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Let W be a complex with a transformation ¢ of prime period p, and denote by
W, the orbit space over W relative to £ This paper is concerned with a study of
certain relations between the cohomology of W and of W, As its applications, the
cohomology of the p-fold cyclic product of a complex and of the 3-fold symmetric
product of a sphere will be considered. Such studies for the homology groups
were first raised by M. Richardson and P. A. Smith [11] who introduced the notion
of the special homology group. Recently S. D. Liao [5] studied the cohomology of
the p-fold cyclic product of a sphere. Their, and also more extensive, results
will be proved in the present paper by using of the systematic methods which are
essentially due to R. Thom [18], W. T. Wu f19] and R. Bott [2]. The original
papers of Thom and Wu are not easy reading, therefore we shall explain their
theory in a complete form. Our exposition makes only use of the well-known
simplicial cohomology theory.

In Chapter I, the theory is developed on a complex with a transformation of
prime period. §1 devoted to the exposition of the Smith-Richardson sequence and
to its direct applications. In § 2, we define the basic homomorphism gz, » and ¢¥,
and study their properties. We establish in § 3 certain relations of the basic homo-
morphisms to the well-known cohomology operations: the cup product, the squaring
operation, the reduced power and the Bockstein homomorphism. §4 and §5 are
devoted to the proof of certain theorems in §3. In §6 we define the notion of re-
gularity and almost regularity, and prove the structure theorems.

Let K be a complex, and ¥,)(K) the p-fold cartesian product of K. Denote by
t the transformation on X, (K) defined by the cyclic permutation of coordinates.
Then, in Chapter II, the general theory in Chapter I is applied to the complex with
the transformation t. The orbit space over ¥, (K) relative to t is the p-fold cyclic
product of K. After some preliminaries on the cohomology of the cartesian product
given in § 7, we prove in § 8 that the pair (¥(,)(K),1) is almost regular in each dimen-
sion. In §9 and §10, we determine the structure of the kernel of the homomor-
phism induced by the projection of the cartesian product onto the cyclic product.

Reduction formulas which stand deep relations with the reduced power of Steenrod
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are obtained in § 12. In the final theorem of this section, it is proved that the reduced
power is characterized by the well-known properties. §11 and §13 are devoted to
determine the cohomology of the p-fold cyclic product of a complex. The cohomo-
logy groups with coefficients in a field and the well-known cohomology operations
are calculated. As for the integral cohomology groups of the cyclic product, we
determine only those of certain special complexes.

In Chapter III we determine the cohomology of the 3-fold symmetric products
of a sphere. The integral homology groups and the well-known cohomology opera-
tions will be given in explicite form.

Preliminary reports of our results have been published in [8, 9].

CHAPTER I. COHOMOLOGY OF ORBIT SPACES

1. Special cohomology group

Let W be a finite simplicial complex, and let #: W —> W be a periodic trans-
formation with prime period p. Let us moreover suppose that # satisfies the
conditions :

a) t is simplicial,

b) If a simplex is mapped onto itself by ¢, it remains point-wise fixed.
Then it is easily shown that the set F=F() of fixed points under ¢ form a sub-
complex of W. Let W’ be an arbitrary subcomplex of W invariant under #, and
let G be an abelian group. Then ¢ gives rise to a cochain map #* in the group
C" (W, W', G) of r-cochains of the piar (W, W") with coefficient group G. Let
g, = be cochain maps defined by

o=X021 1% T=1—1*

respectively. We shall also denote these maps by p and p agreeing that p may
stand for ¢, p for v or vice versa, but that the meaning of p and p shall remain
fixed in any given discussion. Then we have pp =0. Let °C" (W ,W’; G) and
PT'CT (W, W’; G) denote respectively the image and thc kernel of the map
p:C" (W, W G) —C"(W, W'; G). Then *°C"(W,W’'; G) (&=1 or —1) for all
7 form a cochain complex under the coboundary ¢ in W, and hence we may define
the cohomology group of *“C"(W, W’;G), to be denoted by **H”(W, W’; G). This
group is called the special p-cohomology group of (W, W’) with coefficients in G.

Since we Eave an exact sequence of cochain complexes

0—" CHW, W75 &) X, O (W, W75 G)-Ly 2CH(W, W' G)— 0,

(z* : inclusion homomorphism), we obtain by the well-known theorem [3, Chap. V]
the following :

THEOREM (1:1). The following sequence is exact :

s HICW, W5 Q) Loy HY (W, W5 G) Po e HA(W, W5 G)
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To, " H (W, W5 G -

’

where a, and B, ave respectively the homomorphisms induced by * and p, and 7T,
is the homomorphism which sends a cohomology class containing pu to a cohomology
class containing du.

This is usualy called the Smith-Richardson sequence [4, 13, 18].

Let IT be the cyclic group of order p generated by £. Then II operates freely
on the 7-dimensional integral chain group C,(W, W/UF). Let 2,=2,(W, WU F)
be a II-free base for this group.

Lemma (1-2). We have

€)) TC(W, W G)=C" (W, W'; G&)+C"(W'UF, W' &),

(i) TCHW, W G)="C"(W, W ; G)+C"(W'UF, W"; ,G). ®

Proof. Let u€?7'C"(W, W'; G), and u=uy+u, where u, €C*(W, W' U F; &),
u, € C"(WUF, W, G).

Case 1: p=rt. Denote by #% the chain map induced by f. Since tu=ru,=0
we have

Uy (D) =uy (Ggx)= - =us (%) for x €0,

Define now v €C"(W, W' U F; G) by
v(x) =u1(x), v(tix) =0 (Gx0) for =x€Q,

Then #y=ocv is obvious. Since v cC"(W, W’ ; G), we have uy € <C" (W, W’; G).
Thus we see that 'C'(W, W ;G C C' (W, W ; G)+C"(W'UF, W’; G). The
inverse inclusion is obvious. This proves (i).
Case 2:p=0. Since ou=0, we have
St lu(thx) =0  for x €4,
pus(x)=0 for x€CAW UF, W).
Therefore u, €C"(W’ U F, W; ,6). On the other hand, if we define v €C"(W,
W UF; G by
v(tha) =02 uy (Hx)
for any x€ 2, and {=0, 1, ..., p—1, then it is obvious that #;=t». Thus we
have wu,€C" (W, W’; (), and hence ° 'C'(W, W UF;G) C "C"(W, W; G) +
C" (W' UF, W, ,5). The inverse inclusion is obvious. This proves (ii).
TureoreM (1:3). (1). If W’ DF, then for any G
PHI(W, W ; G)=""H (W, W; G).

1) Let B and C be subgroups of an abelian group A, then we denote by B+C a subgroup of A
generated by B and C. If B+C is the direct sum of B and C, we denote it by BAC.
2) We write ,G={g€ G|pg=0}, tG=1{pglg€GY) and G,=G/pG.
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(1) If G is a field of characteristic q, not a divisor of p, then for any W’
PH (W, W G)=""H"(W, W ; G).

Proof. Under the assumption, it follows from (1-2) that *~'C"(W, W’ ; G)
=PC"(W, W’ ; ). In the case (ii), note that C"(W" U F, W' ; G) =pC" (W' UF, W ; G)
=cC"(W" UF, W ; G). From this, (1-3) is obvious.

The following is obvious.

LemMA (1. 4). Under the same assumption as in (1. 3), we have

ap Br=p¥
where p*: H' (W, W ; G) — H" (W, W’ ; G) is the homomorphism induced by p.

Let Q,:C"(W, W’ ; G) —C (W, W ; G) be a cochain map defined by
Q. =identity,

Q:=3;2:(=1)/,C; 7773,
where ,C; denotes the binomial coefficient. Then we have

LemMma (1-6). pp=Q,p°.
Proof. Expand ¢%=(1+#*+ - +*#-1)2 and #*?=(1—7)?. Then we obtain

(1:5)

(1-6) by easy calculations.
TueorREM (1-7). Let a be any element of """ H" "\ (W, W' ; G) which is contained

in the image of T,. Then we have p(a)=0.

Proof. For this purpose, itis sufficient to prove the following : Given a cochain
uw€C"(W, W ; G) such that §pu=0, there is a cochain v €C"(W, W’ ; G) such that
pou=opv. In fact, we can take v=@Qpu, as is proved in the following.

Case 1:p=r. Since rou=0, it follows from (1:2) that there exists ve C"(W,
W; G and weC" (W' U F, W ; G) such that du=ov+w. Then it follows from
(1-6) and ow=pw that

pou=pov+pw=cv+pw
=0 (fu—w) +pw=odu—ow—+pw
= §0Q ;1.

Case 2: p=g. Since odu=0, it follows from (1-2) that there exists v € C*( W,
W, G) and weC"(W’ U F, W ; G) such that fu=7zv+w and pw=0. Then it
follows from (1:6)

pou=pro+pw=Q.v2v=Q. v (fu—w)
=Q.7tou=0tQ. u.

This completes the proof.
Let G be a field of characteristic ¢, not a divisor of p. Then it follows from

(1-7) that 7,:PH""*(W,W’'; G) —*"H"(W, W ; & is trivial for any ». Hence
a, is isomorphic into, &, is onto, On the other hand, we have by (1-4) the

commutative diagram
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H (W, W ; &
B / \p*
THNY(W, W G) B, HI(W, W G).
Therefore we obtain

TueoreM (1:8). Let G be a field of characteristic q, not a divisor of p. Then,
for any v, the homomorphism a«, is isomorphic into, and its image is p* H" (W, W’ ;
G).  Moveover an element of PH' (W, W'; G) is represented by B,(a) with a €
HW, W ; G).

Denote by W;=O0(W,¢) the orbit space over W relative to ¢ (i.e. the space
obtained by identifying any two points x, 4 of W into a single point whenever
¥ =t (x) for 'some 7), and let 7: W—> W, be the identification map. Then we can
use as a simplicial decomposition of W, the images of the simplexes of W in virtue
of the assumptions a) and b). Thus W, is a simplicial complex and 7 becomes a
simplicial map®. Moreover W, =O(W",¢) and F,=O(F, t) are respectively the images
by 7 of W’ and F, and these form subcomplexes of W, It is obvious that

z:C" (W, Wi Gy=""'C" (W, W' ; G),
7:C'(Fy; O =~C7(F; G).
Hence we have
TuEOREM (1-9). I*:H"(W, W/ ;G)~""H (W, W' ; G),
* H'(Fy; O ~H'(F; G),
where 1* is the homomorphism induced by 7.

It is obvious that
(1-10) o I*=1*,

where z*: H"(W; W, ; G) — H" (W, W’ ; G) is the homomorphism induced by z.
Thus (1-8) for p=r yields the following:

THEOREM (1:11). Under the same assumption as in (1-8), the homomorphism
¥ is isomorphic into, and its image is c*H (W, W ; G).

2. Basic homomorphisms

Let #:G—> G, be the natural projection?’, and consider the cochain map @,
defined in (1:5). Then it follows from (1:6) and (1-2) that #Q,"C"(W, W’ U F;
G)CPC"(W, W' U F;G,). Thus 7Q, induces a homomorphism @', of *H"(W, W’
UF;G) to PH" (W, WUF;G,;). Let e,=1 and ¢,=-1, and write , for €,Q",:
@21 Vo PH' (W, W U F; G) —PH" (W, W U F; G).

Then we have

LemmMma (2:2). () . (or ) sends an element of “H" (W, W’ U F;G) (or "H”
(W, WU F;G)) containing ou (or tu) to an element of "H* (W, W U F; G,) (or
cH (W, W U F;Gp)) containing ou.

3) Of course, W; itself is not necessarily simplicial. In such a case, consider the first barycentric
subdivision of W and W,. Then W; becomes a simplicial complex such that = is a simplicial
map.
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(1) Ao, =0 (p=3), and=7s (p=2), where Ny is the homomorphism induced by 7.
By the definition of J,, this is a direct consequence of the following :
LemMma (2:3). () e.Q,r=¢,Q,0=0¢ mod p.
(i) Q.0=0 mod p (p=3), and=0c (p=2).
Proof. Tt follows from (1:5) that
e,:Q.t=3;2, (=) Cirl-i=(—1)t+ gt
= (=D = Do (~ 1P, Gy
=y~ 1) —g—e,Q,0 mod p.

(Note that ,-4C;=(—1)/ mod p, and that @,=1.) This proves ().
Since 7zo=0, it follows from (1-5) that
Q.o=2;2, (1) ,Civi"26=4Cso
=0 mod p (p=3), and=s (p=2).
This proves (ii).
Furthermore we have
Lemma (2-4). ) 7, =Tpbp. () YoB.=7x8, (D) ac¥r="74a-.
Proof. (ii) and (iii) are obvious. We shall prove (i). Let pu€*C"(W, WUF;
G) be a cocycle representing a € "H" (W, W U F;G). Then Yrp(a) is represented
by ne, @ pu=nes Qppu, in virtue of (1) of (2-3). Thus Tplrp(a) is represented
by 8mepQpu=neQp0t. On the other hand, 7,(a) is represented by §«, and hence
¥, 7 ,(a) is represented by 7e;Q0u#. Thus we have (i). Q.E.D.
Define homomorphisms
25 wH (W, W U F,;G)— H™3(W,, W/ U F;; G),
viH (W, W/ U Fy; G)y— H"Y(W,, W/ U F;; Gp)
as follows
(2+6) p=1¥"7.7,I¥ p= T, 7 I¥=T¥"7 o T*,
Then we have
THEOZEM (2:7). (1) v2=0if p=3, and=n.p if p=2. (1) pr=ru.
Proof. 1t follows from (2-3) and (2-4) that
2 =T T oA, T =T e e, 7,7, I¥ =0 if p=3,
=70 if p=2.
This proves (i). (ii) can be proved similarly. Q.E.D.
Let ac H'(W, W’; G) be an element whose representative cocycle is #. Then
pu=p(u | W—F) mod pG, where u|W —F denotes the restriction of # on W—F.

4) Note that the definition of v is given without making use of local ccefficients, different from
the one given by R. Thom [18].
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Therefore pu is a cocycle of "C"(W, W' U F;G,). Moreover, as is easily seen, the
class of » H'(W, WUF ; Gp) containing p« is independent of the choice of representa-
tives of @. Thus the correspondence # —> pu provides a homomorphism
(2-8) K, tH' (W, W ; G)—"H" (W, W U F;G,).

The following is obvious.

2-9) @ pkp="1]xP5, Yokir=Ey,
where p§: H" (W, W ; G) — H"(W, W’ U F;G) is the homomorphism induced by p.
Define a homomorphism
b:C" (W, W ; &) —)CY<WI, Wi G
by
du(rx)=ou(x), uecC (W, W G),

where x is any simplex of W. Then we have
Lemma (2-10). 0b=cg, T =a0.
Proof. Let 0 denote the boundary operator. Since
0u(rx) = pu(rox) =ou(0x) = dou(x)
=odu(x) =Pou(rx),

we have §¢p=¢35. 7d=0¢ is obvious. Q.E.D.
By (2-10), ¢ induces a homomorphism
2-1D ¢* H (W, W, &) —H (W, W/ ; G).

Furthermore, since it is obvious that n¢C (W, W’ ; G)C C"(W;, W{ UF;; G,), ¢
induces also a homomorphism

(2:12) ¢S H (W, W, G — H (W, Wy UF;;G,).
The following is obvious.
Lemma (2-13). b =kq J*P5=714d™

where j7* . H' (W, W/ UF;; Gy) — H' (W, W{ ; Gp) is the inclusion homomorphism.

We shall prove

Lemma (2-14). If veC'(F;G), then tov=0 in W.

Proof. Let ¢ be an oriented (#+1)-simplex of W, and let

0c=2a;x,+>;By;, (a; B,:integers),
where x;, y; are oriented r-simplexes of W—F, F respectively. Then we have
wov(c) =v(rdc) =v(0c)—v(0ic)
=Y,a,(x,) —v{x,)) + 3,8 ;(v(y;) —v(ty;)) =0,

since y;=ty; and v(x;) =v(tx;) =0.

