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1. Introduction

The Betti numbers of compact Lie groups are determined by quite algebraic
method. Among compact Lie groups, by making use of the spectral method, A.
Borel [2], [3], [4] determined the homology structures with integral coefficient
(or any coeflicient of field) of the classical groups, G, and F,. It seems to be,
however, the more primitive and elementary method to give cellular decompositions
of these groups. As for the special orthogonal group SO(»), J.H.C. Whitehead [12]
determined its structure as a cell complex. These cells were closely connected
with the real projective space P. C. E. Miller [7] computed the homology structures
of SO(n) by making use of the above cell structure. As for the universal cover-
group spin(n) of SO(n), S. Araki [1] recently gave a cellular decomposition.

In this paper, we shall give a cellular decomposition of the special unitary group
SU) (see § 7). These cells are closely connected with the suspended space E(M )
of the complex projective space M. Using this cell structure, homology group of
SU(n) can be computed very easily. In § 8 and § 9, we shall calculate the cup pro-
ducts and the Steenrod’s reduced powers in this group.

I am deeply grateful to prof. H. Toda for his kind advices during the prepara-
tion of this paper.

(Errata. The results on Sp(n) of my earlier note: On the cell structures of SU(n)
and Sp(n), proc. Japan Acad. vol. 31 (1955), are false. The cellular decomposition

of Sp(n) will appear in the forthcoming paper.)

2. Notations

We denote by H(X) (H*(X)) the integral homology group (integral cohomology
algebra) of a polyhedron X. If f: X— Y is a continuous map, then we denote by f:
H(X)— H(Y) (f*: H*(Y)—> H*(X)) the homomorphism induced by f. In the
following, we shall treat only the spaces (which are finite cell complexes) in which
the boundary and the coboundary homomorphisms are trivial in all dimensions, so
that we may identify H(X) with the chain group (H*(X) with the cochain group)
of X. If ¢* is a cell of X, ¢* also denotes the homology class containing the cell
¢*, Let [e*] be the cocycle which assigns 1 to only e*. If there ocurrs no con-
fusion, [¢*] is also denoted by e*.



40 Ichiro Yorora

3. Unitary group U(n) and special unitary group SU(n)

Let C” be a vector space of dimension # over the field of complex numbers,
and e; be the element of C* whose i-th component is 1 and whose other components
are 0. The elements ey, €5, e, form an orthonormal® base of C”.

Let U(n) be the group of all unitary linear transformations in C*. In matrix
notation, (», n)-matrix A with complex coefficients is unitary if and only if

AA*=A*A=17.

Let SU(n) be the group of all special unitary linear transformations in C*. Name-
ly, SU@) is a subgroup of U(z) composed of all unitary matrices whose determin-
ants are 1. Define a map 7: Un)—> SU(n)x S, where S is a 1-dimensional sphere
of all complex numbers whose norms are 1, by

7n(A)=A(detA-1 X detA,

()

then 7 is a homeomorphism. So that, to consider the topology of U(n), it is suf-
ficient to treat SU(n). Hence, in the following, we shall only consider SU(n).

Embed C*! in C* as a subspace whose last component is 0. Let S?*~* be the
unit sphere in C*. Then, embedding C*1CC" gives rise to an embedding S*3C
St SU(n—1) may be regarded as a subgroup of SU(n) by extending a matrix
A of SU(n—1) to SUn) by requirement that Ae,=e,. Thus we have a sequence
L=SU)CSU@) T cSUn).

For integers » and m such that n>m, let W,, be the complex Stiefel manifold

of orthonormal m vectors a= (a4, as,-- ,@y) in C". W,_y, m—1 can be embedded in
W,, » by regarding an element (ay, as, , 1) Of W,y ,1 as an element a= (ay,
2750 sAm—1, en) of Wn, me

For Ae SUn), set
DPn(A) = (Aly-ms1, o, Alys, Aey).
Then, by the map p,, SU(n) operates on W,, ,, transitively and the subgroup SU
(n—m) consists of all elements which fix the point (e,_1,: - , €1, €,). Hence
we have SUn)/SUn—m)=W,, , Consequently, we have W, ;=S*' and W, ,1
=SU(n). Especially, we have SU#)/SU(n—1)=S?""1 with projection p=p;.

