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In their paper1 l Beckenbach and Jackson considered sorne properties of sub­

functions for a dominating family of functions and studied a Dirichlet problem 

relative to that family of functions. In this paper the author follows them, develops 

their researches and gives sorne applications to partial differentiai equations of 

elliptic type. 

1. Notations, definitions, postulates and theorems that they set or obtained are 

reproduced here with slight modifications for the later use. 

Let D be a plane region (non null connected open set) and SI' a family of circles 

tc such that 

a) tc lies with its interior K in D, that is, 

K=tc+KCD, 

b) for any point P of D, every small circle with center at P and every small 

circle through P belong to Sl'.2 l 

Let iT be a family of functions whose domains of definition are K (tc E Sl') and 

which satisfy the following postulates. 

PosTULA TE 1. For any member tc E SI' and any continuous boundary value 

function h(P) on tc, there is a unique function F(P)==iTCP; h, tc) E iT such that 

a) F(P) =hCP) on tc, 

b) F(P) is continuous in 'JJ(F) =K, where 'JJ(F) denotes the (closed) domain 

of definition of F. 
PosTULATE 2. For each constant M;;;;o, if 

F;E'{J, 'JJ(F;)~K (i=l, 2) 

and 
then F1(P)~Fz(P)+M in K; 

furtlwr, if the strict inequality holds at a point of tc, thcn the strict inel!Uality 

hold throughout K. 

RE MARK. If F E 'fi and 'JJ(F) = K, then 

'{J(P; F, 7) = F(P) in i', 
for any 'Y E st· such that 'Y lies together with its interior r in K. 

l) E. F. Beckenbach and L. K. Jackson, Suhfunctions of severa! variables, Pacifie Journal of Ma the­
maties (1953). 

2) In the sequel the elements of Si' are denoted hy tc, 7, .... and their interiors hy J(, r, .... , 
respective! y. 
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DEFINITION 1. A continuous function g(P) defined in a region .Q, contained 

in D, is called a sub-\Y function in .Q, if it holds 

g(P) ~ \J(P; g, K) 

for any K E Sf su ch that K C.Q. 

in K, 

THEOREM 1. A function g(P), continuous in .Q, is a sub-\J function in .Q if, 

and only if, corresponding to each P of !2, there exists a sequence of circ/es Kn E ~ 

with center at P and of radii Pn-0, such that 

g(P)~\J(P;g, Kn). 

THEOREM 2. If gn(P) is a sub-\J function in .Q for n= 1, 2, .... and gn-g 

zmiformly on each compact set of .Q, then g(P) is also a sub-\J function in .Q. 

THEOREM 3. If g1 (P), g2 CP), ··· , g11 (P) are sub-\J functions in !2, then the 

function g(P) defined by 

g(P)=max[gi(P), gz(P), ... , gn(P)] 

is also a sub-\J function in .Q. 

THEO REM 4. If g CP) is a sub-\J function in !2, then for 

the function g<(P) defined by 

{ gCP) 
gK CP)= \Y CP; g, K) 

for PE !2-K, 

for PEK, 

is also a sub-\J function in .Q. 

any K E Sf with K C.Q, 

DEFINITION 2. Super-\J functions are defined by reversing the inequality in 

Definition 1. lt is easy to show that results analogues to Theorems 1-4, with 

suitable alternations, hold for super-\Y functions : in addition to writing "super-\J 

function " for " sub-\Y function," we reverse the inequality in Theorem 1 and re­

place " max " by " min " in Theorem 3. 

DEFINITION 3. W e shall say that a function FCP), which is continuous in .Q 

and satisfies 

F(P)=\JCP; F, K) in K, 

for each K E Sf with KcJJ, is an \Y-function in .Q. 

Hence F is an \Y-function if and only if Fis both sub-\Y and super-\Y. 

REMARK. An \J-function need not belong to \Y, but a function FE \Y is an \J­

function in the interior of ~(F). 

