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In their paper? Beckenbach and Jackson considered some properties of sub-
functions for a dominating family of functions and studied a Dirichlet problem
relative to that family of functions. In this paper the author follows them, develops
their researches and gives some applications to partial differential equations of
elliptic type.

1. Notations, definitions, postulates and theorems that they set or obtained are
reproduced here with slight modifications for the later use.

Let D be a plane region (non null connected open set) and & a family of circles
& such that

a) « lies with its interior K in D, that is,

K=k+KCD,

b) for any point P of D, every small circle with center at P and every small
circle through P belong to 82

Let & be a family of functions whose domains of definition are K (x€ &) and
which satisfy the following postulates.

PostuLAaTE 1. For any member &€& and any continuous boundary value
function ~2(P) on k, there is a unique function F(P)=%(P; h, £) €F such that

a) F(P)=h(P) on «,

b) F(P) is continuous in D(F)=K, where D(F) denotes the (closed) domain
of definition of F.

PostuLATE 2. For each constant M=0, if

FeF DFH2K (=1, 2)
and F(P)=F.,(P)+M on &,
then F(P)sF{P)+M in K;
further, if the strict inequality holds at a point of &, then the strict inequality
hold throughout K.
Remark. If F €% and D(F) =K, then
§(P; F,»)=FP) T,
for any 7 € & such that 7 lies together with its interior I in K.

1) E.F. Beckenbach and L. K. Jackson, Subfunctions of several variables, Pacific Journal of Mathe-
matics (1953).

2) In the sequel (he elements of & are denoted by &, 7,....and their interiors by K, I",....,
respectively.
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DeriNiTION 1. A continuous function g(P) defined in a region £, contained

in D, is called a sub-& function in @, if it holds
gP)=3(P;g £) in K,
for any &€ & such that KC4.

THEOREM 1. A function g(P), continuous in 2, is a sub-F function in £ if,
and only if, corresponding to each P of 2, there exists a sequence of circles k,€ &
with center at P and of radii p,—0, such that

g(P)=F(P; g, k).

THeOREM 2. If g,(P) is a sub-& function in £ for n=1,2,.... and g,—g
uniformly on each compact set of 2, then g(P) is also a sub-F function in 2.

THEOREM 3. If gy(P), &(P), -, g.(P) are sub-§ functions in £, then the
Sunction g(P) defined by

g(P)=max[g;(P), &(P), -+, g.(P)]
is also a sub-§F function in 9.

THEOREM 4. If g(P) is a sub-§ function in 9, then for any k€ with KCQ,

the function g.(P) defined by

£ {

is also a sub-T function in 9.

g(P) for P€ 9—K,
F(P; g, k) for PEK,

DEeFINITION 2. Super-§ functions are defined by reversing the inequality in
Definition 1. It is easy to show that results analogues to Theorems 1~4, with
suitable alternations, hold for super-§ functions: in addition to writing “super-%
function” for “sub-§ function,” we reverse the inequality in Theorem 1 and re-

i3

place “max” by “min” in Theorem 3.

DeriniTiON 3. We shall say that a function F(P), which is continuous in £
and satisfies

F(P)=F(P; F, k) in K,

for each £ €& with KC®, is an §-function in Q.

Hence F is an §-function if and only if F is both sub-§ and super-§.

ReMark. An $-function need not belong to &, but a function FegF is an -
function in the interior of D(F).

Let 2(P) be a bounded, but non necessary continuous, function defined on the
boundary o of a bounded region £. We shall define h, and h by

R(Q)=1lim sup A(P), h(Q)=lim inf h(P).
5§50 pR<$ - 8§50 pQ<3

TueoreM 5. Let f(P) and g(P) be a super-§ function and a sub-i§ function in
9, respectively. If
g@=r@ on o,

then g(P)=f(P) n 0.
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Let H(P) be a function defined in £. We shall define H, H on o, by
H(Q)=1lim sup H(P), H(Q)—lim inf H(P).
9< 38

8§50 P 8§50 PQ<S .
DerFiniTION 4 (Dirichlet problem). By a solution of the Dirichlet problem for
a bounded region £ and a given boundary value function # on w, relative to %,

we shall mean a function H(P) which is an $-function in © and satisfies

KQ=HQ=HQ=h@Q on o

To construct such a solution of Dirichlet problem we shall use the so-called
Poincaré-Perron method.

