Q"0gy: m,(K; E", Ko)—>n, (KN S7; S7, K)—>m, 1(KxS", KV
S —>m; 1(ETK).
By (5:3) we have a commutative diagram
1K) —>m,(K, K)) —> 71:(K: E7, K¢o)

(5+5) \\H lH’ // H

T (ETK).

The homomorphism H’ is refered as a relative Hopf homomorphism.

(5+6) If n, ¥>2, then the homomorphism H": m,(K; E", Ko)—>m,.1(E'K) is
an isomorphism for i < Min. 2n+2, n+v, 20)+r—3 and onto for i=Min. 2n+2,
n+7v, 2r)+r—3.

Proof. Since (KxS”, KV S") is (n+r—1)-connected and K VvV S” is (Min. (n,9)
—1)-connected, the homomorphism ¢, is an isomorphism for i-+1<Min. (#, 7)+#n
+7—1 and onto for i+1=Min. (n, ) 4+n+7r—1 by [3, Th. 2]. Since (Ko, S,
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(E7, 5% and S’ are Min. (s, #) —1, #—1 and (r—2)-connected respectively, the
homomorphism ¢y : 7,(K; E", Ky) —>7;(KV S7; S§7, K) is an isomorphism for i <
Min.(n, ) +27—3 and onto for i=Min. (n, ») +27—3 by [9, Cor.(3-5)]. Since @”
is an isomorphism, (5-6) is proved. q. e d.

In the diagram

o (B, ST L 7 (B R o) — (K3 BT, Kg) —ene

2,0 oi) N\ N
7ia(S Ly mcsn Smr k) L iR,
the commutativity holds, where ¢’ =psop: K—>K V S”—>S” and E is a sus-
pension homomorphism. Since E is an isomorphism for i—1 < 2(»—1) —1, we have
that 7, (K, K,) =Image i.-+Kernel ¢ for i <2r—2 and that i, is an isomorphism

into and ¢% is onto for i < 2r—2. It follows from the exactness of the upper
sequence of the above diagram and from (5:6) that

67D 7K, Ko) =7 (S)+1;1(E"K) for i<Min.(2n, 7)+7r—2 and the projections
to each factors are ¢4 and H'.

The homotopy class of the map p is a generator of 7,(K, K,) and it is denoted

by the same symbol x. Define a homomorphism
P mipi1(Ko) —> (K, Ko)

by the formula P(a)=[«, #], a €1;,.1(K,), where the bracket indicates the gener-
alized Whitehead product [4]. Then
(5:8) the homomorphisms P; 7 ,1(Ko) —> (K, K and py: m: 7, I —>
7:(K, Ko) ave isomorphisms into for i <Min.(2n, »)+r—2 and we have a direct
sum decomposition

(K, Ko) = psra(I7, I7)+ Pri_,1(Ko) for i < Min.(2n, v)-+r—2.

Proof. 1t is sufficient to prove that the compositions ¢ou, and H’oP are iso-
morphisms onto for 7 < Min.(2n, »)+7—2. It is easy to see that ¢los is equivalent
to the suspension homomorphism E: 7,_1(S"1) —> 7;(S”). Then ¢louy is an iso-
morphism for ¢ < 2r—2. Next consider the homomorphism H’oP=c,.oQ opyoP.
For an element o €7, ,.1(Ko), ¢x(P(@)=g¢sla, n]=[ox(@), ¢+()]1=[os(@), 3],
where ¢, is the class of 1. Since ¢ is identical on Ko, ¢.(a)=i4(a) for the
injection ¢ : KoC KV S”. Therefore ¢,(QTik(a), ¢, )=H'(P(a)). E*K is a
suspension of E*K with a map d: ESKxI—> E*"K such that d(¢p,(x, y), £) =1
(x, d,(y, D). For a representative g: (I', [Y) —> (E°K, ¢;) of Bem(EK) we
associate the class £ € 7, (EHK) of a map Eg: (I''Y, I**Y) —» (E*K, ¢,) by
the formula Eg (4, 1) =d(g(ty, -, t,), t:+1). Then we have a suspension homo-
morphism E: 7,(E*K) —m, 4 (ESK). Since E*K is (Min.(n, #)+s—1)-connected,
E 1s an isomorphism for ¢ < 2Min.(n, 7)+2s—2.

Let f: (Zi-+% ') —> (K, ¢,) be a representative of «. Define a map
FXArg o (T sty s (Kx S5, KV S by the formula (f XAy (e, bmprs)
=(f by s bimpit)y Yrsimpinye, tioyrsir)) and let a Xeg€ 7,51 (KX S, KV S°)  be
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the class of fx+r,. From the definition of the mappings, we have the formulas
E(pso (f X)) = Psuao (f Xpsn)  and  E(Psx (@ X)) = Psiax (@ Xesy0).  Therefore
¢,x(axe,) is an r-fold suspention E7(i.(a)) for the injection homomorphism i :
Tieyi1(Ko) —> 7,14 (K). For the boundary homomorphism 0 : 7; 4 (KxS", KVS”)
—>7;(KV S™), we have that 0(zX:,)=[ix(a), ¢,]. Then aXe=Q (8(xxs,))
=Q'[i%(a), ¢,]. Consequently we have the formula H' oP=E"0i,. Since the pair
(K, Ky) is (r—1)-connected, the homomorphism iy : 7,1 (Ko) —> 7Zipa(K) is an
isomorphism for i—7+1 < r—1. The #fold suspension E”: 7;_,1(K)—>7;.a(E"K)
is an isomorphism for i—7+1 < 2Min.(%, ») —1. Then H’-P is an isomorphism for
i < Min.(2n, v)+r—2. q. e. d.
Analogous discussions are allowable for the case K—K,= Ue’ We replace £

by the union UE’<,) of & cubes E7¢;) having a smgle pomt eo 1n common, KV S”
by ¢(K)= Kv (U S’(,)) and E"K by ¢, (KX(U S’(,)))— U E"(»K, where S7(j and
E"»K are copies of S7” and E’K. Then as an analogy of (5 7), we have an iso-
morphism
(K, Ko~ U ")+ U E7 oK)
~3 (ST + s (BT KO)

for ¢ <Min.(2n, »+r—2. Let p;: (I, I") —> (K, K,) be characteristic maps of
e¢; and denote by u;€ 7, (K, K,) the class of p;. Define homomorphisms
P;:mi1(Ky) —> 7. (K, Ko)
by the formula P;(a)=[a, #;]. Then we have that
ProposITION (5:8)" If i < Min.(2n, v)+r—1 and n, v < 2, then pj. and P; are
isomorphisms into and we have that

k .
7 (K, Ko) =2 (e, (17, 1 D)+ Pitioy 1 (Ko)).
7

Next consider the case n=2. Then
(5:8)" the formula of (5-8)’ is also true for the ease n=2.

Proof. If n=2, Min.(2n, ¥) +r—2=Min.(v+2, 2r—2). Obviously (5-8)" is true
for i =7 Then it is sufficient to prove that (5:8)’ is true for i=7+1>4. The
composition ¢ tje s 7,a (I, 1) —> 10 (B Ko) —> 7,207 = 337,00 (S7) s
an isomorphism into since the suspension homomorphism E: 7,(S"™) —> 7,.1(S")
is an isomorphism for » > 3. Then u;, is an isomorphism into and its image is a
direct factor of 7,,;(K, K,). Similarly to the proof of (5-8), we have a commuta-

tive diagram
7o (Ko) —i 7,.1(K, Ko) \H’
i e UEGK
7 (K) Lo mn(BE)
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where pj, is an injection homomorphism onto a direct factor 7,.2(E"(HK) of
T ( GE’@K ). Since 7, and E are isomorphisms for » > 3, P; is an isomorphism
into a];(i its image is a direct factor of 7,.4(K, K,). Obviously the images of ujx
and P; are disjoint and we have a direct sum decomposition
(K, Ko) =ty a T, 1)+ Pyma(K) + A

for a direct foctor A of 7,.1(K, K,). Now consider a path-space 2(X, K,). By
a-1), r,.1(K, Ky) ~7,(2(K, Ky)). Similar calculation to (3:4) shows that

H:(QK, Ky) ~H;1+(2(K, K), 2K, Ky)) =~ H,(K, Ko) ® H;_,1+(2(K)), 1i>0.
Then there are a CW-complex L= jQIS(Bl-i—Ljegw (ny=vr) and a map f: L—>
2(K, K,) such that f induces isomorphisms of the homology and homotopy groups.
Set L0=j£JlS§,~‘)1, then 7,_1(Ly) ~ 7,_1(Lo) zkm.l(L) and 7,(L,) is a direct factor of
7,(L) which corresponds to the factor jglﬂj*ﬂ,ﬂ([ I of mea(K, Ky) =7, (2
(K, Ky)). From the exactness of the sequence: 7,(Ly) — 7, (L) —> 7,(L, Lo)
—> 7, 4(Ly) —> 7,4(L), we have that

7,(L) /7, (Lo) =~ 7, (L, Lo) ~H,(L, Ly) =~ H, (L) =~ H,(2 (K, Ko)) ~ H,(K, K)®
Hi (2(K)) =~ H,(K, Ko) ®m (2(K)) =~ H,(K, Ko) Q72(K)=~H, (K, Ko) 72 (Kp).
Therefore g}lezz(Ko)ﬂ—A is isomophic to H,(K, K, Q 7m2(K,). Since K, is a simply
connected finite cell complex, 7,(K) has a finite number of generators. Then the
factor A has to be trivial, i. e,

k .
71K, Ko) =;l(/xf*ﬂr+1(1 ", I7) + P2 (Ko)).