Let h (P) be a bounded, but non necessary continuous, function defined on the 

boundary w of a bounded region .Q. W e shall de fine h, and !'!_ by 

h(Q)=lim sup h(P), h(Q) =lim inf h(P). 
8~0 ?Q<8 - 8~0 ?Q<8 

THEOREM 5. Let f(P) and g(P) be a super-\J function and a sub-\J function in 

IJ, respectively. If 

th en 

g·(Q)~_f(Q) 

g(P)~f(P) 



Dirichlet Problem 

Let H(P) be a function defined in JJ. We shall define il, Hon w, by 

H(Q)=lim sup H(P), HCQ)=lim inf H(P). 
8->0PQ<8 8->0PQ<8 
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DEFINITION 4 (Dirichlet problem). By a solution of the Dirichlet problem for 

a bounded region JJ and a given boundary value function h on w, relative to iJ, 
we shall mean a function H(P) which is an iJ-function in JJ and satisfies 

I?:_(Q)~]J(Q)~H(Q)~h(Q) on w. 

To construct such a solution of Dirichlet problem we shall use the so-called 

Poincaré-Perron method. 

DEFINITION 5. A function ({)(P), bounded and sub-iJ in JJ, is an under-function 

of first kind provided that 

@(Q)~h(Q) on co, 

and an under-function of second kind provided that 

@(Q)~I?:_(Q) on w. 

A function 1Ji(P), bounded and super-iJ in JJ, is an over-function of first kind 

provided that 

1/!(Q)"i;;,.h(Q) on w, 

and an over-function of second kind provided that 

l[(Q)"i;;;h(Q) on w. 

An under(over)-function of second kind becomes clearly an under(over)-function 

of first kind. U(U*) and 0(0*) denote the families of under-functions and over­

functions of first(second) kind, respectively. 

PosTULATE 3. For each constant M and any JJ, there exist a bounded super-iJ 

function f(P) and a bounded sub-iJ function g(P) such that 

g(P) < M <f(P) in JJ. 

From this it is clear that the families U, U*, 0 and 0* are not empty, re­

spectively. 

THEO REM 6. If ({) E U and 7J! E 0, then 

({)(P)~1fi(P) in JJ. 

COROLLARY. If ({)EU* and 1Ji E o*, then ({) ~ 1Ji in JJ. 

PosTULA TE 4. For any "E ~ and for any collection thv J of functions which 

are continuous and uniformly bounded on "• the functions iJ(P; hv, K) are equi­

continuous in K. 

DEFINITION 6. We shall define the functions H 0 (P), H*(P), Ho cP) and H*(P) 

by 

Ho (P)=: inf1Ji(P), H* (P) =inf1Ji(P), 
~ED ~éD* 

Ho(P)=:sup ({)(P), H*CP)=sup ({)(P). 
~EU ~cU* 

THEO ~EM 7. The functions Ho (P), H*(P), Ho (P) and H* (P) are iJ-functions 
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in J2 and it holds 

H*(P)~Ha(P);;;;j-Jü(P)~H*(P) in !J. 

H 0 (H*) and Ha (H*) are called the over-solution of first(second) kind and the 

under-solution of first(second) kind of the Dirichlet problem for Q and h, relative 

to {Y, respectively. 

REMARK. If h is continuous on ru, then 

H*(P)==.Ha(P), H 0 (P)==.H*(P) in Q. 

DEFINITION 7 (Regular boundary point). A boundary point Q of !J is regular 

(relative to j'l') provided that, for every continuous boundary value function h on 

w, the fun etions H* CP) and H* (P) satisfy 

limH*(P)=limH*(P) =h(Q). 
p_.,Q P--)Q 

THEOREM 8. If a boundary point Q of J2 is regular, then 

ft_CQ) ~ lf*(Q)~ R*CQ)~lï(Q) 

for every bounded boundary value function h on w. 

PROOF. Since lï(P) is upper semi-continuous on fù, we can find a decreasing 

sequence of continuous functions h.(P) on fù, such that h" th. Denoting by H,,* 
the over-solution of second kind of the Dirichlet problem for J2 and h, we have 

H*(P) ~ Hn*CP) in JJ. 

Since Q is regular, 

il*(Q)~ limH;(P) =h11 (Q). 
P-")Q 

Hence wc get by !etting n-"oo, 

R*CQ)~li(Q). 

The inequality f1(Q) ~H*(Q) is shown similary. 