DeFiNiTION 5. A function @(P), bounded and sub-§ in £, is an under-function
of first kind provided that

0Q=h@ on w,
and an under-function of second kind provided that
O=h@Q on o
A function 7 (P), bounded and super-§ in 2, is an over-function of first kind
provided that
r@Q=h(@Q  on w,
and an over-function of second kind provided that
T@Qz=h@ on o

An under (over)-function of second kind becomes clearly an under (over)-function
of first kind. UU*) and O(O*) denote the families of under-functions and over-
functions of first(second) kind, respectively.

PosTuLATE 3. For each constant M and any £, there exist a bounded super-%
function f(P) and a bounded sub-g function g(P) such that

g(P)<M<f(P) in 2.

From this it is clear that the families U, U*, © and O are not empty, re-
spectively.

THEOREM 6. If @ €W and ¥ €D, then

OP)=V(P) in 9.

CorOLLARY. If 0 €U* and ¥ €D¥, then O =¥ in Q.

PosTULATE 4. For any £ €& and for any collection {%,} of functions which
are continuous and uniformly bounded on «, the functions F(P;hv., k) are equi-
continuous in K.

DEFINITION 6. We shall define the functions H°(P), H*(P), H.(P) and H (P)
by

H° (P)=inf¥ (P), H"(P)=inf"(P),
weD we ¥

H,(P)=sup ¢(P), H (P)=sup O(P).
el @ ¥
TuEOREM 7. The functions H°(P), H*(P), H,(P) and H.(P) are J-functions
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in 2 and it holds
H (P)=sH,(P)=H*(P)= H*(P) m Q.

H°(H*) and H,(H ) are called the over-solution of first(second) kind and the
under-solution of first(second) kind of the Dirichlet problem for £ and #4, felative
to &, respectively.

Remark. If % is continuous on w, then

H (P)=H,(P), H°*(P)=H"(P) in Q.

DermviTioN 7 (Regular boundary point). A boundary point @ of £ is regular
(relative to &) provided that, for every continuous boundary value function % on
, the functions H*(P) and H,(P) satisfy

. * .
LlinQH (P)=yi%H*(P)=h(Q).

THEOREM 8. If a boundary point Q of 9 is vegular, then
h@=H, Q=T @@=
for every bounded boundary value function h on o.

Proor. Since Z(P) is upper semi-continuous on , we can find a decreasing
sequence of continuous functions %,(P) on o, such that %, | % Denoting by H,*
the over-solution of second kind of the Dirichlet problem for 2 and %, we have

H*(P)= H}(P) in Q.

Since @ is regular,

H*(Q) <lim H} (P) = 7,(Q).
P3Q
Hence we get by letting n—>o0,
H* @ =nhQ).

The inequality 2(Q)=H (Q) is shown similary.

TuroreM 9. If all boundary points of 9 are regular, an F-function H(P) in
2, such that

H(P)=H(P)=H*(P) in 9,
is a solution of the Dirichlet problem for £ and h. Especially if h is continuous on
o, the Dirichlet problem has the unique solution H, (P) =H"(P).
ExampLE. Consider the case where ¥ consists of harmonic functions. Take
for £ the unit circle: |z|=|x+iy|<1, and let k(e'?), 0=0<<27, be given as follows:
) = 5 1 for irrz‘itional a,
(0 for rational .
Then
H, (P)=0, H,(P)=H°(P)=H*(P)=1.

DerFINITION 8 (Barrier). For a boundary point @ of £, a circle £€& with

center at @ and with K CD, and constants >0, M and N, a function
s(P)=s(P; ke, M, N)
is a sub-barrier provided that
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a) s(P) is a sub-§ function in QN K,

b) s(@)=N-e¢,

c) s(P)s=N+e on oNK,
d) s(Ph=M on kNAQ.
A function

S(P)=S(P;k,e, M, N)

is a super-barrier provided that

a) S(P) is a super-§ function in 2N K,

b) S(Q) =N+e,

c) S(P)=N-¢ on oNK,

d SP)=M on £N.Q.

TueoreM 10. For a boundary point Q of 2 and for each set of constants >0,
M and N, there exists a sequence of circles k,€ & with center at Q and radii p,—0
for which super-barriers S(P; k,, €, M, N) and sub-barriers s(P;«k,, ¢, M, N) exist,
then Q is a regular boundary point.

2. Let &, 7€ & be two circles crossing at two different points, and {h,(P)}

a sequence of non-negative continuous functions defined on «, such that
hn<P>§hﬂl1<P> on «,

h,(P)=0 on -1,
lim#z,(P)=1 on kNI".