Consequently (5-8)” is established. q. e. d.
Denote by (S™* the topological product S”x---xS” of k n-spheres, k> 2.
Define a permutation ¢;: (S")*—> (S"* 1=j=#Fk, by the formula o¢;(xs, %)
= (xz,...’ Xjy X1, Xjrty e, ...xk). Set
ek”= (S”——eo)k, e{k—l)nzeox <Sn__eo)k-l’
Sty =S8"X (e)* ™, eo=(e0)",
eV =g;(ef* "), Stp=0;(St),

K= (S”)k_ek” and Ky=K— 'Ljae‘(ik—l)n’
Jj=1

then K, K, and U S%, are (k—1)n, (k—2)n and n skeletons of (S")*= (g, v e")*
respectively. Define a map
W (I [y —> ((SME KD

by setting r$® ¢y, ten) = (Wt 1)+, VralGvonat, = ten)). This map P is a
homeomorphism on ¢ and then it represents an generator : of 7,,((SM* K).
The group 7,(K,) is a free module generated by the classes ¢; of the maps ¢jov,:
I"—> §"=S%, —>S%;, C K,, We may take characteristic maps z,: (J:"b, Jobm,
JEDY — 5 (K, K, e,) such that u,=g,ox; and that s, is homotopic to .
Denote by u;€ m¢-1,(K, K) the class of ;.
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ProposiTioN (5:9) If n=2 and k>2, then we have a formula
0= 23 (=D s, 1]
Jor the boundary homomorphism 8 : 7,,((SD*, K) —> mh1(K, Kop).

Proof. By (5:8)’ and (5-8)”, we have a direct sum decomposition Tpn1(K, Ko)
- i(,,aj*ﬂkn_ (I¢=0r, [=0m) 4 P (Ky)). Then 0 has a from 0: Zuﬁxa )+ Zc,,]
[L,, ,u]] for some elements a; € 7y, (J¢D" [¢D7) and some 1ntegers Ci,j-

Let projections p,, : (SH*—> (S")*1 1 =m < &, be defined by setting p(xy, ",
xp) = (Xg,e++, %) and p,=pio0,r. P, maps e P homeomorphically onto a cell
e — (§7—g) k1 of (S™* 1 and maps K—e% 7 onto a subcomplex L= (S™*™*
—e* D" of (S™*1, Then the composition piox; is a characteristic map of e*™”
and piopy=pio0yt00,0 = Puostm. As is easily seen, the elements p,(:;) for izrm
form a system of the generators of 7,(L) and p,, L(tm)=0.  From (5:8), Trn-1
((SM* L) = (Do tt) sna (TED?, [ED) £ Prr (L) and poslis, £al, 13m, are
linearly independent generators of Pz,(L). If j2=m, then (pnon,) I* ™" C L and
thus (P01 «(2,) =0 and p,.(«;)=0. From the commutativity of the diagram

Tea((SM*, K) j" Tin1 (K, Ko)
Ve | £ms
0 = 7, ((SH*, (SD*Y) — 74 (S, L),

we have that 0= (bus()) (0 =2i(hue 1) (@), e, tunlen 11= (bus 1)
(am)+ Zc,, m Pmsel iy ttm]. Then it follows from the above decomposition of 7pu-1
((S”)"“1 L) that a,,=0 and ¢, ,=0 for i2rm. Therefore we have that

6£=]Z::16‘j, j[r.j, ,uj].

Next we determine the coefficient ¢;, ,. Let a map & : ((S")*%, L)—>(S¢*™",
€,) be defined such that & oD =af,_sy,, then & maps e* ™" homeomorphically
onto S* D" g, Define a map & : (S —>S"xSE*D" by setting & (x4,+, %2)
=(x1, & (xg,x)) and €;=&007%  Then &;(K) C S*V S¢D”, £;(Ky) C S" and
Ejopj=Eroa o0 ou=E oy is a characteristic map of the cell SV S¢-H"—S%
Consider the following diagram

e ((SMF, K) B Tin-1 (K, Ko)
&, L&
ﬁkn(S"XS(k l)n S”\/ S(k 1)n> _977.’”1 1(5;1\/ S(k l)n n)

Obviously #14(:) is a generator of 7, (S"xSC¢D# S\ S¢DHn) and its boundary
is, as the definition, the Whitehead product of the classes of +, and ¥,
Therefore 0(€14(e)) =[€14.(c1), E1(t) 1=614l 1, 14]. Since o¢; is a homeomorphism
of degree (—1)C™Dm £, (3:) =0 (&1 () = 0(E1(051(:))) = 0 (614 (=D 7)) =
(=D, ], Since &;op,=&10m, &0 (0,°41) = &14y and (§;00,°71) (S”) =¢, for
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j=1i, we have that &;..(u:)=E1(1t1), Eie(e)) =814 (en) and &;.(¢;) =0 for j=ci. Then

(DD [, ]=8:4(00) 7;2;6'/', L€ (e, () I=ci, L6140, Ere () =i, i€1ulen,

m]. Since €1.[1, #1] 18 a generator of the infinite cyclic group P7,(S") C Zpu

(87 v SEDr Sm) (by (5-8)), the equality (—1)C ™D, [ ey, sy =c;, i€14Le1, £2] implies

that ¢;, ;=(—=1)¢"  Consequently we have the formula (5-9). q. e. d.
Now consider the reduced product S% and define a map

7 (SDF—> St

by the formula 7,(xs,--, xz) =2%1:+-%;.  Obviously 7,(K) C St4, 7:,(Ky) C Sy and 1,
maps "= (S")*— K homeomorphically onto e¢*"=S%—S7?_;. Also each e{ = 1=j
=k, is mapped by 7, homeomorphically onto e*™*=S8%_,—S7? .. The composition
Ppop® (I, [P —> ((SMF K) —> (S7, Sfty) maps I*—]* homeomorphically
onto ¢"=S2—S7_, and the composition Zjonzelr® 1 (I* I*) —> (S ¢)) coincides
with the map . Conversely a characteristic map p : (I* I"”‘) —> (S7, St
is homotopic to 7oy if and only if the composition Aoz’ has the same degree
as that of Y. We take also the composition #740py: ¢ —> K—> 87 | as a
characteristic map of e*™®*=8%7_,—S% , and it is denoted by s« Then g=%,0u;
for 1=i=<Fk and the composition hj_qou: (JE=Dn JE-Dry 5 (SEDr o5 g
homotopic to Y- By applying the homomorphisms induced by the map 7, it
is deduced from (5-9) that

(59 if n=2 and k>2, we have a formula

k .
0.=3 DD, 4]

for the boudary homomorphism 0 : 73, (S%, St—1) —> Tpp1 (S%—y, S%_) and for the
classes ¢ € pu (S}, St-1), nEZGa(St-y, Si-ndand €7, (St of VP, n and
respectively.

In particular
(597" 0c=Fk[:1, 1] if n is even.

Let a map

en=¢: S} —> S}V SEH"

be defined as in the begining of this § by setting K=S% , and K,=S%_, and by
using the above characteristic map ..

(5:10). Let n be even. Let «, and i1, be the classes of the maps r, and
Y1), vespectively. Then we have a formula

@nx(0) =14(0) +RLc 0y ¢Ge-1n]
Jor the boundary homomorphism 0: 74, (S%, Sp1) —> Tp1(S?_,), the induced homo-
MOYPhism @u, : Tia1(SPa) —> Tpu1(SE_4V SE) and the injection homomorphism
Uit Tpn-1(Sf1) —> Tpa (SPqV SED™),

Proof. In the diagram
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e (S%, Si1)
A
Thn-1(Sh-1) —> Tu-1(Sh1, Si2)
;i Py i Prg
Tin-1(St-1) —> Thu1(Sh1 V SED") = 714, 1 (Sp1 V SED, Sh )
the commutativity holds. As is easily seen ¢, (1) =Js(e¢e-1n) € T(h-pn(SfaV SED,
St and @u, G =¢s. Then ji(@u,(00)) =jx(klen c-0a) by (5:9)”. From the
exactness of the lower sequence of the diagram, there is an element a of 7.y
(Sfy) such that iy =@, (00) k[t tG-pa) Let pi: SpyVSED”—> St ; be the
projection, then it is easy to see that the composition pio¢, is homotopic to the
identity of S%_,. Also the composition psoi: S, —> SpVSED —» St , is the
identity. Obviously p1, (¢(e-14) =0 for the homomorphism p,, induced by the map
D1 Then a=py, (x(@)) =p1, (@0, (00) =L, tGe-10n]) = P1, (¢, (02)) =0c.  Therefore
Oy (00 —RL ey, tG-1n]=14(02). q. e. d.

6. A map 7:92(St, Sip) —> 22(SH)

Let 22(X, A) be defined by £2(X, A)=2(2(X), 2(A)) in the notation of § 1.