THEOREM 9. If all boundary points of J2 are regular, an 'ff-function H(P) til 

JJ, such that 

is a solution of the Dirichlet problem for J2 and h. Especially if h is continuous on 

Cù, the Dirichlet problem has the unique solution H* (P) =H* (P) _ 

ExAMPLE. Consider the case where 'iJ consists of harmonie functions. Take 

for tJ the unit circle: lzl=lx+iyl<l, and let hCe; 6 ), 0~0<2n, be given as follows: 

Th en 

. fl 
h(e'e) = to 

for irrational 0, 

for rational O. 

H* (P)=o==O, Ha (P) -===Ha (P)=H* (P) =1. 

DEFINITION 8 Œarrier). For a boundary point Q of .g, a circle li: E sr with 

center at Q and witb K CD, and constants t::>O, M and N, a function 

s(P)=o==s(P; ~r, ê, M, N) 

is a sub-barrier provided that 



Dirichlet problem 

a) s(P) is a su b-u function in JJ n K, 

b) ~(Q)~N-E, 

c) s(P) ;2= N+E 

d) s(P)2= M 

A function 

on wnK, 
on ~rnJJ. 

S(P)=o=S(P; K, è, M, N) 

is a super-barrier provided that 

a) S(P) is a super-{Y function in JJ n K, 

b) S(Q) ;2= N+E, 

c) 5_(P)~N-E 

d) 5_(P)~M 
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THEOREM 10. Ji'or a boundary point Q of JJ and for each set of constants E>O, 

M and N, there exists a sequence of circles ~r, E ~ with center at Q and radii p.-70 

for which super-barriers S(P; ~r., E, M, N) and sub-barriers s(P; ~r., E, M, N) exist, 

then Q is a regular boundary point. 

2. Let ~r, 'lE.~ be two circles crossing at two different points, and Ut,(P) l 

a sequence of non-negative continuous functions defined on ~r, such that 

h,(P) 2= h,_,1 CP) on ~r, 

h.(P) =0 on ~r-r, 

limh,(P) = 1 
u_,.co 

Then by Postulate 2 the functions {Y(P; h., ~r) tend to a limiting function in K, 

independent of choice of fh,}. Let {Y(P, ~>, 'l) denote this limiting function. We 

shall now set up the following postulates. 

PosTuLA TE 5. If F; E f'f, 'J:J(F) ~K (i= 1, 2) and 

F1(P)2=F2(P) on ~r, 

th en in K, 
where ® is a family of functions which satisfy Postulates 1-2 and further 

a) ®(P;Ah, ~>)=A®(P;h, ~r) 

for any ,. E ~. any continuous function h on ~r and any positive number À, 

b) ®(P;~r, 'Y)<q on 'lnK, 

where q is a positive constant less than 1, dependent only upon ,. and 'l.1l 

PosTULA TE 6. Let Q be a point of D, and P be a point ( ='T-Q) in the interim­

!( of a circle ~rE ,Çf with center at Q, then there exist a super-(J function f and a 

sub-~ function g in K, such that 

\f(Q) -N\< E, f(P)< M 

and \g(Q)- N\ < E, g(P) > M, 

for each set of constants E>O, M and N. 

1) The family of ali harmonie functions forms evidently a ®-family. 
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THEOREM 11 (Poincaré's condition). If for a boundary point Q of Q there exists 

a closed triangle .d with vertex at Q, such that 

.aniJ=Q, 

then Q is a regular boundary point. 

PROOF. We shall give the construction of a sub-barrier for a suitable small 

circle tC with center at Q. The existence of super-barriers can be treated similarly. 

Let tCo E ~ be a circle with center at Q. Then there exists a super-i"Y function 

f(P) in K, such that 
é 

!f(Q)-NI<T. 

By continuity there is a circle tCCKo, concentric with tC0, such that 

f(P)<N+e in K. 

Now define M*=min[M, N]. 

Then by Postulate 3 there is a sub-i"Y function g(P) such that 

g(P) < M* in K. 

Let QT1, QT2 be two sides of .d and QTo the line-segment bisecting the outer 

angle of Q. Take three points Qo, Q1 and Q2 on QT0, QT1 and QT2, respectively, 
so that 

P= QQo= QQ1 = QQ2. 

Let tC' be the circle through Q, Qo, Q1, and tC 11 the circle through Q, Q0 , Q2. If we 

choose p sufficiently small, tC' and tC 11 belong to ~ and lie together with their in­

teriorsinK. Leta; be the arc QJJ;(i=1,2) not containing Q and set a=a1 Ua2• 

We can then construct, by Postulate 6 and Theorem 3, a super-i"Y function F 

in K, such that 

!F(Q)-NI< e, F(P) < g(P) on a. 