Then by Postulate 2 the functions §(P;h,, «#) tend to a limiting function in K,
independent of choice of {4,}. Let F(P, £, 7) denote this limiting function. We
shall now set up the following postulates.
PosTULATE 5. If Fi€ %, DF)2K (i=1, 2) and
Fi(P)=F,(P) on k,
then EP)=SF(P)+SP; F,~Fy, k) in K,
where & is a family of functions which satisfy Postulates 1~2 and further
a) SWP; A, £)=28(P;h, &)
for any x € &, any continuous function % on x and any positive number 4,
b) &Pk, v)<q on7NK,
where ¢ is a positive constant less than 1, dependent only upon « and 7.
PosTuLATE 6. Let @ be a point of D, and P be a point (@) in the interior
K of a circle £ € & with center at @, then there exist a super-§ function f and a
sub-§ function g in K, such that
/(@ —Ni<e, f[(P)<M
and 8@ —Nl|<e, g(P)> M,
for each set of constants ¢>0, M and N.

1) The family of all harmonic functions forms evidently a ®-family.
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TueozeM 11 (Poincaré’s condition). If for a boundary point Q of Q there exists
a closed triangle 4 with vertex at Q, such that

4N2=Q,
then Q is a regular boundary point.

Proor. We shall give the construction of a sub-barrier for a suitable small
circle £ with center at @. The existence of super-barriers can be treated similarly.

Let 0 € ® be a circle with center at Q. Then there exists a super-§ function
f(P) in K, such that

|F@—NI<+.
By continuity there is a circle kCK,, concentric with o, such that
f(P)<N+e in K.

Now define M, =min[M, N1.

Then by Postulate 3 there is a sub-§ function g(P) such that
g(P)<M, in K.

Let QTy, QT be two sides of 4 and @7, the line-segment bisecting the outer
angle of Q. Take three points @,, @; and @, on Q7T,, Q7Ty and Q7T,, respectively,
so that

P=Q—Q0=Q—Q1=Q—Q2-
Let £" be the circle through @, Qo, @4, and «” the circle through @, Q,, Q.. If we
choose p sufficiently small, £’ and £” belong to & and lie together with their in-
teriors in K. Let g; be the arc @i(i=1,2) not containing @ and set g=0,Uodgs..

We can then construct, by Postulate 6 and Theorem 3, a super-& function F
in K, such that

|F(Q)—N|<e, F(P)<g(P) on q.
Define the function F*(P) by F*(P)=min[ f(P), F(P)], then F*(P) is a super-%¥
function in K and satisfies
IF*(@)—N|<e,
F*(P)<g(P) on g,
F*(P)<N+e¢ in K.

We now define H,(P) and H,”(P) on K’ and K", respectively, and F,(P) in
K'UK?" as follows:

H{(P)=%(P;F*, &) in K',

F*P, on £”"—K’,
Hl”(P)={H1’(P) on k"NK’,
3(P; Hy”, ) in K,
F*(P) on £'—K”,
H/ (P)={H{,’_1(P) on £'NK”,
FP; H/, &)  in K,
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F*(P) on £"—K',
Hn”CP):{Hn/ (P) on £”"NK’,
FP; HY, £”)  in K7,
for n=2, 3, ---, and

H, (P) in K7,
Faps(P ={ s
2-1(P) Foa(P) in K"—K’,
H(P : 744
Fucp) = {2 in K7,
ng_l(P) mn K’-K”,

for k=1, 2, .-, where F,(P)=F*(P).
Since F*(P) is a super-§ function, {F,(P)} forms a decreasing sequence of
super-g functions. Let
L = min F*(P).

PERIUEN
By Postulate 3, there is a sub-§ function g’(P) such that
g'(P)<L in K’'UK?”.

Then g(P)<F,(P)=F*(P) in K'UK”,
for n=1, 2, ---, and ‘
Fopa(P)=F(P; Fop-s, £") in K’,
Fo(P)=F(P; Far, &) in K",
for k=1, 2,---. Hence, by Theorem 2 and Postulate 4, the limiting function

U(P) of F,(P) exists and is an §-function in K’UK”. In view of Postulates 1
and 2, we can show easily that U(P) is continuous in K’UK” except possibly at

@ and Q,.

We next consider the sequence of non-negative functions
W,(P)=F,(P)—F,.(P).
By our construction

Wi(P)=0 on £ — K",
o=wi(P)=2C on £&'NK",
where C= max [|F*(P)|, lg"(P)|1>0.
PEK'UK!