22(X, A) is a space of singular 2-cubes:
XA = (f:IP—> X fUHCA F(JD=x6€X)

with the compact open topology. For a map g: (I [ Ji*Y) —> (X, A, xo),
define a map @2g: (I, I") —> (@2(X, A), f,) by setting 22g(h, -+, ;) (uy, uz) = g(ty,
oy byt ), (B, - ) €10, (uy, up) € I2. Then the correspondence g—> 22g induces
an isomorphism
6-1) Q7 (X, Amr, (22X, A), >0

By an analogy of [16, § 4], we shall define a map
(6-2) Q:2(AVB, A) —> R2(AXB, AV B)
such that the diagram

2 (AVB A r(AxB AVE)
(6-2)" 0 B @

7, 1(Q(AV B, ) @5 1, (22(Ax B, AVB))
is commautative.

Define maps 7/, 7 : 12— I by the formulas

134, 0=3H=1—b,
t, 1=ty =3t = 144,
VB =3 1 1q4h=3h=2
1, 9 =3t =3,

and 7 (ty, t) =1—n" (1 —#, 1s), (t, 1) €12 For a path f of Q(AV B, A), we associate
a singular 2-cell Qf€ 22(Ax B, AVB) which is defined by the formula
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Qf (t, o) = (P1(f (0" (1, 2))), p2(f (0" (11, £)))),
where p1: AVB—> A and p,: AVB—> B and the projections in § 5. The conti-
nuity of the maps 7', 77, f, p1 and p, implies that of the map Q. Then
(6+2)" the diagram (6-2)" is commutative.
Proof. Let i:2(AVB) —> 2(AV B, A) be the injection, then the diagram

T(AVB) T m.(AVB, A

71(2(AV B)) 5 7 1(Q(AV B, A))

is commutative. First we prove the commutativity of the diagram

7(AVE) - 7,.(AxB,AVE)
o o e
71 (2(AV B)) =5 7,1 (22(AX B, AV B)).
Let g: (I¢, fi)——>(AvB, aoXby) be a map which belongs an element & of
m;(AVB). It is calculated directly that (8o (22) 1cQ4o0)(B) is represented by a
map G : (I', I') —> (AV B, apxby) which is given by the formula

(P1(g(ty, =+, b1, 1=31)), bo), 0=1,=1/3,
Gty -, o1, 1) ={g(t1, vty 3,—1), 1/3=t;=2/3,
(o, p2(g(ty, =+, ti1, 3=31))), 2/3=t,=1.
Then G represents —iy, (p1,(B))+B—io, (p2,(3))=0(Q(L)) by (5-2). Since 9 is
an isomorphism into, 0o (22) 1oQyo2=0Q implies that (£2) 1o@),02=0Q. Therefore
(6+2)"" is commutative. Since j is onto, (6:2)” follows from (5-1)" and (5-3).
g. e d
From the definition of @,
(6+3) @ maps the subset 9(A, A) of 2(AVB, A) into the subset £2(A, A) of £°
(AxB, AVB).
For given two maps f: (A4, ap) —> (A%, a) and g: (B, by) —> (B, by), we
define maps fxg: AXB—> A'xB’ and fVg: AVB—> A'VB by (fxg) (a,b)
=(f(a), gb)) and fVg=fxg|lAVB. Then the diagram

Q(AV B, A) i) P2(AXB, AV B)
©- lerver 5 lecrxo

Q(A'VB,A) —> Q2A'XB,A'V B)
is commutative.
Let a map
@t Spoq—> Spy Vv SEH”

be defined as in § 5 by setting K=S% 4 and Ko=S?_,. Remark that psop, is
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homotopic to %,_; of (2:7)’. Define a map
P11 Spyx St —> S
by the formula ¢;(x, do((=1), H))=x(t), x€S;_,CR(S"™), tel Inductively, by
setting ¢, (x, dy_1(9, ) =dprp1(P,_1(x, ¥), 1), x€ S%_y, y € S™7Y, we obtain a map
b, (SpaxS", Sp4VS) —> (5", e), 7=l
Remark that the restriction ¢,/S”x S” is the map ¢,, of (2-8)”.

Now we define a map
(6-5) hi @Sty Sop) —> Q2(S™)
by setting 2= 0% 1,°Q°2ps: 2(Sh 1, Sh-») —> 2(Sj4VSED", Sp_) —> (i
XSEDn Sn_\/SE-Dm) > 02(SP). The restriction of # on 2(Sj-p Is also de-
noted by the same symbol
(6-5)" h: (St —> 22(S™)

From (6-3), we have easily that
(6-6) h maps Q(St_,) to a single point eo of 2*(S™).

Consider the map ¢, : (S}_4xS”, S7_,VS") —> (E”"S}_4,¢0) of § 5. Since ¢,
maps S}_y X S"—S?_,V S” homeomorphically onto E”S} 1—e, there is a map &,:
E’St_,—> S™" such that ¢,=&,°¢,. Then from (5-4)’, (1-2) and (6-2)" we
have a commutative diagram

7i(Sh1, Sho2) —> i (EFD"SE ) ‘ﬁk‘l)n*—> 7;.1(S*)
Q2 7 Q¢
7,-1(2(St1, Si-2) . 7,1 (22(S*).

LemMMma (6+7) The induced homomorphism h*: H*2(Q2(S*)) —> H" (2
(St_y, S2_,)) is an isomorvphism onto (n =2,k > 2).

Proof. As is easily seen H™2(Q2(S*))~Z and H'(£*(S*))=0 otherwise
for 0 < i< 2kn—4. The similar result is true for the homology. By (3-4), H*™
(QCSt_y, S ) ~H"(Q(S}_)~Z. By (5:8) and (5:8)", m;(2(S}—y, Si-2))~Tin1
(S_y, St_) A g (SED") gogr; o (EEDS2_) for i = bn—2 =(k+1)n—4 and H’ gives
a projection to the second factor. Let f: S 2 ——> Q(S?_y, S7_») be a map whose
class in 7, (2(S7_y, S7_,)) corresponds to a generator of 7, (E¢®™"S;_;). In the
above diagram, {1, and £? are isomorphisms if ¢ =/kn—1. Thus the composition
fof: S*% —> Q(S7_y, Sp_y) —> 92(S™) represents a generator of 7,-»(22(S™)).
Then (hof)y: H;(S*2) —> H,(22(S*™)) is an isomorphism for i<2kn—4. By the
duality, f*oh* : H*2(Q2(S*)) —> H"2(Q(S?_y, S}_p)) —> H"=(S**) is an iso-

morphism. Since these three groups are isomorphic to Z, 2* and f* have to be

isomorphisms. q. e. d.
Let @y, ,: 5?91 —=85%\/S% be a map which represents the Whitehead product
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[is 4] Of the classes ¢, and ¢, of the maps r, and r,. Let ¢, ,: (S?xS?, S?V ST
—> (S?", ¢,) be a map which is given by (2-8)”, then ¢, , maps S?xS7—S?V S5?
homeomorphically onto S?*?—¢g, Define a map t,,,: 2(S?**™) — 22(S?*%) by
setting
(6+8) 75, o=22Py, ;oQ0Rwp 2 (S —> Q(SPV SY) —> 2(S?x S?, StV S —>
QST

Then
(6+8)" the induced homomorphism tp,, :7;(2(S?*™)) —=>7;(Q*(S?*)) is equivalent

to the suspension homomorphism, that is, the following diagram is commutative

m(STY) T (St
. |
i1 (Q(SPD) — 2T 7,1 (02(SP).
Proof. By (1-2) and (6-2)", it is sufficient to prove that ¢,,, cQcwy, . =E.
Let E?*? be a closedcell bounded by S?*?7% then there is an extension &,,,: E**?
—> S?%x S? of wp,, such that the composition ¢, 00, ,: (E?H, STty —» (S,

¢, is a map of degree 1. In the diagram

mi(sety Lo (B, srn

- W °@pygx
®p, gy @p, g%

TSPV S)) <O ma(SPx 87, Sty §7) Phas L2 (o)

the commutativity holds and ¢, ,,°®,,,.°0;*=L. By (5:1) and (5-2), Q-9=iden-
tity. Then ¢, 4, °Q0wp, ¢, =Pp, 0, °Q°0°w®p, 4,005 =E. q. e. d.

Remark. Consider an injection 7:S?**—— Q(S5#*7) of (2:2)’. Then £{ and
7p,¢ induces the same homomorphism. It is, however, a problem whether the maps
2i and 7, ,are homotopic to each other or not.

Let X: S —>S%_, be an attaching map of the cell ¢*"=S}?—S7?_; such that
X represents the element 9: of (5-10). Let f3:S*™*—— S*'he a map of degree
k. Let t:2(S"™) —> £2(S*) be the map 74, (s-vn= L2°Ps, -02°Q° Loy 41— Then

LEMMA (6+9) the compositions to2f, and heQX are homotopic to each other,
that is to say, the diagram

2
oty X oisiy

l of, l h
2(St ) _;gz(skn)
is homotopically commautative.
Proof. By the definition of = and %, it is sufficient to prove the homotopical

commutativity of the following diagram :
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.Q (Slm—l) .
2f 2x
0 (Slm—l) // oW \ ‘Q(SZ_I)
i €Y €))
Rou, (k-1 2 (Sk”_lv MY S(k_l)") 2 Pn
R
2(S"v S¢t-vr) 1Q 2(Sp4V Sck-1my
3) 4@

Q((SP1V S™) x S¢-vr, Shn-1y §ry §k-1ym)

) ) Q
/ 22(px1) Y(gxz)
(5)

23(S"x S-1%, S SCh-17) Q2(S{yx S¢-D%, Sp v Sy

% (b-Dn / 221
gg(s.kn)

whnere p:S¥1yvS"—> S is the projection, g: S**~1VvS*—= S7_, is a map defined
by X=g|S#¥1.S"1 5 S?  and the injection g|S":S"CS} 4, i:S"—>S" is the
identity and W :Sk1—— Sk-1y Sy SGt-9" i a map which represents a sum

thn-1+kLin ¢-1a] for the classes ¢py1, ¢, and e(_1), of the maps Ay, s, 4, and
Yri-1)s rEspectively.