Define the function F*(P) by F*(P)=min[/(P), F(P)], then F*(P) is a super-i"Y 

function in K and satisfies 

IF*CQ)-N!< c, 

F* (P) < g(P) on a, 

F*(P)<N+c in K. 

We now define Hn'(P) and Hn''(P) on K' and K", respectively, and Fn(P) m 

K'UK" as follows: 

H{(P)=i"Y(P;F*, tC') in K', 

{
F*(P) on tC'1 -K', 

H/'(P)= H{(P) on tC''nK', 

i"Y(P; Hl', tC") in K 11 , 

F*(P) on tC'-K", 

H; (P) = {H~-1 (P) on tC' n K", 

'ij(P; Hn', tC') in K', 



for n=2, 3, ···, and 

Dirichlet problem 

{
F* (P) on ~r"- K', 

Hn''(P)= H,: (P) on ~r"nK', 

tf(P; H%, ~r") in K", 

p. (P = {H: (P) 
2k-1 ) F2k-2CP) 

{Hk"(P) 
F2k(P) = F2k-1(P) 

in K', 
in K 11 -K', 

in K 11, 

in K'-K'', 
for k= 1, 2, ··· , where F 0(P)=F*(P). 
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Since F* (P) is a super-tf function, {F.(P)} forms a decreasing sequence of 

super-tf functions. Let 

L = min F*(P). 
PFJ('U/(11 

By Postulate 3, there is a sub-tf function g'(P) such that 

Th en 

for n=1, 2, ···,and 

g'(P) < L in K'UK". 
g'(P)<F.(P)2:.F*(P) in K'uK", 

F2k-1(P) = tf(P; F2k-1, ~r') 

F2k(P) = tf(P; F2k, ~r") 

in K', 

in K 11 , 

for k= 1, 2, ··· . Hence, by Theorem 2 and Postulate 4, the limiting function 

U(P) of FnCP) exists and is an tf-function in K'UK". In view of Postulates 1 

and 2, we can show easily that U(P) is continuons in K'UK" except possibly at 

Q and Qo. 

We next consider the sequence of non-negative functions 

By our construction 

where 

By Postulate 5, 

so that 

W1(P)=O on Jr'-K11 , 

0 2:. W 1 (P) 2:. 2C on ~r' n K 11 , 

C= max [IF*(P)\, ig'(P)IJ>O. 
PE:lf'IJK'' 

<2Cq' 

02:. W1(P) < 2Cq' 

on ~r''nK', 

on ~r"nK', 

where q' is a suitable positive constant less than 1. Also 

so that 

W2CP)=O 

02:. W2(P) < 2Cq' 

02:. W2(P) < 2Cq'q 11 

on ~r"-K', 

on ~r" nK', 
on ~r'nK", 

where q'' is a sui table positive constant less than 1. Consequently 

02:. W 1(P) < 2Cq on K''nK', 
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where 

0~ W2(P) < 2Cq2 

q=min[q', q"]. 

Repeating this argument we obtain 

0~ W2k-1CP) < 2Cq2H 

o ~ w2k cP) < 2Cq2k 

on ~r."nK', 

on ~r.'nK", 
for k= 1, 2, ... . From this it follows that the functions Fn(P) converge uniformly 

on ~r.'nK" and ~r."nK'. Hence on account of Postulate 2, we see that U(P) is 

continuous at Q and Q0• 

Now we define the function s(P) by 

s(P)= {g(P) 
max[g(P), U(P)] 

on J.Jn (K-K'UK 11 ), 

on JJn CK'uK"). 
Weshallshowthats(P) is a sub-barriers(P;~r.,é,M,N). Since U<g on a, s 

is continuous and sub-\'Y in JJnK, and 

so that 

U(Q) =F*CQ), JF*(Q) -NI< é, 

g(P)<min[M,N], U(P)~F*(P) <N+é 

"-(Q)=lims(P) >N-E, 
P-..Q 

s(P)~N+E 

s(P)~M 

in K, 

Thus s(P) satisfies al! the conditions of Definition 8 and is a sub-barrier desired.1l 

PosTULATE 6*. Let Q be a bounded region such that iicD, and let P, Q be 

two different points in Q. Then, for any set of constants E > 0, l'vi and N, there 

exist a super-\'Y function f and a sub-\'Y function g in Q, such that 

lf(Q)-NI <E, f(P)<M, 

lg(Q) -NI< E, g(P) >M. 