By Postulate 5,
0= Wy (P)=2CG(P;«’, &")

<2Cq’ on £"NK’,

so that 0=Wy(P)<2Cq" on " NK’,
where ¢’ is a suitable positive constant less than 1. Also
Wo(P)=0 on k”—K’,

0= WL (P)<2Cq’ on £”"NK’,

so that 0=Wx(P)<2Cq'q" on £'NK?”,

where ¢” is a suitable positive constant less than 1. Consequently
0=W,(P)<2Cq on #”NK’,
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0=W,(P)<2Cq® on «'NK”,
where g=min[q’,q"].
Repeating this argument we obtain
0=Wa_1(P)<2Cg?*1  on x"NK’,
0= W (P) < 2Cg* on &' NK?”,
for k=1, 2, ---. From this it follows that the functions F,(P) converge uniformly
on #’NK” and k”NK’. Hence on account of Postulate 2, we see that U(P) is
continuous at @ and Q.
Now we define the function s(P) by
S<P)={g(P> on ,Qﬂ(lmf—l?_’ul?”),
max[g(P), UP)] on 2NK'UK").
We shall show that s(P) is a sub-barrier s(P;«x,e, M, N). Since U<g on o, s
is continuous and sub-§ in 2N K, and
U =F*@), IF*@~N|<e¢,
g(P)<min[M,N], U(P)=<F*(P) <N+¢ in K,
so that
’§<Q)=}’%S<P> >N-—g¢,

5(P)=N+e¢ on oNkK,
s(P=M on £NL.
Thus s(P) satisfies all the conditions of Definition 8 and is a sub-barrier desired.V

PostuLaTE 6*. Let £ be a bounded region such that 2CD, and let P, Q be
two different points in £. Then, for any set of constants ¢ >0, M and N, there
exist a super-§ function f and a sub-§ function g in £, such that

I f(@—~N|<e, f(P)<M,
lg(@ —Nl|<e, g(P)>M.

Postulate 6 follows immediately from Postulate 6*.

THEOREM 12. In order that a boundary point Q of 2 be regular, it is necessary
and sufficient that, for any set of constanis ¢ >0, M and N, there exists a sequence
of circles k,=8 with center at Q and of radii p,—0, for that super-barriers S(P;«k,,
&, M, N) and sub-barriers s(P;k,, ¢, M,N) exist.

Proor. [t suffices to prove that the condition is necessary. For this we shall
construct a sub-barrier at Q. Let f(P) be a super-§ function in a circle £ €&
with center at @, such that

F@— NI <.

1) The case where we can form a disk outside 2 in place of triangle in Theorem 11 was proved
in the paper of Beckenbach-Jackson under different Postulates from ours. They do not set
such a Postulate as P. 5, which is certainly undesirable. But the author can not support their
proof. Indeed, the two limiting function #’ and «” in their proof do not coincide necessarily
on £'nNK”, on K"nNK’,
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Then, in a suitable small circle KCK’, concentric with K’, we have
| f(P)—N|<e.
By Postulate 6 and Theorem 3, we can find a super-§ function f’(P) in a
region 2,08, such that
| f/(@—NI|<e, f((PY<M, on N,
where
M, ~min[ M, r’pelKg F Pl
Let
h(P)={min[f(P), f(P)]  on wﬂlf',
S'(P) on o—K,
and let Hy(P) be the under-solution (of first kind) of the Dirichlet problem for 2
and k. Since @ is regular and % is continuous at @, we have
Li_%H“(P> =n(Q)>N-e.

Let Hy (P) be the under-solution (of first kind) 6f the Dirichlet problem for
2NKY and &', where &' is defined by
, M on kN2,
WP = {h(;’) on wNK.
Then we have
Hy,(P)=H/ (P) in 2NK,
for any under-function of the first problem is also an under-function of the second
problem in 2N K. Hence
N—s<1}ilngo(P)§Ho’(Q)-

By our construction
Hy (P)=f(P) in KNG,
so that HY(P)SN+¢ on 0N,
and since every point of kN is regular,
HY(P)=M_ =M on £NL.
Thus Hy (P) satisfies all the conditions of Definition 8 and is a sub-barrier desired.
The existence of super-barriers can be shown similarly.
3. As an application we consider the partial differential equation of elliptic
type:

=0 | O _
du= axz + 6}’2 ”“f(x’y’ u)»

where f(x,y,u) is a continuous function defined for (x,y) €D and —oo<u<oo,
Suppose for simplicity that f(x,y,#) is continuous differentiable with respect to

each variable and that f, is non-negative and bounded.
It is well known that, for any small circle £ € & contained with its interior K