Since the compositions @, —v.°fr and (pVi)o W represent the same element
Rl e -1n], they are homotopic to each other. Then we have the homotopical com-
mutativity of the square @. By (5:10), ¢,oX and (gVi)o W represent the same
element 7,.(0:) +E&Len ¢(-1n] and they are homotopic to each other. Then the
homotopical commutativity of ® holds. By (6-4), the sequares ® and @ are
commutative. Consider a diagram

((S#1V S™ XL ey x o x TU (S §7) x H—E2L 5 (St 4 x I, g IU Siax I)

i‘PXi’ ldn
(S"x I eox TU S"x 1) G, (™1, eo)

where ¢ is the identity of 7 and d, and d, are the maps of (2-1) and (2:2).
Since X=g|S*1 is an attaching map of e*=S%?-—S#_, and since d, can be extended
over S%, the composition d,o(g|S™1xI) : (S#1xI, egx [USH1x[) —> (S ¢p)
is nullhomotopic rel. e;xIUS*1x ]  Since the compsitions d,o(gxi’) and d,o
(px1i") coincide on S*xI and since d,((pxi’)(S¥21xI))=e, the above diagram
is homotopically commutative. By making use of the map dy: (—1) XxI—> S, we
see that the following diagram is homotopically commutative when 7=1:

((Skn—l Vi Sn) XS’, Skn-1 V.S Sr) _gXZ_’> (S};_lx Sr, 2—1\/ Sr)
lp X, p lqi
(8"xS7, §"V 87 — > (8", o)
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where 1, is the identity of S”. Let F®: ((S¥ 1y S") x S1, S#-1y 7y S1) —> (S,
¢) be a homotopy between F§¥=c¢o(gxiy) and FP=¢, 10 (pxi). Define a
homotopy F{7: ((S*-1vS") x §7, S¥1y 5"V S") —> (5", ¢y) inductively by setting
F(x, d1(y, $)) =dp,1(FV(x,9),s), x€ S 1yS" ye S™1 se¢l. We calculate
easily that F§’=d,o(gxi,) and F P =, o (pxi,). Then we have the homotopical
commutativity of the above diagram, and therefore the homotopical commutativity
of the sequre ®. Consequently the homotopical commutativity of the diagram
(6-9) is proved. q. e. d.

Let f: (S” e,)—>(S™ ¢;) be the suspension of a map f”: (S*7, ¢;) —> (S”4,
e), i e, f=Ef’, f(dw1(x, ) =dn1(f"(x), ). Let f:S}_,—> S;'y be the combi-
natorial extension of f,i. e., f(%1+%pv) =F () - F(Xp-1), %;€S” i=1,--,k—1. Then
we obtain a map (

(6-10) of : (2(St-0), S —> (2(Sf», S"™
such that Qf |S"1=f":8"1—> S"1CQ(SIy.

Lemma (6-11) For the map h of (6+5)', we have the following homotopically
commutative diagram

(2 Sty, s — Y casry, s
k 2(f)* K
@&, ey > (g2, o)

where (f)* is defined in (2-8).
Proof. We shall prove the homotopical commutativity of three squares in the
following diagram

of

(2(Sip, S —= (2(Spp, S™ Y
L¢n _(D 2en
k-1
(2(SEaV SEDm, p(Stp) —2 VDT ocsm v S0, oS

Q @)

(2(St_yx SE=D1 Sy \/ SE-Dm) | 02(S1_)) Q
L(Fx(HFD
—_— T T
PPa-sn (X SED™, STV SEDm, @(SE)
® l 2P Ge1)m

LN

(22(S™), €0) (22(S*), eo),

then the lemma follows from the definition (6:5) of the map 7.
Homotopical commutativity of @, follows from that of the diagram
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(Sty, Shy) ——————> (St4, St
l @ @ k l o
-1
(Si-1V SED" Sh) _—"fﬂf) —> (ST VvV SEDm S )

since S"1CQ(S ), ¢,(S5_o) TS%i_y, r=n or m, and f(S}_,) CS¥, For a map g:
S*" 11— §71 we define a map E,g: (S* ¢) —> (S™, e,) by setting Eyg(4,-1(¢, x))
=2n-1(t, g(x)) where 4,_4:IxXS"*——> S7” is a map given by 4,_1(¢, t,-+-,1,)) = (2f—1,
20t =123y, , 2(t—12)3), r=n or m. Ey,g is a sort of suspension of g and p(x, &)
=p(Ey.g(x), e;) for the distance function. Since f is a suspension, there exists a map
g and a homotopy
J1:(S* e) —> (S, o)

such that fo=f=Ef" and fi=FE,g. Let Ej, and E;_ be hemispheres of S” such
that Ef = {(ts,-+, t42) € S7[t1 = 0} and Ef_={(fy,, t,+1) € S7|t1 = 0}. Let E{V7 be
a closed cell in e* ™" given by E{¢ V7= {x;x,41€ Sh_4|x;€ E}_, i=1, -, k—1} and
let S P71 be the boundary of E{27, Define a homotopy 0(’) S”—> S” by

the formulas 6 (A,_1(#, 2))=24,_1(A+Du, x) for 0=u é% and 07 (A-1(n, %))
=A,_1(t+u—tu, x) for %g u =1, and define a homotopy O :S;_,—> S%_; by the

formula O (x3---xp 1) =08 (x1) -+ 057 (X4_y), %;€ S7, i=1, -+, k—1. Then 6§ is the
identity, O™ <fi=f10{", O (Sj_1— (Eé"‘”’—Sé""”’“l)) C S}, and 65 maps E§0r
— S§=vr-1 homeomorphically onto e®*5"=S; ;—S% ,. In defining the map ¢, we
may chose a characteristic map p: (J¢=7, JiEDr J=br-1y (S%_4, Sj_s, €0) Of
e* 7 such that EFPrCEC™ =u(I% 7)., Define a map

@y Shg—> SV SEDT
by setting ¢;(x) =¢,(x) for x€ S5_,=S;,UnT% ") and ¢;(9) = (eo, 2—1(0(3)))
for y€ EC¢-17. Then ¢ (E¢ D~ E#r) =¢gyx ey and ¢n(f1(3)) =1V D™D (¢h(9))
for y€ E¢D7 Define a homotopy £ :S%_—>Si_, by the formulas & (x)=x for
x€ S%_, and
p(ty, =, A+Dte-0r), tav, = 4,
u(ty, o, A =Dt 3 = te-vr
for (t1,-ta-n,) €EI*D7 then & is the identity and &[S} .=¢,|S7_s=¢St_.
The homotopical commutativity of the diagram

&7 (uh, -, tav)) = |

(Si-1, Si-2) _—“‘L“’ (SHa, Sie
l @n, <1> ! l O
f1 V (fl)k—l

(StaV SED ST D

> (SpaV S¢Sy

is shown by a homotopy F;: (S}, Sip) —> (Sp VvV S¢E=b» S7 Y which is given
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by the formulas F;(3) = (¢, (fi(3)) = (/iV (¥ (¢,(»)) for y€ E¢D" and
R {(%ﬁﬁ"_’é%’? 0, 0=t=4#,
EMyofieo) (1), $=t=1,
for x€ Sy Let po:S;_,VSED" 5 SE he the projection. From a homotopy
Rp10O8 1 (ST_y, ST_p) —> (SED7 g)), we see that the maps %,y and psog, are
homotopic to each other. Since the map u is chosen such that p,o¢, is homotopic
to h,_y, the maps ¢, and ¢, carry E*-D” onto S¢~Y” with the same degree. Since
¢, and ¢, coincide on S}_,, there exists a homotopy
@7 (Shy, Sieg) —> (S VSED7, 8§10
such that ¢f” =¢, and ¢{”=¢,. By (2:5), f;:(Sj_y, St —> (Si4, Sip) is a
homotopy. Also (f)* is a homotopy. Then it follows from homotopies ¢{™ of;
and (f;V (¥ Dop that the homotopical commutativity of ®” implies that of @".
Consequently the homotopical commutativity of the square @ is established.
The commutativity of ® follows from (6-4).
Homotopical commutativity of ®. By making use of the homotopy f;, we see
that the homotopical commutativity of ® follows from that of the diagram

-1

(Spax SEbn Sty Se-bry  [iX (D' (Spyx Stbm, Sy v Se-bm)

l a1 3 l Pl
(S*, eo) _ﬁi_) (S*, e).