Postulate 6 follows immediately from Postulate 6*. 

THEOREM 12. In arder that a boundary point Q of Q be regular, it is necessary 

and sufficient that, for any set of constants E > 0, M and N, there exists a sequence 

of circles K-nE.R' with center at Q and of radii Pn---70, for that super-barriers S(P; K-n, 

E, M, N) and sub-barriers s(P; li:., E, M, N) exist. 

PROOF. It suffices to prove that the condition is necessary. For this we shall 

construct a sub-barrier at Q. Let f(P) be a super-~ function in a circle li:' E ,çt 

with center at Q, such that 

lfCQ)-NI <1. 
1) The case where we can form a disk outside Q in place of triangle in Theorem 11 was proved 

in the paper of Beckenbach-Jackson under different Postulates from ours. They do not set 
such a Postulate as P. 5, which is certainly undesirable. But the author can not support their 
proof. Indeed, the two limiting function u' and u'' in their proof do not coïncide necessarily 
on K'nK'1, on K''nK'. 



Dirichlet problem 

Then, in a suitable small circle KCK', concentric with K', we have 

1/CP)-NI < E. 
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By Postulate 6* and Theorem 3, we can find a super-U: function f'(P) in a 

region f20 -::Jii, such that 

1/'(Q)-NI < E, J'cP)< M* on ~rnJJ, 

where 

M*=min[M, min f(P)]. 
PEK 

Let 

h(P) _ {min[f(P), f'(P)] on wn.K, 
f'(P) on w-K, 

and let H 0 (P) be the under-solution (of first kind) of the Dirichlet problem for f2 

and h. Since Q is regular and h is continuous at Q, we have 

limH0(P)=h(Q) >N-E. 
p_,.Q 

Let Ho' (P) be the under-solution (of first kind) of the Dirichlet problem for 

JJnK1 l and h', where h' is defined by 

Then we have 

h'(P)= {M* 
h(P) 

Ho cP)~ Ho' CP) 

on ~rnf2, 

on wn.K. 

in JJnK, 

for any under-function of the first problem is also an under-function of the second 

problem in JJnK. Hence 

N-E< limHocP)~ Ho'(Q). 
p_,.Q -

By our construction 

Hrf (P)~f(P) in Knf2, 

so that H;(P)~N+E on mnf2, 

and since every point of ~rnf2 is regular, 

Hr{(P)=M*~M on ~rnf2. 

Thus Ho (P) satisfies ali the conditions of Definition 8 and is a sub-barrier desired. 

The existence of super-barriers can be shown similarly. 

3. As an application we consider the partial differentiai equation of elliptic 

type: 
f)2u 82u 

.:Ju= 8x2 +ayz = f(x, y, u), 

where f(x,y,u) is a continuous function defined for (x,y)ED and -=<u<oo. 
Suppose for simplicity that f(x,y, u) is continuons differentiable with respect to 

each variable and that j,,' is non-negative and bounded. 

It is weil known that, for any small circle K E .fr contained with its interior K 

1) When QnK is not connected, we mean by Ho' the collection of under-solutions of Dirichlet 
problem for each component. 
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in D and for any continuous function h defined on tc, there exists a unique regular 

function u which satisfies 

Au= f(x,y, u) 

u=h 

in K, 

on tc.1) 

We take for Sè a family of such circles, that is, circles for which the boundary 

value problems relative to Au= f(x,y, u) and relative to continuous boundary values 

are always solvable, and for ~ the family of solutions of the above boundary value 
problems. Thus Postulate 1 is satisfied. 

Let L be a constant such that 
z(x,y)==.L-x2>Q for (x, y) E K. 

By putting u=zv, the equation Au= f(x,y, u) is reduced to 

Av= ; {tex, y, zv) +2v+4xv_.} 

_ ( ) 4xv_. 
=rp x,y,v +-z-. 