4. Complex projective space M,_, and its suspended space E(M,_ ;)

Let M,_4 be the (n—1)-dimensional projective space over the field of complex
numbers. If a point x of M, 4 has a representative x=/[xy, xo, -+ , X1, where xy, %o,

1) If x=3"_le;x; and y=3%_ e;x; are vectors in C”, the inner product (%, y) is defined by

(%, )=3"_,%;9;. Tow vectors x and y are called to be orthonormal if (¥, )=0 and (%, x)

=(y =1
2) A* is the transposed conjugate matrix of A. I, is the unit (#, #)-matrix.
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------ , %, are, not all zero, complex numbers, then the other representatives are
x=[xa, xoa, - , x,a], where @ is any non zero complex number. Hence, we may
choose a representative x=/[x, x5, , X»] such that |xq|24|xe|24 - +]x,[2=1.

Another definition of projective space is due to matrix method [13]. Let J
be the set of all hermitian (#, n)-matrix (Ge. X*=X) with complex coefficients.
Define the Jacobi multiplication in J by Xo =%(X Y+YX). If X is an element
of J, then the following conditions are equivalent to each other:
4. 1) X is an irreducible idempotent element, i.e., if X=X2x0® and X=X;+X,,
where X; €3, X;=X2 (=1, 2) and X;°X,=0, then X;=0 or X,=0.
4. 2) tn(X)=tr(X®) =--=tr(X")=1.
4. 3) X=X2and t»(X)=1.
4. 4) X=UE,U*, where E, is the (#, n)-matrix whose (n, n)-coefficient is 1 and
whose other coefficients are 0, and U€ U(n).
4. 5) X=(x;;) satisfies

XirXn;=XppXi; for n=i, j, k=1,
{ X1+ Xoa+ FXum=1.

Let M*.; be the set of all elements X of I satisfying one of the above conditions
1)-5). Then the usual space M,_; and the above space M#_, are equivalent by the

correspondence §: M, ;— MF ; such that ¢(x) =X, where x=[x, %2 , %a] is
an element of M,_; such that |x4|2+|xs|2+--- +|x,]2=1, and
E21 RN 2t S X1 % \
X= XoXq [#a]2 weeeer XX, )
xnil xn’?Q """ lxnl2

In the following, we shall identify x with X and M,y with MJX,.

We shall regard M,_, as a subcomplex of M, s whose last component is 0.

As well known, M, is a cell complex composed of #z cells whose dimensional-
ities are 0, 2, 4, , 2n—4, and 2n-—2.

Let E(M,_,) be the suspended space of M,_;. This definition is the following.
Let E be the closed interval [ z WJ Then E(M,,) is the space formed

Ty 2
from Ex M, 4 by shrinking —%XM,,_J, »72£><M,,_1 and Ex[1, 0, , 0] to a single
point of E(M,—,). Denote by p: EX M, — E(M,_,) the shrinking map.

As easily verified, E(M,—,) is a cell complex composed of n cells whose di-

mensionalities are 0, 3, 5, , 2n—3 and 2n—1.

5. Characteristic map f: E(M,_,)—> SU(n)

Define a map h: EX M, +—> Un) by h(§, X)=7V, where € E, X€ M/}, and

3) X2=XoX, X"=XoX"1,
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V=1,—2exp(—/=19)cos X.»
It will be easily verified that V is unitary. Since the determinant of Vis —exp(—2
X1/ =16), if a map f': ExM,;— SU(n) is defined by f’(6, X)=V W, where

W=<—exp(21/:iﬂ) ; )

r
2
f’ induces a map f: E(M,y)—> SU(n) such that f’=fp. We shall call f the
characteristic map of E(M,_y) into SU(n).

ReMARK. We shall recall the case of SO(n) [7]. Let P,1 be the (n—1)-di-
mensional projective space over the field of real numbers and Pj%; be its matrix
form. Define a map %: P,.;—> O(n) (orthogonal group) by A(X)=7V, where X
€ P}, and

Then U is special unitary. If §=43 or x=[1, 0,----- , 01, then U=1, Therefore

V=1,—-2X.
(V is a reflection across the orthogonal complement of x=¢"1(X) in the n-dimen-
sional euclidean space). Since its determinant is —1, if a map f: P,_1+—> SO(n) is
defined by f(X)=VW, where

W=<—1 )
In—l ’

then U is special orthogonal. By making use of this map, J.H.C. Whitehead and
C.E. Miller obtained the cellular decompositions of SO(#) and V, ,=SO(n)/
SO (n—m).

