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Let W be a complex with a transformation t of prime period p, and denote by 

Wt the orbit space over W relative to t. This paper is concerned with a study of 

certain relations between the cohomology of W and of W 1• As its applications, the 

cohomology of the P-fold cyclic product of a complex and of the 3-fold symmetric 

product of a sphere will be considered. Such studies for the homology groups 

were first raised by M. Richardson and P. A. Smith [11] who introduced the notion 

of the special homology group. Recently S. D. Liao [5] studied the cohomology of 

the P-fold cyclic product of a sphere. Their, and also more extensive, results 

will be proved in the present paper by using of the systematic methods which are 

essentially due to R. Thom [18], W. T. Wu [19] and R. Bott [2]. The original 

papers of Thom and Wu are not easy reading, therefore we shall explain their 

theory in a complete form. Our exposition makes only use of the well-known 

simplicial cohomology theory. 

In Chapter I, the theory is developed on a complex with a transformation of 

prime period. § 1 devoted to the exposition of the Smith-Richardson sequence and 

to its direct applications. In § 2, we define the basic homomorphism fl., v and cf>t, 
and study their properties. W e establish in § 3 certain relations of the basic homo­

morphisms to the well-known cohomology operations: the eup product, the squaring 

operation, the reduced power and the Bockstein homomorphism. § 4 and § 5 are 

devoted to the proof of certain theorems in § 3. In § 6 we define the notion of re­

gularity and almost regularity, and prove the structure theorems. 

Let K be a complex, and X(p!(K) the P-fold cartesian product of K Denote by 

t the transformation on ?ecpJ(K) defined by the cyclic permutation of coordinates. 

Then, in Chapter II, the general theory in Chapter I is applied to the complex with 

the transformation t. The or bit space over X(p) (K) relative to t is the P-fold cyclic 

product of K After sorne preliminaries on the cohomology of the cartesian product 

given in § 7, we prove in § 8 that the pair ('XcpJ(K), i) is almost regular in each dimen­

sion. In § 9 and § 10, we determine the structure of the kernel of the homomor­

phism induced by the projection of the cartesian product onto the cyclic product. 

Reduction formulas which stand deep relations with the reduced power of Steenrod 
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are obtained in § 12. In the final theorem of this section, it is proved that the reduced 

power is characterized by the well-known properties. § 11 and § 13 are devoted to 

determine the cohomology of the p-fold cyclic product of a complex. The cohomo­

logy groups with coefficients in a field and the well-known cohomology operations 

are calculated. As for the integral cohomology groups of the cyclic product, we 

determine only those of certain special complexes. 

In Chapter III we determine the cohomology of the 3-fold symmetric products 

of a sphere. The integral homology groups and the well-known cohomology opera­

tions will be given in explicite form. 

Preliminary reports of our results have been published in [8, 9]. 

CHAPTER I. COHOMOLOGY OF ORBIT SPACES 

1. Special cohomology group 

Let W be a finite simplicial complex, and let t : W--+ W be a periodic trans­

formation with prime period p. Let us moreover suppose that t satisfies the 

conditions : 

a) t is simplicial, 

b) If a simplex is mapped onto itself by t, it remains point-wise fixed. 

Then it is easily shown that the set F= F(t) of fixed points under t form a sub­

complex of W. Let W' be an arbitrary subcomplex of W invariant under t, and 

let G be an abelian group. Then t gives rise to a cochain map t.r,r. in the group 

C' (W, W'; G) of r-cochains of the piar (W, W') with coefficient group G. Let 

11, " be cochain maps defined by 

respectively. We shall also denote these maps by p and p agreeing that p may 

stand for 11, p for " or vice versa, but that the meaning of p and p shall remain 

fixed in any given discussion. Then we have pp =0. Let rer (W, W'; G) and 

r-'cr ( W, W'; G) denote respectively the image and the kernel of the map 

p:C'(W, W'; G) --+C'(W, W'; G). Then rEC'(W, W'; G) (S=1 or -1) for ali 

r form a cochain complex under the coboundary lJ in W, and hence we may define 

the cohomology group of p E cr ( w, W' ; G), to be denoted by p EH' ( w, W' ; GJ. This 

group is called the special p<-cohomology group of ( W, W') with coefficients in G. 

Since we have an exact sequence of cochain complexes 
-1 ·.r,r. 

0---->- p C*(W, W'; G)~C*(W, W'; G).!!.... PC*(W, W'; G)---->-0, 

(i.r,r.: inclusion homomorphism), we obtain by the well-known theorem [3, Chap. V] 

the following : 

THEO~EM (1·1). The following sequence is exact: 

... __..r-'H'(W, W'; G) ~H'(W, W'; G) ~rH'(W, W'; G) 
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,-1 
Hrci(W, W'; C)---> ···, 

where a P and fJ, are respectively the homomorphisms induced by i"l! and p, and 1, 

is the homomorphism which sends a cohomology class containing pu to a cohomology 

class containing ou. 
This is usualy called the Smith-Richardson sequence [4, 13, 18]. 

Let ll be the cyclic group of order p generated by t. Then ll operates freely 

on the r-dimensional integral chain group Cr(W, W'UF). Let I2r= I2r(W, W' U F) 

be a II- free base for this group. 

LEMMA (1·2). We have 

(i) T-'crcw, W'; C)="C'(W, W'; C)+Cr(W'UF, W';C), 1 l 

(ii) "-'C'(W, W'; C)=TCr(W, W'; C)+C'(W'UF, W';pC). 2 l 

Proof. Let u E "-'crcw, W'; C), and u=u 1 +u2 where u1 E C'(W, W' U F; C), 

u2EC'(W'UF, W';C). 

Case 1 : p = -r. Denote by t* the chain map induced by t. Since -ru= -ru 1 = 0 

we have 

u1(x)=u1Ct»:.<x)= ··· =u1 (f~-1x) for 

Define now v E cr(W, W' U F; C) by 

v(tbx) =0 (i"'rO) for 

Then u1 =13V is obvious. Since v EC'(W, W'; C)~ we have u1 E "C'(W, W'; C). 

Thus we see that T-'C'(W, W'; C) c "Crcw, W'; C)+Cr(W' UF, W'; C). The 

inverse inclusion is obvious. This proves (i). 

Case 2 : p= 11. Since au= 0, we have 

2::1;;.6 u1 Ct!r,x) =0 

Puz(x)=O for 

for x E JJ,, 

xECr(W' U F, W'). 

Therefore u 2 E cr ( W' U F, W' ; pC). 

W' U F; G) by 

On the other hand, if we define v E C' ( W, 

for any xEI2r and i=O, 1, ... , p-1, then it is obvious that u1=-rv. Thus we 

have u 1 E TC'(W, W'; C), and hence "-'crcw, W' u F; C) c Tcrcw, W'; C) + 
C"( W' U F, W'; pC). The inverse inclusion is obvious. This proves (ii). 

THEOREM (1·3). (i). If W' -::JF, then for any C 

rH"(W, W'; C)="-'W(W, W'; C). 

1) Let B and C be subgroups of an abelian group A, then we denote by B+C a subgroup of A 

generated by B and C. If B+C is the direct sum of B and C, we denote it by BE)?!C. 

2) We write pG={gEGIPg=O}, PG={PglgEG\ and Gp=GfpG. 
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(ii) If G is a field of characteristic q, not a divisor of p, then for any W' 

Pfl'(W, W'; G)=P-'fl'(W, W'; G). 

Proof. Under the assumption, it follows from (1•2) that r-'C'(W, W'; G) 

=~'C'( W, W'; G). In the case (ii), note that C'(W' U F, W'; G) = pC'(W' UF, W'; G) 

= "C' ( W' U F, W' ; G). From this, (1· 3) is obvious. 

The following is obvious. 

LEMMA (1. 4). Under the same assumption as in (1. 3), we have 

ap/3r=P*, 

where p* : H' ( W, W' ; G) --+ H' ( W, W' ; G) is the homomorphism induced by p. 

Let Qr:C'(W, W'; G)--+C'(W, W'; G) be a cochain map defined by 

Q" = identity, 
(1·5) 

Q"=L;j!2(-1)ipCjri-2 , 

where pCj denotes the binomial coefficient. Then we have 

LEMMA (1•6). pp=Qpp2 • 

Proof. Expand 11 2 = (1+t*+ ··· +f*P- 1 ) 2 and t*P= (1--r)P. Then we obtain 

Cl· 6) by easy calculations. 

THEOREM (1·7). Let a be any elementof r-'H'+ 1 (W, W'; G) whichis contained 

in the image of Ir. Then we have p(a)=O. 

Proof. For this purpose, it is sufficient to prove the following : Given a cochain 

u E C'( W, W'; G) such that opu=O, there is a cochain v E C'( W, W'; G) such that 

p 0u=of5v. In fact, we can take v=Qpu, as is proved in the following. 

Case 1: p=-r. Since -rou=O, it follows from (1·2) that there exists vEC'(W, 

W'; G) and wECr(W' U F, W'; G) such that ou=l1v+w. Then it follows from 

(1 · 6) and 11w = pw that 

Pou= Pl1v+Pw=l1 2 v+Pw 

=11(ou-w) +Pw=11ou-11w+Pw 

= oi1Qo-u. 

Case 2 : p= 11. Sin ce a ou= 0, it follows from Cl· 2) that there exists v E C'( W, 

W'; G) and w E Cr(W' U F, W'; G) such that ou=rv+w and Pw=O. Then it 

follows from (1· 6) 

Pou= Prv+Pw= Q"r 2 v=Q"r (ou-w) 

=Q"roU= orQTU. 

This completes the proof. 

Let G be a field of characteristic q, not a divisor of p. Then it follows from 

(1· 7) that Y r : r sr- 1 ( W, W' ; G) --+ r _, H' ( W, W' ; G) is trivial for any r. Renee 

ar is isomorphic into, f3 r is onto, On the other hand, we have by Cl· 4) the 

commutative diagram 
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Hrcw, W'; C) 

/3p 1 \fJ* 
P-'H'(W, W'; C) ~ H'(W, W'; C). 

Therefore we obtain 

THEO REM Cl· 8). Let G be a fie là of characteristic q, not a àivisor of p. Then, 

for any r, the homomorphism ap is isomorphic into, anà its image is p* H'(W, W'; 

C). Moreover an element of P H'C W, W' ; G) is represente à by f3 P (a) with a E 
H'(W, W'; C). 

Denote by Wt = 0 ( W, t) the or bit space over W relative to t (i.e. the space 

obtained by identifying any two points x, x' of W into a single point whenever 

x'=t;(x) for 'sorne i), and let n: W--> W 1 be the identification map. Then we can 

use as a s.implicial decomposition of W1 the images of the simplexes of Win virtue 

of the assumptions a) and b). Thus W1 is a simplicial complex and n becomes a 

simplicial map3l. Moreover Wt' = 0( W', t) and F1 = 0 (F, t) are respectively the images 

by n of W' and F, and these form subcomplexes of W1• It is obvious that 

Hence we have 

n:Cr(W1, W/; G)= 7 -'C'(W, W'; C), 

n: CrCFt; C)=C'(F; G). 

THEOREM (1•9). P: H'(Wt, W/; G)= 7 -
1Hr(W, W'; G), 

n*: H'CFt; C)=H'(F; G), 

where 1* is the homomorphism induced by n. 

It is obvious that 
(1·10) 

where n*: H'C W 1 Wt'; C) --> H' ( W, W'; G) is the homomorphism induced by n. 

Th us Cl· 8) for p= -r: yields the following: 

THEO REM (1·11). Un der the same assumption as in (1 · 8), the homomorphism 

n* is isomorphic into, and its image is a* H'C W, W' ; C). 

2. Basic homomorphisms 

Let 'fJ: C--> Cp be the na tura! projection2 l, and consider the cochain map Q P 

defined in (1·5). Then it follows from (1·6) and (1·2) that 'fJQpPC'(W, W' U F; 

C) C flC' ( W, W' U F; Cp). Th us 'f}Q P in duces a homomorphism Q' P of P Hr ( W, W' 
U F;C) to ~'H'(W, W'UF;Cp). Let e(T=1 and c 7 =-1, and write 1frp for cPQ'P: 

(2·1) 1frp:rHr(W, W'UF; G)-->~'H'(W, W'UF; Gp). 

Then we have 

LEMMA (2·2). (i) 'o/7 (or 't'a-) sends an element of a-Hr(W, W' U F;G) (or 7 H' 

(W, W' U F; G)) containing au (or -r:u) to an element of 7 H'(W, W' U F; Gp) (or 

a-Hr ( W, W' U F; G p)) containing au. 

3) Of course, W1 itself is not necessarily simplicial. In such a case, consider the first barycentric 
subdivision of W and W1• Then W1 becomes a simplicial complex such that " is a simplicial 
ma p. 
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(ii) ~Y.,.,YT=O (p~3), and=1J* (P=2), where "'* is the homomorphism induced by 'lJ. 

By the definition of ,YP, this is a direct consequence of the following: 

LEMMA (2·3). (i) ETQ 7 r:'=E,.Q,.a=a mod p. 

(ii) QTa==O mod p (p~3), and=a (P=2). 

Proof. It follows from (1· 5) that 

ETQT-r= l:rez ( -l)j+1 pCjr:j-1==( -1)P+1r:P-1 

P-1 
'= (t-1)P-1 = l:j~o ( -l)P-j-1 p-1 Cj fj 

P-1 
==l:j~oC -1)P-1fj=a=E,.Qcra mod p. 

(Note that p- 1Cj==(-1)j mod p, and that Q,.=l.) This proves (i). 

Sin ce 1:<1 = 0, it follows from (1· 5) that 

QTa= l:j!z ( -1)jpCjr:j- 2 a= pC2 a 

==0 mod p (p~3), and=a CP=2). 

This proves (ii). 

Furthermore we have 

LEMMA (2·4). Ci) ,YPTr=lp,Yp. (ii) 'ljr,.f3T='lh/3,-. (iii) a,.,YT='lJ*aT. 

Proof. (ii) and (iii) are obvious. We shall prove (i). Let puE rer ( W, W' U F; 

G) be a cocycle representing aeHr(W, W' U F;G). Then '1]rp(a) is represented 

by 'l/Ep QppU='lJEp Qp{nt, in virtue of (i) of (2·3). Thus /p,Yp(a) is represented 

by o'lJEpQpu= 'lJEpQpou. On the other hand, TP (a) is represented by 0u, and hence 

,Yplp(a) is represented by 1JEpQpou. Thus we have (i). 

Define homomorphi::;ms 

(2· 5) 

as foilows :4 l 

(2·6) 

Then we have 

tJ.:HrCWt, W/ U Ft;G)---4Hr' 2 (Wt, W/ U Ft;G), 

v: Hr(Wt, W/ U Ft; G)---4Hr+i(Wt, W/ U Ft; Cp) 

tJ.=I*-'!TT,.I*, 

Q.E.D. 

THEO:ZEM (2·7). (i) v2 =0 if P~3, and='lJ*tl if P=2. (ii) fJ.JJ=JJfJ.. 

Proof. It follows from (2 • 3) and (2 • 4) that 

7J2 =I*-',Y,./,-1fr<T/<Tl*=I*-'v,.'o/TTT/,-I*=O if P~3, 

= 1htl if p~2. 

This proves (i). (ii) can be proved similarly. Q.E.D. 

Let a E Hr( W, W'; G) be an element whose representative cocycle is u. Then 

pu= p(u 1 W- F) mod pC, where u 1 W- F denotes the restriction of u on W- F. 

4) Note that the definition of v is given without rr:aking use of local ccefficients, different from 
the one given by R. Thom (18]. 
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Therefore pu is a cocycle of PC'(W, W' U F; Cp). Moreover, as is easily seen, the 

class of PH'( W, W' U F; Cp) containing pu is independent of the choice of representa­

tives of a. Thus the correspondence u----+ pu provides a homomorphism 

(2·8) /Cp: H'(W, W'; C)----+ PH'(W, W' u F; Cp). 

The following is obvious. 

(2·9) 1../rrriCT = IC(n 

where p~: H'(W, W'; C) ----+H'(W, W' U F; C) is the homomorphism induced by p. 

Define a homomorphism 

rp:C'(W, W'; C)----+C'(W,, Wî; C) 
by 

rpu(7!x)=au(x), uEC'(W, W' C), 

where x is any simplex of W. Then we have 
\ 

LEMMA (2·10). 7!rp=a. 

Proof. Let a denote the boundary operator. Since 

(]rpu(7!x) = rpu(7!ax) = au(ax) = (]au(x) 

= a(]u(x) = rp(]u(7!x), 

we have (]rp = rp(]. 7!rp =a is obvious. 

By (2 ·10), <P induces a homomorphism 

(2·11) rp*:H'(W, W'; C)----+H'(W1, Wt'; C). 

Q.E.D. 

Furthermore, since it is obvious that 'f]rpC'(W, W'; C)cC'(W1, W(UF1 ; Cp), <P 

induces also a homomorphism 

(2 ·12) <P~: H'(W, W'; C) ----+H'(W,, W/UF,; Cp). 

The. following is obvious. 

LEMMA (2·13). l*rpt=JC,., j*rpt='iJ*rp*, 

where j*: H'(W1, Wt' UF1 ; Cp)----+ H'( W,, W(; Cp) is the inclusion homomorphism. 

W e shall prove 

LEMMA (2·14). If vEC'(F;C), then·r:(]v=O in W. 

Proof. Let c be an oriented (r+ 1) -simplex of W, and let 

ac= "L.;a;x, + "L.i/3 iYi, (a;, j3 1 : integers), 

where x;, Yi are oriented r-simplexes of W-F, F respectively. Then we have 

r:(]v(c) =v(r:ac) =v(ac)-v(atc) 

=~.a, (v(x,) -v(tx,)) + L.i/3/v(yi) -v(tyi)) =0, 

since Jj=tyi and v(x;) =v(tx1) =0. 

Let bE H'( W' U F, W'; C) and let v be a representative of b. Then r:(]v=O 

by (2 ·14), and (]v E zr-> 1 ( W, W' U F; C ). Th us (]v is a cocycle of T-•c," 1 ( W, W' 

U F;C)="C''1 (W, W' U F;C). Moreover, as is easily proved, the class of ,.Hn1 

( W, W' U F; C) containing (]v is independent of the choice of representatives of b. 

Thus the correspondence v ----+ av provides a homomorphism 

iJ.: H'(W' U F, W'; C)----+ "'H'+l(W, W' U F; C) 
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Let us now define 

(2·15) ilr:H'(W'UF, W';C)---+PJ-I'+1 (W, W'UF;Cp) 

by 
iJT='rj*iJ' 13-<J"=.,YT!J• 

Then, by the definitions and (2 · 2), we have 

LEMMA (2·16). (i) .,YT?JT=!J<J". 