Let be H (W' UF, W ;G) and let v be a representative of . Then tv=0
by (2:14), and sve Z*Y(W, W U F;G). Thus §v is a cocycle of ™ 'C"*Y(W, W’
UF;G)=°C™Y (W, W’ U F;G). Moreover, as is easily proved, the class of cH”'?
(W, W U F;G) containing ¢v is independent of the choice of representatives of b.
Thus the correspondence v — §v provides a homomorphism

SH (W UF, W ;G —H"Y(W, W UF;G)
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Let us now define
(2-15) o H'(WUF, W ;G) — PH™ " (W, WUF; Gp)
by
Fr=77, Fo=fr D
Then, by the definitions and (2:2), we have
Lemma (2:16). (1) 3, =0,
(i) Y2.=0 (p=3), and =&, (p=2).
Consider the diagram?®
o — PHT(W, WIUF;G,) %o, H'(W, WUF;G,) 2o
Zyp « T ok
s HYWIUFR, W6 Sy H (W, WUF;

—s P HT(W, WUF;Gy) Loy PHP (W, WUF; Gp) s o
p - &,
— H'(W, W"; G) _Z_> H (W UF, W ; G)—> .

K

Then we have
Lemma (2:17). (D) a,,190=77*3*. (ii) ,G,,?y*=/cpj*. )T ko= —0 0.
Proof. (i) and (ii) are obvious. (iii) is proved as follows:
Let acH" (W, W'; G) be a class whose representative is #, and let u=1-+us,
where u, €C"(W, W'UF; G) and u, € C"(W'UF, W’ ;G). Then we have 7pu=npu,,
and hence 7 ,x,(a) is represented by 7dus. On the other hand, & ,,z'* (@) is represented
by 76u,. Thus (Tplcp+15lpi*) (@) is represented by 78 (uy+us) =7ndu=0. This proves
(iid). Q.E.D.
Consider the diagram N
H' (W{UF, W/ ; G0, gr3(W, W/ UF:;G,)
2|7 a1
H (W'UE, W*;G) _ 27, cH (W, W UF;G,).
We have then obviously .
(2-18) o =167
We shall prove
THEOREM (2:19). () udo” = —po*m*"i*,
Gi) vdpE=0 (p=3), and =n.6*7*"i* (p=2).
Proof. 1t follows from (2-6), (2-13), (2-16), (2:17) and (2-18) that
pPE=DTT T o= =D T 8 0% = =D 7 ol B 0%
= — ¥R = — g T,
It follows from (2.2), (2-6), (2-16), (2-17) and (2-18) that
v =T, T o= =T i = =T gl 9 0%
=0 (p=3), and =¥ "B *=n,8*7* * (p=2).
This completes the proof.

5) The upper line is the Smith-Richardson sequence, and the lower line is the ordinary exact
sequence.
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Let
(2-20) T2 HI(W UF, W;G)—PH(W, W U F;G,)
(s>0) be a homomorphism defined as follows:
D= T2 Thue= T 707,
Then we have
Lemma (2:21). (@) 7’,;?@=T’f+1’
() I p=8, then Yrolfuur=Welhun=0,  Yolfn=Tos W Tha=Th
Gil) If p=2, ,Te=T"%
Proof. (i) is obvious. It follows from (2:2), (2-4) and (2-16) thatif p=3 then
Yol 501 =V (75T 1) =TT ) Vs
=TT o) "o r; 9, =0.

The proofs of the other formulas are similar. Q.E.D.
When p=2 and the coefficient group is G, there is a variation of the Smith-

Richardson sequence, due to R. Bott [2]:
THEOREM (2:22). Let p=2, then the sequence

7[*

“x
v — H YW, W/ U F;; Gs) uH’<Wt, W/ G

*
B, WG P B (W, Wi U B Gy —

is exact, and 7w¥j*PE=oc*.

Proof. Since H" (W, W/UF;; G~ "H (W, WUF;Gy)="H'( W, W’ ; G,)and
H (W, W/ ;G)~""H"(W, W ; Gy) by the isomorphisms induced by 7, the exactness
follows easily by the definitions of » and ¢§ from the Smith-Richardson sequence -

(1-1) for p=r and G=G, 7*/*Pp§=q¢* is obvious from (2-10).

Let W be a finite simplicial complex with a periodic map ¢ satisfying the con-
ditions a) and b) in §1, and let W’ be a tinvariant subcomplex of W. Given a
simplicial map

Fo (W, W) — (W, W)

which is t-equivariant (i.e.a map such that #f=f¢), it is obvious that f maps F in
the set F' of fixed points under £, and that f induces a simplicial map f: (W; W/)
— (W, W/) such that fr=nf. Thus f induces the homomorphisms H’(W; W’;
G) —H (W, W;G), "H'(W, W UF; G)— "H (W, W UF; G, H'(W, W;;G)
— H"(W, W/; G) etc. Let us denote by f* all these homomorphisms. Then it
can be verified easily that f* commutes with the various homomorphisms defined
in §1 and §2.
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3. Relations to the cohomology operations

In the preceeding section, we defined the homomorphisms x, v and ¢§ which
are basic in the discussions below. In this section we shall study some relationships
between these homomorphisms and the well-known cohomology operations: the cup
product, the Bockstein homomorphism, the reduced p-th power and the squaring
operation. Whenever the argument are concerned with the cup product, we shall
always suppose that coefficients are taken from a ring, and we shall denote by v
the cup product. Let (X, A) be a pair of simplicial complex X and its subcomplex
A, and let Z be the group of integers. Then we shall denote the Bockstein homo-
morphism, the reduced p-th power, the squaring operation by

4, H (X, A; Z) — H*(X, A; Z,),
@ H (X, A;Z) — H0N(X, A5 Zy)  (p=3),
Sq* tH' (X, A; Z) — H""(X, A; Zy) (p=2)

respectively [14, 15, 16].

In virtue of the assumptions a) and b) in §1, we can define on W a locally
simple ordering invariant under ¢ This ordering induces a locally simple ordering
in W;.® Using this ordering on W and W, we shall define as usual the cup product
in W and W, Since the map 7z and #* are order-preserving, we have the follow-
ing [14].

LemMA (3:1). Let u, vEC*(W, W'; G), then

i) =t* oty  mF(duudv)=r*Pu .

LemMMmA(3-2). (1) o(wuov)=ocuvov, (i) t@muov)=tuvov,

(i) Ppuvwov)=Pudo.
Proof. By the definition of ¢ and (3-1), we have
o(uoov) =S % (o DI %)
=200 (BFuo B (D% ) = DA o iy
=ouJov.
This proves (i). The proof of (ii) is similar.
From (2:10), (3-1) and above (i), we have
T (uwov)=c(uwov) =cuvov=r*Puon*dy=1*(Ppudp).
Since 7* is isomorphic into, we have (iii). Q.E.D.
As an immediate consequence of (3-2), we have
TuEOREM (3-3). Let a, bEH*(W, W': G), then
¢(awo*d) = b5 (a)wPpi(h).
We shall prove
THaEOREM (3:4). For the above a and b, we have
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v(psawdih) =0, u(pfa-dih) =0.

Proof. By the definitions of z and v, it is sufficient to prove 7, I*(pFawptb)=0.
Let # and v be representative cocycles of a and b respectively. Then ¢Fawdid
is represented by ¢udv=d@ov). (See (3-2).) Thus *(PpFaw i) is represented
by z¢p(uwov) =o(uwov). Since v €C*(W, W' U F; G,), we have uwov €C*(W, W’
U F;G,). Thus 7,I*(PpEawdib) is represented by §(uwwov). However uvov is a
cocycle, and hence §(xwov)=0. Namely we have 7, I*(¢Fawdpid)=0. Q. E. D.

CozoLrAazy (3:5). Let a, ¢ H*(W, W'; G) for a=1, 2,---, k, where k=2.
Then we have

v(plarwdPlayw - wdba)=0, nrlpfaodtaw-wdtar)=0.
Proof. Obvious from (3-3) and (3-4).
TrueozeM (3:6). Let a, be H*(W, W/ U F;;G), and a, B=0. Then we have
@) w'(@)oul(b)=u"*r(avb),
(D 7ep”(@) wv(d) = (=17 “u"v(avb),
(iii) v(@vwrd) =0 if p=3, and =n.u(awb) if p=2.
The proof is given in § 4.

Consider the diagram

H (W, W’; Z)
« | 4,
b /
J HW'UFW;Z,) y
H'(W, W/ UF;; Z,) 2 T”* H YW, W' Z,)
H (W, U F, W/ ;Zp)
AI’ 6* Qb?;

H”l(Wf, Wi UF; Zy)

Then we have

THEOZEM (3.7). GEdy— Ay = oFmHF1*,

Proof. Let a€ H (W, W’; Z,) be any element, and let «€C"(W, W' ;Z) be a
cocycle mod p which represents a. Then there is a cochain » € C"™*Y(W, W'; Z)
such that gu=pv. Let u=uwus+u, where u, € C" (W, W U F;7) and u, e C"(W' U F,
W’';Z). Then we have

Pti = Pus-+Pus = dus + puy
where uy € C"(W{ UF;, W/;Z) is a cochain such that 7uy =u,. Make the coboundary
of the both sides, then
Opu=dpus+pous .
Since dPu=Psu=pdv, we have

¢v= %6(1)%1 + duy
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By the definitions, ¢%4,(a) and §*7* 'i*(a) are represented by ¢v and duy respective-
ly. Since ¢u=cdu; mod p we see also that l—l)»b‘qbul represents 4,$5(e@). Thus the
above equation proves (3:7). Q.E.D.

TueoREM (3:8). (i) dw+vd,=p, (D) pd,=4d,u.

Proof.® Leta€c H (W, W/ UF;;Z,) be an element whose representative cocycle
isu mod p we€C" (W, W/ UF;;Z)). Then there is a cochain v € C"**(W, W/ UF,;
Z) such that ¢u=pv. Consider now wuo€C*(W, W' U F;Z) and v, € C™Y (W, W’
U F; Z) such that ¢uy=u and ¢vo=v. Then it follows from (2-10) that

a (tto— pvo) = douto— pove= 87t~ prrpvy
= ognu~— prrv =7(du—pv) =0,
and
03V = 80V = 07TPve = §7Tv =7V = 0.
Therefore it follows from (1-2) that there exist cochains u, € C™*¥ (W, W' U F; Z)
and v, €C™2(W, W' U F; Z) satisfying
0:9) Otho— PUo=Tlt1,
B) 0Vo=103.
Then we have
(s +pv1) = dvats+ prvs = 8 (Suto— pvo) + prvy
= §0uo—p(6vo—tv1) =0,
and hence there is a cochain y,€C"2(W, W’ U F; Z) such that
© Oty +pv1=o0ys.
Applying ¢ to the both sides of equation, we have

) },a¢u1=¢yl—¢v1,

because of ¢ayi=pdyi.

Since mu=ou,, 1*(a) is represented by ou, mod p, and hence it follows from (A) that
7T,1*(@) is represented by dup=ru; mod p. Thus it follows from (2-2) and (C)
that ,7,1*(a) and 7.,7,1*(a) are represented by o¢u; mod p and juy=oy, mod p
respectively. Therefore v(a)=1*"y, 7 ,I*(a) and u(a)=1*"7,.7 ,I*(a) are represented
by ¢(u;) mod p and ¢(y) mod p. On the other hand, 4,(a) is represented by v
mod p, and hence 1*4,(a) by ovo mod p. Thus it follows from (B) that 7,I*4,(a)
is represented by dvo=rtvy. From this, we see that »d,(a) = I* '\, 7 ,1%4,(a) is
represented by ¢(vy) mod p. Now () is clear from (D).

[t follows from above (i) and the well-known property: 42=0 that

6) See the Remark (1) at the end of §4.
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pdy= (dw+vd,) d,=4,v4,
=(p—wdpd,=pd,.
This completes the proof.
THEOREM (3:9). (i) Let p=3, then
Cp—pu®@ =p?®L, O v=0F"
(i) Let p=2, then
Sq*v—1Sq* = p2Sq*L.7
The proof will be given in §4 by no making use of the original definitions
of ¢* and Sq®. We shall use only the following properties [16]:
@D IFr. (X,'A) — (X', A") is a simplicial map,
Q=1 F*Sq°=8q° f*.
L)  For the coboundary operator §*, we have
0*§ =E2o%, 0%5q°=Sq’5*.
D) *Cawb)=>31 =67 (@) v §* (D),
Sq*(@wb) =24 Sq’ (@) ©Sq*(b).
(IV) &° and Sq° are the identity.
V)  ®(a)=avav - va (p-fold cup product) if dim a is even and s=% dim
a, and =0 if s>% dim a or <0. Sq*(a)=ava if dim a=s, and =0 if s>
dim a or <O0.

By iterations of (3-9), we have
CoroLLARY (3-10). 1) u@ =212 (=Drpt@ D@ *y (p=3),
(1) S¢° =22 v"Sq* (p=2).
By (2-19), (3-9) and the property (II) of ®° and Sq®, we have
CorOLLARY (3:11). (i) udi® = ®ud®  (p=3),
(i) »p3Sq’=Sa'rpy  (p=2).
THEOREM (3-12). (1) %60 — ®¢h= w1 % (p=3),
(D) $5Sa’—Sa’Ps=1Sa’ Py (p=2).7
This will be proved in §5 by making use of the original definitions of §* and Sq’,
due to N. E. Steenrod.

CorOLLARY (3:13). If p=2, then
$5Sa°—Sq°ds = pSq 2P +Sq* v,

7) For the formula for p=2, see R. Bott [2].
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Proof. Since v?=p for p=2 by (2-17), it follows from (ii) of (3:9) that
#SqTF P =Sq  wpt — vSqPE.
From this and (ii) of (3-12), we have (3-13).
By iterations of (3-12), we have
CoROLLARY (3:14). (1) &¢% =D (= 1EurE DGR (p=3),

(i) Sq'dp§=2 2" bESq (p=2).

4. Proof of (3:6) and (3-9)

We shall first state an important property of x and » for a special case in
which ¢ operates on W without fixed points.

Let Uo=U,(W)EH*(W,;Z) and Vi;=Vy(W) € HY(W,;Z,) be elements defined
by (1) and »(1) respectively®, where p: H(W;;Z) — H2(W,;; Z) and v: H)(W;
Z)— H'(W,;Z;). Then we have the following:

THEOREM (4:1).2  Suppose that the transformation t: W —> W has no fixed
point, and let a € H"(W, W/ ;G). Then, for the homomorphism p:H (W, W/ ;G)
— H"*(W, W, ;G and v: H (W, W{;G) — H YW, W/ ;G,), it holds that

u(@)=U,(W)wa, via)=Vi(W)ua,
where fhe cup products arve taken with respect to the natural pairing G Z — G
and G Q Z, — G, respectively.

Proof. LetuecZ (W, W/ ;G) be a cocycle which represents @, and 1€ Z°(W,;
Z) the unit cocycle. Let u, € C"(W, W’ ;G) be an element such that ¢u,=u, and
let s;,€C(W ;Z) (i=0,1,2) be elements such that
(A) dso=1, 0So=T1S1, 0S1=10Ss.

It is clear that such s; exists. Then it holds by the definitions of » and » that ¢s,
and ¢s; mod p are representative cocycles of U and V respectively. Moreover it
follows easily from (A) by making use of (3-2) and (2:10) that

¢ (soanty) =1u, 0 (soouy) =t (s1vouy),

8 (s1voug) =0 (spwotto).
Thus & (sevoity) and ¢ (syvouy) mod pG represent u(a) and v(a) respectively. On
the other hand, it follows from (3-2) that ¢(sywouy) =P (sp)wu and G(sy o)

=¢(sy)wu. Therefore ¢P(sywouy,) and ¢P(s;vouy) mod pG represent U,wa and

8) Let Y be a complex, then we denote by 1 the cohomology class containing the fundamental zero-

cocycle 1.
9) See W. T. Wu [19].
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Viwa respectively. This proves (4-1).

THEOREM (4-2). (1) 4,Vi(W)=U(W) mod p.

(i) Vi(W)w Vi(W) =0 if p=3, and = U,(W) mod p if p=2.

Proof. Using the notations in the above proof, Vi and U, are represented by
¢s; mod p and ¢ps, respectively. Moreover it follows from (2-10) and (A) that

0ps1=pds1=pasy=pds,.
This proves (). It follows from (4-1) that
Viw Vi=v(Vy) =v2(D).
Therefore (ii) is obvious from (2:7). Q.E.D.