6. Shrinking map ¢&: E(M,_)—> 8!

Define a map &: E(M, \)—> S by £¢=pf.

LEMMA 6. 1. For n=2, & maps E(M,s) to a point e, of S** and E(M,_,)
—~E(M,—s) homeomorphically onto S**'—e, Namely, £ can be regarded a map
which shrinks the boundary of E(M,_1) to a point.

Proof. 1t is obvious that & maps E(M, ;) to e,. Given any point a=(ay, as,
------ y ety ¢+ —18) of S*1—¢, where ay, @, -+, a,-y are complex numbers
and a=c1, B are real numbers such that |aq|2+|a@s|2+ - +|a,-12+a2+/2=1, it is
sufficient to show the following equation can be solved continuously :

P, —2exp(—+/ =16)c0s6X) =a,

ie.
—2exp(—1/ —=160)c0s0%x:%,=ay,
/ —2exp(—v —10)c0s0x:%, = as,

4 A(a;)=(Aa;))
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1—2exp(—v —10)cosf |x,)2=a +V =15 .
From the last equation, we have
p ___1/(1-—01)2-!—,82
" V2 -a)

where ¢ is an arbitrary real number. Thus x, and § are determined. From the

exp(V' =1¢),  sinf= A

other equations, x4, , X2, and x,_; can be determined. ~Thus x=[xy, %s,--- Xnl
are determined uniquely as a point of the projective space M,_;.
REMARK. Define a map ¢: S**—e,— U(n) by ¢p=~hre™?, then we have

_ Iallf 1%y

1 i-a@, =TT ——i—_—a ay
(;[)(a TR , Au1, an>=
! ! B L S 1—‘_@”:ﬁ a
]."tin l_dn -t
_Q=aya, . ... _(1=a)a, a
1"'67” 1'—dn "

This map coincides with ¢ used in [15, p. 125].

7. Cells of W, ,, and SU(n)

In the preceding section, we saw that f mapped ¢*'=E(M, 1) —~EM:)
homeomorphically into SU(E) CSU(n) for n=k=1. Set e*1=f(c*1). We shall
call ¢**-1 (2k—1)-dimensional primitive cell of SU(x#). Thus we have n—1 primi-
tive cells whose dimensionalities are 3, 5, , 2n—3 and 2n—1.

For integers n=ky >k, >k;=2, extend f to a map f: E(Mj,—1) X E(M;,-1)
Xoereees X E(My;—)—> SU) by f(z1XzaX o Xz;) =f(zf(z2) - f(2;). Put

i, B 2l o2kl 2Ty X €241y
and

=1,

Furthermore, define a map f,,: E(Mj,—1) X E(Mj,—y) X -+ X E(My;—0)—> W, w bY Ju
=p.f. Put

e%[lzl—l, 2k2—-1,~~~,2kj—1 =j:;”(62k1—1>< €2k2—1>< ,,,,,, e E‘lle}- —1>,
and

ep=(Cr—mi1, Cnomr2, """y €n).

Now, we shall show that W,, , is a cell complex composed of ¢ and eZ™
oty 2071 with n=koske> >k =n—m+ 1.

First of all, we shall show that W, is the union of these cells. As W, p.1,1
= §2-2m+1 ig the union of €% and ¢*”2”*!, we shall assume that the above assertion
is true for W, where s—t=n—m and m>t=1. Given a=(as, - A1, A) EWoy i
but a§ W,—y, »-1, then a,=e, So that, we can choose a point z € ¢*~' uniquely such
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that £(z)=a,. Put U=f(2), then U*a= (U*ay,--, U*a,_1, U*a,) =U*%ay,--, U*a,1,
en) €W ,-1, m-r- Hence U*a belongs to a certain cell e2:% k=1 251 with

—1=k >k >k, =n—-m+1 by the induction. Therfore a belongs to a cell
eh"—l 2k,—1, 2ky—1,- zkj —1‘

Next, we shall show that f, maps e lxe2e1x ...... x €24~ homeomorphical-
ly onto €171 2k.1,2%;-1 and these cells are disjoint to each other. In fact, let
@ € @it 2k, 2k ) 021, 201,20 1 namely  there exist U, V€ SU(m) such that

a=(UyUp Useymrz, UUs+Useypyin, -+ , UwUyUse,)