For given two maps g: (S?, ¢) —> (5%, ¢,) and g’:(S?, e)) —> (S, ¢y), we
define a reduced join [2] gxg’: (S?*¥, ;) —> (S77, ¢,) by the following commuta-
tive diagram

S x S ﬁi) S xS
l ‘?’)ﬁ, 24 l qsq, q’

* o
Sg+ql g g Sq+q/

where the maps ¢, ,» and ¢, , are defined in (2:8)”. Then (gxg’)*g”=g=*(g’*g")
and gxi;=Eg for the identity ¢;: S'— S%. By theorem 3.2. of [2], i;*g repre-
sents (—1?*ES for the class S€7m,(S?) of g By (2:8)", (fD*™* represents a
suspension. Then there exists a map g: (S¢D" 1 g)) ——> (SEDm1 gy such that
ipg is homotopic to (f1)*%. Since p(x, e)) =p(f1(%x), &), we have that Q(Efy) ¢
—=iof; in (2-6). Then from the definition of ¢, we see that the diagram

Si_yx St fixts 7 xSt
b1 Py
gn v _‘Ef; gffﬂ-l

is commutative. Since 1), %, b1, 1r-1(Y, 2)) =Pui1, Gonr1(P1 (%, ), 2), the dia-
gram
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X (g %
Z—l X S(k—l)n fi ( 1 g> > SZH_IXS(k—lyn

l (/S(k«l)n J/ ‘Jg(k—l)m
Slm ___Ef_i *8 > Skm

is commutative. We have easily that Efpg= (fpi)*g=f*(ipxg) and fix(f)*™*
=(f)* Applying a homctopy between #xg and (f)*™, we have the homotopical
commutativity of ®’. Then the homotopical commutativity of ® is proved.

7. The group 7,(2(S}_1), S"™), n:even

In this § we suppose that » is even.

Let w,=w,,,: S *—— S" be a map which represents the Whitehead product
of the class ¢, of . The Hopf invariant of the map w, is 4-2 if » is even. It
was proved in [12, Ch. IV, Prop. 5] (see also (4-6)) that
(7+1) the correspondence (a,8) —>Ea+w,(B) defines a ©yisomorphism :7w;_1(S™™)
F7r (ST Y —>7,(S") for a prime p>2. (a€m,_1(S™Y), LEm(S¥Y), r:even).

Define a map
(7,2> Jn,k : ‘g(skn~1> ><92<52kn—1) s gz(skn)
by the formula J, (%, ¥) =7 (x)*Q%0v:,(y) where v is the map t, G-, as in (6:9)
and = indicates the product of loops in Q2(S*") (Q2(S*) =£(2(S*))). Then
(7:2)" for an odd prime p, the map [, . induces ©yisomorphisms of the homotopy
and the cohomology groups (n:even =2, k> 2).

Proof. There is an isomorphism 7 : 7, _o(2(S¥ ™)) +7,_o(@2(S* 1))~ o (@
(ST 1) xQ2(S** ™). Then J,, 1, 1(2(a) +2°(8))) =14 (2(a)) + (22wrn) « (22(8)) = £*
(E(a)—i—wkn*(,@)) by (1-2) and (6-8)’. By (1:1), (6-1) and (7-1), we see that
Joyhy i o (R(SP ™) X @2(S*" ™)) ——>7,_5(2%(S*)) is a ©p-isomorphism for all > 2.

By (1:6), (7-2)" is proved. q. e. d‘.
Let P: (S* 1) x g2(S%1) —» 0(S5*1) be the projection. Define a space
(7,3) Y= Ifn,k=.Q<Sk”_1) U.Q(Slm_j) X Qg(szkn—l) X (0, 1) UQQ(SIen)

by identifying a space 2(S*1)UQ(S*1) x @2(S%*~1) x U £2(S**) with the relations
(%, », 0=P(x) and (x,y, 1)=],,(x,5). Then

(7+3)" the injection: Q(S*)CY induces Qg isomorphisms of the homotopy and
the cohomology groups for an odd prime p (n:even =2, k> 2).

Proof. Set Y, =0(S" 1) x2(S* Y x[} DY22(S"™ and Y_=02(S*"Hue
(S*1) x 22(S*71) % (0, 4], then Y, is a mapping-cylinder of J, , and the pairs (Y,
Y.) and (Y, 2(S*")) have the same homotopy type. Since [, induces @,-iso-
morphisms of the cohomology groups, H (Y., Y.NY_) € @, for all i. Since H'(Y,
(S WN=H(Y, Y)~H!(Y,, Y.NY.) €@, for all i, the injection homomorphism
L HI(Y) — H'(Q(5" 1)) is a ©isomorphism for all . Then (7-3)" follows
from (1-6). q. e d.
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Consider the map /% of (6:5)". By (6:6), 2 maps S"'CQ(S5")CR(St_,) to a
single point e, of £22(S*), Then /% defines a map
(7-4) B (Q(S2_), S*YH —> (Y, ep), kE>2.

ProPoSITION (75). The map h induces a Qp-isomorphism hy :7;(2(S}_4), S*™)
—>7,(Y) for all i and for a prime p=k>2 (n:even).

Proof. First we treat the case n=4. It is easily verified that the map %
satisfies the conditions i) and ii) of (1:7). By (3:3)", H*(2(S?_y), Z,) =~ P*(a, b))
® Zs. Set B={bo, bs, by} @ Z, and F={by, a} ® Z,, then the conditions iii) and
iv) are filfulled for the coefficient ring R=Z, By (7-3)’, the injection homo-
morphism * :H*(Y) —> H*(2(S* 1)) is a @,-isomorphism. Take generators e;
of Hi*2(0(S*1)) such as in (2-4), i), then there are elements f; of H/*" (YY)
such that i*(f})=tje; and #;%0 (mod. p). By (3-3), there exist integers #; and s;
such that u;n*(f}) =sib, and ;%0 (mod. p). Set fi=u;f}, t;=wu;t; and s;=u;s},
then i*(f,) =te;, h*(f;)=s,b; and £;%#0 (mod. p). The homomorphism #A*: H*?2
(Y) —> H"2(0(S%_y)) is divided into three homomorphisms if: H*2(Y) —>
Hkn—Z(gz(SknD, 71* Hkn~2(g2(slm)>__}Hlm—Z(‘Q(Sz_l, SZ—Z)) and Zék Hk”—z(ﬂ(sz_h
St_9)) —> H" 2 (9 (S2_y)) where if and i} are the injection homomorphisms.
Obviously 7 is an isomorphism. By (6-7), h* is an isomorphism. By (3-5), i} is
a @,isomorphism. Therefore 2* is a @,isomorphism and s;#0 (mod. p). By
(2-4), ¥ fi—j 5 1) =t;ti((e)? —jle;)=0. Sinec * is an @,-isomorphism, ?,f}

—j 1t f; has a finite order. By (3-2), I*{t;f{—7 !t i) =t;s5bi—j tis;b;=7! (¢,5]
—#s)b;. Since b; has an infinite order, j! (¢#;s{—#s,)=0. Then s;=t,8{/t; =0
(mod. p). Therefore i*: H*2(Y, Z,) — HI®»D(0(S?_y), Z,) is an isomorphism
for all j=0. Then the condition v) of (1-7) is filfulled. By theorem (1-8), % *
7, (Q(St_y), S") —>7,(Y) is a ©p-isomorphism for all i.

Next consider the case n=2. The result A*: H¢*D(Y, Z,) ~ H’ * (g
(S7_1), Z,) is also true for the case #=2. By (4-3), there is a map go: (S*72 ¢)
—>(02(S?_1ey) such that g¥: H*2(Q(Siy), Z,) ~ H?**2(S*2 Z,). Define a map
g:5%1 582 by the formula g(das(x, £))=g,(x)@), then go=0g]|S%*2 for
the induced map Qg:2(S*1) —> 9(S%_). Consider the homomorphism Qg*oh*:
HiC(Y) —> HIC2(Q(S%*1)) and set (Qg*h™)(f;)=t]e; for an integer ¢7.
Obviously #'#0 (mod. p). Since ¢ f{—j!#f; has a finite order and since ¢; is a
free element, we have that (Qg*h™) (t;f{i—j1tf) =(G1t;(¢{)’ =71 tit])e; and this
implies that j!(#,(#)/—##;)=0. Therefore #;=t;(#{)7/tj%0 (mod. p), and then
o2g*ol*: H*(Y, Z,) —> H*(Q(S*™), Z,) is an isomorphism. By (1:6), we have a
@, -isomorphism /40028 : 7, 2(S* ™)) —7,(2(S3_))—>7,(Y). By “-4), (1-1)
and (1-2), Qg« is a Csisomorphism for 7 > 1. Then k. is a @,-isomorphism for
i>1. Since (SO~ (Q(S3_1))~Z and 7;(SH=0 for 7>1, we have that
7, (2(S2_1)) =~ 7,(2(S%_y), S for i > 1 and that A4 : 7 (2(S%_), SH—>7,(Y) is a
@-isomorphism for 7 > 1. g.e.d.
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TrEOREM (7:6) The groups w,(2(S%-1), S*™™) and 7,,1(S") are ©,-isomorphic
Jor a prim p =k =2 and for i >1 (n:even).

Proof. If k=2, (2:10) implies (7-6). If £>2, by (1-1), (7-3)" and (7-5), we
have (7-6). qg.e.d.