(ii) '1jr"1J"=O (p~3), and =13- 7 (P=2). 

Consider the diagram 5 l 

···---+ ~'FF(W, W'UF; C1,) ~ H'(W, W'UF; Cp)~ 

i13 r ~* i'l]* ·* 
···--;. H'-1 (W'UF, W'; C) ~ H'(W, W'UF; C)_J_ 

--;. rJ-I'CW, W'UF; Cp)~ PJ-I'+1 (W, W'UF; Cp)~"'"··· 

i'"r "* ivr 
--;. H' ( W, W' ; C) ~ H' ( W' U F, W' ; C) ----o. · · ·. 

Then we have 

LEMMA (2·17). (i) ari1r=rt*o*. (ii) fir'fJ*=Krj*. (iii)trKr=-13-ri*. 

Proof. (i) and (ii) are obvious. (iii) is proved as follows : 

Let aEH'(W, W'; C) be a class whose representative is u, and let u=u1+u2, 

where UtEC'(W, W'UF; C) and u2 EC'(W'UF, W';C). Then we have 'fJPU='fJPUt, 

and hence trKr(a) is represented by 'f}ou1. On the other hand, vri*(a) is represented 

by 'fJoUz. Thus ClrKr+!Jri*)(a) is represented by 1Jo(u1+u2)='fJou=O. This proves 

ruo. QRu 
Consider the diagram 

H'(W(UFt, W(; C)!!_LH'+1(Wt, W(UFt;Gp) 

~dn* (îll* 
H'(W'UF, W';C) ~~ "I-f'+1 (W, W'UF;Gp). 

W e have then obviously 

(2 ·18) 

W e shall prove 

THEOREM (2·19). (i) P<fJo*=-vo*n*-'i*. 

(ii) Pcp~=O (p~3), and ='fJ*o*n*-'i* (P=2). 

Proof. It follows from (2·6), (2·13), (2·16), (2·17) and (2·18) that 

f.i.cpE=l*- 1t 7 t"K"= -I*-'tT!J<ri*= -1*-'/TojFT!JTi* 

= -pl*- 11Jci* =-vo*n*-'i*. 

It follows from (2 · 2), (2 • 6), (2 ·16), (2 ·17) and (2 ·18) that 

v<Pt=I*-'.,Y<J"Y <J"K<J"= -I*-'+0"13-<J"i*=- I*-'y<J".,YTvTi* 

=0 (p~3), and =I*-'vTi*='fJ*o*n*-'i* CP=2). 

This completes the proof. 

5) The upper line is the Smith-Richardson sequence, and the lower line is the ordinary exact 
sequence. 



Cohomology theory of a complex 59 

Let 

(2. 20) 

(s>O) be a homomorphism defined as follows: 

Then we have 

Ciii) If P=2, 'Yrf'f=f'~. 

Proof. (i) is obvious. It follows from (2 · 2), (2 · 4) and (2 ·16) that if p~3 then 

The proofs of the other formulas are similar. Q.E.D. 
When p = 2 and the coefficient group is G2, there is a variation of the Smith­

Richardson sequence, due to R. Bott [2] : 

THEO REM (2 · 22). Let p = 2, then the sequence 

·~- * 
· · · -+ Hr-1( Wt, W ( U Ft ; G2) L! Hr ( Wt, W( ; G2) !!______ 

is exact, and n*j*1Jt =a*. 
Proof. Sin ce Hr ( Wt, W( U Ft ; G2) = T _, H' ( W, W' U F; G2) = T HrC W, W' ; G2) and 

Hr(Wt, W(; G2)~T-'Hr(W, W'; G2) by the isomorphisms induced by rr, the exactness 

follows easily by the definitions of IJ and epi; from the Smith-Richardson sequence 

(1·1) for p=-r and G=G2• rr*j*cpi;=a* is obvious from (2·10). 

Let W be a finite simplicial complex with a periodic map t satisfying the con­

ditions a) and b) in § 1, and let W' be a t-invariant subcomplex of W. Given a 

simplicial map 

f: CW, W')-----+ (W, W') 

which is t-equivariant (i.e. a map such that tf= ft), it is obvious that f maps F in 

the set F of fixed points un der ~ and that f in duces a simplicial map f: ( Wt, W() 

-+ C Wt, W() such that fn=nf. Thus f induces the homomorphisms Hrc W; W'; 
G)-+Hr(W, W';G), PHr(W, W'UF; G)----.rHr(W, W'UF;G), H'CWt, W(;G) 

-+H'CW, W(; G) etc. Let us denote by f* ali these homomorphisms. Then it 

can be verified easily that f* commutes with the various homomorphisms defined 

in § 1 and § 2. 
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3. Relations to the cohomology operations 

In the preceeding section, we defined the homomorphisms fl., v and rp~ which 

are basic in the discussions below. In this section we shall study sorne relationships 

between these homomorphisms and the well-known cohomology operations: the eup 

product, the Bockstein homomorphism, the reduced P-th power and the squaring 

operation. Whenever the argument are concerned with the eup product, we shall 

always suppose that coefficients are taken from a ring, and we shall denote by u 

the eup product. Let (X, A) be a pair of simplicial complex X and its subcomplex 

A, and let Z be the group of integers. Then we shall denote the Bockstein homo­

morphism, the reduced p-th power, the squaring operation by 

.dp: H'(X, A; Zp) ·---* Hr+1 (X, A; Zp), 

(S>s: H'(X, A; Zp) ----.. Hr+2scP-1l(X, A; Zp) (p2:;3), 

Sqs : H' (X, A ; Zp) ----.. Hr-is (X, A; Zp) (p = 2) 

respectively [14, 15, 16]. 

In virtue of the assumptions a) and b) in § 1, we can define on W a locally 

simple ordering invariant under t. This ordering induces a locally simple ordering 

in W1•3l Using this ordering on W and Wt, we shall define as usual the eup product 

in W and Wt. Since the map 7C and t'*' 1 are order-preserving, we have the follow­

ing [14]. 

LEMMA (3·1). Let u, vEC*(W, W'; G), then 

t'*' 1(uuv) = t'*' 1uut'*'1v, n'*' (rpuurpv )= n'*'rpuun'*'rpv. 

LEMMA(3·2). (j) a(uuav) =auuav, (ii) 7:(uuav) =1:uuav, 

(iii) rp(uuav) = rpuurpv. 

Proof. By the definition of a and (3 ·1), we have 

=auuav. 

This proves (i). The proof of (ii) is similar. 

From (2·10), (3·1) and above (i), we have 

n'*' rf> (u uav) = a(u uav) = auuav = 7!'*'rpuun'*'qw = 7!'*' ( rpu urpv ). 
Since n'*' is isomorphic into, we have (iii). 

As an immediate consequence of (3·2), we have 

THEOREM (3·3). Let a, bEH*(W, W': G), then 

Ç:Jt(aua*b) = ~bt(a)urp~(b). 

W e shall prove 

THEO REM (3 · 4). For the above a and b, we have 

Q.E.D. 
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v(cpi;auq,i;b) =0, re(cp'i;aucf-''/;b) =0. 

Proof. By the definitions of /.1. and IJ, it is sufficient to prove T a.I*C 1)'/;a uqJ':;b) =o. 
Let u and v be representative cocycles of a and b respectively. Then qJ~auqJ'/;b 

is represented by qmucpv=cNuuav). (See (3·2).) Thus I*(cfJtaucfJtb) is represented 

by 7lcp(uuav) =a(uuav). Since av E C*(W, W' U F; Cp), we have uuav EC*(W, W' 

U F; Cp). Thus T a-I*(1J0aucpi;b) is represented by o(uuav). However uuav is a 

cocycle, and bence o(uuav) =0. Namely we have T "I*(qJi;auq)~b) =0. Q. E. D. 

Co'iOLLA':CY (3·5). Let aœEH*(W, W'; C) for a=l, 2,···, k, where k~2. 

Then we have 

v(1Jta1 ucptazu ··· ucptak)= 0, !J.(cp'i;a1 ucp~azu ··· uqJ0ak) =0. 

Proof. Obvious from (3·3) and (3·4). 

Trmo.mM (3·6). Let a, bE H*(W1, W/ U F1 ; C), and a, fJ~O. 

(i) !.!."'(a)u!.!.f.(b)=!J."'+r:(aub), 

(ii) r'*!.!."'(a) uv(b) = ( -l)dim a !.!."'v(aub ), 

(iii) v(a)uv(b)=O if p~3, and ='lh!J.(aub) if P=2. 

The proof is given in § '1. 

Consider the diagram 

Then we have 

THEO :lEM (3 • 7). 

Then we have 

Proof. Let a E Hr ( W, W'; Zp) be any element, and let u E C' ( W, W' ; Z) be a 

cocycle mod p which represents a. Then there is a cochain v E Cr+1 ( W, W'; Z) 

such that ou=pv. Let u=u1+u2, where u1 EC'(W, W' U F;z) and UzECr(W' U F, 

W'; Z). Then we have 

cpù = 1>u1 + qJUz = 1>u1 + Pu2, 

where UzE cre W/ UFt, W/; Z) is a cochain such that 7lUz =Uz. Make the coboundary 

of the both sides, then 

Sin ce ocf>u =cf> ou= pcf>v, we have 
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By the definitions, çf;'t;.:Jp(a) and o*n*-'i*(a) are represented by Ç;v and ou{ respective­

ly. Since Ç;uo=Ç;u1 mod P we see also that ~ocpu1 represents &pÇ;'t;(a). Thus the 

above equation proves (3 · 7). Q.E.D. 

Proof. 6 ) Let a E H'CWt. W ( U Ft ;Zp) be an element whose representative cocycle 

is u mod p (u E C"(Wt, W f U Ft; Z)). Then there is a cochain v E C'+1CWt, Wf UFt; 

Z) such that ou=pv. Consider now uoEC'(W, W' U F;Z) and v0 ECr+1(W, W' 

U F; Z) such that cpu0 =u and Ç;v0 =v. Then it follows from (2·10) that 

and 

a(ouo-PVo) = oauo-pavo= oncf>uo-Pncf>vo 

=onu-pnv=n(ou-pv) =0, 

l1 oVo = ol1Vo = oncf>vo =on v= noV= Ü. 

Therefore it follows from Cl· 2) that there exist cochains u1 E cr' 1(W, W' U F; Z) 

and v1 EC'+2 (W, W' U F; Z) satisfying 

(A) 

(B) 

Then we have 

oUo- Pvo = -ru1, 

oVo=-rV1. 

-r( OU1 + pv1) = o-ru1 + P-rv1 = 0 ( oUo-Pvo) + P-rv1 

= ooUo-P(oVo--rV1) =0, 

and hence there is a cochain y 1 E C'' 2 (W, W' U F; Z) such that 

(C) 

Applying cp to the both sides of equation, we have 

(D) 

because of <j;ay1 = Prf>Y1· 

Since nu= auo, I* (a) is represented by auo mod p, and hence it follows from (A) that 

1ul*(a) is represented by ou0o=-ru1 mod p. Thus it follows from (2·2) and (C) 

that ~f',,./ui*(a) and 1r1,-I*(a) are represented by au1 mod P and ou1o=ay1 mod p 

respectively. Therefore v(a) = I*-',Y,-1 ,-I*(a) and p.( a)= l*-'1 r 1 u-l*(a) are represented 

by <j;(u1) mod p and rp(y1) mod p. On the other hand, .:lp(a) is represented by v 

mod p, and hence I*.:lp(a) by av0 mod p. Thus it follows from (B) that 1,-I*.:lp(a) 

is represented by ov0 =-rv1. From this, we see that v.:lp(a)=l*-'V'a-Ya-I*.:lp(a) is 

represented by rp(v1) mod p. Now (i) is clear from (D). 

rt follows from above (i) and the well-known property: &$ =0 that 

6) See the Remark (1) at the end of §4. 
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tU1p= (t1piJ+vL1p)Ap= LlpvL!p 

= (p.-vLlp)Llp=Jl.Llp. 

THEOREM (3·9). (i) Let p~3, then 

(ii) Let p = 2, then 

Sq'v- vSq' = v2Sq'-1• 7 l 
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The proof will be given in § 4 by no making use of the original definitions 

of CY' and Sq'. We shall use only the following properties [16]: 

(I) If f: (X, A)---+ (X', A') is a simplicial map, 

f*CY' = CY'f*, f*Sq'=Sq' f*. 

(Il) For the coboundary operator o*, we have 

a*CY' = CY' o*, o*Sq' = Sq' a*. 

(III) CY'(aub) = L;j,k~sCYi (a) u(Slk(b), 

Sq' (aub) = L;j+k~s Sqi (a) uSq1'(b). 

(IV) (Slo and Sq0 are the identity. 

(V) CY'(a) =auau ···ua (pfold eup product) if dim a is even and s= ~ dim 

a, and =0 ifs>~ dim a or <O. Sq'(a) =aua if dim a=s, and =0 ifs> 

dim a or <O. 

By iterations of (3 • 9), we have 

CüROLLARY (3 ·10). 

CP=2). 

By (2·19), (3·9) and the property (Il) of CY' and Sq', we have 

(ii) vcp'!;Sq'=Sq'v1)6 (P=2). 

CP=2). 7 l 

This will be proved in § 5 by making use of the original definitions of CY' and Sq', 

due to N. E. Steenrod. 

CoROLLARY (3·13). If P=2, then 

,Pi;Sq' -Sq'cpt = p.Sq'-2rp'I;+Sq'-1vrpt. 

7) For the formula for p=2, see R. Bott [2]. 
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Proof. Since 7f2 = p. for p = 2 by (2 ·17), it follows from (ii) of (3 • 9) that 

,uSqs-2~(; = Sqs-lv~'/J- 7JSqs1)g, 

From this and (ii) of (3·12), we have (3·13). 

By iterations of (3 ·12), we have 

Cm.OLLARY (3·14). (i) (5' 5 ~'1; =~k~o( -1)k,uk(P-1)~'/)(5's-k (p2;.3), 

(ii) Sqs1;'!J = ~k~o7fk~gSqs-k CP= 2). 

4. Proof of (3 · 6) and (3 • 9) 

W e shall first state an important property of .u and v for a special case in 

which t operates on W without fixed points. 

Let Uz = Uz CW) E H 2( w t ; z) and vl = vl (W) E H 1 ( w 1 ; Zp) be elements defined 

by .u(1) and v(l) respectively8l, where .u: H 0 (W 1 ; Z)--+ H 2 (W1 ; Z) and v: H 0(W 1 ; 

Z)--+ H 1 (W 1 ; Zp). Then we have the following: 

THIWREM ( 4 ·1). 9 l Suppose that the transformation t: W ___,. W has no fixed 

point, and let a E H'CWt, W/; C). Then, for the homomorphism p.: Hr(W 1, W /; C) 

--+H" 2 (Wt, Wt';C) and tl:H'CWt, W/ ;C) --+H'+1(Wt, W/ ;Cp), it Jzolds that 

.u(a) = U2 (W)ua, 1/a) = V1 (W) ua, 

where the eup products are taken with respect to the natural pairing G ® Z --+ C 

and G ® Zp--+ Cp respectively. 

Proof. LetuEZ'CWt, W/ ;C) be a cocycle which represents a, and 1EZ0 (W1 ; 

Z) the unit cocycle. Let uiJ E C'(W, W'; C) be an element such that 1;u0 =u, and 

let siE Ci (W; Z) (i = 0, 1, 2) be elements such that 

(A) 

It is clear that such s; exists. Then it holds by the definitions of .u and 1, that (/Js2 

and ~s1 mod pare representative cocycles of U and V respectively. Moreover it 

follows easily from (A) by making use of (3 · 2) and (2 ·10) that 

~(S0 UiJU0) =U, 

o(SiUIJUo) =iJ(SzUiJUo). 

Thus (p(s2 uiJu0) and ~Cs1u11uo) mod pC represent .u(a) and v(a) respectively. On 

the other hand, it follows from (3·2) that cp(s2 u11u0) =cp(s2) uu and cp(s1 u11u0 ) 

=~Cs1)uu. Therefore cp(SzUiJUo) and cp(s1u11uo) mod pC represent U2 ua and 

8) Let Y be a complex, then we denote by 1 the cohomology class containing the fundamental zero· 

cocycle 1. 

9) See W. T. Wu [19]. 
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V1 ua respectively. This proves ( 4 ·1). 

THEOREM (4·2). (i) .dpV1(W)=UzCW) mod p. 

(ii) V1 (W) u V1 (W) = 0 if P~3, and = U2(W) mod P if P = 2. 

Prooj. Using the notations in the above proof, V1 and Uz are represented by 

q)s1 mod p and cps2 respectively. Moreover it follows from (2 ·10) and (A) that 

ocpS1 = cpoS1 = cpt1Sz = pcps2. 
This proves (i). It follows from (4·1) that 

V1 u V1 =v( V1) = v2 (1). 

Therefore (ii) is obvious from (2 · 7). Q.E.D. 

We shall again consider the general casè in which t may have fixed points. We 

shall retain the notations in above sections. Let W* and (W'UF)* be the second 

barycentric subdivisions of W and W'UF respectively, and let N be the regular 

neighborhood of (W'UF)* in W*. (i.e. N=UASt(A), where the union is extend· 

ed over ali the vertices A of (W' U F) * and St denotes the open star in W*.) Let 

N be the closure of Nin W*, and denote 

M=W*-N, E=N-N. 

Then N, E and M are subcomplexes of W*. It is obvious that the map t is 

simplicial with respect to W* and satisfies the conditions a) and b) in§ 1. Moreover 

it is easy to verify that N, E and Mare t-invariant subcomplexes of W*. 

Let Wi be the second subdivision of Wt, then the map n: W*----+ Wt* is 

simplicial. Let Nt, Et and Mt be the images by n of N, E and M respectively. Then 

it can be easily proved that those are subcomplexes of Wi and that Nt is the regu· 

lar neighborhood of (W ( U Ft)* which is the second subdivision of W ( U Ft. Th us, 

by the THEO REM 9 • 9 of Chapter II in [3], we see that W ( U Ft is a strong deforma­

tion retract of Nt. Therefore we have 

k:: HrCWt, M; G) = EPCWt, W/ UFt; G) 

for any rand G, where k1: CWt, W/ UFt)----+ CWt, Nt) is the inclusion map. On 

the other band, it follows from the excision property that 

k~ :Hr(Wt, M; G) = Hr(Mt, Et; G) 

for any r and G, where k2 : (Mt, Et) ----+ (W t, f.l;) is the inclusion ma p. Th us we 

have proved 

LEMMA (4·3). k~kr':Hr(Wt,W/UFt;G)=Hr(Mt,Et;G) for any randG. 