=(ViVoViesmrt, ViVorr Viey i, , ViVo-Vien),

where U,;€e%:™ and V;e€eZi™. If

U U Usey=V Vo Viey=e,  for p=n—q+1,- , N,
and

UiUs - Useyg=Vi Voo Viey €4y,
then this means

Uiepy=V1€4,.
Since & is homeomorphic, it follows U;= V;. Hence

U Us - Usep= Vo Vye- Vie,  for p=n—m-+1,-- n.
Similarly U,=V, and so on. Consequently s=¢ Therefore these cells are disjoint.
The above proof also gives that f,, is one-to-one. The fact that f, is a homeomor-
phism is obvious from the continuity of the group multiplication and the homeomor-
phism of é&.

Thus we have the following results.

THEOREM 7. 1. The complex Stiefel manifold W ,, »n=SUm)/SU(n—m) is a cell
complex composed of 2" cells €5, and &% 2N 24 with p=ky>ko> > ki=n—m
+1. The dimension of eX™1-2k"1 251 jg (2ky—1) + (kg —1) + -+ +(2k; —1).

Especially,

TuEOREM 7. 2. The special unitary group SUn) is a cell complex composed of
271 cells ¢ and & 2L 21 yith p=ky>kye->k;=2.  The dimension of
g2, 2hy e 2 =1 g Ok 1) (2 —1) F-eeeeee +(2k;—1). Especially e*7', called the
(2k—1)-dimensional primitive cell of SUn), is obtained as the image of the interior
of the suspended space E(My—y) of (k—1)-dimensional complex projective space M,
by the characteristic map f: E(M,)—>SUk) CSU).

REMARK. As obviously p,,: SUn)—>W,, , is a cellular map.

8. Homology and cohomology groups of W, , and SU(n)

With respect to the preceding cell structure, the boundary homomorphisms are
trivial in all dimensions. Hence we can compute homology groups very easily. In
fact, the Betti number for m-dimension is the number of the cells whose dimensions
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are m.

THEOREM 8. 1. W, ,, and SUWm) have no torsion groups in all dimensions, and

their Poincaré polynomials are

PW,,’m(t) = (L 42r2m) (] - 2i-2m3y (1+22-1),
and

Psyy ()= A +13) (L+E5) -+ A+,

Let X be a space and k£ be a field. Denote by D*(X ;%) the subgroup of the
cohomology group H*(X; k) with coefficient % generated by the elements of the
form a“6®, where a and b are elements of degree>0 in H*(X; k). Let v be a
homogeneous element of the homology group H(X; k) with coefficient 2 and dim
v>0. We shall call v a homological primitive element (or minimal element) of X
with respect to coefficient £ if and only if v is orthogonal to D*(X; k) [5], [6].
Remark that if the space X has no torsions, the above definition is also applicable
to the case of the primitive element of X with integral coefficient.

LemMa 8. 1 (Invariance theovem). Let f: X—>Y be a map, then for any homo-
logical primitive element v of X, the image f.(v) is also a homological primitive
element of Y.

Proof. (f+(v), a=b)= (v, f*(a-b)) =, f*(a) - (b)) =0. qe.d.

THEOREM 8. 2. Let ¢ be the element of H(W ,, ) containing the cell 2.
Then, €2 (n=k=n—m—1) is a homological primitive element of W, m.

Proof. Since all cup products are trivial in the space E(M;-1), ¢** of H(E
(M,_p) is a homological primitive element of E(M;—4). Therefore &% is also
primitive as the image of ¢%*-! by the map f,: E(M1)—>W,, » qed.

As for the cup product Y, we have the following results.

THEOREM 8. 3. In the cohomology algebra H*(W,, ,), we have

@21, 2yl g2y —1 gBky -1 for n=k>ko=n—m+1.
Especially, in H*(SU(n)), we have
o211, 2hy=1 _ o2k, —10 g2k, 1 Jor n=ky>k=2.

ie., H*(W, ,) is the free exterior algebra generated by e, (which is a unit) and
et with n=k=n—m+1.