To verify Postulate 2 we suppose that F12F2+M on tc and F1>F2+M at a 

certain point of K. Then setting F;/z= V; for i= 1, 2, we have 

v1- v2- M $Q onK, z-

V1- V2- M > 0 at a certain point of K. 
z 

Renee there is a point (xo,Yo) E K, where V1- V2- M attains its maximum and it 
z 

holds at (xo, Yo), 

that is, 

:x ( Vc V2) = 2~x, Â( Vc V2) 2 2M( ; 2 + 4:S2 
) at (xo,Yo). 

On the other hand, since F1 and F2 are solutions of Au= f(x,y, u), we have at 

(Xo,Yo\ 

and 

A(Vc V2)=rp(x,y, V1)-rp(x,y, V2)+~ aa (Vc V2) z x 
, 8Mx2 

= (Vc V2)[rp. (x,y, v)Jv=~+----za-. V2'2~'2 V1. 

Since fu'(x,y, u)~O, 

rp,J(x,y, v)=!.' (x, y, u) +1_ ~1_ >O z z 

Therefore we obtain at (x0,y0), 

1) Picard, Leçons sur quelques problèmes aux limites de la théorie des équations différentielles 
(1930). 
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J(Vc V2)>2M( z~ + 4; 2
). 

This is a contradiction. Renee F{;?_F2+M in K The last part of Postulate 2 is 

proved similarly. Thus Postulate 2 is satisfied. 

Before we verify Postu!ate 3 we remark that, if u is twice continuous differ­

entiable with respect to x and y, and satisfies 

Ju ~f(x, y, u) 

or Ju ~f(x,y, u), 

then u is a sub-\J function or a super-\J function. 

Let !2 be a bounded region such that QCD, and M be a given constant. Let 

L= max 1/(x,y, O)l, 
(x,Y)EO 

then the function u(x,y) defined by 

u(x,y) = --~-(x2+y2) +M*, 

where M* is a constant, satisfies 

Ju= -L~O 

and u(x,y)>max[M,O]~O in JJ, 

if M* is large enough. Since fu' ~0, we have 

Ju~f(x,y, O)~f(x,y, u). 

Renee u is a bounded super-\J function and u> M in JJ. The existence of a bound­

ed sub-\J function u such that u<M in JJ, is shown similarly. Thus Postulate 3 is 

sa tisfied.1) 

We now go to verify Postula te 4. Let S)(x, y; h, ~e) be the function, harmonie 

in K and continuous on K, which coïncide with h on ~e. Then 

\J(x,y; hv, K)= S)(x,y; hv, ~e)+wv(x,y), 

Wv(X,y)=--2
1 JI G(x,y; ~,'1])/(~,'l], Wv+s:>v)dM'l], 
77: [( 

where s:>v==s:>(x,y; hv, ~e) and G(x,y; ~. rJ) is the Green's function of K with pole 

at (~, 'rJ). 

Assume that hv are uniformly bounded, then .\)v are equicontinuous in K as is 

weil known, and by Postulate 3 and Theorem 5, \J(x,y; hv, ~e) are uniformly 

bounded, say 1\J(x,y; hv, ~e)I<L. Then 

lixwv(x,y)i~ 2~ J J K[Gx(x,y; ~. rJ)/(~, 'l]; Wv+S)•')rd~dl] 

~ ~ J J Kexcx,y; ~. 'IJ*~dr1== w tCx,y), 

where 

M == max 1/C~. rJ, u) 1 
( ~, '7) EK,Iul ~L 

1) We qote th at tlw funçtion obt&ined &ho v~ has the çoptinuol,ls derivatives of ali orders, 
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Similarly 

1-t:yw,(x,y)l~ ~ J t[cy(x,y; ç", 1J)ldç"drJ~ W 2 (x,y). 

Since W 1 and W 2 are bounded in K, :x Wv and :x Wv are so; hence w,: are 

equicontinuous in K. Thus Postulate 4 is satisfied. 

Postulate 5 is verified as follows. Since fu' ~0 and F1~F2 in K (Postulate 2), 

J(Fz-F1)=f(x,y,Fz)-f(x,y,F1)~0 in K. 