Consider now the complex M, then t operates on M with the properties a) and 

b) in§ 1. Moreover the transformation t: !VI--+ M has no fixed point, and E is the 

!-invariant subcomplex of M. Therefore we may apply (4·1) with W=M and 

W' = E. Namely we have 
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LEMMA (4·4). For the homomorphism p: Hr(Mt, Et; G) -->-Hr+2(Mt, Et; G) and 

v : Hr (Mt, Et; G) ----+ Hr+t (Mt, Et; G p), it holds that 

p(a) = U2(M) ua, 1J(a) = V1 (M)ua, 

where a E Hr(Mt, Et; G). 

We shall now give a proof of (3·6) and (3·9).10) In virtue of (4·3) and the 

naturality of p, v, &s and u, it is sufficient to prove them for the special case: 

(W, W') =(M, E). 

Write U2 and V 1 for U2(M) and V1(M) respectively, and let Uzu Uzu ··· u Uz 

denotes the P-fold eup product of Uz. Then, from (4·4) and the properties of &s 

and Sqs described in§ 3, we have for an element a E HrCMt, Et; Zp) the following: 

(i) &8 p(a) =&sC Uzua)= L~.û+k~s&jC Uz)u(Slk(a) 

= ( Uzu(Sl 8 (a)) + ( U2 u Uzu ··· u U2 u(Sl8 - 1(a)) 

= p(Sls(a) + pP(Ys-1(a), 

(5l 8 1J(a) = &s ( v1 ua)= v1 u(Y 8 (a) = v& 8 (a)' 

(ii) Sq8 v(a) = Sqs( V1 ua)= ( V1 uSqs(a)) + ( V 1 u V1 uSqs-1(a)) 

=vSqs(a) +v2Sq8 - 1 (a). 

This proves (3 • 9). 

As for (3·6), (i) and (ii) are obvious from the anti-commutativity of the eup pro­

duct. In addition to this, if we use (4·2) we have (iii). Thus we obtain (3·6). 

REMARK (1) We proved (i) of (3·8) directly by the definitions of p, P and Llp. 

However, since it follows from (4·2) and a well-known property of Llp that 

Llpv(a) = Llp( v1 ua)= (Lip v1 ua)- ( v1 uA pa) 

= ( U2 ua) -- ( V1 u.Jpa) =pa- v LI pa 

for a E I-F (Mt, Et; Zp), we can prove (i) of (3 • 8) by the same way as the above. 

(2) It is not difficult to give a direct proof of (ii) of (3 · 9) without making 

use of (Mt, Et). Such a proof is seen in R. Bott [2]. 

5. Proof of (3 ·12) 

W e shall prove only the formula for p~3. The proof of the one for p = 2 is 

similar.7l 

Let X be an arbitrary simplicial complex, and A its subcomplex. Denote by 

X(p)(X) the P-fold cartesian product of X. Then N. E. Steenrod [15, 16] defined 
&s: Hq(X, A; Zp) ----+ Hq+Zs(P-lJ (X, A; Zp) for P~3, 

by making use of the homomorphism 

Di: Cr(xcpJ(X); Zp)----+ c·-i(X; Zp) 

as follows: 
(5 ·1) &s (a)= ( -l)ts+lq(q-J) h(t!?s-q {D(q-Zs)(p-1) (u X U X··· X u)}, 

10) Compare with the original proof in R. Thom (18] where the Cartan-Leray cohomology theory 

is used. 
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where u is a representative cocycle of a E Hq(X, A; Zp), {v} denotes the cohomology 

class containing v, and t= (p -1) /2. 

W e shall recall sorne properties of D;. 

Let 

be an automorphism defined by 
T(u1XU2X ··· Xup) = ( -1)q,(q,+···+qp)(u2xuaX ··· xu1) 

(u; E Cqi (X; Zp)), and denote by ar and -rr the homomorphism I:;j:~ T 1 and 1- T 

respectively. Then the following holds [15]. 

LEMMA (5 • 2). (]D, (u1 x u2 x··· x up) 

= ( -1);D;(](u1 x u2x ···x up) + ( -1)z+1D,_1a;(u1x u2 x··· x up), 

where a;=IJr for even i, and= --rr for odd i. 

The following property of Pr is verified easily. 

LEMMA (5·3). If dim u1 =dim U2= ··· =dim Up, then we have 

11r(u1 x u2x ···x Up) =-rrC'L/J=1jTi-1(u1 x u2 x··· x Up)). 

D; are not determined uniquely for a given X. However if a locally simple 

ordering is introduced on X, we can construct uniquely D; by making use of this 

ordering, as is shown by S. Araki [1]. Construct D 1 by such a method, then the 

following is immediate from the definition due to Araki. 

LEMMA (5·4). Let X and X' be simplicial complexes on which locally simple 

orderings are given, and let f: X----+ X' be an order-preserving simplical map, then 

the naturality : 

holds. 

Take now as X especially W considered in above sections. Then we can con­

sider on C' (xcp)( W) ; Zp) an another automorphism t than above-mentioned T. The 

definition of t is as follows : 

t(u1xu2x ··· xup) =tu1xtuzx ··· xtup, 

where u, E Cqz(W; Zp). Therefore C'(XCp)(W); Zp) becomes a group with two 

opera tors T and t. Denote 11 = L:f:~ ti and r = 1- t. Then the following is obvious. 

LEMMA (5·5). (i) tT= Tt. 
(ii) a(u1 XU2X •·· XUp) =-r(2:;§=1jtJ-1(u1XU2X···XUp). 

Let us define D,: C' (xcp) (W); Zp)----+ cr-i ( W; Zp) by making use of a locally 

simple ordering invariant under ton W, and define D,:C'(XCp)(W1);Zp)----+C'-i 

( Wt ; Zp) by making use of the locally simple ordering on W 1 induced from that 

on W. Then ti (j=1, 2,···, P-1) and n are order-preserving simplicial maps. 

Therefore we have by (5 • 3) and the definition of t the following 

LEMMA (5·6). (i) D,(mpu1xmj>u2x ··· xmpup) =nD,(cpu1xcpu2x ··· xcpup). 



68 Minoru NAKAOKA 

(ii) D,ti(u1xu2x ··· xup) =tiD,(u1xu2x ··· xup), 

and hence D;p= pD;. 

Let (mo, m1, ···, mp-1) be a sequence of integers mod p such that mo+ m1 + ··· 
+mp-1 == 0 mod p. Such two sequences (mo, mv· ·, mp-1) and (mo, m{, ···, m~-1) 

are calied to be equivalent if there is an integer f3 mod p such that m;==m(a; for 

j = 0, 1, ···, p-1. The equivalence class contaihing a sequence (m0, m1, ···, mp-1) 

will be denoted by m= [m0 , m1, ···, mp-1]. Given an equivalence class m and a co­

chain u E Cq(W, W'; Zp), let us denote by .Q(u; m) a cochain 

where the summation is extended over ali sequences (i1, i2, ···, ip) of integers mod 

P such that Ci2- i1, ia- i2, ·· · , i1- ip) E m. Then we have obviously 

LEMMA (5·7). aux aux··· xau=L:mt.J(u; m), 

where m runs over every possible equivalence class. 

Assume that (m0 , m1, ···, mp_1) = (mp., mr-+1, ···, mp.+p-1) for sorne (3$.0 mod p. 

Then we have m;=mr-+i for any j, and hence mo=mr-= ··· =mcp-1)f.· Since P is 
prime and /3$.0, the set {0,/),2/),-··, (p-1)/)} and {0, 1, 2,···,P-1) are same. 
Therefore we have m0 =m1=···=mp-1. Thus it holds that if m0,mt,···,mp-1 are not 

ali same then the equivalence class [mo, m1,-··,mp-1] consists of p different sequences. 

On the other hand, it is obvious that the class [m, m,-· ·, m] consists of only one 

sequence. These considerations deduce readily the foliowing: 

LEM MA (5 • 8). Let (mo, m1; · ·, m p-1 ) be a sequence, and let m be the class con­

taining it. Put m(u; m0 , m1,-··, mp-1) =uxtmouxtm,+m,ux ··· xtm,+m,+···+mp-'U. Then 

if mo, m1;··, mp-1 are not all same, then 

.Q(u; m) =MTfo(u; mo, m1;··, mp-1); 

if mo= m1 = ·· · = mp-1, then 

.Q(u; m) =rJm(u; m1, m2;··, mp-1). 

If mo=m1=···=mp-1C=m), weshali abbreviate m(u;m0,m1;··mp-1) as m(u;m). 

Throughout the remainder of this section, we shali assume that u denotes a cocycle 

(i.e. u E Zq(W, W'; Zp)) and that i denotes an even number. 

LEMMA (5·9) D;(rJUXrJttX ··· Xr1u) and r1L;~:,~D;m(u; m) represent the same 

cohomology class of "Hpq(W, W'UF; Zp). 

Proof It foliows from (5•7), (5·8), (5·6) and (5·2) that 
D;(rJU x rJU x ... x rJU) 

=D;""E,~:,~rJm(u; m) +D;'E,~r1r1T(u; mo, m1,···, mp-1) 

= rJ'E,~:~D;m(u; m) +rJ2::~D,r1Tm(u; mo, mç·, mp-1) 

= aL;~:~D,m(u; m) +rJ2::~D,r:TC2::fJ-âTi-1m(u; mo, m1, ···, mp-1), 

where 'E,m' denotes the sumrnation extended over every possible equivalence class 
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rtt=[m0,m1,- .. ,mp-1 ] such that mo,m1,"·,mp-1 are not ail same. However it follows 

from (5·1) that 

D,r:y(~f~dTj-1 w(u; mo, m1;··, mp-1)) 

= -ôDi+1(~f~1 JTHw(u; mo, mç·, mp-1)). 

This proves (5·9). 

LEMMA (5·10). ôD;w(u;m)=O if m==O, and 

= -r:D;_1 ("E.,~~1 jtHw(u; m)) if m$0. 

Proof lt follows from (5 ·1) that 

ôD;w(u; m) =-D;-1arw(u; m) 

= - Di-1 C~f~1 tjm (u X t"'u X ••• X f(P-1lu)) 

= -Di-law(u; m) if m=tO, and =0 if m==O. 

Since it follows from (5 · 5) and (5 · 6) that 

D;-law(u; m) =r: Di-1~}~1 jtHw(u; m)), 

we have (5·10). 

Denote by {pv} P the element of PHj(W, W'UF; Zp) containing a cocycle pv E 

PCj(W, W'UF; Zp). Then we have 

LEM MA (5 ·11). Let k be an integer such that 0-:;::;_ k-:;::;_ p- 2. Then we have 

Y "{aD;("E.,~-:,~mk(i)(u; m))}" 

=- {r: Di-1 ("E.,~~"E.,}~1mkjtHw(u; m)) }~. 

Proof It is an elementary fact that "E.,!:~mk==O if 0-:;::;_ k -:;::;_p-2. Therefore, if 

we recall that the dual chain map of D; is carried by the diagonal carrier, it 

follows easily that D;(~~~ mk w(u; m)) is an element of CPq-i (W, W'UF; Zp). 

By the definition of Y"' it follows that Y"{aD;~~:6mk w(u; m)}" is represented 

by ôD;(~~~omkw(u; m) ). Th us (5 ·11) is clear from (5 ·10). 

LEMMA (5 ·12). Y" {r:D;-1"E.,f~âtHw(u; m))}" = -m{aD,_ 2w(u; m)} "" 

Proof. Since '2:~~1 }=0, D;-1('2:~~1 jt-1w(u;m)) is an element of CPq-i+1 (W, W' 

U F; Zp). Therefore Y T { 1: D;-1 C:Ef~1 jtHw (u; m))} ~ is represented by ôD;-1 C~f~1 jtH 

(i)(u; m)). However we have by (5·1) and (5·6) that 

This proves (5 ·12). 

- ôDi-1~f~1 jtHw(u; m) 

= D;-2 C'2:f~ 1 r:rJtHw(u; m)) 

=D;-2 (~f~ 1 (jtH-jtH+m)w(u; m)) 

=D;-2 C"E.,f~ 1 (j- (j-m))tHw(u; m)) 

=mDi-2C~f~ 1 fHw(u; m)) 

=maD,-2w(u; m) 
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From (5 ·11) and (5 ·12), we have 

LEM MA (5 •13). Let 02:.k 3;p- 2, then 

TTT <T{<JD, (~~~10mkw(u; m)) lcr = i<JDi-2~~~~ mk+1wCu; m)) lcr. 

Since mP-1==1 for an integer m$0 mod p, we have by the iterations of C5·13) 

the following 

LEMMA (5 ·14). CT TT cr)P-1 {<1Di(~~~~wCu; m)} cr= {6Di-2(p-J)(~~~~w(u; m))} cr. 

THEO REM C5 •15). CT TT cr)P-1{Di(<1U X <JU X··· X <JU)} cr 

= {D,_z(p-1) (<Ju X <JU X··· X <JU} cr- { <1Di-2Cp-1) (u X U X··· X u)} cr. 

Proof It follows from (5·9) and (5·14) 

This proves C5 ·15). 

cr TT cr)P-l{Di(<JU x <JU x ... x <JU)} cr 

= (T, T cr)P-1 {<JD;('L,~:~w(u; m))} cr 

= {<JD,-z(p-1) C~!-:,~w(u; m))} o-

= {<JDH.(J,-1) (~~.!ow(u; m)} cr- {<1Di-2(p-1)W (u; 0)} cr 

= {D,-z(p-1) (,;u X <JU X··· X <JU)} cr- {<JD,_zCp-1) (u X U X··· X u)} 0" 

We shall now give a proof of (3 ·11). 

Let a E Hq(W, W'; Zp) be an element whose representative cocycle is u E Zq(W, 

W';Zp). Let p?;3, then it follows from (2·10), (5·6) and (5·15) by the definitions 

of (Ys and p. that 

p.P-1(Sls.p~(a)=I*-'(T, T O")P-1 I*(Sls.p~(a) 

= ( -1Y (t!) 2s-ql*- 1 (T, T <r)P-1 {D(q-2s)(p-1)C<JU X <JU X··· X <JU)} 0" 

= ( -1) 1 (t!) 2s-qi*- 1
( ( D(q-2s-2)(p-1) (<JU X <JU X · ·· X <JU)} cr 

- (rJD (q-2s-z)Cp-1)(U X u X··· X u)} ") 

= ( -1) 1 (t!Ys-q ( (D(q-2s-2)(p-1) ( Ç;u X qJU X · · · X cf;u)} cr 

- ( cf;Dcq-zs-zlCp-1) (u x u x··· x u)} cr) 

= C -1)1 (t!)2C(Sls+1Ç;~(a) _ .p~(Sls'1 (a)), 

where we put l=ts+tq(q-1)/2. However we know that (t!) 2=-1 if t rs even, 

and =1 if t is odd. Hence we have 

p.H(Sls(Jl'6 = cpi)(Sls,1_ (Sls+1cp~' 

which is (i) of (3·11). 

6. Regularity and alrnost regularity 

Consider the sequence 

CR1) H"(W, W'; Zp) iiwcw, W'UF; Zp) ~ flH"(W, W'UF; Zp). 

Then j9 pPi) = 0 is obvious from pp= 0, but the sequence is not necessarily exact. When 

the sequence (R1) is exact for p=<J and -r, we shall call that (W, W', t) is almost 
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regular in dimension r. Consider also the sequence 

(R2) H'(W, W' ;Zp) LH'(W, W'; Zp) ~H'(W, W';Zp). 

Then p*p*=O, but (R2) is not necessarily exact. When (R2) is exact for p=a and 

"' and in addition the inclusion homomorphism j* :H'(W, W'UF; Z) -->-H'(W, 

W'; Zp) is isomorphic into, we shall call that (W, W', t) is regular in dimension r. 

THEOREM (6·1). If (W, W',t) is regular in dimension r, then it is almost re­

gular in dimension r. 

Proof Consider the following commutative diagram 

H'(W, W'; Zp)___!!lH'(W, W'UF;Zp) ~PH'(W, W'UF;Zp) 

~ l"* l p* ~ J * Œp 

H'(W, W' ;Zp) _P~H'(W, W'UF;Zp) 

-------------- l "* p*--.......__ J 
H'(W, W' Zp). 

Assume that f3p(a)=O for aEH'(W, W'UF; Zp)· Then, since p*j*(a)=j*ap/)p(a) 

= 0, it follows by the assumption of the theorem that there is an element bE H' (W, 

W';Z) such that p*(b)=j*(a). Since p*=j*p'!J, we have j*(a-p6(b))=O. Since 

j* is isomorphic into by the assumption of the theorem, we have a=p;i (b). This 

proves (6·1). 

Let us denote by P N' (W, W' U F; ZP) the kernel of the homomorphism a P : PH' 

(W, W'UF;ZP) -->-H'(W, W'UF;Z). Then we have 

THEOREM (6·2) 11). If (W, W',t) is almost regular in dimension r, if holds that 

PN'+1 (W, W'UF;Zp)=Y/N'(W, W'UF;Zp)+Ori*H'(W, W';Zp) 1). 

Prooj. Consider the following diagram 

H'(W, W'UF;Zp)~ PH'(W, W' UF;Zp) ~i'Hr+1 (W, W'UF;Zp) 

lPr ~t i rr:r i* jor 
PH'(W, W'UF; Zp) ~ H'(W, W'; Zp) __,. H'(W'UF, W'; Zp) 

Let a=Yp(b)EPN'+1(W, W'UF;Zp), where bEPH'(W,W'UF;Zp). Then, since 

/3p(apb) =0, it follows by the assumption that there is an element cE H'(W,W' ;Zp) 

such that ap(b) =p6(c). Put d=b-rr:P(c), then it follows from (2·9) that 

ap(d) =ap(b) -aprr:p(c) =ap(b) -p'!)(c) =0, 

so that dE P N' (W, W' U F; Zp). On the other hand, it follows from (2 ·17) that 

a= Y P (b) =Yr (d+rr:r (c)) =Yp(d) +Y Prr:P (c) 

=Y r (d) -Opi*(c). 

This proves PN'+1 (W, W' U F; Zp) c Y/ N'(W, W' U F; Zp) +VIpÏ*H'(W, W'; Zp). 

11) See Theorem 1 in R. Thom (18.) 
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The inverse inclusion is obvious. This completes the proof of (6 · 2). 