We shall again consider the general case in which # may have fixed points. We
shall retain the notations in above sections. Let W* and (W/UF)* be the second
barycentric subdivisions of W and W'UF respectively, and let N be the regular
neighborhood of (W/UF)* in W*. (i.e. N=JaSt(A), where the union is extend-
ed over all the vertices A4 of (W'UF)* and S¢ denotes the open star in W*.) Let
N be the closure of N in W*, and denote

M=W*-N, E=N-N.
Then N, E and M are subcomplexes of W* It is obvious that the map ¢ is
simplicial with respect to W* and satisfies the conditions a) and b) in § 1. Moreover
it is easy to verify that N, E and M are t-invariant subcomplexes of W*

Let W7 be the second subdivision of W, then the map 7: W*— W,* is
simplicial. Let N;, E;and M, be the images by 7 of N, E and M respectively. Then
it can be easily proved that those are subcomplexes of W7 and that N, is the regu-
lar neighborhood of (W/UZF;)* which is the second subdivision of W/ UF,. Thus,
by the THEOREM 9-9 of Chapter Il in [3], we see that W/ UF; is a strong deforma-

tion retract of N, Therefore we have
klk . H’(Wt, ]Vt ;G) ~ Hr(Wt, WiUF:; G)
for any » and G, where ky: (W, W/ UF) — (W, N,) is the inclusion map. On

the other hand, it follows from the excision property that

kEs:H" (W, N;;G)~ H (M, E;; G)

for any » and G, where ky: (M;, E;)) — (W4, N,) is the inclusion map. Thus we
have proved '

LemMa (4-3). ESESTH' (W, W/UF;;G) ~ H (M, E;;G) for any v and G.

Consider now the complex M, then ¢ operates on M with the properties a) and
b) in§1. Moreover the transformation ¢: M — M has no fixed point, and E is the
t-invariant subcomplex of M. Therefore we may apply (4-1) with W=M and
W'’=E. Namely we have
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LemMma (4-4).  For the homomorphism p: H'(My, E;; G) — H™*(M,, E;; G) and

v:H (M, E:; G) — HY(M;, E;; Gy, it holds that
un(a) =Up(M) wa, v(@)=Vi(M)wva,
where a€¢ H'(M;, E;; G).

We shall now give a proof of (3-6) and (3-9).1 In virtue of (4-3) and the
naturality of g, v, ®° and v, it is sufficient to prove them for the special case:
W, WH=(M,E).

Write U, and V5 for U,(M) and Vi(M) respectively, and let Upw Upw -+ w U,
denotes the p-fold cup product of U,. Then, from (4-4) and the properties of ®°
and Sq° described in § 3, we have for an element a € H'(M;, E;; Z,) the following:

@ O n@) =6 (Uzwa)=2u=0 (UG (a)
=(Uu®* (@) + (Vo Upo - 0 U ®(a))
=p8(a) + 1?6 (@),
® (@) =6 (Viva) = VivF (@) =vE(a),
(ii) Sq*v(a@) =Sq*(Viva) = (V3udq’ (@) + (Vi ViuSq(a))
=v5q* (@) +25q"*(a).
This proves (3-9).
As for (3+6), (i) and (ii) are obvious from the anti-commutativity of the cup pro-
duct. In addition to this, if we use (4-2) we have (iii). Thus we obtain (3-6).
Remark (1) We proved (i) of (3:8) directly by the definitions of u, v and 4,.
However, since it follows from (4-2) and a well-known property of 4, that
dw(@)=4d,(Viva)=(4,Viva)—(Vivd,a)
=(Uewa) —(Vyvwdya) =pa—vdma
for ac H'(M;, E;; Z,), we can prove (i) of (3-8) by the same way as the above.

(2) It is not difficult to give a direct proof of (ii) of (3-9) without making

use of (My, E;). Such a proof is seen in R. Bott [2].

5. Proof of (3-12)

We shall prove only the formula for p=3. The proof of the one for p=2 is
similar.”

Let X be an arbitrary simplicial complex, and A its subcomplex. enote by
X(p»(X) the p-fold cartesian product of X. Then N. E. Steenrod [15, 167 defined

O HY(X A;Zy) — H=0D (X A; Z,) for  p=3,
by making use of the homomorphism
D;:C"Xp(X); Z) —C (X Zy)

as follows:
5D (@) = (=1DF D N2 D oo (U XuX - Xu)},

10) Compare with the original proof in R. Thom (18] where the Cartan-Leray cochomology theory
is used.
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where u is a representative cocycle of a € H'(X, A; Z,), {v} denotes the cohomology
class containing v, and f=(p—1)/2.
We shall recall some properties of D;.
Let
T:C"Ep(X);Zy) — C" X pn(X); Zp)

be an automorphism defined by
T(utg X tho X -+ X1ep) = (—1) 702" 00) (g5 X 43 X -+ X %41)
(u; €C?" (X;Z,)), and denote by o7 and vr the homomorphism »237” and 1-T
respectively. Then the following holds [15].
LemMma (5-2). 6D, (uyXusX -+ Xup)
=(=1)'D;6(us X tt2X -+ X1tp) + (—1)" 1D, _ya; sty X st X -+ X 10),
where a;=or for even i, and= —<r for odd i.
The following property of pr is verified easily.
LemMma (5:3). If dim wuy=dim us= - =dim u,, then we have
or(uy X ua X - X)) =17 Q0 T Uy Xt X -+ X 1tp)).

D; are not determined uniquely for a given X. However if a locally simple
ordering is introduced on X, we can construct uniquely D; by making use of this
ordering, as is shown by S. Araki [1]. Construct D; by such a method, then the
following is immediate from the definition due to Araki.

LemMA (5-4). Let X and X' be simplicial complexes on which locally simple
orderings ave given, and let f: X —> X' be an order-preserving simplical map, then
the naturality :

D, (fusX fuo X - X fury) =f D, (s X tho X =+ X 14)
holds.

Take now as X especially W considered in above sections. Then we can con-
sider on C"(X(»(W) ; Z,) an another automorphism ¢ than above-mentioned 7. The
definition of ¢ is as follows:

FQuy Xt X - X hy) =ttty X thg X -+ X tuhy,
where u, € C%(W; Z,). Therefore C"(X,»(W); Z,) becomes a group with two
operators T and ¢£. Denote 0=>7_ #/ and t=1—¢ Then the following is obvious.

Lemma (5-5). (i) tT="Tt.

(i) o(uy Xt X -+ Xaty) =7 (5, (U Xt X -+ X 1ty).

Let us define D,:C"(X»(W); Z,)—> C"*(W; Z,) by making use of a locally
simple ordering invariant under ¢ on W, and define D,:C" (¥, (W) ; Z,) — C"™™*
(W,; Z,) by making use of the locally simple ordering on W, induced from that
on W. Then ¥ (j=1, 2,---, p—1) and 7 are order-preserving simplicial maps.
Therefore we have by (5-3) and the definition of ¢/ the following

Lemma (5:6). (1) D, (mdpuy X wpus X -+ X 7wPpuip) =D, (ptey X Pt X -+ X puty).
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(ll) D,tj(ulxugx---Xup)=tjD,(u1><u2><---><up),
and hence D;p=pD;,

Let (mo, m4,---, my—1) be a sequence of integers mod p such that me+ mey+ -
+m,1=0 mod p. Such two sequences (mo, my,--,Mmy—) and (mq , my -+, M} 1)
are called to be equivalent if there is an integer 8 mod p such that m;=my,; for
j=0, 1,---,p—1. The equivalence class containing a sequence (m, M1, , M s1)
will be denoted by m=[my, my,---, my—4]. Given an equivalence class m and a co-
chain u € C*(W, W'; Z,), let us denote by 2(%;m) a cochain

D iy, ig e i XU X e X
where the summation is extended over all sequences (7,7, -+, ;) of integers mod
p such that (z—iy, 43—, -+, 41—1%,) €m. Then we have obviously
LeMMA (5+7). ouXouX -+ Xou= 2w ;m),
where m runs over every possible equivalence class.

Assume that (mo, my, -+, my—q) = (Mg, Mpaa, -+, Mprpy) for some B#0 mod p.

Then we have mj;=myg.; for any j, and hence mo=mp= -~ =m 1. Since p is
prime and B0, the set {0,4,28,-, (p—1)B} and {0, 1, 2,--,p—1} are same.
Therefore we have mo=my=---=m, 4. Thus it holds that if m, m;,---,m,_4 are not

all same then the equivalence class [, 74,--- m,-1] consists of p different sequences.
On the other hand, it is obvious that the class [, m, -+ m] consists of only one
sequence. These considerations deduce readily the following:

Lemma (5-8). Let (mo, my, -, my—q) be a sequence, and let m be the class con-
taining it. Put o ;mo, My, Mp_q) =X E"0u X E"0 g X oo X PPty Then
if mo, my, -+, My—y ave not all same, then

2Cu ; m) =core(u ; mo, My, +, Mp-1) ;
if mo=my=--=my, then
Q@ ;m) =00 ; My, Ma, =+, Mp—1).

If mo=my=---=m, 1(=m), we shall abbreviate w ;mo, m1,--m;—1) as o(u;m).
Throughout the remainder of this section, we shall assume that «# denotes a cocycle
(le. u€e Z2(W, W' ; Z,)) and that ¢ denotes an even number.

LEMMA (5:9) D;(cuXouX -+ Xou) and o {;;%Dico(u;m) represent the same
cohomology class of "H*(W,W'UF; Z,).

Proof. It follows from (5-7), (5-8), (5-6) and (5-2) that
D;(ouu X ou X -+ X out)

—1
=D;3 40w (u;m) +D;3 noor(u; mo, ma, -, Ms1)
—1 .
=02 Do ; m) +6d 0 D,oro (w5 mo, My, -+, Mp—1)
= O‘Zg::lth(D (% ; Wl) + O‘Z:ﬂ DzTT (Z?:lej_l(l) (” s Mo, My,""~, ml,_l) ,

where >/ denotes the summation extended over every possible equivalence class
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m=[mp, y,+, Mmy—1] such that me, my,+-, m,4 are not all same. However it follows
from (5-1) that
Dyrr Gy jT7 7 s mg, my, -+, Mp1))
= = 0D Qi JT (s mo, M+, My-1)).

This proves (5-9).

LemMma (5:10). 6D;o(u;m) =0 if m=0, and

=—tDi Q0 0w m)) if m*EQ.
Proof. 1t follows from (5-1) that

0Diw(u ; m) = — Diyor0(u ; m)
= =D QA F"(uXt"ux -+ X y))
=—D; j00(u;m) if m=0, and =0 if m=0.
Since it follows from (5-5) and (5-6) that
D;_so0(u;m) =TD;_1Z§’=1 e (u;m)),
we have (5-10).

Denote by {pv}, the element of "H/(W,W’UF;Z,) containing a cocycle pv €
PCI(W,W'UF;Z,). Then we have

LEmMA (5-11). Let k be an integer such that 0=k=p—2. Then we have

T o toD; hmgmbe (u;m)) } o
= —{t Dy oA 22 mhiti 1o (u s m)) )+

Pyoof. 1t is an elementary fact that > 27 m*=0 if 0=k=p—2. Therefore, if
we recall that the dual chain map of D; is carried by the diagonal carrier, it
follows easily that D; O 27 m* w(u;m)) is an element of C»~(W,W'UF ;Z,).
By the definition of 7,, it follows that 7,{¢D;2 2Zlm* w(u;m)}, is represented
by éD;C % _gm*w(u;m)). Thus (5-11) is clear from (5-10).

Lemma (5-12). 7, {tDie X biit o (u;m))} , = —mioD, s ; m)},.

Proof. Since 2%_,j=0, D;yC 2, jt7%o(u;m)) is an element of CH (W, W’
UF;Z,). Therefore7,{rD;1(2 5, jt/ ™ o(u;m))}, is represented by ¢D;«(3 2, jt'~*
w(u;m)). However we have by (5-1) and (5+6) that

=8D; 125 0 (1 s m)
=D; 5 QE it o (u ;m))
=Dio Q2 GET' =t 0 (w3 m))
=D; s CF_, (G—G=m))t o (u ;m))
=mD; 2 "o (u;m))
=maoD, o0 (u ; m)

This proves (5:12).
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From (5-11) and (5-12), we have
LemMmA (5-13). Let 0=k =p—2, then
TV oloD, Chimbo(u;m)} e ={6D; o3 5% m* o (u;m))},.

Since m?~1=1 for an integer m#0 mod p, we have by the iterations of (5:13)
the following

Lemma (5-14). (7,7 )? oD (b ;m)} o= {6D; sty ClhTjo (u; m)) ) 4.

THEOREM (5:15). (V. 7)Y D;(ouxoux - xou)},

={D, a(p-p(ouXouX + Xou}s—{6D; 20D @XUX X))},

Proof. 1t follows from (5-9) and (5-14)

VTP YD;(ouxX ot X - X o)} ,
=TT )" HoD; Qhzko(u;m)))} &
= (0D,-20p-0 0w ;m) }
={Di20p0 C o ;m)} o= {06D;2(p-po (15 0)} 4
={D,_ap-p)(cuXouX - Xou)};—{0D, 2@ XUX X))} 5
This proves (5-15).

We shall now give a proof of (3:11).

Let a€c H*(W,W'; Z,) be an element whose representative cocycle is u € Z72(W,
W’;z.). Let p=3, then it follows from (2-10), (5-6) and (5-15) by the definitions
of ®° and x that

pP 1 PE (@) =T (7.7 )P T*C*¢p¥(a)
=(=D'@* T (7.7 )P ™MD p-v(0U X 05U X -+ X 0U) }
=(=D'E)* T ({Dgozs-2)(p-1) (U X U X -+ X 9UD} 5
—{0D (gos2)p-n(UXUX - Xu)},)
=(=D'* 1 ({Dgss-2-0(PuX PuX -+ X pu) } »
—{PD(g2s-2)(p-1) (U XU X - Xu) } )
=(=D'E2(E1P¥(a) ~ 56 (@),
where we put /=ts+1g(g—1)/2. However we know that (#)2=-—1 if ¢ is even,
and =1 if ¢ is odd. Hence we have
ﬂp—16)s¢>g - ¢>6<6)s+1_ @s+1¢6’ﬁ
which is (i) of (3-11).

6. Regularity and almost regularity
Consider the sequence
* A =
Ry HW, W', Z) Lo Hr (W, W' UF; Zy) .& PH"(W,W'UF; Zy).
Then Bp%=0 is obvious from pp=0, but the sequence is not necessarily exact. When
the sequence (R;) is exact for p=o¢ and v, we shall call that (W, W', ) is almost
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regular in dimension 7. Consider also the sequence
R H W, W';Z,) —p—*»H’(W, W' Zy) EiH’(W, W' Z,).
Then p*p*=0, but (Ry) is not necessarily exact. When (R,) is exact for p=¢ and
r, and in addition the inclusion homomorphism j*:H"(W,W'UF ; Z,) — H" (W,
W’; Z,) is isomorphic into, we shall call that (W, W', #) is regular in dimension 7.
TuaeoreM (6-1). If (W, W', t) is rvegular in dimension v, then it is almost re-
gular in dimension 7.
Proof. Consider the following commutative diagram
H W, W 2) PS5 H/ (W, WUF; Z) B8 pH (W, W' UF; Z,)
PETN l]* * lap
HW,W;Z) Lo ,H(W,W'UF;Z,)
\f)*\\ L7
HW, W' Z,).
Assume that B5(a)=0 for a€ H'"(W,W'UF; Z,). Then, since p*j*(a)=j%a,B(a)
=0, it follows by the assumption of the theorem that there is an element b€ H" (W,
W’;Z,) such that p*(b)=j5*(a). Since p*=j*p§, we have j*(a—p§(b))=0. Since
7* is isomorphic into by the assumption of the theorem, we have a=py (b). This
proves (6-1).
Let us denote by "N"(W,W'UF; Z,) the kernel of the homomorphism az:"H"
W, W'UF;Z,) — H(W,W'UF; Z,). Then we have
TrHEOREM (6-2). If (W, W', t) is almost regular in dimension r, it holds that
PN" W, W UF; Z)=T,"N' (W, W UF; Z)+8,i*H" (W, W’ ; Z)V.

Proof. Consider the following diagram

H W, W’UF;ZI,)ip_ "H' (W, W' UF;Z,) j_f’fH’“(W, W/UF;Z)
les  ~opt 1e, " 1,
PH"(W,W'UF, Z,,)\ HW, W' Z)— HWUF,W"; Z,)
Let a=7,() €’ N™*"(W, W'UF; Z,), where b&"H (W,W’'UF;Z,). Then, since
Bplapb) =0, it follows by the assumption that there is an element c¢€ H"(W,W’;Z,)
such that a5(0) =p§(c). Put d=b—x,(c), then it follows from (2-9) that
ap(d)=ap) —apr,(c) =as) —p§(c) =0,
so that d€"N"(W,W’'UF; Z,). On the other hand, it follows from (2-17) that
a=T,0)=7,d+x£,))=T,(d)+7 ,&,()
=7,(d)—2,i*().
This proves PN""'(W,W'UF;Z,) CT,'N'(W,W' UF;Z)+9*H (W, W’ 52,

11) See Theorem 1 in R. Thom [18.)
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The inverse inclusion is obvious. This completes the proof of (6-2).