This shows that F 2-F1 is subharmonic. Renee 

in K. 
Finally we shall verify Postulate 6*. Assume without loss of generality that 

Q= (0, 0), P= (a, 0), a~O, and that 

max [lxl2 , lx-al2]< R< =. 
ex .nEn 

Since f,,' is bounded, there exists a positive constant L such that, for any v, 

lf(x,y, u)-f(x,y, u+v) I<Livl, (x, y) E Q. 

Let u be a regular function such that 

u(O,O)<N, 

Ju~f(x,y,u) in Q. 

Jndeed such a function exists as proved above.1l Set 

g(x,y) =u(x,y) +v(x, y), v(x,y) =À(x-a) 2"+,ux2", 

where J., 1~ are positive numbers and n is a positive integer such that 

LR<2n(2n -1). 

Then for any ). and /~, 

tlg=tlu+Jv ~f(x,y, u) +Livi 
> f(x,y g). 

Thus g is a sub-tr function desired in Postulate 6* provided that ,l and ~~ are 

so chosen that 

g(O, 0) =u(O, 0) +-la2"=N, 

g(a, O)=u(a, 0) +,ua2">M 

The existence of super-\} functions is shown similarly. 

ExAMPLES. tlu=c(x,y)u+<P(x,y), c(x,y)~O; 

tlu=c(x,y)(u+sinu)+<P(x,y), c(x,y) ~0. 

4. Next we consider the elliptic equation 

tlu= f(x,y, u) 

under different conditions : f and ali its first partial derivatives are continuous for 

(x,y) ED and -oo<u<oo, and further we suppose that f~O, fu'~O and f,' is 

increasing with respect to u. 

Then for any small circle tr: E Sf contained with its interior K in D and for 

1) See the foot-note of page 11, 
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any continuous function h defined on te, there exists a unique regular function u 

which satisfies 
du=f(x,y,u) 

U=h 

in K, 

on"· 

We take for ~ a family of such circles, that is, circles for which the boundary 

value problem relative to du= f(x,y, u) and relative to continuous boundary values 

are always solvable, and for \J the family of solvations of the above boundary value 

problems. Then Postulates 1-5 are satisfied as in the previous paragraph. Hence 

Theorems 1-10 hold for this case. Postulate 6 will not be verified but we can 

show that Theorem 11 remains true. 

LEMMA 1. Let JJ be a bounded region such that fieD, and P, Q be iwo dif­

ferent points in JJ. 7 hen, for any set of constants M and N, there exists a super-\J 

functions h in JJ, such that 

h(Q) =N, h(P)<M. 

PROOF. Assume without Joss of generality that Q= (0, 0), P= (a, 0), a~O. and 

that 

max [lxl 2, lx-ai2]<R<oo. 
ex, Y)ETI 

Let w be a regu!ar function, continuous in ii, such that 

dw;"i,f(x,y,w) in JJ, 

w(O, 0) >N. 

Such a function exists by Postulate 3.1l Set 

h(x,y) = w(x,y) -v(x, y), v(x,y) = ,l (x-a)2" +t.txz", 

where J., p. are positive numbers and n is a positive integer such that 

L= max lw(x,y)l, 

Then for any ,l and p., 

(X, Y)@ 

R max [fu'(x,y,u)]u=L<2n(2n-1). 
ex, y)En 

dh=dw-dv ;"i,f(x,y, w) -v[fu'(x,y, u)Ju=L 

;=;;,f(x,y, w-v) = f(x,y, h), 

since v~O and J,; is increasing with respect to u. 

Thus h is a super-\J function desired in Lemma provided ihat ,l and 11 are so 

chosen that 

h(O, 0) =w(O, 0) -J.a2"=N, 

h(a, O) =w(a, O)-p.a2"<M. 

LEMMA 2. Let Q he a point of D. Then for any set of constants N and M 

(>N), there exista circle KE~ with center at Q and a function g, such that 

a) g(P) is continuous in K and sub-\J in K, 

1) See the footnote of page 11. 
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b) g(Q)=N,g(P);;;,N in K and g(P)=M on K. 

PROOF. Let us assume that Q is the origin of coordinates. Let Ko be a fixed 

circle with center at Q and of radii p, such that KocD. Then there are a positive 

number a( <p) and a function u(x), such that 

a) u(x) is a solution of the ordinary differentiai equation 

d2u -d 2 =F(u)= max f(x,y, u) in lxl~a, 
X (X, Y)EK 

b) u(x) is increasing in lxl~a and u(O) =N, u(a)=M. Indeed such a function 

is given by the form 

1" dt 

x=JN/const. +2 LFCnd~ 
Putting 

we bave 

go(x,y)=u(x cosO+y sinO), x2+y2~a2, 

Âgo(x,y) =F(go) ;;;,j(x,y,go). 