THEOREM (6 ·3) 12l. If (W, W', t) is regular in dimension r, then it holds that 

i5JVr+1 (W, W' UF; Zp) =l/ Nr(W, W' UF; Zp) EB lJri*Hr(W, W'; Zp) 1 l. 

In addition Y r : r Nr (W, W' U F; Zp)--->- P Nr 1-1 (W, W' U F; Zp) is isomorphic into. 

Proof In virtue of (6·1) and (6·2), it is sufficient to prove that YrCa)+lJri*(b) 

=0 implies a=O, where aeNr(W, W'UF;Zp) and bEHr(W, W'; Zp). 

It follows from (2·17) that YrCa-Kr(b))=O. Renee there is an element cEHr 

(W, W'UF; Zp) such that a-JCr(b) =fir(c). Since ap(a) =0, it follows from (1·4) and 

(2·9) that -p;j (b) =p*(c). Thus we have 

p* (b+ J* (c)) = j*p6 (b) + p*j* (c) 

= j*(p6(b) +p6(c)) =0. 

Therefore it follows from the assumption that there is an element dEHr(W, W'; 

Zp) such that b+J*(c) = p*(d). Then a-Kr(p*(d)- j* (c)) =fi rCc). Since Kr/5*=0 

and Kr}*=fir, we obtain a=O, which is our purpose. This completes the proof of 

(6·3). 

THEOREM (6·4). If (W, W', t) is almost regular in dimension r, then we have 

r Hr(W, W'UF; Zp) = r Nr(W, W'UF; Zp) +~rrHr(W, W'; Z). 

Proof Consider the following commutative diagram 

Let a E r Hr (W, W' U F; Zp). Then, since fi pa p (a) = 0, it follows from the assumption 

that there is an element b EHrCW, W'; Zp) such that ap(a) =P6(b). Put c=a-~rr(b), 

then we have 

ap(c) =ap(a) -apKr(b) =ap(a) -piJ(b) =0. 

Therefore cE PJVr(W, W'UF;Zp). Since a=c+Kr(b), we have (6·4). 

CHAPTER II. COHOMOLOGY OF CYCLIC PRODUCTS 

7. Cartesian products and cyclic products 

Let K be a finite simplicial complex, and denote by X(p)(K) the P-fold cartesian 

product Kx Kx ···x K of K. Suppose that a locally simple ordering is given in K 

Then, as is weil known [3], X(p) (K) is simplicially decomposed as follows : the vertices 

of X(p)(K) are all the points a= (a1, a2,-··, ap), where aj are vertices of K; Different 

(n+1) vertices ai= Caf, a;,···, a~) (i=O, 1, 2,-··, n) of X(p)(K) form an n-dimensional 

· simplex if and only if ag, a),···, a/, are contained in a simplex of K and the re­

lations a~~ a}~ ·· · ~ a% (k = 1, 2,- ··, p) hold with respect to the or der < given in K 

12) See Theorem 2 in R. Thom [ 18 ]. 



Cohomology theory of a comp!ex 73 

Define now an order < among such vertices ai (i=O, 1,. .. , n) by a0 < a1 < ... <a". 

Then a locally simple ordering is introduced in X(pJ(K). In the following, (K) 

will be always understood as a simplicial complex with such an ordering. 

Let J:xcpJ(K)----->-xcpJ(K) be a map defined by 

(7 ·1) i Cx1, Xz,- ··,x p) = (xz, X3,- · ·, x1), x, E K. 

Then it is easily seen that t is a periodic transformation of period p, and satisfies 

the conditions a) and b) in § 1. Moreover t is order-preserving. Thus we may apply 

the results in Chapter I for W =xcpJ(K), W'=empty set, t=l. Obviously the fixed 

points set un der t is the diagonal SDcpl (K) = {(x, x,-·· ,x) 1 xE K}. The or bit spa ce 

0(xc1,J(K), i) is called usually the p-fold cyclic product of K [5, 11]. This corres­

ponds to W 1 in the theory in Chapter 1, and hence we see that it is a simplicial 

complex. In the following, this complex will be denoted by 3cp) (K). Denote also by 

be pl (K) the image of SDcpl (K) by the projection n: xc1,) (K) ----->- 3Cpl (K). n : SDcpl (K) 

----->- bcpl (K) is a homeomorphism. 

Applying the theory of Chapter 1 to the complex X(p) (K) with the transforma­

tion t defined by (7 ·1), we shall in the present chapter study the cohomology of 

3Cpl (K). He re p is an arbitrary prime number, but p shall remain fixed throughout 

the discussion of this chapter. Therefore we write briefly x(K), 3(K), ···for xcpJ(K), 

3Cpl (K) ,-· ·. 

Let d: K _____,. x(K) be the diagonal map (i.e. a map defined by d(x) =(x, x,···, x) 

for any xE K), and let d*: Ii' (x (K) ; G) ----->- Hr (K; G) be the homomorphism 

induced by d. Then, for any element a E Hr (K; G) and the unit class 1 E H° CK; Z), 

we have by the definition of eup product 

(7. 2) d*(axlx ···xl) =aulu···ul=a, 

where the cross and eup products are taken with respect to the natural multiplica­

tion G@ Z@ ···@ Z---->- G. Especially we see that d* is onto. Let d0 : K----->- SD(K) 

be the map defined by d, then d0 is a homeomorphism. Hence dl{: Hr(ill(K); G)-->­

Hr(K; G) is isomorphic onto. Since the commutativity holds in the diagram 

Hr(x(K); G) _J: Hr(CJJ(K) ;G) 

""' r/1/ d*~ /d~ 
Hr(K; G) 

the above consideration implies that i* is onto. Thus, by the exact sequence for 

(x(K), CJJ(K)), we have the following: 

THEO REM (7 • 3). The sequence 

0 _____,. Hr (x (K), §:! (K) ; G) L H' (x (K) ; G) ~ Hr (§:! (K) ; G) _____,. 0 

is exact ; moreover it holds thal d~i* = d* and d"(j : Hr (§:! (K) ; G) = Hr (K; G). 

Let G be a field, and let JJ* (K; G) be a (homogeneous) base for the vector 

space H* (K; G). Then the cross product b1 x b2 x · · · x bp (b; E JJ* (K; G)) is an element 
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of H*(x(K) ; G). It is well-known as the Künneth formula that we can take as a 

base for the vector space Hr(x(K); G) the following set: 

Br(.Q*(K; G)) = tb1Xb2 X ··· xbp 1 bj E .Q*(K; G), :?..:.:j=1 qj=r), 

where dim bj=qj. Denote by H 1r(g*(K; G)) a subset of Br(g*(K; G)) consisting 

of ail the 'diagonal' elements : 

B"(.Q*(K; G)) = {bxbx ··· xb 1 bE .Q*(K; G), pq= r), 

where dim b=q, and let 
B"(.Q*(K; G)) =Br(JJ*(K; G)) -B"r(JJ*(K; G)). 

Furthermore we shall denote by pr (JJ* (K; G)) and V 11r (JJ* (K; G)) the vector sub­

spaces spanned by B"(JJ*(K; G)) and B 11r(JJ*(K; G)) respectively. Then, since 

t*(b1 X b2 X··· X bp) = ( -1)q,(q,+ · · · +Qp) (bz X b3 X··· X b1) 

for the homomorphism l* : Hr (x (K) ; G) ----+ Hr (x (K) ; G) induced by f, it is obvious 

that B"(JJ*(K; G)) and B 11r(g*(K; G)) are l*-invariant subspaces. This, together 

with the fact p is prime, proves that the re is a set B( r (JJ* (K; G)) such that 

(i) any element of B(r(JJ*(K;G)) is written EW, where E=1 or -1 and wE 

B" (JJ* (K; G)), 

(ii) the set {f*j (w) 1 w E B{r(JJ*(K; G)), O~j~p-1) is a base for V"(JJ*(K; 

G)). 

Th us we can now prove by the same arguments as in the proof of (1 · 3) the 

following: 
THEO REM (7 · 4). Let G be a field, and let a EH'. (x (K) ; G) be an element such 

that p*a=O. Then there are two elements x, yEHr(x(K) ;G) such that a=p*x+y 

and y is a linear com.bination of diagonal elements for a base of H* (K; G). 

If r is not divisible by p, there is no diagonal element. Therefore we have 

CoRoLLARY (7 • 5). Let G be a field, and assume that r is not divisible by p. 

Then the sequence 

Hr(x(K); G) J!:...Hr(x(K); G) ~Hr(x(X); G) 

is exact. 

8. Proof of almost regularity 

W e shall in this section prove that (x (K), 0, f ) is almost regular in every 

dimension, where 0 denotes the empty set. We abbreviate (x(K), 0, t) as (x(K), t). 

From (7·3) and (7·5), we have immediately 

THEOREM (8·1). (x(K), t) is regular in dimension r which is not divisible by p. 

LEMMA (8 • 2). Let a E IJPq (x (K), SD (K) ; Zp) be an element such that fJ pa= 0 

and j*a is a linear combination of diagonal elements for a base of H* (K; Zp). Then 

we have a= O. 

Prooj. Let dim k=n. 

Case 1 : q = n. Consider the following commutative diagram 
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PJfP"cxCK), 2D(K); Zp) 

fJp/ * \ar 
HP" (x (K), 2D (K) ; Zp) _!!_,.HP" (x (K), 2D (K) ; Zp) 

j* l lj* \fJp 

HP" ex CK); Zp) 7 I-fP" ex CK) ; Zp) p J-fP" ex CK), 2D (K) ; Z 1,) 

Since /]p(a)=O, there is an element beHP"(x(K),CSJ(K) ;Zp) such that ap(b)=a. 

/Jr is onto, so that there isan element cEHP"(x(K),'JD(K) ;Zp) such that /Jr(c)=b. 

Thus we havea=ap(b)=a 15 fJr(c)=·p*(c). Let.Q*(K;Zp) be the base of H*(K;Zp) 

stated in the assumption of (8 · 2), and use the notations in § 7. Let j* (c) = c' +c11 , 

w he re c' E V' (Q* (K; Zp)) and c" E V 11 (Q* (K; Zp)). Then it follows that 

j*(a) = j*p*(c) = p*j*(c) 

= p* (c') + p* (c") = p* (c'), 

so that j* (a) E V' (.Q* (K; Zp)). However j* (a) E V'1 (Q* (K; Zp)) by the assumption. 

Since V'(.Q*(K;Zp))n V"(Q*(K;Zp))=O, we have j*(a)=O. Since j* is isomorpic 

into by (7 · 3), we con eude a= O. 

Case 2: q<n. Denote by Kq the q-skelton of K Let g: Kq--+ K be the inclu­

sion, and let G:x(Kq) --+x(K) be the map given by gxgX···Xg. Let Q*(K;Zp) 

be the baœ of H*(K; Zp) stated in the a~sumption of (8·2). Since g*: Hq(K; Zp) 

--+ Hq (Kq; Zp) is isomorphic into, the re is a base .Q* (Kq; Zp) of H* (Kq; Zp) which 

contains ail the elements g*(b) such that bE.Q*(K;Zp) and dim b=q. It is obvious 

that G*(V1 pq(Q*(K; Zp)) c V 1 pq(Q*(l(q; Zp)). We shall first prove that G*: V'pq(Q* 

(K; Zp))--+ V''pq(.Q*(Kq; Zp)) is isomorphic into. Let @1,Hq(K; Zp) denotes the 

P-fold tensor product of Hq (K; Zp), then we have the natural into-isomorphism ~: 

V 11 pq (Q* (K; Zp)) ____,. @ 1,Hq (K; Zp). We have also the similar into-isomorphism ~ 

for Kq. Consider the following diagram 

V'JPq(Q* (K; Zp)) L @pHq(K; Zp) 

le* l®pg* 

V''Pq(Q*(Kq ;Zp))l_,_ @plNKq; Zp), 

where @ p g* = g*@ g*@ · ·· @g*. Th en it is obvious that the commutativity holds 

in this diagram. Moreover, sin ce g* : Hq (K; Zp) --+ Hq (Kq; Zp) is isomorphic into, 

it follows that ® P g* is also isomorphic into. This shows that G* is isomorphic 

into. 

Consider next the commutative diagram 
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then the assumption j3p(a)=O implies that j3pG*(a)=G*j3p(a)=O. Since j*(a) E 

V"pq(Q*(K; Zp)) by the assumption, it holds j*G*(a) =G*j*(a) E V''pq(Q*(Kq; Zp)). 

Therefore we have G*(a)=O by the fact proved in case 1. Thus we have also G*j*(a) 

= j*G*(a) =O. Since j*(a) E V'lpq (Q* (K; Zp) ), we obtain j*a= 0 by the above-

mentioned fact. This means a= 0 by (7 · 3). Q. E. D. 

THEOREM (8·3)13 ). (x(K), t) is almost regu!ar in dimension r=pq divisible 

by p. 

Proof Consider the commutative diagram 

Hpq ex CK) ; Zp) __l")_t HPq ex CIO, st~ CK) ; Zp) ~ P HM ex CK), st~ CK) ; Zp) 

lp* / "" lap 
Hpq(x(K) ; Zp) /j* p*'\,HM(x(K), sti(K); Zp) 

"" / p*'\, Hpq (x(K); Zp) /j* 

Let aEHpq(x(K), sti(K); Zp) be an element such that j3p(a)=O. Then p*j*(a)= 

j*p*(a)=j*apj3p(a), so that there isan element x,yEHpq(x(K) ;Zp) such that j*(a) 

=p*(x)+y and y is a linear combination of diagonal elements for a base of H*(K; 

Zp), in virtue of (7·4). Therefore j*(a)=j*pHx)+y, and hence j*(a-p6(x))=y. 

Since ;Jp(a-p't,(x)) =f3p(a) -f3pP~(x) =0, it follows from (8·2) that a-pHx) =0. 

Therefore a=p6(x). Q. E. D. 

Summarizing (8 ·1) and (8 · 3), we have by (6 ·1) the following : 

THEO REM (8 · 4). (x (K), t) is al most regular in every dimension. 

9. The homomorphism r~ 

Let 

r~: Hq(K; Zp)--+ f'Hq+s(x(K), Sti(K); Zp) 

be the homomorphism defined by f'~d;5'-'. (See (2·20) as for the definition of f'f.) 

The purpose of this section is to prove 

THEO REM (9 ·1) 14). The hmnomorphism rf : Hq(K; Zp) -----+ p Hq+s(x(K), sti(K) ; 

Zp) is isomorphic into for 1 ~ s ~ CP -l)q. 

As is proved in§ 8, (x(K), t) is almost regular in every dimension. Therefore 

the following is obvions from (7 · 2). 

LEM MA (9 · 2). For any r, we have 

PN'+1 (x(K), sti(K); Zp) =1/ N'(x(K), :J)(K); Zp) +riH'(K; Zp). 

Let S" be an n-dimensional sphere. Then Hq(S"; Zp) =0 if q'"rO, n. Since Kp(l) 

13) See Theorem 3 in [18]. 
14) See Theorem 4 in (18]. 
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= 0 by the definition of Kp, it follows from (2 ·17) that fJpi* (1) = - T pK1, (1) =O. Th cre­

fore r~ H 0 (S"; Zp) =O. Th us, by iterations of (9 • 2), we obtain 

LEMMA (9. 3). p N"P(x(S"), ':J)(S") ;Zp) = r~cp-J)H"CS"; Zp). 

Consider the commutative diagrarn 

Since np is the maximal dimension, j3P and /3p are onto. Let e.ElJn(S";Zp) be 

a generator, thenH"P(x(S");Zp)=Zp isgenerated by e.xe.X···xe •. Since t*(e.x 

e. x · ·· xe.)= e. xe. x··· xe,, we have p*(e. xe. x ·· · x en)= O. Th us j*p~ = p* is trivial, 

so that it follows!rom (7·3) that apKp=PS is trivial. However, since f3p=Kpj* is 

onto, Kp is onto. Therefore a P is trivial, and hence j3 p is isomorphic into. Since j3 P 

is onto, j3 P is an isomorphism. Th us we have 

LEMMA (9·4). p H"P(x(S"), ':J)(S"); Zp) = p N''P(x(S"), ':J)(S"); Zp) =KpH"P(x(S"); 

Zp) = Zp, where Kp is an isomorphism. 

From (9 · 3) and (9 · 4), we have 

THEO REM (9 · 5). There is an integer mod p Xp,n ;t 0 such that 

xp (e, xe, x ... xe,.)= Xp,n r~(P-1) (e.). 

REMARK. We can assert easily that Xr,n mod p is independent of the choice of 

generators e. of H"(S"; Zp). For sorne n, we can determine Xr,n explicitely. (See 

(12·7).) 

Proof of (9 ·1). For this pur pose, it is sufficient to prove that r:cP-1J : Hq (K ; 

Zp)-o> P HN(x(K), ':J)(K) ; Z p) is isomorphic into. 

Let a E Hq(K; Zp) be an element such that r:cP-1J(a) =0. Our purpose is to 

prove a=O. 

Case 1: q=n, where n=dim K. In this case there is a map f: K-">S" such 

that !*Ce.)= a. Let F:x(K) -o> x(S") be the map given by F= fxfx ··· xf Since 

f*dt=dtF,* it follows from (9·5) by the naturality of Tp, fJP and Kp that 

r~cP-lJ (a)= r~cP-1l (f*e.) = F* r~cP-1l (e.) 

= Xr~nF*Kp(e, Xe, X··· X en) 

=Y;;~nKpF*(e.xe.x ···xe.) 

=X~~.Kp(axax ···x a). 

Therefore we have Kp (a x a x··· x a)= 0 by the assumption. Consider the commuta­

tive diagram 
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HP" (x (K), Si) (K) ; Zp) L HP" (x (K) ; Zp) ~HP" (stl (K) ; Zp) 

lfip /,. 
r HP"CxCK), stl(K); Zp) p 

Since lfP"(x(K); Zp) = HP"(K; Zp) =0, we see that j* is onto. Thus there is an ele­

ment bE HP"(x(K), stl(K); Zp) such that axa x··· x a= j*b. Then we have fir(b) 

=~<rj*(b)=Kr(axax···Xa)=O. Since thereisa base of H*(K;Zp) containing a, 

j* (b) is a diagonal element for such a base of H* (I(; Zp). Th us it follows from 

(8·2) that b=O, so that axa x··· X a= O. This means a= O. 