THEOREM (6:3)1®. If (W, W', t) is regular in dimension v, then it holds that

PN YW, W UF; Z) =T, N W, W UF;Z,) ®9,0*H (W, W"’; Z,)V.

In addition T,:"N"W,W'UF; Z,)—PN™ (W, W’'UF; Z,) is isomorphic into.

Proof. In virtue of (6-1) and (6:2), it is sufficient tc prove that 7,(a) +2,*(d)
=0 implies ¢=0, where a € "N"(W,W'UF;Z,) and be H (W, W’ ; Z,).

It follows from (2-17) that 7,(a—«x,(b))=0. Hence there is an element ¢ € H”
W, W'UF; Z,) such that a—&,(6) =8,(c). Since ap(a)=0, it follows from (1-4) and
(2-9) that —pg (b)) =p*(c). Thus we have

p*(b+5*()) =7*p5(B) +p*7* ()
=7*(p% (b) +p§(c)) =0.

Therefore it follows from the assumption that there is an element de H"(W, W’ ;
Z;) such that bd+j5*(c)=p*(d). Then a—«,(p*(d)—j*())=8,(c). Since k,p*=0
and x,5*=/, we obtain ¢=0, which is our purpose. This completes the proof of
(6+3).

THEOREM (6:4). If (W, W', ) is almost vegular in dimension 7, then we have

"H' (W, WUF; Z)="N"(W, W UF; Z,) +x,H (W, W"; Z,).
Proof. Consider the following commutative diagram

PHT(W, W\UF Z) %% BT (W, I/I}’UF;Z,,) Bo ogr (W, W UF; Z,)

Ep\ /P

H W, W’ Z,)
Let ac"H"(W,W'UF; Z,). Then, since Bpap(a)=0, it follows from the assumption
that there is an element b€ H"(W, W’ ; Z,) such that a;(@) =p§(). Put c=a—«,(b),
then we have
ap(e)=ap(@) —apre(d) =as(a) —p§ ) =0.
Therefore c€ "N"(W,W'UF; Z,). Since a=c-+#x,(b), we have (6-4).

CHAPTER II. COHOMOLOGY OF CYCLIC PRODUCTS

7. Cartesian products and cyclic products

Let K be a finite simplicial complex, and denote by ¥, (K) the p-fold cartesian
product Kx Kx--x K of K. Suppose that a locally simple ordering is given in K.
Then,las is well known [3], ¥, (K) is simplicially decomposed as follows : the vertices
of X¢»(K) are all the points a= (a4, @5, +, a;), where a; are vertices of K; Different
(n+1) vertices a'=(d, ai,, a}) (i=0,1,2,, n) of ¥, (K) form an n-dimensional
-simplex if and only if @9, al,---, a% are contained in a simplex of K and the re-
lations a}=<a}=-- =a} (k=1,2,,p) hold with respect to the order < given in K.

12) See Theorem 2 in R. Thom [18].
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Define now an order < among such vertices a' (1=0, 1,-+, %) by @®<a <--- <da"
Then a locally simple ordering is introduced in X, (K). In the following, X, (K)
will be always understood as a simplicial complex with such an ordering.

Let 1: ¥, (K)—> X, (K) be a map defined by
(7D 11, 202,70+, 24) = (A2, X5+, X), x, €K
Then it is easily seen that t is a periodic transformation of period p, and satisfies
the conditions a) and b) in §1. Moreover t is order-preserving. Thus we may apply
the results in Chapter I for W =¥ (K), W’'=empty set, =1 Obviously the fixed
points set under t is the diagonal D¢ (K)={(x, x,-,x) |x€ K3} The orbit space
OFp»(K), t) is called usually the p-fold cyclic product of K [5, 11]. This corres-
ponds to W; in the theory in Chapter I, and hence we see that it is a simplicial
complex. In the following, this complex will be denoted by 3¢, (K). Denote also by
by (K) the image of D¢, (K) by the projection 7 : X, (K) —> B (K). 7: D (K)
—> ;) (K) is a homeomorphism.

Applying the theory of Chapter I to the complex ¥, (K) with the transforma-
tion t defined by (7-1), we shall in the present chapter study the cohomology of
B(»(K). Here pisan arbitrary prime number, but p shall remain fixed throughout
the discussion of this chapter. Therefore we write briefly ¥(K), 3(K), - for ¥, (K),
RIOIC: OB

Let d: K— ¥(K) be the diagonal map (i. e. a map defined by d(x) = (x, 1, -+, x)
for any x€K), and let d*: H'(X(K); G) — H"(K;G) be the homomorphism
induced by d. Then, for any element ¢ € H'(K;G) and the unit class 1€ H°(X; 7),
we have by the definition of cup product
(7-2) d¥(@ax1x - x1)=qgulu--Ul=gq,
where the cross and cup products are taken with respect to the natural multiplica-
tion GR ZR - Q Z—G. Especially we see that d* is onto. Let dy: K—> D(K)
be the map'deﬁned by d, then d, is a homeomorphism. Hence d§: H"(D(K) ;G)—>
H"(K;G) is isomorphic onto. Since the commutativity holds in the diagram

H GEK);6) L H (DK ;6)
N by

the above consideration implies that #* is onto. Thus, by the exact sequence for
X(K),D(K)), we have the following :
THEOREM (7:3). The sequence

0— H"(X(K),D(K) ;&) _71 H XEK); & ﬁ»H'(i‘)(K} ; G)—0
is exact ; moreover it holds that d§i*=d* and d§: H"(D(K) ;G) ~ H (K;G).

Let G be a field, and let 0*(K;G) be a (homogeneous) base for the vector
space H*(K;G). Then the cross product byXbyX -+ xb, (b; € 9*(K;G)) is an element
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of H*(X¥(K) ;G). It is well-known as the Kiinneth formula that we can take as a
base for the vector space H"(¥(K) ;G) the following set:

B (2%(K;G)) =1{byXboX -+ Xb, | b; € 9*(K; &), 20, q;=7},
where dim b;=g;. Denote by B”"(9*(K;G)) a subset of B"(£*(K;G)) consisting
of all the ‘diagonal’ elements :
B (0*(K;G))={bxbx-Xb|beQ*(K;B), pg=71},
where dim b=gq, and let
B7(9*(K;G))=B"(2*(K;G)—B" (9*(K ;).
Furthermore we shall denote by V7 (2*(K;G)) and V" (£*(K ;G)) the vector sub-
spaces spanned by B (2*(K;G)) and B" (9*(K;G)) respectively. Then, since
by X by X - X by) = (—=1)% 02 """ 0p) (hy X by X +++ X D)
for the homomorphism t*: H"(X(K) ;G) — H"(X(K) ; G) induced by t, it is obvious
that B7(@*(K ; G)) and B" (£*(K;G)) are t*invariant subspaces. This, together
with the fact p is prime, proves that there is a set B/"(2*(K;G)) such that

(i) any element of B/"(9Q*(K;G)) is written ew, where ¢=1 or —1 and w¢€
B7(9"(K; ),

(i) the set {t*(w) |w€ B/ (2*(K;G)), 0=j=p—1} isa base for V" (Q*(K;
).

Thus we can now prove by the same arguments as in the proof of (1-3) the
following :

THEOREM (7-4). Let G be a field, and let a€ H (X(K) ; @) be an element such
that p*a=0. Then there are two elements x, y€ H"(X(K) ;G) such that a=p*x+y
and y is a linear combination of diagonal elements for a base of H*(K;G).

If » is not divisible by p, there is no diagonal element. Therefore we have

CoROLLARY (7+5). Let G be a field, and assume that v is not divisible by p.
Then the sequence

H&XEK) ;G —p—*»H’(%(K) ;G)E»H’(%(X) ;G
is exact.

8. Proof of almost regularity

We shall in this section prove that (¥(K), @,t) is almost regular in every
dimension, where @ denotes the empty set. We abbreviate (X(K), @,1) as (¥(XK),1).

From (7:3) and (7-5), we have immediately

TueorEM (8-1). (X(K), 1D isregular in dimension v which is not divisible by p.

Lemma (8-2). Let a€ H"(X(K),D(K);Z,) be an element such that Sra=0
and j*a is a lineav combination of diagonal elements for a base of H*(K; Z,). Then
we have a=0.

Proof. Let dim k=un.

Case 1:g=n. Consider the following commutative diagram
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PH" (%K), D(K); Zy)
Bp / . \a 5
H"(%(K), D(K) ;5 Z) L5 B (3(K), DK ; Z,)
i) bie N\
H»(R(K); Z) — 530 H"(EKD 3 Z,) PHPEEK), DD 3 Z))

Since Ap(a)=0, there is an element b€ "H™"(X(K),D(K) ; Z,) such that ap() =a.
B, is onto, so that there is an element c¢€ H”(X(K), ®(K) ; Z,) such that £,(c)=b.
Thus we have a=a;(0) =a;8,(c) =p*(c). Let @*(K; Z,) be the base of H*(K; Z,)
stated in the assumption of (8:2), and use the notations in §7. Let j*(¢c)=c¢"+c¢”,
where ¢’ € V'(@*(K; Z,)) and ¢” € V'(9*(K;Z,)). Then it follows that

7 (@) =j*p*(c) = p*5*(c)
=p*(¢") +p*(c") = p*(c),

so that j*(a) € V' (9*(K; Z,)). However j*(a) € V"(9*(K; Z,)) by the assumption.
Since V' (@*(K; Z)) NV (9*(K; Z,)) =0, we have j*(a)=0. Since j* is isomorpic
into by (7:3), we concude a=0.

Case 2:g<n. Denote by K7 the g-skelton of K. Let g:K?— K be the inclu-
sion, and let G:X(K?) —> X(K) be the map given by gxgx--xg. Let 9*(K;Z,)
be the base of H*(K; Z,) stated in the assumption of (8:2). Since g*: HY(K;Z,)
— H(K?; Z,) is isomorphic into, there is a base 2*(K?; Z,) of H*(K;Z,) which
contains all the elements g*(b) such that b€ 0*(K; Z,) and dim d=q. It is obvious
that G*(V"21(Q*(K; Z,)) C V/?(@*(K?; Z,)). We shall first prove that G*: V7#4(o*
(K; 7)) — Vr?(@*(K?; Z,)) is isomorphic into. Let ®,H?(K;Z,) denotes the
p-fold tensor product of HY(K;Z,), then we have the natural into-isomorphism ¢£:
Vite(g*(K ; Z,)) — Q,H' (K ; Z,). We have also the similar into-isomorphism &
for K% Consider the following diagram

VI (er (K3 Z,)) 5 Q,HWK ; Z,)
e [®se”
V(R (K9 7,0) -5 @,HIKY ; Z,),

where ®, g¥=g*® g*® --- ®g*. Then it is obvious that the commutativity holds
in this diagram. Moreover, since g*: H/(K; Z,) — HY(K"; Z,) is isomorphic into,
it follows that ®,g* is also isomorphic into. This shows that G* is isomorphic
into.
Consider next the commutative diagram

H"MX(K) ; Zy) <jiH”(3€(K),@(K) 3 Z4) B oo (2 (K), DK) s Zy)

G* G* G*
HM QKD ; 2p) d5 HP@RED, DK 5 2) B2r i (2(K, DK ; Z),
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then the assumption B;(e)=0 implies that £,G*(a)=G*Fs(a)=0. Since j*(a) €
Vrra(Q*(K; Z,)) by the assumption, it holds j*G*(a) =G*j*(a) € V" (Q* (K75 Z)).
Therefore we have G*(a) =0 by the fact proved in case 1. Thus we have also G*j*(a)
—j*G*(a)=0. Since j*(a) € V" (9*(K; Z,)), we obtain j*a=0 by the above-

mentioned fact. This means a=0 by (7-3). Q.E.D.
THEOREM (8-3)1®. (X(K),t) is almost regular in dimension r=pq divisible
by p.

Proof. Consider the commutative diagram

HU R (K) 3 Zp) PS Hn (), DEK) 5 Z,) PreEn % (K), DK 5 Z,)

lp* /* >< l‘xp
H (KD ; Z,) ¥ P >HM<3€<K>, DEK) ; Zp)

PN gz 4T

Let a€ H"(X(K), D(K); Z,) be an element such that B;(a)=0. Then p**(a)=
7*p*(@) =j*a,B,(a), so that there is an element x,y € H**(¥(K) ; Z,) such that j*(a)
=p*(x)+y and y is a linear combination of diagonal elements for a base of H*(K;
Zy), in virtue of (7-4). Therefore j*(a)=j*p(x)+y, and hence j*(a—p§x)) =y.
Since Bsla—p§(x)) =F5(@) —LBprs(x) =0, it follows from (8:2) that a—p§(x)=0.
Therefore a=p§(x). Q.E. D.

Summarizing (8-1) and (8+3), we have by (6-1) the following :

THEOREM (8-4). (X(K),t) is almost regular in every dimension.

9. The homomorphism I'?

Let
IS HU(K; Zp) — PH™ X (K), D(K) ; Z)

be the homomorphism defined by T'?4d¢™". (See (2-20) as for the definition of I'?.)
The purpose of this section is to prove

TueorEM (9-1)¥.  The homomorphism UL : HY(K ; Z,) — PH*™ (X¥(K), DK) ;
Zy) 1is isomorphic into for 1 =s = (p—1)q.

As is proved in§8, (¥(K),t) is almost regular in every dimension. Therefore
the following is obvious from (7-2).

LemMma (9:2). For any r, we have

PN X (K), DK ; Zp)=T,"N"X(K), DK) ; Z) +TH" (K ; Z,).
Let S” be an n-dimensional sphere. Then H?(S"; Z,) =0 if ¢=0,n. Since &,(1)

13) See Theorem 3 in [18].
14) See Theorem 4 in [18].
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=0 by the definition of &,, it follows from (2:17) that &#,i* (1) = —7,x,(1) =0. There-
fore I'{ H°(S"; Z,) =0. Thus, by iterations of (9:2), we obtain
LemMmA (9:3). °N"(X(S™), D(S") ; Z) =Tl nH(S*; Z,).

Consider the commutative diagram

PH"(X(S™), D(S™) 5 Z,) 2B H"(X(S™), D(S™) ; Z,) fﬂ PH™ (X(8™), D(S™) ; Z))
AN . N
ﬂpT ) \ Tpo \]

|
ICae H? &S Zy) — j TH" (R (S5 Z))

H"(X(S"), DM ;5 Z,)

Since #np is the maximal dimension, B8, and £, are onto. Let e,€ H"(S";Z,) be
a generator, then H*?(X(S") ; Z,)~ Z, is generated by e,Xe,X--Xe, Since {*(e,x
e, X o Xe,) =e,Xe, X Xe, we have p*(e,xXe,X - Xe,)=0. Thus j*p§=p* is trivial,
so that it follows from (7:3) that apx,=pf§ is trivial. However, since B,=#x,j* is
onto, &, is onto. Therefore a; is trivial, and hence 8 is isomorphic into. Since £
is onto, B is an isomorphism. Thus we have

LemMMa (9-4). PH"(X(S"),D(S™); Z,) ="N"2(X(S™), D(S™) ; Z,) =,H" (X(S") ;
Zy) =~ Z,, wheve &, is an isomorphism.

From (9-3) and (9-4), we have
THEOREM (9:5). There is an integer mod p X, %0 such that
X (€ X €nX - X €)= Xp,u T 51, (€n).

ReMARK. We can assert easily that X,, mod p is independent of the choice of
generators e, of H*(S";Z,). For some #n, we can determine X,, explicitely. (See
az-7nJ)

Proof of (9-1). For this purpose, it is sufficient to prove that 1"5@_1) ‘HY(K ;
Zy)—>"H"M(X(K),D(K) ; Z,) is isomorphic into.

Let a€ HY(K; Z,) be an element such that 1",’;’(1,_1>(a) =0. Our purpose is to
prove a=0.