Then the function g defined by 

g(x,y)= sup go(x,y)=u(Vx2+y2) 
0~8<271" 

is a sub-iT function desired in Lemma. 

PROOF OF THEOREM 11. By Lemma 1 the existence of sub-barriers at Q is 

clear.1) We shall give the construction of a super-barrier for a suitable small 

circle K with center at Q and for any set of constants e>O, M and N. 

By Lemma 2 there exist a circle K E ~ with center at Q, such that K cD, and 

a function g such that 

a) g(P) is continuous in K and sub-iT in K, 

b) g(Q) = N, g(P) ?;.N in K and g(P) = max[M, N] + 1 on K. 

Choose a infinite sequence of circles K; E ~ such that 
- 00-

K;CK-J, l)K;=K-J, 
•=1 

and define the functions S;(P) by 

S;(P) = {i'Y(P; S;-1, Kj(;)) 

S;-1CP) 

for PE KiC;), 
=------,------,;c;o---

for PE K-J-Kico, 

where S0=g and {j (i)} = 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, ........ · for i = 1, 2, 3, ........ ·. Then 

S;(P) are sub-iT in K-J and 

S;-1(P)~S;(P) in K-J. 

We note that 

JS, = f(x,y, S;);;;;, 0 

that is, S,(P) are subharmonfc in .Kj(;). 

N ow we define 

1) See the proof of Theorem 11 in Paragraph 2. 

in Kj(;), P= (x, y), 
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for PE Kjc;J, 

for PE K=-11-K;c-;-l, 
for i = 1, 2, 3, .... , where H0=:=g. Then in Potential theory· we know that 

lim H;(P) =H(P) 
i-+co 

is harmonie in K- J and, since Q is regular relative to the harmonie equation, 

lim H(P) =g(Q) =N. 
P-+Q 

Comparing S; and H;, we obtain 

g(P) ~ S;(P) ~ H;(P) 

From this it follows that 

lim S;(P) = S(P) 
i-oo 

exists and is an iY-f unction in K- J. Also 

g(P) ~ S(P)~ H(P) 

therefore S(Q)=N, 

S(P)~N 

~(P)~max[M,N]+l>M 

in K-J. 

in K-J, 

in K-J, 

on Kn (K-J). 
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This shows that S(P) is a super-barrier S(P; K, é, M, N) in Kn JJ, smce J is 

outside JJ. Thus the proof of Theorem 11 is completed. 

By replacing K- J by Kn J2 in the above proof we can show the existence of 

super-barriers S(P; K, é, M, N) provided that Q is regular relative to the Laplace 

equation Ju=O. Renee we obtain 

THEOREM 13. If a boundary point Q of J2 is regular relative to the Laplace 

equation, then we have 

H*CQ)~ÏÏ(Q) 

for every bounded boundary value function h. 

Finally we add the following theorem. 

THEOREM 14. If al! boundary points of J2 are regular relative to the Laplace 

equation, then we have 

H* (P) === H* (P) 

for every continuous boundary value function. 

PRooF. By Theorem 13 we have 

H*CQ)~h(Q) onro, 

for every continuo us boundary value function h. Since H* (P) 1s an iY-function 

in JJ, it is an under-function, so that 

H*(P)~ H*(P), 

therefore H*(P)=== H/P). 

EXAMPLE. Ju=~c(x,y)e"+V?(x,y), c(x,y)~O, V?(X,y)~O. 

REMARK. We return to the general case as treated in Paragraphs 1-2. Then 

Theorems 13-14 remain valid if we add the following postulate. 
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PosTULATE 7. If FE~ and :tJ(F) =K, then F is subharmonic in K. 
Hence Theorems 1-14 hold for the elliptic equation 

4u= j(x,y, u), 

where f'ii;,O, j,: ';;;;,0 and fu' is bounded. 

EXAMPLE. 4u= ~~;~ +q>(x,y), c(x,y)'ii;,O, <p(x,y)~O. 