Here we remark that a map g: S**—>S7_, of (4-4), induces a (,-isomor-
phism

@7 08502 : 7,1 (S =~ 7, (Q(S* ) —> T (2(S%_y), S" ).
For the p-primary components, we define an isomorphism
(7-8) Hy:7(2(S30,5"5p) =~ 70a(S"7 ), p= k= 2,
by setting

i) E=H2=Q'loi*ohz*°f;117ri(!2(5”), S p) ~ 7w (SE51 S p) ~ mi(SH72 )
~ 7, (0S¥ 5 p) ~ 7,1 (S2"; p) when k=2,

i) Hy=0eizloh, :m:(Q(St_p), S"™; ) ~ (Y ; p) =~ 7,(2(S" ™) ; p) ~ Tisa
(S*1;p)  when k> 2.

PROPOSITION (7+9). Let f:(S* e))—>(S™, e;) be the suspension Ef’ = f of a map

J (8" e)) —> (S™ L, ep), and let a €7, (S™) be the class of f. Let F’': (S*7, ep)
—>(S8*", ey) be a map which represents E¢ D" (qo E" Mg o0 EEDC ™) Then
the following diagram is commutative (p =k =2;n, m:even) :

7;(2(Sh-0), S"7; P) —Zk—> 71 (S5 P)
O« = lF;
H,
7;(2(Si), S" 7 p) ——> i (S p)

Proof. 1f k=2, this follows from (2+9) and (2+8)’. Suppose that 2> 2. Com-
bining the formula (3+59) of [16] and theorem (2+4) of [2], we have the follow-
ing formula. If a € 7,(S% and a € 7, (S?) are suspension elements, then [a, a’]=
Leq, b7 1o (=1)?@HDEY g0 E? g’ Let aj-1€ 7G-0.(S*™™) be the class of (f)*7,
then «;_; is a suspension element by (2+8)" and (fV (/)* Dultn, ctrvnl=[a, as1]
=[tm, tG-pm o EE D" g0 E*1q, o The element E¢ D"y E" 1y, 4 is represented

by the map F’, by (2-8)’. Therefore the first square in the following diagram is
homotopically commutative :

0 (Skn —1) _QL g(fkm —1)
@y, (-n -1~ ®my (k—1m
Q(S™\/ S¢-bm _‘g(f_\/(ﬁ._L 2(S™\ Sk-1ym)y
Q Q

2 k-1
22(S"% S(k—l)n’ AV, S(k—l)") _.Q_(flgl_)) 22(S™x S(k—ly", Sm\y Sk-1ym)

o 3 \L ¢m,(lz—1)m
_"Q (f)_> 02(S+m)

(;bn, (k-1n
,92(81"')
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The other two squares are exactly commutative. From the definition (6-8) of =
=7, u-1,(#¥=n or m), we have the following homotopically commutative diagram :

,Q(Sk"—l) __"Q_‘F,___> .Q(Skm—l)
T 5 T
92 (S]m) j? (,f)___9 ,_92<Skm>

Let @€ 7, (S*) be the class of (/)% then ()4l ¢ks, tanl=Las, @r]=Lctm, taml®
Emg,e By, Let F®: (S g)——>(S%"1 ¢) be a representative of E*"'a,

oE* 1, From the defiinition of /,: we see that the diagram

QF X PPF®
g(skn—l) X ,{22(32’"’—1) —_ —_ Q(Skm*l) % Qg (Szkm~1)
]n,k Qz(f)k l]m,k
22(St) I L0

is homotopically commutative. Let G;: (2(S*™) x 22(S#1), ¢)) —> (22(S*™), o)

be a homotopy between Go=J, 10 (2F X 02F®) and Gy=0%(f)*< [, ;. Define a map
F:Yus—> You

by setting F|(S" ) =0F, F|2(S") =2 (f)* and

(QF " (x), 2PF®(y),20), 0=t=s14,

Gar-1(%, ), i=st=1,

for x€ Q(S*1), and y€ £2(S%*1). Then the right square of the following diagram

F(x,y, 1) ={

is commutative :

72','(,9(8;;__1), Sﬂ-l) _h_*) ﬂ,(Yn,k) <zi 77-'{(!2(51”1-1))
l,gf; Fy . oF

(@S, 57 5 (¥ 9 < ma(Sm)

The commntativity of the left square follows from the lemma (6-11). By (1-2)
and (7-8),ii), the commutativity of the diagram (7-9) is proved for 2>2. q.e.d.

8. Double suspension E2 and the group 7;(2(S*1), S*™), n:even.

In this § we suppose also # is even.

By (2+2)” and (1-1), the suspension homomorphism E:7;(S") —> 7m;,;(S")
is equivalent to the injection homomorphism i, :7,(S*) —> 7;(2(S*1)). Then
the double suspension E2=FEoE: ;_1(S"™) — 7;,1(5"") is equivalent to the injec-
tion homomorphism iy : 7;_1(S* ™) —= 7;_,(22(S™1)), i.e., we have a commutative

diagram
ntl
B2 7 i1 (S")
(8- ]_) 71','-1(8’1‘1) /Z* 2? ) 22

T (22(S")
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for the injection S*'CQ(S")CR(Q(S™Y))=02(S""). From the exact homotopy
sequence of the pair (£2(S*™), S"™), we have an exact sequence

(8-2) w7 (Q2(S™), S & 71 (S"™) ﬂ 71 (S™) —]> i1 (Q2(SM),
e [

where J=jxo22:7;1(S") &~ iy (Q2(S™Y)) —> 71 (22(S™), $*™).  If i=n, then
the groups 7,_1(S*™*) and 7;,1(S*™) are finite by [10,Ch.V,Prop.3]. If i=n,
E? is an isomorphism. It follows from the exactness of the sequence (8:2) that
the group 7;_1(£22(S*?1), S*%) is finite for each ¢ and that the following sequence
of the p-primary components is exact:

8:2) - —> 7 (" 1) L w57 p) L om (02(Sm), 577 p) —> -
where 7;(X; p) and 7,(X, A; p) indicate the p-primary components of 7;(X) and
7;(X, A) respectively.

TueoreEM (8:3). We have an exact sequence

o (P ) AL 7 (SP71 p) — my (02 (ST, ST ) > e > Ty (22
("1, S5 p) —>0,
wherve 4 is a homomorphism such that, if p > 2, we have the formula
doE2=f, 17, (S™7; p) —>m, (S5 p)

for a map fp: S 1 —>S?"1 of degree p. (n:even)

Proof. Consider the exact homotopy sequence of the triple (£2(S"*Y), 2(S%_1),
S# ) teee 1 (22(S™),2(S3 ) —> 731 (2(S%_1), 5" ™) —=>1,_1 (@3 (S™), "D —>+-e,
By (7-6), the groups 7,-1(2(S%_y), S*™) and 7;(S?"™) are @,-isomorphic. Since
(S is finite for i==pn—1, 7,.4(2(S%_4), S*™) is finite for ixxpn—1. By (1-1)’
and (2-11), the groups 7,(22(S™%), 2(S%_4)) and 7; (S are Q,-isomorphic.
Since 7., (S?*) is finite for i+2=pn-+1, 7,(Q2(S*™), £2(S%_))) is finite for ixxpn
—1. Then the exactness of the above sequence implies that of the following sequ-
ence : -+ —> (@2 (S™), Q(S%_y) 5 p) —> iy (2 (Shoy), S*715 p) —> 7,1 (22(S™D),
SP P > e > 714, 1 (Q2(S™), S* ) > Ty (2(S™Y), 2(S%_ ;) =0. By
the isomorphisms H, of (2-12) and H, of (7-8), we have the exact sequence of
(8+3). The homomorphism 4 is defined such that the diagram

7G2S, 2(Sh0) 5 ) Oy w1 (Q(SE), S5 p)

1] e |
8-3)" 7,4(Q(5"), Spa; ) 2| H,
gp:A )
7:12(S™ ;5 p) AL msm )

is commutative. Let u: (I?", F”, J? Y ——> (S, S%_4, e0) C(S%, S%_4, e0) be a chara-
cteristic map of e?”=S%—S%_; such that hy op: (I?", f“)—)(SI’”, €o) is homotopic to
Yrsm.  Define a map g: (771, Pty — (p(Sn, S%_1), e by setting ﬁ(t],~--,tp,,_1) @
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=ty tpas, ), then the composition Qhyop: (12", oty — (9 (Sn, S, e0)—>
(2(S21), ¢0) is homotopic to a map which is defined by ;}(h;--, tone1) (&) =rpu(ta,
bty 1) = dpuaa (Yrpuoa (byyeoey Bpuea) ). Let ?2 : (Sp"'l, eo) —> (Q(S%, 52_1), ¢) be a
map such that 2 =5C°1,Vpn—1, then the composition ©Qk,°X is homotopic to the cano-
nical injection: S *CQ(S) CQ(S%) of (2-2)’. Let p:2(S%,S3_)—> S%_; be a
projection given by p(f)= (1), and set X=poX, then p|It"~1: (1", fP”‘l) —_—
(S%_4, €0) and Kol 4 are homotopic to each other. Then the commutativity of
the following diagram is verified without difficulties :

7i1(2(S}5.1), S* 1)

o N

7; (22(S"1), 9(S3.1) _ 7;1(2(55-0))
(i [
7:1(2(S*), S5.0 _— 7;(Sh-1)
711055, 85) T2 m(2(Sh Si) %
| 294 | @Ry I
Ta(SEY 2 m(a(SEn) _ix  g(seey
lz* l Agzk
Tia(Q(SP)) 2 g(gr(Sty) E?

w T2
TTiv2 (S -Mﬂ)

From the definition of the homomorphism H, we have the commutativity of @ of

the following diagram

(2SN, 2S5 ) 0 | 7 _(2(Sp, S*1; p)
27 ®» 7 ‘,
@) ma(@S™,Sp;p)  m(S™Lp) (@ |A,

HpJ, - E/ 3 \

Tia(SPa;py © A NSt g,

where v=j.°0°X4 To prove the commutativity of the triangle @, we consider a
diagram (p>2):

;1 (2(SH-1), ")
. n h* . 2( Sbon i.
i1 (Q(S)-D) Py i 1(22(S5P)) w7 4(Y)

”<Sz> D mea(@SPY) 2T 7 (5P

/ |2
T (Sﬁ”"l) S o 7, (81,
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Since X is an attaching map of e¢””, we have the commutativity of the central square
from the lemma (6-9). The commutativity of the other two squares follows from
(1-2). The commutativity of three triangles follows from the definition of the
space Y. Then from the definition of the isomorphism H, we have the commuta-
tivity of the triangle ® of (8:3)”. Since the homomorphism 4 is defined by the
commutativity of (8:3)’, we have the commutativity of the triangle ® of (8-3)”.
Therefore we have that f, =4°E2 for an odd prime p. g.e.d.