Case 1:g9=n, where n=dim K. In this case there is a map f: K—>S" such
that f*(e,) =a. Let F:¥(K) —> %(S") be the map given by F=fXfx - Xf. Since
Srdy=d§F* it follows from (9.5) by the naturality of 7,, ¢, and &, that

sz(p—]) (@)= I‘Z(ﬁ—-]) (f*e,) =F* I‘z(p-—l) (es)
=Xi4F*k,(e, X e, % - X e,)
=Xk F ¥ (e X ey X -+ X €,)
=X;hm(axax - xa.

Therefore we have k,(aXax--Xa)=0 by the assumption. Consider the commuta-
tive diagram
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H (% <K>l@<K> 2y I k(K 5 2) P (K ; Zy)
5,
PHP(X(K), DK) ; Zy)

Ko

Since H™(¥(K) ;Z,) ~ H"(K;Z,) =0, we see that j* is onto. Thus there is an ele-
ment be H"(X(K), D(K);Z,) such that axax--xXa=j*b. Then we have £,()
=k, j*(0) =xk,(axXax--xa)=0. Since there is a base of H*(K;Z,) containing a,
7¥(b) is a diagonal element for such a base of H*(K;Z,). Thus it follows from
(8+2) that b=0, so that axax--xa=0. This means ¢=0.

Case 2:g<n. Let g:K?—— K be the inclusion, and let G:¥(K% —X%(K) be
the map given by gxgx--xg. Then we have by the assumption

T’;(p—q) (g%a) = G*FZ(p—1) (@) =0,

and hence it follows from the fact proved in Case 1 that g*(a)=0. Since g*:
HY(K;Z,) — H*(K"; Z,) is isomorphic into, we have ¢=0. This completes the
proof of (9-:1).

We shall now define a homomorphism

Es:HY(K; Zy) —> H™(3(K), 2(K) ; Zy) (s>0)
as follows:
(9-6) Eogia=p 0% A", Epgro=p"wd*7* dl (a=0).
Then it is immediate that
®-7D Es=1¥"T7
Obviously we have
9-8) Eopo=vEoy1 (a=0), Eoog=p"FEs (s>0).

The following is a translation of (9-1) for p=o.
TuEOREM (9+9). The homomorphism E,:HY(K;Z,) — H"*(3(K),d(K) ; Z,)
is isomorphic into for 1 =s =(p—1)q.

10. Kernel of 7*

Lemma  (10-1). Let 7 be not divisible by p. Then
PN™ (XK, DE) ; Zp) =T, N (X(K), DK); Zp) DTIH (K ; Zy).
Moreover Tp: PN"(¥(K), D(K); Zy) —> PN (X(K), D(K) ; Z,) and I are both
isomorphic into.
Proof. This is obvious from (8-1), (6-3) and (9-1).
Lemma (10:2). Let x€ HY(K; Z,), then
Ep(XXx X Xx) € " NV(X(K), D(K) ; Zp).
Proof. 1t follows that
TRk, (XX XX o X %) =J¥pE(x X X X =+ X %)
=p*(xXxX o Xx)=0.
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Since j* is isomorphic into, ask,(xXx XX x)=0. This proves (19-:2).
LemmA (10-3). Assume that
PNMEE), DK 5 Zp) =220 TG H (K Z)™
holds for some q. Then the component in F’(’,,__1>qH UK; Zy) of ko(xXxX--X%x) for
the above direct decomposition is XLy, ,(x), where X, is the integer mod p in
(9-5).
Proof. Let g:K?—> K and G:X(K? —>X(K) be the maps in the proof of
(9-1). Then, as is shown there, it follows that
G¥rp(x XXX Xx) =k,(gFxX g¥x X -+ X g%%x)
=Xp,g 1} 1o (%)
On the other hand, if we put &,(xXxx - Xx) =220 Th _ y,, with y,, € H'(K ;
Z,), then we have
GHrp (XX 2 X - X x) =G*Y BT (¥p,5)
=2 BT (8%95,9) =Thp-08* (Wp,s),
since H*(K?;Z,)=0 if s>q. Therefore we have X, I 5-08% (%) =T5 1 &% (¥p,s).
Since I"9,_y and g* is isomorphic into, we conclude ¥, = X,,:¥.
We are now in a position to prove
THEOREM (10-4)19
PNT (XK, DEK) ; Zp =@Z§;1[<r+p—1>/pjrﬁ—sﬂs (K; Zp)™.

Note that each I¥_; is isomorphic into by (9-1). Such a direct decomposition
of PN"(X(K),D(K) ; Zy) will be called canonical.

Proof. Mathematical induction on 7 will be used. For » <0, the both sides
are obviously zero, and hence (10-4) holds for »<0. We shall now assume that
(10-4) is valid for 7 = 7, and prove (10:4) for r=r,+1.

Case 1:#, is not divisible by 2.

By (10-1) and the hypothesis of induction, we have

PNTEK), DK ; Zp) = TN (XK, DK) ; Z,) ® TSH (K ; Z,)
=T (@2t p—v/ s boms H* (K3 Z) @TIH" (K Z,)
= @2 Trgt s/ Goms il H* (K Zp) ® TYH (K 7))
:@Zgi[aﬁp)/ﬂrgo—s—HHs (K;Zy,
since [ (ro+p)/p]=[(re+p—1)/p] if #, is not divisible by p. This proves (10-4)
for r=7y+1.

15) Let A; (j=1,2,--,7) be subgroups of an abelian group. Then we write Ai+As+ -+ +A4,
as 22y Aj, and A1B A DDA, as g3;04 A

16) See Theorem 5 in [187.

19) Let 7 be a number, then we denote by (#) the greatest integer <5 7.
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Case 2:7, is divisible by 2.
Let 7o=pq. We must prove
D PNPEE), DEK); Z) =20 T, o H (K Zy).
II) The above decomposition is direct.
Proof of ). It follows from (9-2) and the hypothesis of induction that
PNPL(E(K), D(K) 5 Z) =T," N (X (K),D(K) ; Z,) +T5HM (K ; Z,)
=T (S0 T, H (K; Z) +TiH (K ; Zy) = 5328, T, H(K; Zy).
Thus the proof of I) completes if we prove I'ty_1y, 1 H (K ; Z) T 22 0albg—s1a
H°(K;Z;). For this purpose, we shall consider &,(xxXxX---Xx) for any x € H'(K;
Z,). Then we have k,(xXxX - xx) €’ NI (X(K),D(K);Z,) by (10-2). Let y,;
€H (K;Z,) (s=q,q9+1,--,pg—1) be elements such that g,(xXxXxX -+ Xx)=32271
T2, s(95,s). Then we have T'(s_1yq(¥p,0) =Xp,L ts—1¢(x) by (10:3). Therefore X,,
T2 1y, (X) =rp(xXxX - X %) =2 224 T, (). Applying 7, to the both sides of this
equation, we have
Xp, ql-‘?p—l)qrrl(jg =T ok, (XXX o X %) “"Zfiﬁl FZlI—s rl(yp,s) .

Since Tphp(x XXX 0 Xx) = =B F(AXLX o+ X%) = —Fpdy d* (XXIX -+ Xx) = —1,
d¥ ' (xuxu - Ux) by (2:17), (7-3) and the definition of cup product [15], we have
(A) Xp,ql—‘[()p_l)q»rl &)= _Zf—_gw 1 Fl;q~s+1(yn,s) ’

where we put yps=xvxw--ux. This proves 1'%y 4y, H(K; Z,) > 22, H*(K;
Z,), and completes the proof of I).

Proof of 1I). Assume that Y 2%, 41", _,1(a)) =0 with a,€ H*(K; Z,). Then our
purpose is to prove I}, (. (a)=0 for g+1 =s = pg. Since I'}(a,) =3,d5 " (as)
=0l ¥ (@pgXIX - X 1) = =T iy (@p,x1 X+ x1), it follows from the assumption that

Tolkp(@pyX1X XD =300 TV (a,)}=0.
Therefore there is an element b,,€ H*(X(K), ®(K) ; Z,) such that
(B) Ko (@pgX1X w0 X 1) = B, (byg) + 230253415, (a)).
Applying j*a, to the both sides of (B), we have

PF(@pg X 1K - X 1) = p*j*(b,),
since j¥a,k,=p* jra;B=j*p*=p**, «;7,=0 and a;0,0i*=—a,7,x,=0. Thus it
follows from (7-4) that there exist elements x,y € H??(X¥(K) ; Z,) such that

(@peXLX o X 1) =% (bpy) =% (x) +y,
and such that y is a linear combination of diagonal elements for a base of H*(K; Z,).
We have
© Ko (9) = iy (@ X LX oo X 1) = £ 1 (Bpg) = ™ ()

=kp(@pg XLX X 1) =B, (bsg).

Hence it follows from (B) and (C) that
D) £, () =Zfiﬁl Fiq—s (as).
Since y is a linear combination of diagonal elements, it follows from (10-3) by
the hypothesis of induction that the component of &,(y) in I“zl,_l)q HY(K ;Zy) is
Xo,ll7p-1y¢(¥). Thus we see y=0 from (D). This, together with (C), gives
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Ko(Apg X IX X 1) =£,(byy).
Thus it follows from (B) that

>t 1 (@) =0.
By the hypothesis of induction, this implies that I'j,_, (a) =0 for ¢+1 = s = pg—1.
Thus we have I'}, ;s (a,) =0 for ¢+1= s = pg—1, and hence also I"}(a,,) =0. This
proves II). Thus the proof of (10-4) is complete.

By (10-2), (10-3) and (10-4), we have

TreOREM (10-5). Let x€ H'(K; Z,), then there exists a unique system of (p—1)q
elements {y,(x)} (s=gq, g+1,-- pg—1) with y,(x) € H*(K; Z,) such that

(XX XX e X2) =2 20T (9,,(2)) ;
it holds that y,,,(x) =Xp,.x with X, in (9+5).

We have also

TraEOREM (10:6). Given x€ H'(K; Z;), therve exists a unique system of (p—1)q
elements {y,,;(x)} (s=q+1,q+2,-,pq) with y,:(x) €EH(K; Z,) satisfving an
equation

2 1 (95, (0)) =0,
where Y, ,(x) =X,,x. Moreover such y,(x) coincides with the one in (10-5), and
Vo, 5e(X) =x0x0- L.

Proof. Apply 7, to the both sides of (10+5). Since 7,r,(XXxX - Xx)=—0*
(xxxx o xXx) = —T8(xwxw--ux), we have 322, T _ .1 (¥,,:(x))=0. Next sup-
pose that there exist two systems {y,:(x)}, {¥,,:(x)} satisfying the equation. Then
we have 227 T i (95,s(%) =3,,:(x))=0. Since [(pg+1+p—1)/p]=g+1, this is
the canonical decomposition of 0€°PN?*1(X(K),D(K);Z,). Therefore it follows
from (10-4) that y,(x) —¥%,,:(x) =0 for g+1 =1 = pg. This completes the proof of
(10-6). :

Let us denote by N”(3(K),d(K) ;Z;) the kernel of the homomorphism 7*:H”"
BEK),v(K) ; Z,) —> H"(X(K),D(K) ; Z,) induced by z. Obviously I*: N"(3(K),
2(K);Z,) ~° "N"(X(K),D(K) ;Zy). Thus (10-4) for p=r is rewritten as follows:

Tueorem (10-7). N"(B(K),d(K) ; Z) =02 = (rsp-1y/ 0 Er-oH* (K ; Z)).

As translations of (10-5) for p=¢ and (10:6) for p=r, we have

Tueorem (10-8). Let x€ H'(K; Z,), then there exists a unique system of (p—1)q

elements (y,,(x)}(s=q,q+1, -, pg—1) with y,.(x) € H(K; Z;) such that
Po(rxa XX 0) =3 Epy (94,6(2)) ;
it holds that y, ,(x) =X, ,x.

TueoreM (10-9). Let x€ H'(K; Z,), then there exists a unique system of (p—1)q

elements (y.,:(x)}(s=q+1,q+2,-,pq) with v, € H(K;Z,) satisfying an equation

Zfinﬁ(]-.ﬂ 1(3’7 ) (x)) =0.
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where ¥r,,(x) =X, ,(x).

11. Cohomology of the p-fold cyclic products

We shall retain the use of the notations in § 7. Especially recall the definitions
of the sets 2*(K;Z,), Bi{(9*(K;Z;)) and of the vector subspaces V7 (2*(K;Z,)),
V"(Q@*(K; Z)) CH (X(K) ; Zp); the set {(1*(w) |we€ B/"(2*(K; Z)),0=j=p-1}
is a base of V7 (2*(K; Z,)).

Tueorem (11-1).

H"(3(K),2(K) ; Z) =N"(3(K),0(K) ; Z,) D PE(V7(Q2*(K; Zp) ;

the kernel of ¢%: V7 (2*(K; Zy)) —> H"(3(K),v(K) ; Z,) is t*V'"(Q*(K; Zy)).

Proof. Let z€ V" (9*(K;Z;)), then it follows from (10-2) that x,(z) € *N"(X
(K), ®(K);Zs). This implies I* 'k,(2) € N"(3(K),d(K) ; Z,). Hence ¢p5(V"(0*
(K; Zp))CN"(B(K),dK); Z,). Thus it follows from (6-4) for p=o¢ that

H"(3(K),2(K) ; Z) =N"(3(K),d(K) ; Zp) +ps (V" (2*(K; Zp).

We shall next prove that this decomposition is direct. Assume that c¢+¢§(b) =0 for
CEN"(B(K),d(K);Z,) and b€ V'"(2*(K;Z,)), and consider the following com-
mutative diagram

"HT (R, DK) 5 Zp) L0 HT RO, DK 5 Zp) Lo H R K), DD 5 Z)
(i R [ L.
H'(BU), 2K ; Z)) < g H (KK 12— > H XKD Z))

Since a.I*(c) =7*(c) =0, we have
a*(b) = j*a§(b) = j*a £, () =j*a, I*P5(b)
= —j*a . I*(c) =0.

Since b€ V7 (@*(K; Zy)), it follows from (7-4) that there is an element d€ V7 (Q*
(K; Zy)) such that b=7(d). Thus c+¢¥r*(d)=0. Since Prr*=T*"k r*¥=0, we con-
clude ¢=0. This proves that the decompostion is direct.
Put ¢=0 in the above proof, then the argument shows that the kernel of ¢%# is
* V" (Q*(K; Zy)). This completes the proof of (11-1).

Let G be a field, then we shall denote by R,(X, A;G) the rank of the group
H" (X, A;G) (i.e. the dimension of the vector space H"(X, A;G)). The following
can be obtained from (11-1) and (10-4) by simple calculations.

Tureorem (11-2). R,(3(K), d(K); Z,)

=Xty R Z) 4 (RRUK) 5 Z) =Ry (5 Z)),

where it is to be understood R,;,(K; Z,)=0 if v is not divisible by p. The union of
the set {E,_;(b)|[+p-D/pl=s=r-1, beQ@*(K; Z,), dimb=s} and the set
{psw) |we B/"(Q*(K; Zy) is a base for H' (3(K),d(K) ; Z,).

We shall next consider H (3(K);Z,). Since E;j=g§*I*"'dy, it is obvious from
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(9-1) that ¢*: H1(0(K) ; Z,) —> H"(3(K), d(K) ; Z,) is isomorphic into for any
r>1. Thus we have
LEmMmA (11-3). The sequence

0—>H"(b(K) ; Z) L*H’(é’(lf), b(K) ;Zp)i H"(B(K) ; Z)) —>0
is exact for r>1.

In virtue of this lemma, the following is obvious from (11:2) and (2:13)
TurorEM (11:4). Let r =1, then

R BU 3 2= S0ty R Z) 5 (R G 5 Zp) = Ry (3 Z).
The union of the set {j*E,_;(b) |[(r+p—1)/pl=s=r—2, be 2*(K; Z;), dim b=s}
and the set {p*(w) |w € B/ "(*(K;Z,))} is a base for H (3(K) ; Z;).
The following can be obtained from (1-11) by easy calculations.
TrEOREM (11:5). Let G be a field of chavacteristic q, not a divisor of p. Then

R,(B3K);6) =% (R,(X(K); O+ (p—DR, ,(K; G)}

=if p=3 or if p=2 and r#2 (mod 4),
— S (RGEE) ;6) = Rip(K; G))
if p=2 and r=2 (mod 4),
where it is to be understood that R,;,(K;G)=0 if v is not divisible by p. Moreover
it holds that H*(B(K) ; G) =¢*H*(X(K) ; G).

Remark. (1) The relations (11-4) is known by Richardson-Smith [11].