Case 2: q<n. Let g :Kq-------?>- K be the inclusion, and let G: x(Kq) -----0>-x(K) be 

the map given by gxgx ··· xg. Then we have by the assumption 

r~(P-1) (g*a) = G*r~(P-1) (a)= 0, 

and hence it follows from the fact proved in Case 1 that g*(a) =O. Since g*: 

Hq(K;Zp) -----O>-Hq(Kq;Zp) is isomorphic into, we have a=O. This completes the 

proof of (9 ·1). 

W e shall now define a homomorphism 

as follows: 

(9 ·6) 

Then it is immediate that 

(9·7) 

Obviously we have 

(9 ·8) 

The following is a translation of (9 ·1) for p= 11. 

(s>O) 

(a.:::;:o). 

(s>O). 

THEO REM (9 • 9). The homomorphism Es : Hq (I(; Zp) -~ Hq+s (3 CIO, b (K) ; Zp) 

is isomorphic into for 1 ~ s ~CP -1) q. 

10. Kernel of n* 

LEM MA (10 ·1). Let r be not divisible by p. Then 

fJ Nr' 1 (x(K), stl(K) ; Zp) =T/ Nr(x(K), TJ(K); Zp) EB r~ 1-F(K; Zp). 

Moreover Tp: r Nr(x(K), SD(K); Zp) -----0>- fJNr' 1 (x(K), stl(K); Zp) and ri are bath 

isomorphic into. 

Proof This is obvious from (8·1), (6·3) and (9·1). 

LEM MA (10 · 2). Let xE Hq (K; Zp), then 

~<p(xxxx ···xx) Er Npq(x(K), stl(K); Zp). 

Prao/. lt follows that 

j*ap~<p(xxxx ···xx)= j*p""Q(xxxx ···xx) 

= p*(xxxx ···xx) =0. 
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Since j* is isomorphic into, a pKr (x x x x··· x x)= O. This proves (19 • 2). 

LEM MA (10 • 3). Assume that 

r Npq(x(K), CSJ(K); Zp) =œL;f!;1 r~q-sHs(K; Zp) 15> 

holds for some q. Then the component in r~P-i)qHq(K; Zp) of Kr(xxxx ···xx) for 

the abovc direct decomposition is Xr,qr~P-l)q(x), where Xr,q is the integer mad P in 

(9. 5). 

Proof Let g: Kq _,. K and G: x(liq)--? x(K) be the maps in the proof of 

(9 ·1). Then, as is shown there, it follows that 

G*Kr(xxxx ···xx) =Kp(g*xxg*xx ··· xg*x) 

= Xr,qr~P-l)q (g*x). 

On the other hand, if we put Kr (x x x x··· x x) = "L;f!;1 r~q-s Yr,s with Yr,s E Hs (K ; 

z,,), then we have 

G*Kp(XX x X ... xx) =G*:L;~~-qlr'},q-1 CYr,s) 

= ~f~q1I'~q-s (g*yp,s) = r~CP-1lg* (yp,s)' 

since Hs(Kq; Zp) = 0 if s>q. Therefore we have Xr,qi'~cp-üg*(x) = I'~cp-1) g*CYr,,). 

Sin ce r~CP-1) and g* is isomorphic into, we conclude Yr,s = Xp,sX. 

W e are now in a position to prove 

THEOREM (10·4)16 ) 

PN'(x(K), CSJ(K) ;Zp) =œ~;:hr+P-1lfp]I'~-sHs(K; Zp) 17>. 
Note that each r~-s is isomorphic into by (9 ·1). Such a direct decomposition 

of P Nr (x(!{), CSJ (K) ; Zp) will be called canonicat. 

Proof Mathematical induction on r will be used. For r < 0, the both sides 

are obviously zero, and hence (10 • 4) holds for r <O. We shall now assume that 

(10 • 4) is valid for r ~ r0 , and prove (10 • 4) for r= ro+ 1. 

Case 1 : r0 is not divisible by p. 

By (10 ·1) and the hypothesis of induction, we have 

P Nro+1 (x(K), CSJ(K) ; Zp) = 1/ Nro(x(K), CSJ(K) ; Zp) Œ r']Hro(K; Zp) 

=Tp((œ"L;;:[~ro+P-ülpJI'~,-sHs(K; Zp) ED I'jH'o(K; Zp) 

= œ'L:~"o[~ro+P-lJ/pJr~,-sHHs(K; Zp) Œ I'j Hro (K; Zp) 

= œL:~~[Cro+PJip]I'~,-sHHS (K; Zp), 

smce [(ro+P)IP]= [(ro+P-1)/p] if r0 is not divisible by p. This proves (10·4) 

for r=ro+l. 

15) Let Aj (j=l,2, .. ·,r) be subgroups of an abelian group. Then we write A1+Az+ ... +Ar 

as z=j~1 A i• and A1 Œ Az Œ ... Œ Ar as œz=i~l A j 
16) See Theorem 5 in [181. 

19) Let r be a number, then we denote by [rJ the greatest integer;;;; r. 
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Case 2 : r0 is divisible by p. 
Let r 0 = pq. We must prove 

I) PNPq+1(xCK), 'r:J(K); Zp) = L::!z+l r~q-s+1H·CK; Zp). 

Il) The above decomposition is direct. 

Proof of I). It follows from (9 • 2) and the hypothesis of induction that 
ï>Npq+1(x(K), 'IJ(K); Zp) =T/ Npq(x(K), 'r:J(K) ; Zp) +P]Hpq(K; Zp) 

=TrCL:.::!:;1 qq_.H•(K; Zp)) +r';_Hpq(K; Zp) = L:.f!1 r~q-s+1H'(K; Zp). 

Th us the proof of 1) completes if we prove r'èP-llq+1Hq (K; Zp) C L;f!q+1r;q-s+1 

H•(K;Zp). For this purpose, we shall consider &p(xxxx···Xx) foranyxEHq(K; 

Zp). Then we have &r(xxxx ···xx) Er Npq(x(K), 'r:J(K); Zp) by (10·2). Let Yr,s 

E H•(K; Zp) (s=q, q+1, ··· ,pq-1) be elements such that ~~:rCxxxx ···xx)= L:,f~-q1 

r tq-s (Yr,s). Then we have rfp-1Jq (Yr,q) = Xr,qrfp-1Jq (x) by (10 • 3). Therefore Xr,q 

np-1)q(X) =&p(XXXX ... xx) -L:f!q~1r~q-s(Yp,s). Applying Tp to the both sides of this 

equation, we have 

Xr, qr(P-1)q+l (x)= Tpli:p(XX x x ... x x)-L::!;~1 r~q-Sl-1 (yp,s). 

Since Tr~~:r(xxxx ··· xx)= -iJri*(xxxx ··· xx)= -ilrd'r1d* (xxx x ··· xx)= -iJP 

d~-1 (xuxu ··· ux) by (2 ·17), (7 • 3) and the definition of eup product [15], we have 

(A) Xr,qrcP-1Jq+1 (x)=-2:.f!.q,1 r~q-s+1 (Yr,s), 
where we put Yr,pq=xuxu···ux. This proves qp-1Jq+1Hq(K; Zp) ci:,f'!_qHH•(K; 

Zp), and completes the proof of 1). 

Proof of Il). Assume that I:.:!q+1r~q-s+1 (as)= 0 with a. E H• (K; Zp). Then our 

pur pose is to prove r~q-s+1 (a.)= 0 for q+ 1 ~ s ~ pq. Since ri (apq) = ilrd~- 1 (apq) 

=ilri*(apqxlx ···xl)= -TrKr(apqXlx ···xl), it follows from the assumption that 

Tp {Kp(apq x 1 x ... x 1)-I:.f!;~1 r~q-s(a,)} =o. 
Therefore there is an element bpqEHpq(x(K), 'IJ(K) ;Zp) such that 

(B) ~~:p(apqxlx ··· xl)=,Bp(bpq)+I:.:!;~1qq-sCa.). 

Applying j*ar- to the both sides of (B), we have 

p*(apqXlx ···xl) =p*j*(bpq), 

since j*aï>Kr=P*, j*aï>,Bï>= j*p*=p*j*, ar-Tï>=O and aï>flri*= -aï>Tr~~:ï>=O. Thus it 

follows from (7 · 4) that there exist elements x, y E HM (x (K) ; Zp) such that 

(apq x 1 x··· x 1)-j*(bpq) = p*(x) +y, 

and such that y is a linear combination of diagonal elements for a base of H* (K; Zp). 

We have 
Kp(y) =Kp(apqXlX ···Xl) -Kpj*(bpq) -&pp*(x) 

=Kp(apqXlX ···Xl) -,Bp(bpq). 
(C) 

Hence it follows from (B) and (C) that 

(D) Kp(y) = ;::.:!;~1 nq-s(a.). 

Since y is a linear combination of diagonal elements, it follows from (10 • 3) by 

the hypothesis of induction that the component of ~~:r(Y) in r~P-1)q Hq(K; Zp) is 

Xr,qqP-l)q(y). Thus we see y=O from (D). This, together with (C), gives 
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Kp(apq x 1 x··· x 1) =flr(bpq). 

Thus it follows from (B) that 

~f!.;!1 r~q-s (a.) =o. 

By the hypothesis of induction, this implies that r~q-s (a.) =0 for q+1 ~ s ~ pq-1. 

Thus we have r~q-s+1 (a.)=O for q+1~ s ~pq-1, and hence also ri(apq)=O. This 

proves II). Thus the proof of (10·4) is complete. 

By (10·2), (10·3) and (10·4), we have 

THEOREM (10·5). Let xE Hq(K; Zp), then there exists a unique system of (p-1)q 

elements {yp,s(x)} (s=q, q+1,-··ftq-1) with Yr,s(X) EH•(K;Zp) such that 

Kp(XXXX ···XX)= 2::!!;1r~q-s(Yr,s(X)); 

it holds that Yr,q(x)=Xr,qX with Xr,q in (9·5). 

We have also 

THEO REM (10 • 6). Given xE Hq (K; Zp), there exists a unique system of (p -1)q 

elements {yp,s(x)} (s=q+1,q+2, ···,pq) with Yr,s(x) EH•(K; Zp) satisfving an 

equation 

2::~~qr~q-s+1 (Yr,s (x))= 0, 

where Yr,q(x) =Xr,qX. Moreover such Yr,s(x) coïncides with the one in (10·5), and 

Yr,pq(X) =XUXU···UX. 

Proof Apply Tr to the both sides of (10·5). Since Trs:r(xxxx ···xx)= -tlri* 

(xxx x ··· xx)= -n(xuxu···ux), we have l:::~!q r~q-s+1 (Yr,s(x)) =0. Next sup­

pose that there exist two systems {yp,s(x) }, CYr,.Cx)} satisfying the equation. Then 

we have ~f!,ql-1 r~q-Sl-1 (yp,s(X) -yp,s(X)) =0. Since [(Pq+1+P-1) IP]=q+1, this is 

the canonical decomposition of 0 E P NM+l (x (K), 'J) (K) ; Zp). Therefore it follows 

from (10·4) that Yr,sCx)-.Yr,s(X)=O for q+1 ~ 1 ~pq. This completes the proof of 

(10·6). 

Let us denote by N'CB(K), b(K); Zp) the kernel of the homomorphism n*: H' 

(3(K), b(K); Zp) ~H'(x(K), 'J)(K); Zp) induced by n. Obviously 1*: N'(.8(K), 

b(K) ;Zp) = "N'(x(K),'J)(K) ;Zp). Thus (10·4) for p=-r is rewritten as follows: 

THEO REM (10. 7). N' (,8(K)' b(K) ; Zp) = œl:::;:~(r+P-1)1P)Er-sH8 (K; Zp). 

As translations of (10·5) for p=a and (10·6) for p=-r, we have 

THEOREM (10·8). Let xE Hq(K; Zp), then there exists a unique system of (p-1)q 

elements {y",.(x)} (s=q, q+1, ···, pq-1) with y",,(x) EH•(K; Zp) such that 

cp~ (x X X X··· X x)= 2::f!;1 Epq-s(Y",s(X)) ; 

it holds that Y",q(X) =X",qX. 

THEOREM (10·9). Let xE Hq(K; Zp), then there exists a unique system of (p-1)q 

elements {YT,.(x)}(s=q+1,q+2, ··· ,pq) with yT,.EH•(K;Zp) satisfying an equation 
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11. Cohomology of the p-fold cyclic products 

We shall retain the use of the notations in§ 7. Especially recall the definitions 

of the sets Q*(K; Zp), B 1(Q*(K; Zp)) and of the vector subspaces V"(Q*(K; Zp)), 

V"(Q*(K;Zp))CH'(x(K); Zp); the set {t*j(w) 1 wEB('(Q*(K; Zp)),O ~j~p-1} 

is a base of V" (Q* (K; Zp)). 

THEO REM (11•1). 

H'(3(K), b(K); Zp) =N'(3(K), b(K); Zp) EB c/J6(V"(Q*(K; Zp)); 

the kernel of c/J6 : V" (Q* (K; Zp)) ~ H' C3 (K), b (K) ; Zp) is r-* V" (Q* (K; Zp)). 

Proof Let z E V"' (Q* (K; Zp)), then it follows from (10 · 2) that Ka- (z) E a-N' (x 

(K), :fJ(K) ;Zp). This implies I*-1Ka-(z) EN'(3(K),b(K) ;Zp). Renee c/J6(V'7'(Q* 

(K;Zp))CN'(3(K),b(K) ;Zp). Thus it follows from (6·4) for p=a that 

H'(3(K), b(K); Zp) =N'(3(K), b(K); Zp) +cp'/)( V"(Q*(K; Zp)). 

We shall next prove that this decomposition is direct. Assume that c+cp'/)(b) =0 for 

cEN'(3(K),b(K) ;Zp) and bE V"(Q*(K;Zp)), and consider the following com­

mutative diagram 

""H'(x(K), :fJ(K); Zp) a\.H'(x(K), 'if!(K); Zp) ~T H'(x(K), :fJ(K); Zp) 

(( Î I* "~ ja'!J ~" 
H'(3(K), b(K); Zp) <---;py- H'(x(K) ;Zp) -a~ H'(x(K); Zp) 

Since aTI*(c) =n*(c) =0, we have 

a*(b) = j*a'/)(b) = j*aTK"(b) = j*aTI*cp'/)(b) 

= -j*aTI*(c) =0. 

Since bE V"(Q*(K;Zp)), it follows from (7·4) that there is an element dE V"(Q* 

(K; Zp)) such that b=r-(d). Thus c+cp'/Jr-*(d) =0. Since ÇJ6r-*=l*-'Ka-r-*=0, we con­

elude c =O. This proves that the decompostion is direct. 

Put c=O in the above proof, then the argument shows that the kernel of cp6 is 

r-*V"(Q*(K; Zp)). This completes the proof of (11·1). 

Let G be a field, then we shall denote by R,(X, A; G) the rank of the group 

Hr (X, A ; G) (i. e. the dimension of the vector space Hr (X, A ; G)). The following 

can be obtained from (11·1) and (10 · 4) by simple calcula ti ons. 

THEOREM (11•2). R,(3(K), b(K); Zp) 

=~~=~cr+P-1)/P)Rs(K; Zp) + ~ {R,(x(K); Zp) -R,1p(K; Zp) }, 

where it is to be understood R,1p(K; Zp) =0 if ris not divisible by p. The union of 

the set {E,_s(b)l[(r+P-1)/P]~s~r-1, bEQ*(K;Zp), dimb=s} and the set 

{cp'/)(w) 1 w E B{r(Q*(K; Zp)) is a base for H'(3(K), b(K); Zp). 

W e shall next consider H' (3(K) ; Zp). Since E1 = o*l*_, dt it is obvious from 
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(9·1) that o*:Hr-1(b(K) ;Zp) ~Hr(3(K),b(K); Zp) is isomorphic into for any 

r> 1. Th us we have 

LEMMA (11· 3). The sequence 

a* .* 0-,_Hr-1(b(K); Zp) ~Hr(3(K), b(K); Zp)__!___> Hr(3(K); Zp) ~ 0 

is exact for r> 1. 

In virtue of this lemma, the following is obvious from (11· 2) and (2 ·13) 

THEOREM (11·4). Let r~ 1, then 

R,CiJ(K) ; Zp) = ~~=~cr+P-lJ!Pl R.(K; Zp) + ~ {Rr(x(K) ; Zp)- Rr1p(K; Zp) ). 

The union of the set {j*Er-s(b) 1 [(r+p-1) ljJ] ~ s ~ r-2, bE Q*(K; Zp), dim b=s) 

and the set {ÇJ*(w) 1 w E B{r(Q*(K; Zp))} is a base for HrCfJ(K); Zp). 

The following can be obtained from (1·11) by easy calculations. 

THEO REM (11· 5). Let G be a field of characteristic q, not a divisor of p. Then 

1 Rr(3(K) ; G) = p {R,(x(K); G) + (p-l)Rr;p(K; G)) 

=if P~3 or if P=2 and r=/=2 (mad 4), 

= }{Rr(x(K) ; G)-R1;zCK; G)} 

if P=2 and r=2 (mad 4), 

where it is to be understood that Rr;p(K;G)=O if ris not divisible by p. Moreover 

it holds that H*(3(K); G) =çfJ*H*(x(K); G). 

REMARK. (1) The relations (11·4) is known by Richardson-Smith [11]. 

(2) If we take as G the rational field, (11· 5) gives relations among the Betti 

numbers of 3(K), x(K) and K. 

We shall next study the reduced powers, the Bockstein homomorphism and 

the eup products in the groups H*(3(K), b(K) ; Zp) and H*CfJ(K); Zp). In virtue 

of (11· 3), the results on H*(Z(K); Zp) can be obtained at once from those on 

H*CfJ(K), b(K) ; Zp). Renee we will not write the former explicitely. 

THEOREM (11· 6). Let Xj E H*(K; Zp) for j= 1, 2, ···,p. 

I) JpçfJ'/;(X1XXzX ··· XXp) =ÇJ'/;Jp(X1XX2 X ··· XXp) -E1 (x1ux2 u···UXp). 

II) (i) ~·ÇJ'!;(x1XX2 X···Xxp) 

= çfJ'/;~s(X1 X Xz X··· X Xp) + ~~=l ( -1)j' 1Ezj(p-1)~s-j (Xl ux2 u ··· UXp), 

(ii) Sq•ÇJ'!; (xl X Xz) = ÇJ'!;Sq• Cx1 X Xz) + ~f=lEjSq•-j (xl uxz). 