Proof. Since p%: H¥*(W,, ,)—>H*(SU®)) is isomorphic into and
Pr(eh Bhamlye, 21y g2, 2oy, 2521 for pzky > ke >ki=n—m+1, and
pE (et 2kl 28521y = otherwise, we shall prove the formula for H*(SU(n).
In order to prove this, it is sufficient to show

g2 2kl g1 g2kl for n=k=2,

using the induction with respect to n of SU).
Define a map »: E(M,_) x SUn—1)—>SU(n) by

5) The symbol “ denotes the cup product.
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v(z, A)=f(2)A.
Let vy: H'(SUm), SUn~1)) —> H (E(M,—1) x SUn—1), E(M,_5) x SU(n—1)) be
the homomorphism induced by ». Then »f is isomorphic into and

”;: (eZn—l, 2k—1) —_ €2n—1 X ezk—1.

On the other hand,

V;‘ (ezn—l uezk—l) — ”>1k <e2n—1) uv;k (ezk—1> — (62n~1 % eo) u,};r. (e‘zk—l)’

where the symbols “ contained in the last tow expressions mean the relative cup
product in H*(E(M,_1) X SU(n—1), E(M,_;) x SU(n—1))[10]. Define tow maps j:
SUn—-1)—>EM,_y) xSUmn—1) by, j(A)=(¢ A), and p: EM, 1) xXSUn—-1)
—>SUm—-1) by p(z,A)=A, and let i: SUmn—-1)—>SU®) be the inclusion
map.
Since w»j=i, we have
(et =1 (e,
Hence,
p*j*”ik@zk—l) =p*i* (ezk-1> =p* (ezk—l) — 0 g1,
Since the last expression is non zero, we have

v (e 1) =0 x %,

Hence,
',;k (g1 ezk~1> = (g2 g0) Y (EOXez’"])
— (62”_1 () 60) x<e0 () eZk—l)
— g2n=1 5 k=1
Since »; is isomorphic into, we have

21, 2h=1_ gon—1 U 21

LemMMA 8. 2. Let »": H*(SUW)—>H"(E(M,—s) x SUn~-1)) be the homo-
morphism induced by v defined in the theovem 8. 3. Then v* is isomorphic into and
we have

p*(e* ) =P et 0 x et for n>k=2,
{ (e ) =1k o,
Proof. As obviously, we have
(% (1), e2lx g1, 2,1
= (%1, @251 5 g2, 251y

where k>s, k>#>--->#;=2 and the symbol * is the Pontrjagin product. If %% =
=L, #71 contains the homological primitive element, ¢** is generated by lower
dimensional elements by the Pontrjagin product. This conclusion is, however, con-
tradictry to the general homology theory of compact Lie groups [8], [9]. Hence
we obtain
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(r* (1), g1y g2, 251) =),
On the other hand, we have
(v* (ezk—l)’ ezk—l e eo) — (l/* (e2k—1), 0% ezk—l) =1.

Thus the lemma is completed.

9. Steenrod’s reduced powers in W, ,,

Let p be a fixed prime number, K be a finite complex and L be a subcomplex of
K. The Steenrod’s reduced powers ®; are homomorphisms
®3: HY(K, L; Z,) —> H"* DK, L; Zp)®
defined for all s=0 and all ¢=0. On the other hand, if p=2, there exist, as well
known, Steenrod’s square homomorphisms Sg*

Sq¢°: H(K, L; Zy) —> H"™ (K, L; Zy)
defined for all s=0 and ¢=0. These tow operations ®j and Sg*® are combined by
the relation ®3=Sg*.

The following formulae are well known.
9.1 If f: (K, L)—> (K’, L") is a map, then ®}f*=7*®; (Sqg°f*=f*Sqg*).
9. 2) (9 is the identity isomorphism (Sg° is also so).
9. 3) &3 is trivial for ¢ <2S (Sg¢° is trivial for ¢ <s).
9.4) ®5)=x*7 for x€ H*(K, L; Z,) (S¢°(x)=x* for x€ H*(K, L; Zy)).
9.5) Let ¢; H'(L, Zp)—>H"Y(K, L; Z,) be the coboudary homomorphism, then
®50=083 (Sq°6=2055q°).
9.6) G~y =20 < O (Sg'(x = y) = 25 S¢'(®) = S’ ().

M,y has 0, 2, 4,--, 2n—4 and 2n—2 dimensional cells. Let u: € H*(M -4 ; Z,)
be the cohomology class reduced modulo p containing the 2k-dimensional cell. As

well known, if we orient these cells suitably, then we have ug;,=u.
LemMA 9. 1. In the complex projective space M,_1, we have

s k
(?,, (ttar) = (s ) Uggr2s (p-1),"0 P
and
2s k
Sq** (ua) = (s >”2k|2s ,
Sq2s+1 (uzk) =0.