(2) If we take as G the rational field, (11-5) gives relations among the Betti
numbers of 3(K),X(K) and K.

We shall next study the reduced powers, the Bockstein homomorphism and
the cup products in the groups H*(3(K),d(K) ;Z,) and H*(3(K);Z,). In virtue
of (11-3), the results on H*(Z(K) ;Z,) can be obtained at once from those on
H*(B(K), d(K) ; Z,). Hence we will not write the former explicitely.

TueoreEM (11-6). Let x; € H¥*(K; Z,) for j=1,2, -, p.

D AppE g X 22X oo X xp) = A, (2 X Za X oo X %) —~ Ey (10K Ux).
ID @) ®pFraXxeX X x,)
=PFE (g X w2 X o X X)) + 205 _ (=17 B8 (w020 U xy),

(i) Sq’§ (1 X x2) = PESq® (41X x2) +Z;=1Efsqs_j (x19x2).
Proof. 1) is obvious from (3-7). The proof of (i) of II) is as follows: It
follows from (3-14) and (2-19) that
G PE (Ha X x2 X -+ X &)
=250 (—= 1) I EOGEE T (X xa X o X )
=PEC (ra X a2 X -+ X2) +205 (=D IO pEE7 (g X w2 X -+ X xp)
=PEE (X XX -0 X xp) + 25 (= 1) pI B D=y Q377 (X 25 X o+ X )
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=PE® (A X xg X oo X 2p) + 2 5g (= 1))@ T (om0 - L xy).
The proof of (ii) in II) is similar.
TrHEOREM (11:7). Let x€ H*(K; Z,).
D ® dpEog1 (%) = — Esy11(dyx),
(ii) dpE2y12(x) = Eog18(%) + Ezy2(4,%).
D ® C*Ezpi1(x) =Z”}=0 wCs—jEZ(s—j)(p—1)+2w+1<?j(x)y
(i) ® Esya2(x) =Z;=o mcs—jEz(s—j)(p—D+2w+2@j(x),
(iii) SUEg1(%) =250 oCo—jEur115-;5¢ () (s, 2 0),
where 4Cp is the binomial coefficient with the usual conventions.
Proof of I). Since 4,6*= —§*4,, we have 4,E;(x)=—FE4,(x). Thus (i) follows
from (3-8) and (9-:8) :
ApE2m+1(x) =du”Ey(x) = /lwApEl x) = "M'”Eﬂp x) = o114, ().
(ii) is obtained from (9-8), (3-8) and above (i) :
dpEoy12(x) = dpwEsy11(%) = 1 Epy13(X) —vdpEoy 11 (%)
= Eou3(x) +E2aa+2(Apx>-
Proof of II). We shall prove (i) by mathematical induction on s+a. If s+a=0
and hence s=a=0, it is obvious that the left and the right sides of (i) are both
E,(x). Therefore we have (i). Assume that (i) holds for any (s, a) such that
s+a =1 We shall now prove (i) for s-+a=I[+1.
Case:a = 1. Let s+a=/[+4+1. Then it follows from (9:8) and (3-9) that
§ Ezq1(2) =C 1E2y—1(x%) = p§° Epp1 () + O 1 Ep_1 (x).
Applying the hypothesis of induction for ®°Ez,—3(x) and @1 E,,_1(x), we have
QO Ezy1(x)
=2 =0 w-1Cs~j Er.—z@j(x) + 122 57 41Csmaj Er.—zp@j(x)
=2 S=0w-1Cs—; Ez(s~i)Ep.@j )+ 51Comjmn Ep,@j (%)
=2 578 (4-1Ce—jF 41Comjy) Ef:@j(x) + 5-1CoE2p 118 (x)
=Z}Y=o wCs—jEp@j ),
where we put £=2(s—j)(p—1 +2a+1.
Case: a=0 (s=I[+1). In this case, it is obvious that
2 0aCsmiEats-p(p-1r20187 (%) = E4®"*1(x).
On the other hand, since E;=¢g*7* 'dy ', it follows from the properties (I) and
D of &° that
O Esyi1(x) =CE((x) = E,8 (x).
Thus we have (i) for s+a=I[/+1, and complete the proof of (i). (i) follows at
once from (9-8), (3:9) and above (i), and the proof of (iii) is similar as in I).
TreOREM (11:8). Let x, y, x4, yp € H*(K; Z,).
® 5 (X1 X a X =+ X %) DPE(Y1X Y2 X = X Yp)
=22 (=1)5dE((a0y) X (K20 j100) X -+ X (X,997-1)),
where ;= A+2H— dim ) Qllea dim yo) +2 5283 b 2(dim Y. ;) (dim xp).
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(ii) E(x) 0Pp§(ayXaeX - Xx,)=0  for s=1.
(ii1) E,(x)uE,(y)=0 for s, t=1.
Proof. (1) follows at once (3:3). To prove (ii), observe first that
Ei(x) wdE (g X xaX = X %)
= dE T (1) O PE (A X Xp X o X Xp)
— PR () U (e X e X e X ) =0,
Then (ii) is obvious from (3-6). Since
Ei(x) W E () =8 dy () o 8 dy T ()
=Ty (k) o T dE T () =0,
(iii) follows from (3-6). This completes the proof of (11-8).

12. Reduction formula——Axioms for the reduced powers

We shall first study relationships y, (%) and y..(x) stated in (10-5) or (10-6).
Let dim x=gq.
Tueorem (12-1). (@) Let p=3, then we have y,:(x)=y,:(x) if pg—s is
even, and =0 if pg—s is odd. ‘
(1) Let p=2, then y,(x)=y.,:(x) for any s.
Proof. Apply . to the both sides of (10-5) for p=r, and recall (2-9) and
(2-21). Then we have
Eg(aXxX o x2) =2V T}, (y::(x)) (p=3),
ke (X 2) =330 Ty (3,,,(x) (p=2),
where > 7 stands for summation over the integers s such that ¢ =s = pg—1 and
pg—s are even. From these and (10-5) for p=g, we obtain (12:1).
COROLLARY (12+2). X4,,=Xr,q, YVo,ar1(X) =0 (p = 3).
We shall write briefly X,=X,, in the following.
TreorEM (12-3). If p =3 and pg—s is odd, we have Y, (%) =4y, s-1(x).
Proof. Consider the elements 4,¢p5(xxxx--xXx) and ¢5d,(xxxx--xx). It
follows from (10-8), (12-1), (11-7) and (11-1) that
APEaXxX e X x) =4, Q2 Epys ¥o,s(%))
=2V Ay Y5,s(0) =2V Epgs11Y0,s(0) +22 Epg 45y 5,5 (2)),
DEdy(xxxX X x) =PF QB V* (Lpr X xX - X %))
=pPE(dx X x X+ Xx) =0,
where 27 stands for summation over the integers s such that ¢ =s = pg—1 and
pq—s are even.
On the other hand, it follows from (11:6), (10-9) and the definition of E; that
Ed,(x XX e X x) = AP (XX XX -+ X %)
=Ei(xoxwox) == RLAE o1 (Yr,5(x0)).
Thus we obtain
Z”qu—sn yo‘,s(x) +Z”qu—s(dﬁ ycr,s(x>) =Z£_ﬁ;1EM_S+1(yT,S(x)) ,
and hence by (12-1)
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0=>"Eps1(Pr,s (1)) =2 Epgs(4p 3 5,:(2))
=Z"qu_s(y7,s+1(x) —4, Yo,s =),
where > stands for summation over the integers s such that ¢ = s < pg—1 and
pg—s are odd. Since [(pg+1+p—1)/p1=q+1, this is the canonical decomposition
of 0€ N*"1(3(K), b(K); Z;). Therefore, by (10-7), we have y. .1(x)=4d,y,,:(x)
if pg—s is even. This completes the proof of (12-3).
We shall next study relationships between y,.(x) and the cohomology opera-
tions.
Lemma (12-4).
D Eypepee(®) =221 (= DY Ey 0510077 (x), if p =3 and even q.
D) Eytpotyrpea(0) =252 (—= D@D, (4 o®@D2-i (1) if p >3 and odd q.
(i)  Epa(x) =20=5E;18q" 7 (%), if p=2.
Proof. Put x=xx1x--+x1. Then it follows from (3-10), (3-11), (2-19) and
the property (I) of &° that
28°h% (@) =250 (= 1) /DO pnd§ (%)
=280 (= DI P D pd O (2) =250 (= 1) T pI O Dyars T @ (%)
= S5 (= DO AT (1) = 20—~ 1) Eap120° (8).
It follows from the property (V) of ®° and (3-5) that
HEPEE) = = (PE@ VP @ U UPE@) =0 (q:even),
pO@DRHEE =0 (g:0dd).
Thus we have

0=292(=1)""Ey (142027 (x) (q:even),
0=27804D/2(~ 1) 7 Ey (1)@ D27 () (g:0dd).
These are (i) and (ii). The proof of (iii) is similar. Q.E.D.

Lemma (12:5). (D) E, (%) =Z§q=q+1Ezq—s+1 (yo',s(x))’ (p=2),
(D Ep-0+2(0) = = X7 QAL g1 Epgs12 (Y5, (X)),
(i) Eypepe1(®) = =Xg 222 1 Epgsipr1 (Yo, s(2)).
Proof. These are obvious from (10-6) and (ii) of (12-1).
THeoreM (12:6).
() Let p=3, then y,(x)=(=1)"X,87(x) if s=q+2j(p—1), and=0 otherwise;
(i) Let p=2, then y,,(x) =Sq""(x).
Proof of (i). Case:qiseven. It follows from (i) of (12-4) and (ii) of (12-5)
that
qu/=20_1(__ 1)#/z+in Ezj(p—1)+2(9q/2_j () + X722 g1 E pgsee (¥e,s(x)) =0.
Since [(pg+2+p—1)/p]=q—+1, the left hand of this equation is the canonical
decomposition of 0 € N?7*2(3(K), d(K) ; Z;). Therefore it follows from (10-7) that
(=D)?2HM@U2 (1) X1 Y4 41 p1)(go2) (X) =0,
and y,,:(x) =0 if s—qg # 0 mod 2(p—1). This is (i) for even q.
Case: g is odd. Since y,,,+1(x) =0 from (12-2), it follows from (ii) of (12-4)
and (iii) of (12+5) that
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Z;iﬁl)/z(— D (q+1)/2+j+1E2j(p—1)+26)(q+1>/2—j (x) +Xq_lzgq=q+2qu—s+p+1ycr,s (x)=0.

Since [(pg+p+1+p—1)/p1=q+2, the left hand of this equation is the canonical
decomposition of 0¢€ N?****1(3(K), d(K); Z,). Therefore we have (i) for odd ¢, by
10-7).

Proof of (ii). From (iii) of (12-4) and (i) of (12-5), it follows that

> ?;éEjﬂ Sq? (x) —2§1q+1E2q—&+1 (¥5,s(x)) =0.

The left hand of this equation is the canonical decomposition of 0€ N2*1(3(K),
0(K); Z,), since [(2¢+1+1)/2]=qg+1. By (10-7) this gives (ii). Q.E.D.

CoROLLARY (12:7). X,= (=12 if q is even.
From (12-1), (12-3) and (12-6), we have

CoroLLARY (12:8). (i) Let p =3, then y, (x)=(-1)X,6 (%) if s=q+2j(p
=1, =(—=1D7X, 4,87 (x) if s=q+2j(p—1)+1, and =0 otherwise. (ii) Let p=2, then
Ya,s(2) =Sq" 7 (x).

From (12-6) and (10-8), we have
TrEOREM (12-9) (reduction formula). Let x€ H'(K;Z,), then
D PEEXEX - X%) =X;2 o5 j<qp(~DEp-1(2p&7 (x), (p=3),
() ¢P§(arxx)=2U1E, ;S (x), (»=2).
From (12-8) and (10-9), we have
TaEOREM (12-10) (reduction formula). Let x€ H*(K; Z,), then
@ E(p—1)q+1(x) =ZO<]§4/2(_ 1)j+1E(p—1)(q—2j)+1@j (9_5)
+2 0si<ep (=D EGpn-2p4,87 (), (p=3),
(i) Epa(x) =22 E; j215¢7 (%), (p=2).

A characterization of the reduced p-th power.

We shall now prove that the reduced p-th power is characterized by its pro-
perties (I) — (V) stated in § 3.

TuroreM (12:11). Suppose that an operation

Ps:HY (X, A;Z,) ~— H*"*0Y(X, A; Zy)
is gwen for any simplicial pair (X, A) and for any integers s and q, and that the
properties ()— (V) replaced §° by P* arve satisfied. Then we have P*=G".

Proof. If A is not empty, we may consider a space K obtained from X by
contracting A to a vertex v° of A. Then K is a finite cell complex which has v° as
a vertex, so that K can be simplicially decomposed such that »° is a vertex. Let¢:
(X, A) —> (K, v°) be the contraction. Then { maps X— A onto K—v° homeomorphi-
cally, and hence we have by the excision property that

C* H (K1, Z,) ~H (X, A; Z,) for any 7.
Let j: K—— (K, v%) be the inclusion, then it is obvious that
J¥ H (K, 0°;Z,) ~ (K; Zp) for r = 1.

Thus we have
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T H(X, A Zy) ~ H (K Z,) for » = 1.
Furthermore if A is not empty then H°(X, A; Z,) =01 Therefore, in virtue of the
property (I) of & and P<, it is sufficient to prove P°=(®* on the absolute cohomology
groups. However, since the properties of the reduced power used in the proof of
(12-6) are only (I)—(V), we have also (12-6) replaced ®° by P°. This shows that
Ps(x) =®%(x) for any complex K and any element x € H(K; Z,). Q.E. D.

By the same method, it can be proved that the squaring operation Sq° is character-
ized by the properties (I)—(V).*® For a characterization of the squaring opera-
tion, see also J-P. Serre [12].

Remark. 1. We do not assume the linearity of the operation P°. However,
since it is easily seen that y,(x) in (10-8) is linear with respect to x, it follows
from (12-6) that P* is a homomorphism.

RemaArk. 2. Since the reduced power and squaring operation are not used in
the proof of (10+8) or (10-9), it follows from (12:6) or (12-8) that we may adopt
the unique solution {y,,(x)} of the equation of variable x in (10-8) or (10-9) as a
definition of the reduced power and the squaring operation.

13. Cyclic products of special complexes

The cohomology of the p-fold cyclic prbduct of an n-sphere S” is especially
interest. In this section we shall first record the results for this special case. Some
of these results are obtained by S. D. Liao [5], by using of the different methods
from ours. Next, we shall determine the integral cohomology groups?® of the
p-fold cyclic products of S” and Y*™*(p™), where Y***(p™) denotes a complex
obtained by attaching an (n+1)-cell ¢"*! to S” by a map of degree p™.

Let e, be a generator of H"(S"; Z,), and write

as=J*Es_(e,) € H(3(S") ; Z)
for n+2=s=munp. Let 1 =qg=p, and {as,as, -, a,} a set of ¢ different integers
mod p. Then we shall write
Gug(as,as, -+, o) =¥ (xy X 2 X - X x,) € H"(B(S™) ; Zp),
where x;=¢, if j=aya, -,a, mod p, and = 1 otherwise. Then (11-4) and (12-9)
yield the following

TueorEM (13:1). a;and g, (a1, @z, -+, a,) are non-zero elements of H*(3(S™) ;

Zy) 5 Gug(ay, s, @) = +84y(B1, B, =+, By if and only if there is an integer k such

18) Without loss of generality, we may assume that X and A are connected.

19) Thom [18] does not assume the property (I) in the characterization of squaring operation.
However it seems to me that the property (I) is used in the Thom’s proof, so that (I) is
needed in the characterization.

20) We do not know the integral cohomology groups of 3(K) for any complex K and any prime
number p. For p=2, see [17]. Recently T. Yoshioka obtained the results for p=3, 5 and 7
by making use of the same method as in [17].
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that {a1+k, ag+k, -, a,+k}=1{B1, B, By} there is ,Co/p different g,(as, as, -,
a,) for a gien q; H*(B(S") ;Z,) is generated by the elements 1, a;, (n+2 = s = np)
and gn (a1, az, -+ ap) for 1 =q=p—1 and every set {ay, as - ag};8ug(1,2,,p)=
Xnlny (Xn Z 0 mod p).

The following relations are obtained from (11:6) and (11-7).