Proof I) is obvious from (3 • 7). The proof of (i) of II) 1s as follows : It 

follows from (3·14) and (2·19) that 

~"1J'!;(X1XXzX ··· XXp) 

=~;=oC -1) j ,uj(P-lJÇJ'!;~s-j (xl X Xz X··· XX p) 

= ÇJ'!;~s (xl X Xz X · · · X X p) + ~f=l ( -1) j /lj(P-l)-l ,uÇJ'!;~s-j Cx1 X X2 X · · · X X p) 

=ÇJ'!;~•(xlXXzX ··· XXp) + ~f=l ( -1)j+l/lj(P-l)-1vo*n*- 1 i*~s-j(X1 Xx2 X ··· XXp) 
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= <P'//5' 5 (xl X Xz X··· X Xp) + ~i~1C -1)j+1Ezj(p-1)&s-j (xl uxzu ··· LJXp). 

The proof of (ii) in Il) is similar. 

THEO REM (11· 7). Let xE H* (K; Zp). 

1) (i) tlpEz<X+l(x) = -EzaH1(t1px), 

(ii) tlpEza>+z(x) =Ezdd3(x) +Ez,Hz(Jpx). 

Il) (i) &s EzaH1 (x)= ~J=O aCs-jEz(s-j)(p-1)+2a>+1(Slj (x), 

(ii) &s Eza+2 (x) = _'E}=O a Cs- jEz(s- j)(p-1)+2a+2(Slj (x), 

(iii) Sq5 Ea+1(x) = L:;~o aCs-jEOl,l+s-jSqj(x) (s, a ;:::;; 0), 

where "'Cr: is the binomial coefficient with the usual conventions. 

Proof of 1). Since tlpo*= -o*tlp, we have ApE1(x) = -Eltlp(x). Thus (i) follows 

from (3·8) and (9·8): 

t1pE2cH1(x) = tlpp.'x E1(x) =tl" JpE1(x) =-p."' E1tlp(x) =Ezo;+1t1p(x). 

(ii) is obtained from (9 · 8), (3 · 8) and above (i) : 

tlpEzaHz(x) = ApvEza>+1 (x)= p.Ezo;+1 (x)- vtlpEzao-f-1 (x) 

= Eza;+3(x) + Ezao+z(ApX). 

Proof of Il). We shall prove (i) by mathematical induction on s+a. If s+a=O 

and hence s =a= 0, it is obvious that the left and the right sides of (i) are both 

E1 (x). Therefore we have (i). Assume that (i) holds for any (s, a) such that 

s+a 2!. We shall now prove (i) for s+a=l+l. 

Case: a ;:::;; 1. Let s+a = l+ 1. Then it follows from (9 · 8) and (3 · 9) that 

&s Eza>+l (x)= &s p.Ezo;-1 (x)= p.(Sls Eza-1 (x)+ p.P(Sls-1 Ezc<-1 (x). 

Applying the hypothesis of induction for &s Eza-1 (x) and &s-1 Eza-1 (x), we have 

&s Eza;+1 (x) 

= P.~}~o oHCs-j Er:-z!Jj (x)+ fl.P~j=:à c<-1Cs-1-j Er:-zp!Jj (x) 

= ~}~o o;-1Cs-; Ez(s-j)Ep.(Jj(x) + ~j;;:}iao-1Cs-j-1Ep.&j (x) 

= _'E:f;;;ôC"'-1C-j+ c<-1Cs-j-1) E 1:&j (x)+ c<-1CoEzao+1(Js (x) 

= _'E}~o aoC-jEf'.(Jj (x), 

where we put fi=2(s-j)(p-1)+2a+l. 

Case: a=O (s=l+l). In this case, it is obvious that 

L:i~oc<Cs-jEzcs-j)(p-1)+2o;+1(Jj (x)= E1&1+1 (x). 

On the other hand, since E1 = o*n*-• d6-', it follows from the properties (I) and 

(Il) of rss that 

&sEzoH-1(x) =&1+1E1(x) =E1!J1+1(x). 

Thus we have (i) for s+a=l+l, and complete the proof of (i). (ii) follows at 

once from (9 · 8), (3 • 9) and above (i), and the proof of (iii) is similar as in 1). 

THEOREM (11·8). Let X, y, Xa, Yr:EH*(K; Zp). 

(i) cf>6(x1XXzX ··· XXp) ucp'6(y1XYzX ··· Xyp) 

= _'Ej~1 ( -l)<jcp'6( (xl uy j) X (XzUY j+1) X··· X (x puy H)), 

where Ej = (1 +.'E{~1 dim Yœ) CL:~~1 dim y"') +L:~;;;5L:~~ao+z(dim YaHj) (dim xi'). 
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(ii) Es(x)uqJ6Cx1XX2X···Xxp)=O for s;;;:l. 

(iii) Es(x) uEtCY) =0 for s, t;::;: 1. 

Proof. (i) follows at once (3 · 3). To prove (ii), observe first that 

Et(X) ucp'fj(xtXX2X ... XXp) 

= (J*n*- 1d'fj- 1 (X) ucp'fj(X1XX2X ··· XXp) 

= j*o*n*-'dr'\x) ucp'fj(x1 xx2 x ... xxp) =0. 

Then (ii) is obvious from (3 · 6). Sin ce 
E1 (x) uEtCY) = o*n*- 1d'fj- 1 (x) u 0*n*- 1d'fj- 1 (y) 

= j*(J*n*- 1d'fj- 1 (x) u(J*n*- 1d'fj- 1 (y) =0, 

(iii) follows from (3 • 6). This completes the proof of (11· 8). 

12. Reduction formula--Axioms for the reduced powers 

85 

We shall first study relationships Y.,-,s(x) and Yr,sC,:Y) stated in (10•5) or (10·6). 

Let dim x=q. 

THEOREM (12·1). (i) Let P;::;: 3, then we have Y.,-,s(X) =Yr,sCx) if pq-s is 

even, and = 0 if pq- s is odd. 

(ii) Let P=2, then Y.,-,s(X) =Yr,sCx) for any s. 

Proof. Apply '1/J',. to the both sides of (10·5) for p=r, and recall (2·9) and 

(2·21). Then we have 

Ka-(XXXX ... XX)= ~11 r;q-s(Yr,s(X)) (p;::;: 3), 

K.,-(xxx) = ~;:~1 r;q-sCYr,sCx)) (p = 2), 

where 2::'1 stands for summation over the in te gers s such that q ~ s ~ pq -1 and 

pq-s are even. From these and (10·5) for p=a, we obtain (12·1). 

CüROLLARY (12•2). Xa-,q'==Xr,q, Y.,-,q+t(X) =0 (p;::;: 3). 

We shall write briefty Xq=Xr,q in the following. 

THEOREM (12·3). If P;::;: 3 and pq-s is odd, we have Yr,s(X) =ilpYa-,s-1 (x). 

Proof. Consider the elements ilpcp'/;(xxxx .. ·xx) and cp~&p(xxxx· .. Xx). It 

follows from (10 · 8), (12 ·1), (11· 7) and (11·1) that 

&cp'/; (x X X X ... X x)= Llp(~f~q1 Epq-sY,-,s(X)) 

= 2:;11 J pEpq-s Y rr,s(X) = ~!! Epq-s+1 Y,-,s(X) +~Il Epq-sLipy a-,s(X)), 

cp'/;Lip(X X X X ... X X)= cp'/;(~1:6 fj*(LipXX XX ... X x)) 

=Pcp'/;(ilpXXXX ... Xx) =0, 

where 2::" stands for summation over the in te gers s such that q ~ s ~ pq -1 and 
pq- s are even. 

On the other hand, it follows from (11· 6), (10 · 9) and the definition of E1 that 

cp'/;&p(xxxx ... xx) -LIA)'S(xxxx ... xx) 

=E1(xuxu ... ux) =-~f~q1Epq-s+1 (Yr,s(X) ). 

Thus we obtain 

2:: 11 Epq-s+1 Y rr,s (x)+~!! Epq-s(Lip Y .,-,s(X)) = ~f!;1 Epq-s+1 (Yr,s(X)), 

and hence by (12·1) 
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0= ~' Epq-s+1(Yr,s(X))-~Il Epq-s(fipYa-,s(X)) 

= ~'! Epq-s(Yr,s+1 (X)- /lp Ya-,s(X)), 

where .:E' stands for summation over the in te gers s such that q 2 s 2 pq -1 and 

pq-s are odd. Since [(Pq+1+P-1)/P]=q+1, this is the canonical decomposition 

of OENpq+1(3(K), b(K); Zp). Therefore, by (10·7), we have Yr,s+1(x) =fipYa-,sCx) 

if pq-s is even. This completes the proof of (12·3). 

We shall next study relationships between Yr,sCx) and the cohomology opera­

tions. 

LEMMA (12 • 4). 

(i) Eq(p-1l+2(x)=L.;o/!;01(-1)qf2+i+1E2iCP-1l+2ryq/2-i(x), if P~3 and even q. 

(ii) Eq(p-1l+P+1(x) =.:E]~ü1l 12 ( -1)Cq+lJ/2+i+1E2JCP-1l+zc?cq+lJ/2-i(x), if P ~ 3 and odd q. 

(iii) Eq+1(x) =L:.;)::6EMSqH(x), if P=2. 

Prooj. Put x=xxlX···Xl. Then it follows from (3·10), (3·11), (2·19) and 

the property (I) of rys that 

p.ryscp'!; (x)= ~j=O( -1)i p.iCP-1JryHflcp6(x) 

= ~J=O ( _ 1) i p.iCP-1 l p.cp'fJrys-i (x)= .:E:i~o ( -1) i+1p.iCP-1Jpo*n*-' i*c?s-i (x) 

= ~}=0( -1) i+lp.i(P-lJpo*n*-' d'!;-'rys-j (x)= L.;j=O( -1) i+l Ezj(p-1l+2rys-j (x). 

It follows from the property (V) of rys and (3 · 5) that 

p.ryqfzcp'!; (x)= p.= (cp'/; (x) ucp'(; (x) u ... ucpt (x))= 0 (q: even), 

p.ryCH1JizcjJ6 (x)= o (q: odd). 

Thus we have 

0 = ~}~0 ( -1)i ' 1 EziCp-ll+2ryq/z-i (x) 

0 = L:.;]~i;il 12 C -1) i+l EziCP-ll+zrycq+lJ/2-i (x) 

These are (i) and (ii). The proof of (iii) is similar. 

LEMMA (12 · 5). (i) Eq+1 (x)= ~~~q+1E2q-s+1 (y a-,s(x)), 

(q: even), 

(q: odd). 

CP=2), 

(ii) Eq(p-1l+2(x) = -Xq-1 (L,;~'Lq+1Epq-s+z(Y,.,s(x)), 

(iii) Eq(p-ll+P+l (x)= -X;1L.;~'!oq+1EPq-s+P+1 (y a-,s(x)). 

Prooj. These are obvious from (10 · 6) and (ii) of (12 ·1). 

THEO REM (12. 6). 

Q.E.D. 

(i) Let P ~ 3, then y,.,s(x) = ( -1)ixqryj(x) if s=q+2j(p-1), and=O otherwise; 

(ii) Let P=2, then Ya-,s(X) =Sqs-q(x). 

Proof of (i). Case : q is even. It follows from (i) of (12 · 4) and (ii) of (12 · 5) 

that 

~o/~01 ( -1)qlz+i+l Ezj(p-1l+2ryqlz-i (x) +X;1.:Ef!q+1Epq-s+2 (y a-,s(X)) =O. 

Since [(Pq+2+P-1)!P]=q+1, the left hand of this equation is the canonical 

decompositionof OENpq'-2 (3(K),b(K);Zp). Therefore it follows from (10·7) that 

( -l)qf2+j+1(?qlz-i (x) +X;;-1 y a-,q+(p-t)(q-2j) (x)= 0, 

and y,.,s(x) =0 if s-q $ 0 mod 2(P-1). This is (i) for even q. 

Case: q is odd. Since Yrr,q+l(x) =0 from (12·2), it follows from (ii) of (12·4) 

and (iii) of (12 · 5) that 
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Since [(pq+P+1+tr-1)/P]=q+2, the left hand of this equation is the canonical 

decomposition of 0 E Npq+P+1CS(K), b(K); Zp). Therefore we have (i) for odd q, by 

(10·7). 

Proof of (ii). From (iii) of (12 • 4) and (i) of (12 • 5), it follows that 

2.::; ):~Ei+l Sqq-j (x)- :E;.!.q+1E2q-s+1 (y,.,.(x)) =O. 

The left hand of this equation is the canonical decomposition of 

b(K); Z2), since [(2q+1+1)/2]=q+l. By (10·7) this gives (ii). 

CoROLLARY (12 • 7). Xq = ( -1)qf2 if q is even. 

From (12 ·1), (12 • 3) and (12 • 6), we have 

0 E N 2q+1 C'i3(K), 

Q.E.D. 

CoROLLARY (12·8). (i) Let p 2:; 3, then YT,.(x) = ( -1)iXq&i(x) if s=q+2j(p 

-1), =(-l)iXqdp&i(x) if s=q+2j(p-1)+1, and =0 otherwise. (ii) Let P=2, then 
YT,s(X) =Sq•-q(x). 

From (12 • 6) and (10 • 8), we have 

THEO REM (12 • 9) (reduction formula). Let xE Hq (K ; Zp), then 

(i) cp 'tl( x x x x··· xx)= Xq"i:JJ;;.i<qJ2( -l)i Ecp-1)(q-2il&i (x), (p ;;;:; 3), 

(ii) cp~(xxx) = :E)~Eq-iSqi(x), (P=2). 

From (12·8) and (10·9), we have 

THEO REM (12 ·10) (reduction formula). Let xE Hq (K; Zp), then 

(i) Ecp-1)q+1(x) = "i:JJ<r~qJ2( -1)i+1Ecp-1)(q-2il+1&i (x) 

+L;o;;;i<qJ2( -1)i+1Ecp-1)(q-2j)dp&i(x), (p;;;::; 3), 

(ii) Eq+l(x) =L;i.!.1Eq-j+1Sqi(x), (P=2). 

A characterization of the reduced p-th power. 

We shall now prove that the reduced P-th power is characterized by its pro­

perties (1)- (V) stated in§ 3. 

THEO REM (12 ·11). Suppose that an operation 

p•: Hq(X, A; Zp) ---+ Hq+2scP-1l(X, A; Zp) 

is given for any simplicial pair (X, A) and for any integers s and q, and that the 
properties (1)-(V) replaced &• by p• are satisjied. Then we have P•=&•. 

Proof If A is not empty, we may consider a space K obtained from X by 

contracting A to a vertex v0 of A. Then K is a finite cell complex which has v0 as 

a vertex, so that K can be simplicially decomposed such that v0 is a vertex. Let l;: 

(X, A) ~ (K, v0 ) be the contraction. Then l; maps X- A onto K- v0 homeomorphi­

cally, and hence we have by the excision property that 

l;*: H'(K, v0 ; Zp) = H'(X, A; Zp) for any r. 

Let j: K ~ (K, v0) be the inclusion, then it is obvious that 

j* : H' (K, v0 ; Zp) = (K ; Zp) for r ;;;::; 1. 

Thus we have 
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j*i;*_, : Hr (X, A ; Zp) = Hr (K; Zp) for r ~ 1. 

Furthermore if A is not empty then H 0 (X, A; Zp) =0.18l Therefore, in virtue of the 

property (I) of (Sls and ps, it is sufficient to prove ps = (Sls on the absolu te cohomology 

groups. However, since the properties of the reduced power used in the proof of 

(12 · 6) are only (l)- (V), we have also (12 · 6) replaced (Sls by ps. This shows that 

ps (x)= (Sls (x) for any complex K and any element xE Hq (K; Zp). Q. E. D. 

By the same method, it can be proved that the squaring operation Sqs is character­

ized by the properties (I)- (V) .19 l For a characterization of the squaring opera­

tion, see also J-P. Serre [12]. 

REMARK. 1. We do not assume the linearity of the operation ps_ However, 

since it is easily seen that y,.,s(x) in (10·8) is linear with respect to x, it follows 

from (12·6) that ps is a homomorphism. 

REMARK. 2. Since the reduced power and squaring operation are not used in 

the proof of (10 · 8) or (10 · 9), it follows from (12 · 6) or (12 · 8) that we may adopt 

the unique solution {Yr,sCx)} of the equation of variable x in (10·8) or (10·9) as a 

definition of the reduced power and the squaring operation. 

13. Cyclic products of special complexes 

The cohomology of the P-fold cyclic product of an n-sphere S" is especially 

interest. In this section we shall first record the results for this special case. Sorne 

of these results are obtained by S. D. Liao [5], by using of the different methods 

from ours. Next, we shall determine the integral cohomology groups20l of the 

p-fold cyclic products of S" and Y"+1 (pm), where Y"+1 (pm) denotes a complex 

obtained by attaching an (n+ 1) -cell en+1 to S" by a map of degree pm. 
Let en be a generator of H"(S"; Zp), and write 

as= j* Es-nCen) E Hs(3(Sn) ; Zp) 

for n+2 ~ s ~np. Let 1 ~ q;:::; p, and {a1,o: 2, ···, aq) a set of q different integers 

mod p. Then we shall write 

gnqCa1,a2, ···, aq) =<f>*Cx1XX2X ··· xx1,) E H"q(3(S"); Zp), 

where Xj=en if j ="' a1,a2, ···, Œq mod p, and= 1 otherwise. Then (11·4) and (12·9) 

yield the following 

THEO REM (13 ·1). as and gnq Ca1, a2, · ·· , aq) are non-zero elements of H* (3(5") ; 

Zp); gnq(a1, a 2, ···, aq) = ±gnq(fJ1,fJ2, ··· ,fiq) if and only if there is an integer k suclz 

18) Without loss of generality, we may assume that X and A are connected. 

19) Thom [18] does not assume the property (I) in the characterization of squaring operation. 
However it seems to me that the property (I) is used in the Thom's proof, so that (I) is 
needed in the characterization. 

20) We do not know the integral cohomology groups of .8(K) for any complex K and any prime 
number p. For P=2, see [17]. Recently T. Yoshioka obtained the results for P=3, 5 and 7 
by making use of the same method as in [17]. 
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that {a 1+!?,a 2 +k,···,aq+k}={f31,f:Jz,···,f3q}; there is pCqlp different g,q(a1,az,···, 

aq) for a given q; H*(3(S"); Zp) is generated by the elements 1, a, (n-+-2 ~ s ~np) 

and g,q(a 1, a 2, ···, aq) for 1 ~ q~p-1 and every set {a1, az, ···, aq}; g,q(l, 2, ···, p) = 

Xnanp (X,$. 0 mod p). 

The following re la ti ons are obtained from (Il· 6) and (ll· 7). 