6) Z, denotes a cyclic group of order p.
7) x? denotes the p-times cup product of x.

8) (Q) is the binormial coefficient reduced modulo .

9) The expressions in the right hand sides are zero if they have no means.
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Proof. Suppose p=:2. The extreme case s=0 is obvious from formula 9. 2).
For the general case, we proceed by induction on s.

@ () = Oy () = O3 (s & ;™) = O (u) 2 O (us™) +C () © O3 (uh™)

k—1
Uzk—2+2(s—1)(p-1)

k—]. 3
=uy Y ( s >u2k~2+2s(p—1)+uéu<8_l

= (’; > U2k+2s (p—1)+

In the case of p=2, S¢g****=0. Therefore, S¢* (#s:) is the special case of ®j(ux). q.
e. d.

E(M,_) has 0, 3, 5,..., 2n—3 and 2rn—1 dimensional cells. Let wvy_4 € H*?
(E(M,—y) ; Z;) be the cohomology class reduced modulo p containing the cell -,
Let S* H(M,_1; Zp—>H*"(E(M,_,); Z;) be the suspended isomorphism. Then
S* commute with the operations ® and Sg°. If we orient these cells suitably,
then we have

Va1 = 5% (Usp-v).

LemMmaA 9. 2. In E(M,—), we have

®;wmn = (¥

Vop—1+2s (p—
s ) 2k—1+25 (p—1)y

and
k-1

s ) V2k—1+2s)

{ Sg* (Vap—1) = <
Sg** (V1) =0.
Proof. These are obvious from the lemme 9. 1.
This result enables us to compute the reduced powers in W,, ,,, especially SU(#n)

rather simply.
TueoreMm 9. 1. In W, ., the reduced powers are given by

( _ k—1 E—1+2s (p—1)
CHC-ao R ) ety
@;(e‘if,—l, 2ky—1, ) 2kj—1>

( ki1 > (kg‘" 1 ) ( k,—1 ) @ B2, (h=1), 2y 20 (51 2k Ty (51
L fuvia vy 51 t ’

123 i

and

( Sq* (e ™ = (kzl) en

qus (e 51"71—]) 2k2—1,~--,2kj_1)

= Z (k1._1> <k2'_1> <kji_1)efnk1—1+21”2k2-—1+2t2,‘,ij—lAZij
ke =8 7

{y Vi e ki 14 10 >

Sq2s+1 =),
Proof. If n=2, the theorem is trivial. For #>2, we proceed inductively, supposing
the theorem is valid for W,y, , especially SU(n~1). Furthermore, it is sufficient to
prove the formulae for SU(n). Let v*: H*(SU) ; Z,)—>H*(E(M,_) x SUn—1);
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Z,) be the isomorphism into defined in §8. If >4, then
D* 6)1.; qezle—l) — @; (V* (ezk—1>)

= @Z (7)2[,,_1 X €%+ X ezk_]')

k-1 E=1\ optizs o
=( s )02k~1+2s(p—1))xeo+vox< s )ezk 1425 (p~1)

_ ( k; 1 ) P (2R (D))

Since »* is isomorphic into, so we have the first formula. If n=£k, ®3(* ) =0.

@;(92/‘31”1» 2ky—1,:, zkj—l) — @;(ezkrl () ezkz—l,m, 2kj—1)

— }: 6){)(62/“—-]) (&) @;ﬂ(ezkz—l,m,zkj—])

L i=s

-

I m=s

iy aytedd =S < 21

((kll_1>ezkl~1+21 (p-1) U ( 2 <k2_“1 ) ("7/_ 1)e2k2_1+2i2(1)—1),~-, 2k, ~1+21, (p-1) ))

R 2] 1;

ks - 1 > <k2f' 1 ) (ki__ 1 ) =120 (0=, 2hy—1120, (p=1) -+, 2hj=L21, (p—1)
U]
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The other formulae are obtained quite similarly. q. e. d.
ReEmARrRk. This results coincide with those of A. Borel and J. P. Seere [4]. In
fact, due to result of S. Mukohda and S. Sawaki [8], we have that

b i= <j~1~—1;e(p—1>> (mod ).
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