TreEOREM (13-2). (1) dpgu(aas, -, 2)=0; dplni20:11=0, 4p@pi2012= Aniza+s-
() g, = (=D pioso-n if s 50, ®gy (a3, a2, ,a,) =0if ¢>1 and s=0;

@san+2m+1= wcsdn—i-2s(ﬁ—1)+2w+1; (S)San+2w+2 = .Cs Api25(p—1)+20+2¢
(i) S¢°g,(1) =aus (58 22), SAAnrar1=oCs Gnigrsite
The structure of cohomology ring H*(8(S") ; Z,) is also determined easily by (11-8).
For example we have

TurorEM (13+3). Let p =3, then g,(1)“g,(1) =252 0, (1, k) if n is even,
and =0 ¢f n is edd. Let p=2, then g,(1)“g,(1) =az,

Denote by £,(Y) the Betti number of a complex Y. Then, by (11:5) we have

TrEOREM (13:4). (1) Let p=3, B,(B(SM)=,C,/p for r=nqg 1 =q<p);=1
for r=np and 0;and =0 for any other v. (il) Let p=2. B,(3(S™))=1 for r=2n
(n:even), n and 0;and =0 for any other r.

Let A be an abelian group, and ¢ a prime number. Then we shall denote by
C(A4, q@) the g-primary component of A, and by C(A4, ) the free component of A.
Let us denote by J{A, #} the direct sum of 7 groups each of which is isomorphic
with A: Then we have

Tueorem (13-:5). (i) C(H*(B(S"; Z),q) =0 for any s and q=xp, . (i)
C(H*(3(S") ; Z), ) ~Z if s=0 and pn with (p—1)n = even, ~J{Z, ,C,/p} if s=nq
with 1 = qg=p—1,and = 0 jor any other s. (ii1) CH (B(S"); Z), p)~Z,if s—n
is odd and 3 =s—n=(p—n, and = 0 for any other s.

Proof. Consider the exact sequence

THY(X(SY ; Z) I; THE(X(S) 3 Z) LT HOR(S™) 5 7).
Then H*(X(S™) ; Z) is free 'abelian, and it follows from (1-7) that the image of 7,
consists of elements of order p. Thus (i) is obvious. (ii) and @iii) follows from
(13+1) and (13-4), by the universal coefficient theorem [3]. This completes the proof.

Let e¥€ H*(S"; Z) be a generator, and consider the homomorphism
E}, = p*5*m* ' de* T H (S5 Z) —> H™ " 1(B(S™), 0 (S") 5 Z),
Q¥ HM(X(S") ; Z) —> H"(3(S") ; Z).
(See §2.) Then the following is obvious from (13-1) and (13-5).
TuEOREM (13-6). J*ES (e is a generator of C(H™?**'(3(S");Z),p) for
l=a=(n—n—-1/2; CLH"(3(S"); Z), ) = $*H"(X(S"); Z).
In order to state the integral cohomology groups of the p-fold cyclic product
of Y"™(p™), we shall first introduce the functions &,(#), 7,(r) and p,(r) defined
for each » and each integer n. These function are defined as follows:
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(1) &, =1 if ¥—upisodd and 1 =r—np = p—1,
=0 otherwise.

(ii) 7,(7) = (=D A-p)/p— &) if 1=r—np =p,
=0 otherwise.

(iii) ta(r) =1 if —n is odd and #+3 =7 = pn,

=0 otherwise.

TueoreM (13:7). The r-dimensional integral cohomology group of B3(Y*™(p™)
(r=0) is isomorphic with
J{Zymst, &,y BRI Zyn, 1,(1)+ R/} B Zs, 1t2(#) + ini1 (1)}
if (p—n is even, and is isomorphic with
J{Zym, R"/p=E,() =1.(N)} BT Zp, pta(P) F12012(7) }
if (p—Dn is odd, where R" denotes the vank of the r-dimensional integral cohomology
group of X(Y"1(p™).

We prove this theorem by making use of the method of Nakamura [7], which
will be explained in later Appendix. For this purpose, calculate the number ,R”
=, R"(B(Y"™1(p™)); Z,) defined there. Then, in virtue of (16-4) in Appendix, the
theorem (13-7) follows by easy calculations. As for the number ;R”, we have the
following results.

LemmA (13:8). Let 7 0. We have
(i) 1R"=3R"= - =, (R"

]

{(R,(X(K) ; Zp)+ (DR, (K; Zy)} if p=3,

_ R

|

(R,(X(K); Z)+(~D"2Rp(K; Z))  if p=2.

N

(ii) If p=3, ,R'=1 for nps=r=+Dp—2;if p=2 and n is even, ,R”
=1 for r=2n and 2n+1. Otherwise ,R” = 0.
(i) paR” = poeR" = -+ = R" = 0.

This lemma can be proved by making use of the results in §11 and §12 and
of the theorem (16-5) in Appendix. The verification needs some cumbersome calcu-
lations. We shall omit to denote it here.

CHAPTER III. COHOMOLOGY OF SYMMETRIC
PRODUCTS OF SPHERES

14. Cohomology mod 2 of §"* S" % S”

Let K be a space, and consider a space obtained by identifying any two points
(%1, X, 5 %p), (V1, Y2, =+, ¥p) Of X(»(K) into a single point whenever y,=x,; for
some permutation 7 of letters 1, 2,---, p. Such a space is called usually the p-fold
symmetric product of K. We shall denote this space by ©)(K) or K K* - x K,

In this chapter, we shall determine the cohomology of the 3-fold symmetric
product of an n-sphere S”. Since no confusion arise, we shall abbreviate X)(S"),
B (S, &) (S") -+ as ¥, 3, & -+ respectively.
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Let
1, 8:%X —X%
be transformations given by
f(x1, X2, X3) = (xz, X3, %), 8 (xl, Xo, X3) = (xz, X1, Xs3)
(x; € S™) respectively. Then t (resp. 8) is a periodic transformation of period 3 (resp.
2). The orbit space O(X, 1) is the 3-fold cyclic product 3. Since
(14-1) 18 = §12, 128 = 3t
the transformation 8 induces a transformation §: 83— 3 such that the commutativity
78 =3x holds, where 7: X —> 3 is the projection. Then & is a periodic transfor-
mation on 3 with period 2. Suppose that 3 is simplicially decomposed and is locally
ordered as in § 7. Then it is easily seen that § is a transformation satisfying the
conditions a) and b) in § 1. Thus we may apply the results in Chapter I with
p=2 W=38 W =@ and ¢=38.
Denote by F () the fixed points set under a transformation #. Then we have
F) = {x,x 2 |x€S"), F@ = {(x,x,»|x,y€S"},
F@)={x,9,% |x,y€S"), FG) = {(y, x, ) | x, y € S"}.
Obviously it holds for =0, 1, 2 that F(}) =D (S™) C F(&t), Ft) N FEH) =F®)
if i=7, and t: F(8t)—>F (3*') is a homeomorphism. Let §=F () UF () UFER),
then & is a t-invariant subcomplex, which contains F (1), of ¥. Furthermore it is
easily seen that % =0, t) is the fixed points set under the map 8. Let /: F—>
S” x S” be a map defined by
h(x,x,9)=(x,5)  for (x,x,y) € F(8),
hix, y,2)=(x,%) for (x,y,x) € F(8D),
h(y, x,%)=(x.9) for (y,x, x) € F(812).
Then % is continuous. Since At =& and hi2=h, & induces a map %: & —>Snx S"
such that hz=h. Then h is obviously homeomorphic onto. Thus we have proved
LemMA (14:2). The fixed points set under &:8—> 3 is the orbit space ¥ over
F@RYUF@HUFGR) relative to t, The map his a homeomorphism of % onto S™”x S™.
It is obvious that the orbit space O(3,38) is the symmetric product &= S"+S"«
S”. Let us denote by #:83—>& the projection, and by | the image of & by 7.
We shall denote by ¢, #, &t -~ the homomorphisms ¢, », # - for the complex
3 with the transformation 8.
By (13:1) we have
H'(B3;7Zy) =~ Z, for »=jn(j=0,1, 2, 3)

(14-3)
=0 for any other 7;
and it follows from (14-2) that
H'(§: Z) ~ Zs for 7—0, 2n,
(14-4) ~7Z,®Z, for r=mn,

=0 for any other 7.
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LemMa (14:5). The inclusion homomorphism i*: H" (8;Z,) —> H’(%;Zz) s
isomorphic into for r=mn, and is trivial for r=2n.

Proof. Case 1:7=mn. It is sufficient to prove that i*;H,({? s Zo) —>H (3 Z,)
is onto for the homology groups. Let s, be an #zn-cycle of S” representing the
generator of H,(S";Z,), and let f:S"— X be a map defined by f(x)=(x, xo, %o,
where x,€ S” is a base point. Then it is obvious that H,(3; Z:) is generated by a
class containing the singular cycle (s,, zf). This is also a cycle in §, since £(S™
C . Thus 74 is onto.

Case 2:7=2n. It is sufficient to prove that i*:Hz,,(%; Zy) —> H,,(3; Z,) is tri-
vial. Let e, be a 2n-cycle of S”X S” representing the generator of H*"(S*"x S"; Z,).
Let g1, 82:S"XS" — X be maps defined by gi1(x, y) = (x, x0,%) and g:(x, ¥) = (%o, ¥,
x), and let 2/ : S"X S" — & be a map defined by 4’ (x,y) = (%, x,y). Then, for the
singular cycles (e, g1), (€24, 82) and (e, /), we have a relation

(€2n, ') ~ (€24, 81) + (€2n, g2) mod 2
in X, where ~ denotes to be homologous. Therefore we have
(eos, ml') ~ 2(€on, g =0 mod 2
in 3, because of 7g; =g, However it is obvious from (14-2) that He,(J; Z) is
generated by the class containing the singular cycle (e, 74’). This shows that i,
is trivial. Q.E.D.
Consider the following diagram :

by
-~ * ~ l/nr—
H20; 2 e, §; z)
- o gr—l
(14+6) H ;2 < H'(S; Zy

o i DG o
H™( 5 Z) “LH (S, 15 Z) /1,
2

where & =7% 7,=}} and {,;=j*7. Then the sequence 7,1, &y, &, 7, &, -
is exact and &%j¥ 5,=5% as is stated in (2-22). Note moreover that - 0%,
77, i, 87 - is the exact sequence for the pair (&, T). Using this diagram, we
shall determine the cohomology groups H7(S” % S" % S"; Z,).

Lemma (14:7). (1) H'(S; Zy) ~ Z, for r=0, and =0 for l=r=n—1. (ii)
H"(©,§; Z)=0 for 0=r=n—1.

Proof. Since H"(3; Zz)=H"(f~; Z5) =0 for 0 <r<w, (14-7) is obtained easily by
the consideration of (14+6).

Lemma (14:8). H*(S; Z,) ~ 7, H*(&, f; Zy)=0.  Moveover #*. H"(S; Z,)
~H"(3; Zy).
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Pyoof. Since H"™* (&, T; Z») =0 by (14:7), &,=#* is isomorphic into. Consider

the diagram
n . 7?*2511 n .
H'&; Zy) "—3" H'(3; Z»)
~ ¥

H*(V; Zo —» H'(E; Zw)
then the right i} is isomorphic into from (14-5), and both #* are isomorphic into.
Hence the left ¢ is isomorphic into. Consider (14-6) for »=mn, then it follows
that j& is trivial. While, since H”"‘l(f; Z;) =0, j* is isomorphic into. Therefore
H"(&, {; Z,)=0. This shows that &, is onto. Thus &, is an isomorphism. Since
H"(3; Z,) =~ Z,, we have H*"(&; Z,) ~ Z,. Q. E. D.

Lemma (14:9). H"'(S; Z)=0. H"NS, T; Z) ~ Zs.

Proof. Consider (14+6) for r=n+1. Since H"(S, ?; Z5) =0, £,.1 IS isomorphic
into. While H*"'(8; Z,) =0, and hence H""'(&; Z;)=0. From this, it {ollows that
0, is onto. Thus we have

H"Y(S, {5 Z) ~ H"(; Z) [iiH"(S; Zy).
Since H"(; Z) ~ Z, ® Z, and i¥ is isomorphic into, we have H""(&, Vi Zo) A~ Zs.

LemMa (14-10). H'(S; Z) ~ H' (S, T; Zy) ~ Zy for n+2 =v = 2n—1.

Proof. Since H'(3; Z,) =H’(¥; Z,) =0 for n <r»<2n, we have by using of (14+6)

;%
H(S, §. Z) irH’“(@; ZZ)]ng'“(@, i; Z»
for n+1=r=2n-2. Therefore (14-10) follows from (14-9).

Lemma (14-11). H*(S; Zy) ~ H*(S, T; Z.) ~ Z.

Proof. Consider (14-6) for r=3n. Since H*1(f; Zp) =H*(; Z») =0, s s
isomorphic onto. Since H3¥*(S; Z;) =0, 73, is onto. While H(3; Z,) =~ Z,, and
hence H* (S, {; Z») =0, or ~ Z,. Assume that the former holds, then &, is onto
and H®*(&; Z,)=0. This implies H*(3; Z)=0, which contradicts (14-3) There-
fore it holds that H®(®, f; Z,)~ Z,. Thus we have (14-11).

LeEmMma (14:12). H'(&; Z,) ~ Z, for 2n+2=r=3n-1.

H' (S, §; Zy) ~Z, for 2n+l1=r=3n-—1

Proof. Since 73, is isomorphic, we have that s, is onto. While H*1(3; Z,)
=0, and hence 5,4 is isomorphic. Thus s,1: H> (S, f; Z) ~ H(S; Zy)~Z,
from (14-11). Since H"(3; Z,) =H"({; Z») =0 for 2n+1=r=3n—1, we have

H'(S,T; Z) ~H"(S; Z) ~ H"*(8, T; Z»)
for 2n+1 =r=3n—2. This proves (14-12).
Lemma (14413). H*(S; Z,) =0.
H™(&; Zy) ~ H™(8, ; Z) ~ Z»,
Proof. Consider the diagram
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B ) u=% g3 z)
i i

(i zn  E =G 7,
then the right i, is trivial from (14:5) and the lower #* is isomorphic onto.
Hence the left ¢, is also trivial. Therefore, in (14+6) for r=2n+1, da, is iso-
While H>*({; Z) & Z, and H*(S, T; Z») ~ Z, from (14-12).
Hence it holds that §§, is isomorphic onto, so that j,¥,, is trivial‘. Since H*(}; Z»)
=0, we have H***(S; Z,)=0.
Since ¥, is trivial and H”“(f; Z5)=0, it follows that j¥ is an isomorphism.
Since H**"(&; Z,) =0, 1,, is onto. While H?**(3; Z,) = Z,, and hence H*(&, f;
Zy) =0 or =~ Z,. Then we have H*(S; Z,)=0.
However, since H*(3; Z,)=0 and H* (&, {; Z,) ~ Z, from (14-10), it follows
that {1 is isomorphic into and hence H*(S; Z,) ~ H*(&,{; Z») D Z. This is
a contradiction. Thus we have H#(&, f; Zs) =~ Z,. This proves (14-13).

Summarizing (14-7)—(14-13), we have

TrEOREM (14:14). H'(S" * S" % S"; Zy) &~ Z, for r=0,n,n+2=r=2n and
2n+2=r=3n; =0 for any other r.

Since S” * S” is the 2-fold cyclic product of S?, it follows from §13 that
H*(S" « S*; Z,) has as a base the elements 1, g,=g,(1) and a,.,2=s=un) such
that

morphic into.

Assume that the former holds.

Sqign =i Q=i=n), Sqidm-w+1= wCilnrarinn (@=1),
(14-15)
2=i=n).

En Y &n=0qz, 8n Y an+i=0

Let

7o

S St —— S« S7

: S"XS”XS" — Sﬂ % Sn % Sn,

D SPXSTX S —> S"x(S" % ST,
D STX(S" 8 —> 5" x S* x S”

be the natural projections. Then it is obvious that
(14-16)
where 7 is the identity map.

For i=0, 2=i=n, n+2=i=2n, let h,,; be the generators of H"*(S"% S"* S";

T1a=1X 7Ty, o712 =73, T3=T77L,

Z5). Then we have

Lemma (14-17). (1) zfh,) =1Xg,+e,x1.