THEOREM (13·2). (i) L1pgnq(a1,az, ···, aq) =0; Llpanl-2aH1 =0, Apan-1-zœ-1-z=an"ZaH-3· 

(ii) ~'gn(1) = ( -1Y' 1an+2s(p-1) ifs =lto 0, ~'gnq (a1, Œz, ... , Œq) = 0 if q > 1 and s =lto 0; 

(iii) Sq'g,(1) = an+s (s ~2), Sq'an+œ-H =aleS an+œ+s+1· 

The structure of cohomology ring H*(:S(S") ; Z1,) is also determined easily by (II· 8). 

For example we have 

THEOREM (13·3). Let P~3, then g,(l)ug,(1)=2:z.=i,~;1) 12 g2,(1,k) ifn is even, 

and =0 ifn is odd. Let P=2, then gn(l)ug,(l)=azn· 

Denote by f3 rC Y) the Betti number of a complex Y. Then, by (11· 5) we have 

TI-IEOREM (13·4). (i) Letp~3,(:J,(:S(S"))=pCq/pforr=nq (1~q<p);=1 

for r=nP and O;and =0 for any other r. (ii) Let P=2. f3rC:SCS"))=1 for r=2n 

(n: even), n and 0; and = 0 for any other r. 

Let A be an abelian group, and q a prime number. Then we shall denote by 

C(A, q) the q-primary component of A, and by C(A, =) the free component of A. 

Let us denote by ]{A, r} the direct sum of r groups each of which is isomorphic 

with A. Then we have 

TI-IEOREM (13·5). (i) C(H'(3(S"); Z),q)=O for any sand q=ltop,oo. (ii) 

C(H'C:SCS"); Z), oo) ~zif s = 0 and pn with (p-1)n =even, ~j{Z, pCq/P} if s=nq 

with 1 ~ q ~ p- 1, and= 0 for any other s. (iii) C(H'C:SCS"); Z), p) ~zP ifs- n 

is odd and 3 ~s-n ~CP-1)n, and= 0 for any other s. 

Proof Consider the exact sequence 

"H'-1 CxCS"); Z) ~ "-'H' ex CS") ; Z) _!!__T_> H'CxCS") ; Z). 

Then H' (x(S") ; Z) is free abelian, and it follows from Cl· 7) that the image of T" 

consists of elements of or der p. Th us ( i ) is obvious. (ii) and (iii) follows from 

(13 ·1) and (13 · 4), by the universal coefficient theo rem [3]. This completes the proof. 

Let e,~ E H"(S"; Z) be a generator, and consider the homomorphism 

Et"', 1 = f-1."' o*r-*-'da*_,: I-i"(S"; Z) -> J-!"+2"' 1 (3(5"), b (S") ; Z), 

~*: H"q(x(S"); Z)-------> H"qC:SCS"); Z). 

(See § 2.) Then the following is obvious from (13 ·1) and (13 · 5). 

Tr-rEOREM (13·6). j*E~~+1 (e'};) is a generator of C(H"' 2"' 1 (3(S"); Z),p) for 

1 ~a~ (pn-n-1)/2; C(H"qC:SCS"); Z), oo) = ~*H"q(x(S"); Z). 

In order to state the integral cohomology groups of the P-fold cyclic product 

of Y"+1 (P"'), we shall first introduce the functions ~,(r), 1], (r) and p, (r) defined 

for each r and each integer n. These function are defined as follows : 
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( i) t;.(r) = 1 if r-np is odd and 1 ~ r-np ~ p-1, 

= 0 otherwise. 

(ii) 'TJ.(r)=(-1)'-•P(1-p)jp-t;.(r) if 1~r-np~p. 

(iii) 

= 0 otherwise. 

p..(r) = 1 

=0 
if r-n is odd and n+3 ~ r ~ pn, 

otherwise. 

THEO REM (13 · 7). The r-dimensional integral cohomology group of 3 ( yn+i (pm)) 

(r "1= 0) is isomorphic with 

] {Zpm+1, t;.(r)} ffi] {Zpm, 'l].(r) + R' /P) ffi] {Zp, p..(r) + Pn+1 (r)} 

zf (p -1) n is even, and z"s isomorphic with 

]{Zpm, R' jp-t;.(r) -'l].(r)} ffi] {Zp, p..(r) + ttn<-1 (r)} 

if (p -1) n is odd, where R' denotes the rank of the r-dimensional integral cohomology 

group of x(Y"+1 (pm)). 

We prove this theorem by making use of the method of Nakamura [7], which 
will be explained in Iater Appendix. For this purpose, calculate the number 1R' 
=tR'(3(Y"+1(pm)); Zp) defined there. Then, in virtue of (16·4) in Appendix, the 
theorem (13·7) follows by easy calculations. As for the number 1R', we have the 
following results. 

LEMMA (13•8). Let r "1= O. We have 

( i) 1R' = 2R' = ··· = m-1R' 

1 
=p{R,(x(K); Zp)+(P-1)R,1p(K; Zp)) if p ~ 3, 

if p = 2. 

(ii) If p~3, mR'=1 for np~r~ (n+1)p-2; ifP=2 and n zs even, mR' 

=1 for r= Zn and 2n+l. Otherwise mR' =O. 
(iii) m+1R' = m+2R' = ··· = ooR' = O. 

This Iemma can be proved by making use of the resQlts in § 11 and § 12 and 
of the theorem (16 · 5) in Appendix. The verification needs sorne cumbersome calcu­
Iations. W e shall omit to denote it here. 

CHAPTER III. COHOMOLOGY OF SYMMETRIC 

PRODUCTS OF SPHERES 

14. Cohomology mod 2 of S" * S" * S" 

Let K be a space, and consider a space obtained by identifying any two points 
(x1, x2, ···, Xp), CY1, y2, ···, yp) of X(p)(K) into a single point whenever y,= x1 c;) for 
sorne permutation T of letters 1, 2, · · ·, p. Such a space is called usually the p-fold 

symmetric product of K. W e shall denote this spa ce by ®cp) (K) or K * K * · · · * K. 
In this chapter, we shall determine the cohomology of the 3-fold symmetric 

product of an n-sphere S". Since no confusion arise, we shaH abbreviate xc3)(S•), 

3c8)(S"), ®c3)(S") ···as x, 3, 10 ··· respectively. 
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Let 

be transformations given by 

f Cx1, Xz, X a) = (xz, X a, x1), 9 Cx1, Xz, X a) = (xz, X1, X a) 

(x; E S") respectively. Then f (resp. 9) is a periodic transformation of period 3 (resp. 

2). The orbit space O(x, t) is the 3-fold cyclic product 3. Since 

(14·1) Hl= 5f2, f25 = st, 
the transformation 9 induces a transformation ~: 3--?3 such that the commutativity 

n s = ~ n holds, where n: x--? 3 is the projection. Then ~ is a periodic transfor­

mation on 3 with period 2. Suppose that 3 is simplicially decomposed and is locally 

ordered as in § 7. Then it is easily seen that ~ is a transformation satisfying the 

conditions a) and b) in § 1. Thus we may apply the results in Chapter I with 

P = 2, W = 3, W' = 0 and t = ~-

Denote by F(t) the fixed points set under a transformation t. Then we have 

F(t) ={(x, x, x) 1 xE S"), F(9) ={(x, x, y) 1 x,yE S"), 

F(9t) = {x, y, x) 1 x, y ES"}, F(st2) = {(y, x, x) 1 x, y ES"}. 

Obviously it holds for i=O, 1,2 that F(t)='iDcaJ(S") cF(9ji), F(st;) nF(stj)=F(t) 

if i ""'j, and t: F(st;)-7F(sti+1) is a homeomorphism. Let iJ=F(s) UF(st) U7J(st2), 

then 75 is a !-invariant subcomplex, which contains F(t), of x. Furthermore it is 

easily seen that ~ = 0(75, t) is the fixed points set under the map ~- Let h: '{j--7 

S" x S" be a map defined by 

h(x, x, y)= (x, y) 

h(x,y,x)=(x,y) 

h(y, x, x)= (x. y) 

for (x, x, y) E F(s), 

for (x, y, x) E F(st), 

for (y, x, x) E F(sf2). 

Then h is continuous. Since ht = h and h 12 = h, h in duces a map Îi : ~ -~S" x S" 

such that Îtn= h. Then h is obviously homeomorphic onto. Th us we have proved 

LEMMA (14 · 2). The jixed points set und er ~ : 3--? 3 is the orbit space ~ over 

F(fJ) U F(st) U F(st2) relative ta t, The map h is a homeomorphism of ~ onto S" x S". 

It is obvious that the orbit space 0(3, ~) is the symmetric product 'êJ=S"*S"* 

S". Let us denote by ii:: 3--? 'ê5 the projection, and by t the image of ff by ii:. 

We shall denote by r$o, v, 1-t ·•• the homomorphisms cp0, v, p. ··· for the complex 

3 with the transformation ~-

By (13 ·1) we have 

(14. 3) 
Hr(3; Zz) = Zz 

=0 

and it follows from (14 • 2) that 

Hr (:§"; Zz) = Zz 

for r=jn(j=O, 1, 2, 3) 

for any other r ; 

for r=O, 2n, 

(14. 4) = Zz EB Zz for r=n, 

= 0 for any other r. 
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LEMMA (14 • 5). The inclusion homomorphism i* : Hr (3; Z2) ~'> Hr ffi; Zz) zs 

isomorphic into for r=n, and is trivial for r=2n. 

Proof. Case 1:r=n. It is sufficient to prove that i*;HrCfi;Zz) ----">HrC3;Zz) 

is onto for the homology groups. Let sn be an n-cycle of S" representing the 

generator of H,(S";Z2), and letf:S"----">x be a map defined by f(x)=(x, x0 , x0 ), 

where x0 ES" is a base point. Then it is obvious that I-1,(3; Z2) is generated by a 

class containing the singular cycle (s,, nf). This is also a cycle in [ since /(S") 

c \Y. Thus i* is onto. 

Case 2:r=2n. It is sufficient to prove that i*:Hz,Cfi;Zz) ----">Hz,(3;Zz) is tri­

vial. Let Czn be a Zn-cycle of S" X S" representing the genera tor of H 2" (S" x S"; Z2 ). 

Let g1, gz:S"xS"----">x be maps defined by g1(x,y)=(x, x0,y) and g2 (x,y)=(x0,y, 

x), and let h':S"xS"----">'{J be a map defined by h'(x,y)=(x,x,y). Then, for the 

singular cycles (ez,, g1), (ez,, gz) and (ezn, h'), we have a relation 

(ez,, h') - (ezn, g1) + (ez,, gz) mod 2 

in x, where - denotes to be homologous. Therefore we have 

(e2H, nh') - 2(ez,, ng1) == 0 mod 2 

in 3, because of ng1 = ng2• However it is obvious from (14 · 2) that H 2,(fj; Z2) 1s 

generated by the class containing the singular cycle (e2,, nh'). This shows that i* 

is trivial. Q.E.D. 
Consider the following diagram : 

(14. 6) 

where t;r=fi:*, 1Jr=~t and Sr-1=j*v. Then the sequence --·1Jr-1, Sr-1, t;" 1Jn Sr--· 

is exact and t;"f.j'; 'lJr=a*, as is stated in (2·22). Note moreover that ... IJ/--v 

ir*, i:, a~ --· is the exact sequence for the pair (®, f). Using this diagram, we 

shall determine the cohomology groups Hr(S" * S" * S"; Z2). 

LEMMA (14·7). (i) Hr(®; Z2)~Zzforr=O, and =0 for 1~r~n-l. (ii) 
Hr(®, f; Zz) =0 for O~r~n-1. 

Proof. Since Hr(3; Zz) =H'CL Z2) =0 for 0 <r<n, (14·7) is obtained easily by 
the considera ti on of (14 · 6). 

LEMMA (14 · 8). H"(®; Z2) ~ Z2, IP'(®, L Z2) =O. Moreover fi:*: H"(®; Z2) 

~I-1"(3; Zz). 
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Proof. Since H"-1 (<S, f; Z2) = 0 by (14 · 'l), ~~~=ii:* is isornorphic into. Consider 

the diagrarn 

then the right i: is isomorphic into from (14 · 5), and both ii:* are isomorphic into. 

Hence the left i; is isornorphic into. Consider (14·6) for r=n, then it follows 

that j; is trivial. While, since Hn+\f; Z2) =0, j; is isomorphic into. Therefore 

H"(<S, f; Z2) =0. This shows that ~~~ is onto. Thus ~" is an isornorphism. Since 

H"CS; Zz) :=:::; Z2, we have H"(<S; Zz) :=:::; Zz. Q. E. D. 

LEMMA (14·9). H"'-1 (<S; Z2)=0. H"+1 (<S, f; Z2) :=:::;22 • 

Proof. Consider (14·6) for r=n+l. Since H"(<S, 1; Zz) =0, ~n+1 is isomorphic 

into. While Hn+1 (3 ; Z2) = 0, and hence H'n1 (® ; Z2) =O. From this, it follows that 

on" is onto. Thus we have 

H"+1 (<S, f; Zz) :=:::; H"cf; Zz) li;;'H"(®; Zz). 

Since H"CY; Z2) :=:::; Z2 ffi Z2 and i: is isomorphic into, we have H"+1 (<S, f; Zz) :=:::; Zz. 

LEMMA (14·10). H'(<S; Z2) :=:::; Hr (<S, f; Zz) :=:::; Zz for n+Z 2 r 2 Zn-1. 

Proof. Since Hr CS; Z2) =I-F cf; Z2) = o for n < r <Zn, we have by using of (14 · 6) 

- Sr jr~1 -
Hr(€3, f. Zz):::::;Hr' 1 (®; Zz):=:::;Hn1 ('6, f; Zz) 

for n+ 1 2 r 2 Zn- Z. Therefore (14 ·10) follows from (14 · 9). 

LEMMA (14·11). H 3"('6; Zz) :=:::;fl3"(®, 1; Zz) :=:::;Zz. 

Proof. Consider (14·6) for r=3n. Since H 3"-1 CY; Z2) =H3"ct; Z2) =0, jJ~ is 

isomorphic onto. Since H 3"+1 ('6 ; Z2) = 0, 113" is onto. While J-[3" (,3 ; Z2) ~ Z2, and 

hence H 3" ('6, f; Z2) = 0, or :=:::; Z2• Assume that the former holds, then ~an is onto 

and H 3"('6; Z 2 )=0. This irnplies H 3"(3; Z2)=0, which contradicts (14·3) There­

fore it holds that H 3"('6, f; Z2):=:::;Z2• Thus we have (14·11). 

LEMMA (14·1Z). H 7 ('6; Z2) :=:::; Z2 for Zn+Z2r23n-1. 

Hr(®, f; Z 2) :=:::;Zz for 2n+12r23n-1. 

Proof. Since ?Jan is isornorphic, we have that san-1 is onto. While H 3"-1 (3; Z2) 

=0, and hence San-1 is isomorphic. Thus San-1: H 3"-1 (fS, 1; Zz) :=:::; fJ3"(®; Zz) :=:::; Z2 

from (14·11). Since HrC:S; Z 2)=Hr(f;Z2)=0 for Zn+12r23n-1, we have 

Hr(®, 1; Zz) :=:::; sr+1 (®; Zz) :=:::; Hr' 1 ('6, L Zz) 

for Zn+ 1 2 r 2 3n-2. This proves (14 ·12). 

LEMMA (14·13). H 2"' 1 (®; Zz)=O. 

I-fZ"(fS; Zz) :=:::; H 2"('6, 1; Zz) :=:::; Zz. 

Proof. Consider the diagram 
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then the right ii~ is trivial from (14 · 5) and the lower ii:* is isomorphic onto. 

Hence the left it, is also trivial. Therefore, in (14 · 6) for r= Zn+ 1, at, is iso­

morphic into. While H 2"CL Zz);::::; Zz, and H 2"+1 ('6, f; Z2) ;::::;Z2 from (14·12). 

Hence it holds that à§, is isomorphic onto, so that j2!~1 is trivial. Since H 2"+1 (f; Z2) 

=0, we have H 2"+1 ('6; Z2) =0. 

Since ii, is trivial and H 2"-1 (f; Z2) =0, it follows that ji, is an isomorphism. 

Since H 2"'1 ('6; Zz) =0, 7Jzn is onto. While H 2"C:S; Z2) = Z2 , and hence H 2"('6, f; 
Z 2) =0 or ;::::; Z2• Assume that the former holds. Then we have H 2"('6; Z2) =0. 

However, since H 2"-1 C:S; Zz) =0 and H 2"-1 ('6, f; Z2 );::::; Z2 from (14·10), it follows 

that t ?n-1 is isomorphic into and hence H 2" (fiS ; Z2) ;::::; H 2" (fiS, f; Z2) :::J Z2 • This is 

a contradiction. Thus we have H 2"('6, L Z2) ;::::;Z2• This proves (14·13). 

Summarizing (14·7)-(14·13), we have 

THEOREM (14·14). Hr(S" * S" * S"; Z2);::::; Z2 for r=O, n, n+2~r~2n and 

2n+2~r~3n; =Ofor any other r. 

Since S" * S" is the 2-fold cyclic product of S", it follows from § 13 that 

H*(S" * S"; Zz) has as a base the elements 1, g,=g.(1) and a.,-s(Z~s~n) such 

that 

(14 ·15) 

Let 

(Z~i~n). 

7lz : S"xS" ~ S" * S", 

n3 : S"xS"xS" ~ S" * S" * S", 

n1z: S"xS"xS" ~ S"x(S" * S"), 

no : S" x (S" * S") ---3>- S" * S" * S" 

be the natural projections. Then it is obvious that 

(14·16) 

where i is the identity map. 

For i=O, Z~i~n, n+2~i~2n, let hn+i be the generators of H"'i(S" * S" * S"; 

Zz). Then we have 

LEMMA (14 ·17). (i) nt (h.) = 1 X g,+en X 1. 

(ii) 7!o(h11 ,,)=1Xa, 1 ;, and Sqi(h.)=hn+i if Z~i~n. 

Proof. It follows from (14·16) that 

n{2 (1xg,) =1 Xlf;(g,) = (1xenX 1) + (1 x 1 xe.), 
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n{2 (e. x 1) =en X 1 X 1. 

Since H"(S"x (S" * S"); Z2) is generated by lxg" and en Xl, this shows that n{2 

is isomorphic into. Furthermore it follows from (14 ·16) and (14 · 8) that 

n;Ch.) = n*77:''- (hn) =(en X 1 X 1) + (1 X Cn X 1) + (1 X 1 X en). 