Let f7: (8" e) —> (S™, ¢,) be a map. Define a suspension f=Ef’: (S”, ¢)
—> (8™, ¢,) of f’ by the formula Ef’'(d,.1(x, 1)) =d,1(f(x),t), then the induced
map £2f: 2(S") —> 2(S™ maps S* ! into S”* and coincides with the map f’ on
S»-1, Define a double suspension E2f’ of f’ by E2f’=Ef=E(Ef’), then we have a
map

QHERf) 1 (22(SMh), S"H—>(22(S™), S" ).

THEOREM (8+4). Let a’ €7, 1(S™ ™) be represented by f’. Let F’: S 11—

Stm1 pe a representative of an element E@D™ (g o E"™™q’ oo EEDO™g )y €1y o

(SN, Then in the diagram

o> ;o (ST p) —A> (S p) —> w1 (R(S™Y), ST p) —> -
E*F] Fi | e
o> T (SPH D) —A> T (S p) —> 7,1 (Q2(S™Y), S p) — -
the commutativity holds, wherve the sequences ave defined in (8+3) and i > pn—1.
Proof. Remark that the inclusion 22(E2f")(2(S%.1))CL(Sy 4 is not true in
general. Let f:SZ —> S7 be the combinatorial extension of f=Ef’. Consider
the homotopy f, in the proof of (2:6). If x€ S"CS%, then fy(x)=f(x). Thus 2
Sfo:2(S%) — 2(S%) is a homotopy such that 21, | 2(S™) =2f. In particular f'=
2o | S* L. Therefore, by (2-6), in the diagram
n n-1 AQZ* nid n-1
7, (2(S%), S™H Y~ 7, (Q2(S™), ")
| 27, | @2,
7, (Q(S2), S*Y) — L, 7 (g2(Sm), S

the commutativity holds. From the commutativity of the diagram
o > 71, (R0S8), 2(S; D)) —> 711 (2(Sh-0), S —>7m; 1 (2(SL), S —> -,
o o o
e > (Q(SE), 2(S;1)) —> 7 (R(SHy), S™T) —> 7,1 (2(SE), S*) —> -0,
we see that it is sufficient to prove the commutativity of the following two diagrams
7,(2(SE), 0S50 5 5) <& m0a(SE, Sia; ) T, 7 a(S1 p)
(8-4)" | o7 fe E*F),
T, (Q(Sgg), Q(S;”_1) ) p) i— 72',‘.,_1(8;”3, Sp"n;;l 5 p) _Hl> 7‘7"’.+2(Sl’m+1 ; p)
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and 71';_1([2(51;’_0’ S”—l;p> ‘_[__ji) ﬁi(S"’”"l;p)
8-4)7 lﬂf* _ F
m m—1. HP pm—1.
ﬂi—l(Q(Sp_l), S ; j)) S ﬂi(S ; p)_

By (2-8)’, the maps E2F’ and E(f)* are homotopic to each other. Then the com-
mutativity of (8-4)” follows from (1+2)’ and (2-9). The commutativity of (8:4)”
follows from (7-9). g.e. d.
For a map f: (X, x,) —> (Y, 5,) we define a mapping-cylinder
Y,=Xx[0,HDUY

by identifying a space XxIUY by the relations (x, 1) =f(x), x€ X and (xo, £) = ¥,
te€ I. Here we state several elementary properties of the group 7,(X,, X).

(8+5),1) If fis an infection: X C Y, then m;(Y, X))~ m; (¥, X).

i) If f=g: (X, x0) —> (Y, 90, then n;(Y; X) ~m:(¥, X).

i) 7Yy, X) = mi(2(Y) a7,2(X)).

iv) For maps f: X—>Y and g: Y —> Z, we have an exact sequence
o == (Y X) ——> 7, (Zgo s X) —>7i(ZyY) —>7i4( Y X)—>e.

Proof. 1) Define a map F:Y;—> Y be setting F(y)=y,y€ Y and F(x, )=
x,x€ X, te I. Consider the following diagram

i (X)) —> (V) —> 7Yy, X) —>e

[#10. |k | P

> (X)) —> 7 (Y) —> mi(Y, X) —>n.

(F'| X), is an isomorphism since F|X is the identity. Fy is an isomorphism since
F is a (deformation) retraction. Applying the five lemma to the above diagram,
we have that Fi. is an isomorphism.

ii). It is not so difficult to prove that the pairs (Y, X) and (Y, X) have the
same homotopy type. Then 7,(Y, X) =~ m;(Y,, X).

iii). Define a map F :92(Y)or—> 2(Y,) by the formulas F(x, ) (u) = (x(u),
D, x€2(X),t,buc Tand F(y)(u)=yw), ye 2(Y), u€ 1 Since Y is a deformation
retract of Y, 0Q(Y) is a deformation retract of 2(Y,). Also £(Y) is a deformation
retract of Q2(Y)a; Since F|Q(Y) is the identity, we have the following com-
mutative diagram

7(2(V)ay) Loomocy,)

N 7
AN /s

7;(2(Y)).

F4 is an isomorphism since the other (injection) homomorphisms are isomorphisms.
(F| 2(X))« is an isomorphism since F|2(X) is the identity. Then similar me-
thods to i) shows that Fi: 7,(Q(Y)a, (X)) =~ mi(2(Y ), 2(X)). By 1-1),
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7,(2(Y ), 2(X)) ~ 7:.a(Yy, X), and then we have the isomorphism of iii).
iv) Consider a mapping-cylinder (Z,), of the map f: X— YCZ, Since Z,
is a deformation retract of (Z,),, we have an isomorphism 7,(Z, Y) =~ 7;((Z,)y,
Y. As is easily seen, the pairs ((Yp),, X) and (Z,.;X) have the same homo-
topy type, and 7,((Z,) s, X) =~ 7m,(Z405,X). Then the sequence of iv) is equivalent
to the homotopy exact sequence of the triple ((Z,),, Y, X). q.e.d.
As a corollary of (8-5) we have the following lemma.
(8-6) For three maps . X—>Y,g:Y—>Z and h: X—> Z suppose that
h=>~gof. Let @ be a class of abelian groups.
i) If f induces Q-isomorphisms of the homotopy groups, them the homotopy
groups of the pairs (Z, Y¥) and (Z,, X) are C-isomorphic for each dimension.
ii) If g induces C-isomorphisms of the homotopy groups, then the homotopy
groups of the paivs (Y X) and (Zy, X) ave C-isomorphic for each dimension.
iii) If h induces C-isomorphisms of the homotopy groups, then the homotopy
groups of the pairs (Y, X) and (Z, Y) are Q-isomorphic for each dimension.
Proof. By, (8:5), ii) we may suppose that z=gof. If f induces @-isomorphi-
sms of the homotopy groups, then 7,(Y,, X) € € for all i. It follows from the ex-
actness of the sequence (8-5), iv) that the homomorphism 7,(Z,, X) —>7m;(Z,, Y)
is a @-isomorphism for all . The proof of ii) and) iii) is similar. q.e. d.
THEOREM (8°7). Let n be even and let p be an odd prime. Let f,: S 1—>Son2
be a map of degrvee p and let Sﬁ’;‘l be the mapping cylinder of fy. Then therve is
an exact sequence
ST QSIS p) o (S, SP) >
7 (@2 (8", 8P p) ——> g (S, S p) —> e,
COROLLARY (8:7)".
=0 for i < pn—1,
wﬁi(S,’%’;“, Sty for i < pPn—2.
Proof. Let E be a space of singular 2-cubes given by
E={f:I*—> 2(S%) | fUx(0))CQ(S3-1, (0, 0) € S"™* and f(Ix (1) UQ) XI)=eo}.
Then we have two fiberings
pii E—> 0(0(S%_y), S"Y) with the fibre £(22(Sx, S&)),
pe E—> 2(2(S%), S*™*) with the fibre 22(2(S2), 2(S%-1)
which are given by setting p1(f) (O =f( 0) and p. (f) (D =50, 0.
According to the proof of (8:3), we take an attaching map X: S '—s Sz 4

of e and a map X : S/ —> Q(Sz, S3_y) such that the diagram

7,1 (Q2(S™), S" 1 p) {

208, St L sty
lszhp X Tx

oSty « L g
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is homotopically commutative. Let 7:22(2(S%, S3-1)) —> £2(2(S%), 2(S%.1)) be a
homeomorphism given by 7f(t, t2) (u) =f(t, u) (£), f€ 22(2(S%, S3_1)), (4, 1) € I7,
u€ I Applying (8-5),iv) to the maps 22X : Q2(S?"1)—>02((S%, Sz D) and igon :
22(0(S,5%_)) —> 02(2(S%), 2(S%_1)) CE, we have an exact sequence

T (22 (R (S%, S3-0)) 02%, D2(SP" )~ 2 (Ej, o1002%,22(S?" ™) —> ;2 (B0,
22(2(S%, Sp1)))—> .