(D) 7o(hur) =1X anyi, and Sq* (M) =huwi if 2=i=n.
Proof. It follows from (14-16) that

¥, (Ax g =1x7my(g) = (AXe,x1) + (Ix1xe,),



Cohomology theory of a complex 95

¥ (enx1) =e, x1x 1L

Since H*(S"x (S" = S™); Z,) is generated by 1x g, and e,x1, this shows that 7z},
is isomorphic into. Furthermore it follows from (14-16) and (14-8) that
o () =7 7% () = (e, x IX D+ (Ixe, x D+ (I x1xXe,).
Therefore we have by (14.16)
T (IX gute,x 1) =7y (h,) =75y ().
Since 7§, is isomorphic into, this implies that 7} (h,) =1Xg,+e,x1. Namely we
have (i).
It follows from above (i) that
75Sq (1) =Sq'7ry (M) = Sqf (LX gy +e, % 1)
=1xSq'g,=1Xa,.; (22¢0).
Since 1Xa,.;%0 if 2=i=pn, it follows that 7#Sq’(h,) and hence Sq’(k,) is not
zero for 2=<i =wn. Therefore we have Sq’(%,) =h,.,. This proves (ii). Q. E. D.
LEmMmAa (14:18). If 2=i=mn, we have
By O o= haoui, 7§ (hanvi) =€nX Ay
Proof. 1t follows from (14-17) and (14-15) that
Ty (T O M) =7l O TRy,
=(1xXg,te,x1) v (IXa, )
=1X(gn Y Qurs) F€u X Qi
=0y X Uy 14y C=i=n).
Since e,xa,.,%0, we have h, v h,,,*0 and hence £, hyi=ho:. This proves
(14-18).
The following is obvious from (14-14), (14-17) and (14-18).
TueoreM (14-19). The homomorphism
7wy H7(S™ % S" % S"; Zy) —>H'(S"X (8" = 8"); Z,)
is isomorphic into for any r.
Finally we have
THEOREM (14-20). Let h, ., € H" (S" = S* = S"; Z,) be the generator, where
i1=0, 2=i=n, n+2=i=2n. Then we have the following:
@) Sq'(h) =hy,,; for 2=i=n.
(i) Let k=1, 2, and 1=j=n-1, then

SQ* Pinrji1) = jCiltnrivit if itj=n-1,
=0 if i+j>n—1.
i) hy 9 Byi=hopis for 2=i=n.
1v)  hei o By j=0 for 2=1, j=n.

Proof. (i) and (iii) are proved in (14-17) and (14-18) respectively. We shall
prove (ii) for £=1. The proofs of (ii) for k=2 and of (iv) are similar.
It follows from (14-17) and (14-15) that
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7$SG (v ji) = SATE Py j11) = SAP A X @y jin)
=1xSq'(@y+jr1) =0 if i+j+1 > n, and
=1 X ;Citnrivisr= ;G Murivjey) i i+Hj+1=n.
Since 7z¥ is isomorphic into from (14-19), we have (ii) for k=1. This completes
the proof of (14-20).

15. Cohomology mod 3 and integral homology of S” = §" » §"

Let

To: PH (R, D; Zs) —> PHY(X, D; Zo),

i PHY(X, D Zs) —> "H' (X, D; Zy)
be the homomorphisms, defined in §2, for the complex ¥ with the transformation t.
Since the map t: X —> ¥ is obviously t-equivariant, t induces the homomorphism
t*: PH" (X, D; Z3) —>"H" (X, ®; Zs) which commutes with 7, and +r,. (See the
later part of §2.) The map 8:X——> ¥ is not t-equivariant. However we can
easily verified that
(15-1) 8% =8%g, 8% = —¥g¥r, 8% = — gk 20
for the cochain map 8% induced by 8. Therefore we can also easily prove that 3
induces a homomorphism 8*: PH" (X, ®; Zs) —> "H"(X,D; Zs).

Lemma (15-2). (i) 8%7,= —7 t%8*%, (1) 8%7,=T,8%

(ii) 8%, = —Jr, 8%

Proof. Let a€ "H" (X, ©; Z;), and let ru be a representative cocycle of a.
Then &*7.(a) is represented by 8%¥gu. On the other hand, it follows from {*g%¢
= —78% that 7,.1*8*(a) is represented by —#8*u. Thus we have (i). (ii) follows
from 8% =8%¢ easily. Using the above notations, 8*r,(a) is represented by 8%gu.
On the other hand, it followé from 8%r= —78%t* that r,8%(¢) is represented by
—o3%¥t¥y, However —o8%t*=—8%s, Therefore we have (iii). Q. E. D.

Let 8 : H" (8, b; Zs) —> H"(3, b; Zs) be the homomorphism induced by the
map & 3—>3, and let

w: H' (B, b; Zs) —> H""*(3, b; Zs),
v: H (3, b; Zy) —> H™' (3, b; Z3),
o* H"(X; Zz) —>H"(3; Zs)
be the homomorphisms, defined in §2, for the complex ¥ with the transformation
t. Then we have
LemMa (15-3). (D) §p%=(—1)%n*8* (ii) &*v= —u3*
(i) P*a*=8a*¢*,

Proof. We shall prove (i) by mathematical induction on «. If a=1, it follows

from (15-2) that
CRTE ) ol g O O Ly g e ) R s L o S

21) Of course, we write ¢ =1-+{%+12% and 7=1—1%,
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= =D T AR = —TF YT IR = — uF*
Assume that (i) holds for a =</, then we have
g*ﬂl+1=§*/zl/,¢= (__1)1#13*#: (—1)”1/,!”1%.

This is (i) for a=I[+1. Thus the proof of (i) is complete.
(ii) is obtained from (15-2) as follows:

CRPET- ) Gt e O (R G- e o L AN g

= =TT T B = T T T TR = — B,

(ii1) follows at once from ¢3=38o. Q. E. D.

The cohomology gi‘oup H*(3; Z,) is generated by the elements 1, g,(1), g.(1,2)
and a,.s 2=s=2n). We shall study the image of these elements by the
homomorphism §*=1+8%: H'(3; Zs) —> H'(3; Zs).

Lemma (15-4) (D 6*(£.(1)) =—g.(D).

(1) 6*%(g.(1, 2))=0 2f n is odd, and =—g,,(1, 2) if n is even.
(i) 6*(@rizwre) = —Auizere f @ s odd, and =0 if a is even.
(1v) 0% (@nize+1) =0 if a is odd, and = —a,.24+1 if @ is even.
Proof. 1t follows from (16-3) that
§(gx(1)) =5*(P* (e, X1 x1)) = p*8* (e, x 1 X1)
=P*(Ixe, XD =Pp*(P*2(e, x1X1)) = g,(1).
From this, (i) is obvious. The proof of (ii) is similar. The homomorphism &*:
H" (D; Z3) —> H"(D; Z5) is obviously the identity. This, together with (15:3),
implies that

% (@nrzara) =57 p" §* m*71d] (en)
=]‘ *g*#mya*ﬂ*—]dak—i (en)
= (=D ™ ptvg* & r*1d 5 (e)
— (_ 1) m-klj*ﬂwva*n*—ldak—lg* (e”)

= (=D 12042

From this, we obtain (iii). The proof of (iv) is similar. This completes the proof
of (15-4).

Since it follows from (1:11) that

% H'(S"* S"x S"; Zy) =~ H"(3; Zs),

we have from (16-4) by easy calculations the following

THEOREM (15:5). (1) H"(S"*S"*S8"; Z3) =0 for 0<r<m, r=n-+1, r=n+4k—2
with 1=k=[(n+1)/2] and kx[(n+2)/4], r=n+4k—1 with 1<k=[(2n+1)/4]
and k[ (n+1)/4], r=2n with n=-—1 (mod 4), and r> 3n.

) H'(S"*S"xS"; Zy) =~ Zy for r=0, r=n, r=n+4k with 1=k=[n/2] and
kae[n/4], r=n+4k+1 with 1=k=<[©@n—-1)/4] and k[ (n—1)/47, and r=2n with
n=-2 or 1 (mod 4).
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(1) H'(S"*S"*S"; Z3) ~ Zs D Z3 for r=2n with n=0 (mod 4).
Consider the homomorphisms
% HT(S"«S"+S"; Zy) —> H'(8; Zy),
*: H'(B; Zy) —> H'(S" % S" « S*; Zy).
Then we see that ﬁ*$*=6* and that #* is isomorphic into. (See (2-10) and (1-11).)
Therefore if we write
Gn=0*2,(1),  Gou=0*g24(1,2) for even n,
(15-6) Onrawir= P anisass for 1sa =[@n—1)/4],
Gnraw =P Anae  for 1=a=[n/2],
then it follows from (15-4) that

ﬁ*gn: "gn(l)» 7?*§2n= '—an(ly 2>:
(15-7)

B Apia041= —Onraasty T Gnrsa= —Anisa-
Thus we have

TureoreMm (15:8). The element 1 and all the elements of (15+6) compose a base
for the vector space H*(S" = S"* S"; Z3).

As for the reduced powers, the Bockstein homomorphisms and the cup products
in H*(S"* S*"* S"; Z3), we have

THEOREM (15:9). (i) ®'g=(=D""Guau (Gx0), §'Z=0 @E*0), C'dusnn

=20Cillnratarnr (@HIE[Cn—1)/4]D), C'Gnisa=20-1Ci@nratari> (@+i=[n/2].

(ii) ds§n=0; AsgzﬁO, A3&',,+4,,+1=0, Asdn+4w=5n+4m+1-

(i) G Gy=Fon for even n, and=0 for odd n; FyoFem= (—1)"2"d,, for even
n, and=0 for odd n; ZinV@uraare=0 for j=1,2and €=0,1; GuisareVGnraprer=0 for
g, ¢'=0, 1.

Proof. It follows from (15.7) and (13-2) that

76, =07 g,~ g, (1)
= (=" ay4i= (=D 7 * Ui -
Since #* is isomorphic into, we have ®'g,=(—1)""d,,s;. The proofs of the other
results are similar. Q. E. D.

TreEOREM (15-:10). Let G be a field of characteristic g=2,3. Then H"(S"+S"+S";
G)~G for r=0, n, 2n with even n, 3n with even n. For any other v, H (S"+S"xS";
G)=0.

Proof. 1t follows from (11.5) that H*(3;G) is generated by the elements
d*(e,x1x1), p*(e,xe,x1) and ¢*(e¢,xe,Xe,), where e, € H"(S";G) is a generator.
Furthermore, since §*¢*=¢p*s*, it holds that

B Pp* (e, X I X 1) =p*8* (g, x 1 x 1)
=P**2(g, X1 x1) =¢p*(e,x1x1),

¥ p* (e, X e, X 1) =Pp*8* (g, X e, x 1)
=(—D"Pp*(e,xe,X1),
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3 d* (e, X e, X €,) =P*8* (e, X ¢, X €,)
=(=1)"Pp*(e, X e X e,).
Therefore it follows that 6*H*(3;G)~G, and that both *H2"(3;G) and ¢*H¥
(B;G) are isomorphic with G if » is even, and=0 if » is odd. This, together with
(1-11), proves (15-10). Q. E. D.

Tueorem (15:11). For the integral homology groups H,(S"* S"*S";Z), we
have the following :

(i) CH(S"*S"%8S";Z), )~ Z for r=0,n, 2n with even n, 3n with even n;
and =0 for any other r.

(ii) CH,(S"*S"x8";2), 2) = Z, for r=jn+2k with 1sk=[(n—-1)/2] and
j=1,2; and =0 for any other r.

(iii) C(H,(S"=S"%S";Z), 3) =~ Z3 for r=n+4k with 1= k=[(2rn-1)/4], and
=0 for any other 7.

(v) CH,(S"=S*%=85";Z), @) = 0 for odd prime q=3 and any 7.

Proof. Consider the Smith-Richardson sequence

"H'(8;2) %% 1 (8:2) T 13 2)
for the complex 3 with the transformation 3, where #=1—3. Then it follows from
(1+7) that 2 7 "H"(3;Z)=0. On the other hand, we see from (13-5) that H*(3; Z)
has only free component and 3-primary component. Therefore it follows that
FUH(B; Z)~H"(S" % S"* S*; Z) is isomorphic with a direct sum of some Z, Z,
and Z3. Now (15-11) can be obtained from (14-14), (15-5) and (15-10) by the
universal coefficient theorem [3]. Q. E. D.

Tueorem (15-12). The 3-fold symmelric product of an n-sphere and the
Eilenberg-MacLane complex K(Z, n) are of the same (n+4)-type.

Proof. This follows from (14-20), (15-9) and (15:11) by similar arguments
as in [10], §4.

Remark. The symmetric group of degree 3 is solvable. This is the first
reason for which we can apply the theory in Chapter I to the determination of co-
homology of the 3-fold symmetric products. Since the symmetric group of degree
4 is also solvable, we shall be able to apply the similar arguments as in this chapter

to determine the cohomology of the 4-fold symmetric product.

APPENDIX

16. Calculating method of integral cohomology groups

T. Nakamura gives in his paper [7] a method to calculate the integral co-
homology groups from the cohomology with coefficients in fields. Different from
the original exposition, we shall here explain it as an easy application of the theory
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of exact couple due to W. S. Massey [6].
We shall first recall some definitions and properties. Let

AT 4

(E) N 7
N\ /g
C
be an exact couple (i.e. a system consisting of two abelian groups, A and C, and
three homomorphisms f, g, # such that the following exactness conditions hold:

image f=kernel g, image g=kernel %, image Z=kernel ). Then, define

A/ J; A/
(E) ~ /
h’\C, /g

as follows: A’ =f(A), C’= (kerneld)/(image d), f' (@) =f(a), g’ (@) =gf*(a) (ac A")
and 2 () =h(c)(c€ C’), where d=gh and ¢ denotes the element of C’ containing c.
Then (E’) is also an exact couple, which is called the derived couple. Define the
[-th derived couple

A _ij_c_> A
GE) AN /
A7
C

by (E)=(E) and ((E)=(,_4E)’. Denote by ,# the natural homomorphism of a
subgroup of C onto ,C. In (&), let A and C be graded and let f, g, # be homo-
geneous homomorphisms of degree 0, 0, +1 respectively. Then it is verified easily
that the same holds in ((E).

Let K={C,(K), 8} be a chain complex such that each C,(K) is a finitely
generated free abelian group and C,(K)=0 if ¢<0. Take an exact sequence

0—>z—5z 157 s
where & is the homomorphism defined by &) =pr (r€Z) and 5 is the natural
projection. Then, as is well known, we have the exact couple of cohomology

groups :
H*(K; Z) ——E’—y-—>H*(K, Z)
- /
VAN M
H*(K; Zy)

where &, and 7, are the homomorphisms induced by ¢ and # respectively, and
4y is the Bockstein homomorphism. Consider the /-th derived couple of this exact

couple :

(K 2) 5 s K 7)
N J
1ds\ 7 %

g
H*(K; Zy)
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Then the following is obvious from the definitions.

Lemma (16-1). H*(K;Z)=p'H*(K;Z), and &4 is the homomorphism sending
pla (@e H*(K; Z)) to p(p'a).

Since H*(K ; Z) is finitely generated, H?(K; Z) can be written as a direct sum
of cyclic groups whose orders are infinite or a power of a prime number. Denote
by 5,(K) the number of Z, and by #(K;p") the number of Z,: in this direct
decomposition of H?(K;Z). Then the following is obvious from (16-:1).

LemmA (16-2). The kernel of £,/ H (K ;Z) —> HY(K;Z) is isomorphic with
T Zsy Thzeeat® (K5 9", and the cokernel is isomorphic with J{(Z, b*(K)+Xizit?
(K;pM).

Therefore, by the exactness of the /-th derived couple, we obtain
LemMa (16+3). (RY(K; Zy) =b"(K) + Szt pM) + Zazpat! (K5 p1),
where |R'(K ; Z,) denotes the vank of the group H'(K; Zy).
From this, we have
(RUK; Zy) =1 aRY(K Zp) =t (K p ) + 10K pM' D).
Thus we have
TuroreM (16-4).
(K P = 2 (=D R(K; Zy) —14RYK; Zy) ).
This theorem shows that if we know ,H?(¥; Z,) for every prime p, then the inte-
gral cohomology groups can be calculated immediately.

To the calculations of ;H*(K;Z,), we may use the following theorem which is
obvious from the definition.

TreorEM (16:5). Let €, H'(K;Zy), and let a€ H'(K; Z,) be an element such
that k(@) =,a. Let further « be an integral cochain such that a mod p represents
a. Then the image of 1a by the homomorphism d=fih: H (K; Z,)— H"(K; Z,)
is represented by the cohomology class containing (1/p"*Y)da.
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