Therefore we have by (14 ·16) 

7!;2 (1 Xgn+Cn X 1) =7!:(hn) =n;27!~(h.). 
Since 7!{2 is isomorphic into, this implies that 7TG (h.) = 1 x gn+en x 1. Namely we 

have (i). 

It follows from above (i) that 

7!~'Sqi(hn) =Sqi7!;(h.) =Sqi(lxgn+e.x1) 

=1xSqig.=lxan+i (i~O). 

Since 1 x an+i~O if 2 -;i', i -;i',n, it follows that nt·Sqi (hn) and hence Sqi Ch.) is not 

zero for 2-;i',i -;i',n. Therefore we have Sqi(h.)=hn+-z· This proves (ii). Q. E. D. 

LEMMA (14·18). If 2-;i',i -;i',n, we have 

Proof. It follows from (14 ·17) and (14 ·15) that 

7!~'(h, LI hnlz) =7!~'hn Ll)[~'hn-1-z 

= (lxg,+enXl) LI (lxa,,i) 

= 1 X (gn LI a,,_,) +en X an+i 

(2-;i',i-;i',n). 

Since enXan+z~O, we have hn LI hn,.~O and hence h. LI h,,_i=hzn,i· This proves 

(14·18). 

The following is obvious from (14·14), (14·17) and (14·18). 

THEO REM (14 ·19). The homomorphism 

n;: Hr(S" * S" * S"; Z2)~Hr(S"x(S" * S"); Zz) 

is isomorphic into for any r. 

Finally we have 

THEOREM (14·20). Let hn+i E Hn+i (S" * S" * S"; Zz) be the generator, where 

i = 0, 2 -;i', i -;i', n, n+2 -;i', i -;i', 2n. Then we have the following: 

(i) Sqi (hn) = hn, i for 2 -;i', i -;i', n. 

(ii) Let k=l, 2, and 1-;i',j-;i',n-1, then 

=0 

(iii) hn LI hnti=hzn+i 

(iv) hn,-i LI hn 1j=O 

if i+j -;i',n-1, 

if i+j>n-1. 

for 2 -;i',i -;i',n. 

for 2 -;i', i, j -;i',n. 

Proof. (i) and (iii) are proved in (14 ·17) and (14 ·18) respective! y. We shall 

prove (ii) for k = 1. The proofs of (ii) for k = 2 and of (iv) are similar. 

It follows from (14 ·17) and (14 ·15) that 
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n'?;Sqi Chn, i+l) = Sqin~ Chn+j~ 1) = Sqi Cl x an,-i+t) 

=lXSq'(an+j+t)=O if i+j+1 > n, and 

~ 1 X jC;an+i+h1 = jC;n'?;Chn+i+j+1) if i+ j+ 1 ;;=:; n. 

Since nt is isomorphic into from (14·19), we have (ii) for k=l. This completes 

the proof of (14 · 20). 

15. Cohomology mod 3 and integral homology of S" * S" * S" 

Let 

1,: "JF(x, 'iD; Z 3)-----?>- fliJr+ 1 (x, 'iD; Za), 

'>]r, : fl Hr (x, 'iD ; Z3 ) -----?>- rH" (x, SD ; Za) 

be the homomorphisms, defined in § 2, for the complex x with the transformation f. 

Since the map f: x-----?>- x is obviously f-equivariant, f induces the homomorphism 

f*: r H"(x, SD; Z 3 ) -3>- "Hr(x, SD; Z 3) which commutes with 1, and 'o/,. (See the 

later part of § 2.) The map s: x-----?>- x is not l-equivariant. However we can 

easily verified that 

(15·1) t1s'*'=s*t1, d'*'= -t*s*-r, s'*'-r= --rs'*'t* ,21) 

for the cochain map 5'*' induced by 5. Therefore we can also easily prove that 5 

in duces a homomorphism 5* : rH' (x, SD; Z3) -----?>- rH' (x, SD; Z 3 ). 

LEMMA (15•2). (i) 5*/,=-/1 f*s*. (ii) 5*/,-=/,-s*. 

(iii) s*v,-= -'>]r,.s*. 

Proof Let a E TH" (x, SD; Z 3 ), and let -ru be a representative cocycle of a. 

Then 5*/ T (a) is represented by s*àu. On the other hand, it follows from f'*'s*-r 

= --rs* that l 1 f*s*(a) is represented by -às*u. Thus we have (i). (ii) follows 

from t1S*=s'*'t1 easily. Using the above notations, s*'>]r,-(a) is represented by s*t1u. 

On the other hand, it follows from 5'*'-r= --ri:l'*'f'*' that '>]r,-s*(a) is represented by 

-t15'*'f'*'u. However -t1!l'*'f'*'= -i:l'*'t1. Therefore we have (iii). Q. E. D. 

Let ~* : H" (3, b ; Z 3) -'> Hr (,3, b ; Z 3) be the homomorphism induced by the 

map ~*: 3-----?>- 3, and let 

1J.: 1!'(,3, b; Za) -3>- Hr+2 (3, b; Za), 

v : H' (3, b ; Za) -----?>- H"+ 1 (3, b ; Za), 

cp*: H" (x; Za) -----o-H" (3; Za) 

be the homomorphisms, defined in § 2, for the complex x with the transformation 

t. Then we have 

LEMMA (15·3). (i) ~*J..t"'=(-1)"'tt"'~*-

(ii) cp*s* =~*cp*. 

Proof We shall prove (i) by mathematical induction on a. If a= 1, it follows 

from (15·2) that 

21) Of course, we write t1=l+l'*'+t2'*' and -r=l---!'11<. 
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= - I*-'T" T a-l*s*l* = - 1*-'T "T a-1*~* = - ,u~*. 

Assume that (i) holds for a~ l, then we have 
~* ,u/+1 = ~* ,u' ,u = ( -1) 1 ,u'~* ,u = ( -1) 1+1,ul+1~. 

This is (i) for a= l + 1. Th us the proof of (i) is complete. 

(ii) is obtained from (15 · 2) as follows: 

~*v=~*I*-''Yra-T a-1*= 1*-'s*'o/" T a-1* =- l*-''1/ra-s*T a-1* 

= -1*-''Yra-T "s*l* =-1*-''o/a-T a-l*g*= -11~*. 

(iii) follows at once from a~= sa. 

97 

Q. E. D. 

The cohomology group H*C3; Z 3) is generated by the elements 1, g,(l), g 2,(l, 2) 

and an+s (2 ~ s ~ 2n). We shall study the image of these elements by the 

homomorphism â* = 1 + ~* : Hr C3 ; Z3 ) ----- Hr C3 ; Z3). 

LEMMA (15•4) (i) â*(g,(l)) = -g,(1). 

(ii) ô'* (gzn (1, 2)) = 0 if n is odd, and = - gz, (1, 2) if n is even. 

(iii) ô'* Can+2aH2) = - an+2oJ+2 if a is odd, and = 0 if a is even. 

(iv) ô'* (an+2oJ+1) = 0 if a is odd, and = - an+2aH 1 if a zs even. 

Proof. lt follows from (16 • 3) that 

~* (g,(1)) =~*(çf.l*(e, x 1 x 1)) =çf.l*s*(e, x 1 x 1) 

=çf.l*(1 xe, x 1) =çf.l*(t*2(en x 1 x 1)) = g 11 (1). 

From this, (i) is obvious. The proof of (ii) is similar. The homomorphism s* : 

Hr (':D; Z3 ) ----- Hr (':D ; Z3) is obviously the identity. This, together with (15 · 3), 

implies that 

~* (an+2oJ+2) = ~*j* ,u"'v o* n*-1d; (e,) 

= j*~* Jl"'vo*n*-1d;-\e,) 

= ( -1) "'+1j* ,ualvo*~*n*-1d ;-\e,) 

= ( -1) oH 1j* ,U"'v(]*n;*-id;-is* (en) 

= ( -1) Dl+1an+2aH·2· 

From this, we obtain (iii). The proof of (iv) is similar. This completes the proof 

of (15·4). 

Since it follows from (1·11) that 

ii:*: Hr(S" * S" * S"; Za) ~ â*Hr(3; Za), 

we have from (16 • 4) by easy calculations the following 

THEOREM (15·5). (i) Hr(S"*S"*S";Z3)=0for O<r<n, r=n+1, r=n+4k-2 

with 1 ~k~[(n+1)/2] and k~[(n+2)!4], r=n+4k-1 with 1 ~k~[(2n+l)/4] 

and k~[(n-+1)/4], r=2n with n==-1 (mod 4), and r>3n. 

(ii) Hr(S"*S"*S"; Z3) ~Z3 for r=O, r=n, r=n+4k with l~k~[n/2] and 

k~[n/4], r=n+4k+1 with 1~k~[(2n-1)/4] and k~[(n-1)/4], and r=2n with 

n==-2 or 1 (mod 4). 
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(iii) H' (S" * S" * S"; Za) ;::::; Za ffi Za for r= 2n with n=O (mod 4). 

Consider the homomorphisms 

it*: H'(S" * S" * S"; Za)--------'> H'C:S; Za), 

~*: H'C:S; Za)--------'> H'(S" * S" * S"; Z 3). 

Then we see that it*~* =ii* and that it* is isomorphic into. (See (2 ·10) and (1·11) .) 

Therefore if we write 

i.=~*g.(l), if2n=~*g2,(l, 2) for even n, 

(15 ·6) iin+4re+t=~*anHœ+l for 1 ~a~ [ (2n-l)/4], 

for 1 ~a ~ [n/2], 

th en it follows from (15 • 4) that 

it*g,.= -g.(l), it*g2n= -g2,.(1, 2), 
(15. 7) 

Thus we have 

THEO REM (15 · 8). The element 1 and al! the elements of (15 · 6) compose a base 

for the vector space H*(S" * S" * S"; Za). 

As for the reduced powers, the Bockstein homomorphisms and the eup products 

in H*(S" * S" * S"; Za), we have 

THEOREM (15·9). ( i) IS 1g,.= ( -1) 1+1iin+4i (i~O), iS 11f2n=O (i~O), IS1iin+4œ+1 

= 2œC;iin+4Cœ+0-t1 (a +i~[ (2n -1) /4]), IS 1iin+4re =2,-1Ciiin+4(œ+0 (a +i~[n/2]). 

(ii) dain= 0, daif2n = 0, daiin+4a>+1 = 0, daiin+4re = â',..t4a>+l· 

(iii) g,.ug.=ff2n for even n, and=O for odd n; g.ug2.= ( -1)•12+1aa. for even 

n, and=O for odd n; gi,.uii,.+4œ+E =0 for j= 1, 2 and é = 0, 1 ; ii,. t4a>+Euiin+4f3+E'= 0 for 

e, e'=O, 1. 

Proof. It follows from (15 • 7) and (13 · 2) that 
it*('yig. = (yiit*g.- (yi g. (1) 

= ( -1) 1+2an+4i= ( -1) 1·'-1it*iin+4i. 

Sin ce it* is isomorphic into, we have (yi g,. = ( -1) i+ta,+4 ;. The proofs of the other 

results are similar. Q.E.D. 

THEO REM (15 ·10). Let G be a field of characteristic q~2, 3. Then H' (S"*S"*S"; 

G)~G for r=O, n, 2n with even n, 3n with even n. For any other r, H'(S"*S"*S"; 

G)=O. 

Proof. It follows from (11 · 5) that H* CS ; G) is generated by the elements 

<f>*(e,xlx1), <P*Ce.xe,.xl) and <P*Ce.xe.xe,.), where e,.EH"(S";G) is a generator. 

Furthermore, since B*cp* = <P*s*, it holds that 

~*cp* (e. x 1 x 1) = <f>*s* (e,. x 1 x 1) 

=cp*f*2 (e,. x 1 x 1) =cp*(e,. x 1 x 1), 

B*<P* Ce. xe, x 1) = <P*s* (e. xe. x 1) 

= ( -l)"<f>*(e.xe.xl), 
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~*cp* (e,. xe. xe,) = cp*s* (e, xe, xe,.) 

= ( -1)"</J* (e,.x e, xe,). 

Therefore it follows that ii*H"(:[J;G)~G. and that both â*H2"(3;G) and a*H3" 

Œ ; G) are isomorphic with G if n is even, and= 0 if n is odd. This, together with 

(1·11), proves (15·10). Q. E. D. 

THEOREM (15 ·11). For the integral homo/ogy groups H,(S" * S" * S"; Z), we 

have the following: 

( i) C(H,(S" * S" * S"; Z), oo) ~ Z for r=O, n, 2n with even n, 3n with even n; 

and = 0 for any other r. 

(ii) C(H,(S" * S" * S"; Z), 2) ~ Z2 for r=jn+21~ with 1 ~k~[(n-1)/2] and 

j=1, 2; and =0 for any other r. 

(iii) C(H,(S" * S" * S"; Z), 3) ~ Z3 for r=n+4k with 1~ k ~[(2n-1)/4], and 

= 0 for any other r. 

(iv) C(H,(S" * s• * S"; Z), q) = 0 for odd prime qolr-3 and any r. 

Proof. Consider the Smith-Richardson sequence 

'fH'CS; Z) a:r,. :r-'H'Œ; Z) !!_,. H'Œ; Z) 

for the complex 3 with the transformation ~. where i = 1- ~. Then it follows from 

(1· 7) that 2 Y :;o :rH' (:[3 ; Z) =O. On the other hand, we see from (13 · 5) that H* Œ ; Z) 

has only free component and 3-primary component. Therefore it follows that 

:r-'H'CB; Z)~H'(S" * S" * S"; Z) is isomorphic with a direct sum of some Z, Zz 

and Z 3 . Now (15 ·11) can be obtained from (14 ·14), (15 • 5) and (15 ·10) by the 

universal coefficient theorem [3]. Q. E. D. 

THEO REM (15 ·12). The 3-fold symmetric product of an n-sphere and the 

Eilenberg-MacLane complex K(Z, n) are of the same (n+4)-type. 

Proof. This follows from (14 · 20), (15 • 9) and (15 ·11) by similar arguments 

as in [10], § 4. 

REMARK. The symmetric group of degree 3 is solvable. This is the first 

reason for which we can apply the theory in Chapter 1 to the determination of co­

homology of the 3-fold symmetric products. Since the symmetric group of degree 

4 is also solvable, we shall be able to apply the similar arguments as in this chapter 

to determine the cohomology of the 4-fold symmetric product. 

APPENDIX 

16. Calculating metbod of integral cohomology groups 

T. Nakamura gives in his paper [7] a method to calculate the integral co­

homology groups from the cohomology with coefficients in fields. Different from 

the original exposition, we shall here explain it as an easy application of the theory 
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of exact couple due to W. S. Massey [6]. 

(E) 

We shall first recall some definitions and properties. Let 

f 
A--~A 

"\ / 
h""t/g c 

be an exact couple (i.e. a system consisting of two abelian groups, A and C, and 

three homomorphisms f, g, h such that the following exactness conditions hold: 

image f = kernel g, image g= kernel h, image h = kernel /). Th en, define 

CE') 
A' ___!_~A' 
' / h'"" t/ g' 

C' 
as follows: A'= f(A), C' = (kernel d) /(image d), f'(a) =f(a), g'(a) =gf-1 (a) (a E A') 

and h' (ë) =~ h (c) (ë E C'), where d = gh and ë denotes the element of C' containing c. 

Then (E') is also an exact couple, which is called the derived couple. Define the 

l-th derived couple 

,j 
zA--~,A 

' / ,h"" t/,g ,c 
by (0 E) = (E) and CtE) = Ct- 1E)'. Denote by 1K the natural homomorphism of a 

subgroup of C onto 1C. In (E), let A and C be graded and let f, g, h be homo­

geneous homomorphisms of degree 0, 0, + 1 respectively. Then it is verified easily 

that the same holds in CtE). 

Let K = { Cq (K), a} be a chain complex su ch that each Cq (K) is a fini tel y 

generated free abelian group and Cq(K) =0 if q <O. Take an exact sequence 

Z ~ 7 'l] z 0 -------'3> ~ "" -------'3> ~ p -)> 0' 

where ~ is the homomorphism defincd by ~ (r) = pr CrE Z) and rJ is the natural 

projection. Then, as is weil known, we have the exact couple of cohomology 

groups: 

H*(K; Z) -~~H*(K; Z) 

' / ]p""' t/ 'l] * 
H*(K; Zp) 

where ~* and "7* are the homomorphisms induced by r; and 1J respectively, and 

]p is the Bockstein homomorphism. Consider the !-th derived couple of this exact 

couple: 
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Then the following is obvious from the definitions. 

LEMMA (16·1). 1H*(K;Z)=P1H*(K;Z), and 1~* zs the homomorphismsending 

p 1a (a E H*(K; Z)) to PCP'a). 

Since Hq (K; Z) is fini tel y generated, H 1 CK; Z) can be written as a direct sum 

of cyclic groups whose orders are infinite or a power of a prime number. Denote 

by bq (K) the number of Z, and by tq (K; ph) the number of Zph, in this direct 

decomposition of Hq (K; Z). Then the following is obvions from (16 ·1). 

LEMMA (16 · 2). The kernel of 1t;*: 1Hq (K; Z) ------? 1Hq (K; Z) is isomorphic with 

]{Zp, ""E.g 1+1t1 (K;ph)), and the cokernel is isomorphic with f{Zp, bq(K)+'2:.k?ol+1tq 

(K; p") ). 
Therefore, by the exactness of the l-th derived couple, we obtain 

LEMMA (16. 3). ,Rq (K; Zp) =bq (K) + 2::, h ?;t+1t1+1 (K; p") + 2::, h?ol+ltq (K; p")' 
where 1R 1 (K; Zp) denotes the rank of the group 1Hq (K; Zp). 

From this, we have 

tR1 (K; Zp) -t-11Rq(K; Zp) =tq' 1(K;P1 ' 1) +tq(K;P1 ' 1). 

Thus we have 

THEOREM (16 •4). 

t"(K; p1+1) = '2:.~::~( -l)r-q+1 {,R(K; Zp) -t+1Rq (K; Zp) ). 

This theorem shows that if we know tll-q(K; Zp) for every prime p, then the inte­

gral cohomology groups can be calculated immediately. 

To the calcula ti ons of 1Hq (K; Zp), we may use the following theorem which 1s 

obvious from the definition. 

THEO REM (16 • 5). Let 1a E 1Hq (K; Zp), and let a E Hq (l(; Zp) be an element such 

that tK(a) =ta. Let further a be an integral cochain such that a mod p represents 

a. Then the image of 1a by the hmnomorphism 1d= ,f1h: 1Hq(K; Zp)----?1Hq' 1(K; Zp) 

is represented by the cohomology class containing (1/f/+1) oa. 
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