In the followings we shall prove that
8+8), ) 7 2(22(R(S%, S5-1) a2k, £2(S” ™) and 7;(Q2(S"Y), S 1) are @ ,isomor-
phic,

i) 7ia(Eionork, £°(S™"™) and m(SP7, S are Cyisomorphic,

i) 7io(Ej oy, 22(2(S%, SE1))) and 7;_1(22(S™Y), S*™) are isomorphic.

Then these groups are finite and the exactness of the above sequence implies
that of the sequence of p-primary components. The @ isomorphisms of (8-8)
induce isomorphisms of p-primary components. Therefore we have the exact
sequence of (8-7) from (8-8).

Proof of (8:8), i). We have a commutative diagram

22(2(S5,, Sh-))
!23111,// 2%
23(SiH = 92(9(553))<_‘Qz_€__g2(spn—1) )

The homomorphism 2%, : 7;(022 (2(S%, S%.0)) —>m:(23(S?))) is equivalent
to the homomorphism %, : 7,,3(S&, S41) —> 7:,5(S4) which is a C,-isomorphism
by the (2-11). Then, by (8-6),1), we have that the groups 7;_»(22(2(S%, S% 1))
02X, 22(S?7Y) and 7, (23(S?), 22(S™™)) are ©4-isomorphic. By (1-2)” and (2-3)’
we have that 7;_o(23(S%), @2(S"Y)) ~ m;(Q2(St**Y), S,  Then (8-8), i) is
proved.

Proof of (8+8), ii). Consider the diagram

2L, Sy ))y— " . E

T 2% lp1
@Sy X 0a(Siy, §7Y
2% ) l oh
IO 16 o

The commutativity of the upper square is verified from the definition of mappings.
The homotopical commutativity of the lower square is verified from (6-9) and the
definition of Y. Since the fibre £(22(S&, S%)) is contractible, the fibering p; induces
isomorphisms of the homotopy groups. Then 7,1 (E; o ,00%%, 22 (S"™) &~ m;_5 (2 (Q(
S50, 8" Dary, £2(S™™) by ii) of (8:6). Since 2% induces ©,-isomorphisms of
the homotopy groups by (7-5) and (1-2), the groups 7, (2(2(S%-1), S*Hg2x, 22
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(577 and 7;-2(2(Y)gnontx, 22(S#"™) are @jisomorphic by ii) of (8:6). By ii)
of (8:5), 7i2(2(Y)anoa?x, 22(S?"™) =~ m;2(2(Y)qion?s,, £2(S?™)). Since 2i in-
duces @,-isomorphisms of homotopy groups by (7-3)” and (1-2), the groups 7;o(
2(Y)qioatsy, 2(S™™Y)) and 7, ,(22(S" Mgz, £2(S" ™)) are ©,-isomorphic by ii)
of (8:6). By iii) of (8:5), 7 2(22(S" g2y, 22(S" ™))~ 7, (SPi7H, S ). Conse-
quently (8-8),ii) is proved.

Proof of (8+8),iii). Since # is a homeomorphism, # induces isomorphisms of
the homotopy groups. Then 7;_2(E;,,, 22(2(S%, Si-10)) =~ mio(E;,, 22(2(S%), 2(
S310)) =~ 7o (E, 22(2(S2), £2(S3-1))) by (86), i) and (8-5), i). By the fibering
D2t E—> 2(2(S%), S"™), we have an isomorphism ps, : 7;»(E, £2(2(S%), 2(S%-0))
~ 7,2 (2(2(S%),S"™). By (1-1) and (2:3), 7;2(2(2(S&), S"™) ~ 71 (2(S&),
S*Y) & ;1 (22(S™2), 8" ). Then (8-8),iii) is proved. g.e.d.

Consider the exact sequence of the homotopy groups of the pair (Sj’«’;‘l, Str=1y:
— 7:,-(81’”‘1)_{:“_) T, (SP) —> AC S#1) — > .... The injection homomor-

phism i, is equivalent to the homomorphism fp : 77, (S?*™) — 7;(S?**) induced by
So.

(8-9) Let m be even and let q be an integer. Let f,: S™'—> S™"™" be a map
of degree q. If p is an odd prime and if a € r,(S™; p), then f, (a)=qa.

Proof. By (7-1). the suspension homomorphism E maps 7;(S™*!; p) isomorphi-
cally into 7;.4(S™**). Then the fact E(f,, (¢))=FE(qa) implies that f, (a)=gqga.

g.e.d.
We see that the kernel and the cokernel of the homomorphism fy« consist of
the elements of order p. Therefore
P (S, S) =0
and then
pP(rin(@2(S™D, S" 1) =0 for i < pPm—2.
From the exactness of the sequence (8-2)/, we have that
E2(7;4(S"™"5 p)) D2 (m:4a(S™5 p)) for i<pPn—2.

More generally we have that

TrEOREM (8-10). E2(m;_1(S™™t; p)Dp2(rr; 1 (S™; p)) for all i (n: even, p:
odd prime).

Since 7z;(S1; p) =0,

CoroLLAY (8:11) p"(m;(S™*; p)) =0 for all i.

Proof of (8-10). From the exactness of the sequence (8-2), it is sufficient to
prove that p2(J(a))=0 for arbitrary a €7z;(S*'; p). We may suppose that
1> pn—1 since 7, o (22(S™Y), S*1; p) & Z, and 7, (22(S™Y), S*1; p) =0 for i<pn—1
by(8-7)’. Let f’: (S*™, eo) —> (5", ¢;) be a map of degree p. From the com-

mutativity of the diagram
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oa (S5 ) Lo (225, S*1; p)
Ef; |2z
Tea (S 1) Lo (2257, S*1; p)
we have that Q2(E2f") . (J(@))=/(E?* «(@))=J(pa)=pJ(a) by (8:9). In the
theorem (8-4), the map F': St ——> S?*1 js a map of degree p?. From the
commutativity (8-4) of the diagram
e (2S5, $71; p) L (5 p)
@, E*F;
(@2 (5™, §75 p) Ly (S gy

we have that I((p?—p)]J(@)=p?I(J(a))—I1(p](a)) =E2Fy(J(J(a))) —T(Q*(E*f")«
(J@))=0 (E2F.7T=p*T by (8-9)). From the exactness (8-3) of the sequence

2515 py L smasmy, 7715 p) L w57 p),
there exists an element B of 7,(S?*'; p) such that I'(8)=(p?—p)J(a). From
the commutativity (8-4) of the diagram

m (St ) L g2y, st p)
e |z,
w57 ) L (gr(stY, v p)
we have that (p*—p)2J(a) = (p*—p) I'(8) = I (p* ) = pI" (B) = I' (FL(S)) — p(p" = p)
J@) =@ () (I' () = J (5P =) (@)) = 2 E2F) (J((p? =) (@))) = ] (b(p* =)
@) =p(J (=) (@) —J(p(p* =) (@) =0 by (8-9). Since p**'~10 (mod. ),
@P—p2Ja) =(Pp*1-1)2] (p2a) =0 implies that J(p2a)=0. Then the theorem

(8+10) is proved. - q. e. d.
Appendix
Here we list the following values of the group 7,(S*"**; p) for an odd prime p.
) 1=k=p-1,
N Zs, l=m=k-1,
TTom +2k(p—1>—1(5“m+1§ ), = { 0 E<=m
Tourar(s-1 (S¥", p) = Z 1=m,
i) k=p
S?m+1. me’ 1§M§p_1’
7Z'2m+2p(p—1)—1< 5 P) = { pr_b p—1=m,
Z yms l=m=p,
2m+1 . . 4
Tom+2p(p—1) (S ’ P) = { pr, p=m
i) (k=p+1)
Tomr2(pr D) p-1-2 (S5 D) = Z 1=m,
Z s l=m=p
Tome2(peDpe1-1(S¥" ™5 ) = { 0 pil=m
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TLom+2(p+1)(p—1) (S5 p) = Zp 1=m,

iv) 7, (8?1, p)=0 otherwise for i<2m+2(p+2)(p—1)—3.

These resulats are caluculated, by making use of (8-2)” and (8-3), from the

results of H. Cartan for the stable case. His proofs are cohomological and not yet

published, however, the author note that the proofs are made from the results for
H*(II, n, Z,)[5] and the relations of Adem [1], [6] without difficulties and rather
automatically. (¢f. [11] for p=2).
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