1) When £2nK is not connected, we mean by Hp' the collection of under-solutions of Dirichlet
problem for each component,
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in D and for any continuous function % defined on «, there exists a unique regular
function # which satisfies
du=f(x,y,u) in K,
u="n on &b
We take for & a family of such circles, that is, circles for which the boundary
value problems relative to du=f(x,y,u) and relative to continuous boundary values
are always solvable, and for ¥ the family of solutions of the above boundary value
problems. Thus Postulate 1 is satisfied.
Let L be a constant such that
2(x, N=L—x2>0 for (x,y) €K.
By putting #=2zv, the equation du=f(x,y,u) is reduced to

1
Av=—2—{f(x,y, zv) +21}+4xv,}

Eca(x,y,v)+“—:’i.
To verify Postulate 2 we suppose that Fi=Fo+M on £ and Fi>F+M at a

certain point of K. Then setting F;/z=V; for i=1, 2, we have

Vl-Vg—%éO on k,

Vi— V2—~JZK>0 at a certain point of K.

Hence there is a point (xo,30) € K, where Vi— V2—¥ attains its maximum and it

holds at (xo, y0),

=0, 4(vi- VZ—M) =0;

7 :

L(ven-t
that is,

2
_667( Vim V2) - Zi‘gx ’ A(Vy— V2>§2M<%+%) at (%o, 0).

On the other hand, since Fy and F, are solutions of du=f(x,v,u), we have at
(xOry0>y

AVi= V) =053, VD —p(sy, Vo + 50 (v, )

o 2
=(Vi=Vole, (x,3, 0)J=¢+ s

z3
Since f,'(x,y,u)=0,

Vesé=sV,

, 2.2
‘p0,<x!y’ v)zfu (x} y; u) +Z g? >0
and Vi— V2>% at (xg,¥0)-

Therefore we obtain at (x,y,),

1) Picard, Lecons sur quelques problémes aux limites de la théorie des équations différentielles
(1930).
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AVi= Vo> 2M (5 +45)).
This is a contradiction. Hence Fi=F,+M in K. The last part of Postulate 2 is
proved similarly. Thus Postulate 2 is satisfied.

Before we verify Postulate 3 we remark that, if # is twice continuous differ-
entiable with respect to x and y, and satisfies

du=f(x,y,u)

or du=f(x,y,u),
then # is a sub-§ function or a super-g function.

Let £ be a bounded region such that 2CD, and M be a given constant. Let

L= max | f(x,y,0)],
(x, 9 €O
then the function #(x,y) defined by
ux, ) = ——%(x“ry?“) +M*,

where M™ is a constant, satisfies

du=—-L=0
and u(x,y)>max[M,0]=0 in @,
if M* is large enough. Since f/=0, we have
du=f(x,y, 0O=f(x,y,u).

Hence # is a bounded super-§ function and #>M in £. The existence of a bound-
ed sub-§ function # such that u<M in @, is shown similarly. Thus Postulate 3 is
satisfied.V

We now go to verify Postulate 4. Let $(x,y; %, &) be the function, harmonic
in K and continuous on K, which coincide with % on . Then

3y, by, =9,y by, &) +w,(x,5),
w,(5,3) = =5 [| Gloy; &mfEn, w,+9,)dedn,
where ,=9(x,y; hy,x) and G(x,y; & 7) is the Green’s function of K with pole
at (&, »).
Assume that %, are uniformly bounded, then $, are equicontinuous in K as is

well known, and by Postulate 3 and Theorem 5, {(x,; %, £) are uniformly
bounded, say |F(x,y; 4., £)|<L. Then

] 9 G, 3; &) f(E,7; wot-Do)\dedn

ox uu(x,y)]é%JJK

=5 /),

M= max |f(&n,u)|

&, EK |u|SL

G.(x,y; &, n)’dédnz W (x, ),

where

1) We note that the function obtained above has the continuous derivatives of all orders,
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Similarly

[ )sgs [ [

. . 0 0
Since Wy and W, are bounded in K, Y and B W are so; hence w, are

dédn=W (x,y).

G,(x,y; &,7)

equicontinuous in K. Thus Postulate 4 is satisfied.
Postulate 5 is verified as follows. Since f,/ =0 and Fy=F, in K (Postulate 2),

A(Fo—F)=f(x,9, Fo)—f(x,9, Fp=0  in K.
This shows that F,— Fy is subharmonic. Hence
Fy(P)—Fy(P)=9(P; F,—Fy, £) in K.
Finally we shall verify Postulate 6*. Assume without loss of generality that

Q=(0,0), P=(a,0), a=0, and that
max [|x, |[x—alZ]< R< oo,

RN
Since f,/ is bounded, there exists a positive constant L such that, for any v,
Uy, ) —f(x,y, ut+0)|<Llpl,  (x,)€L.
Let # be a regular function such that
u(0,0) <N,
du=f(x,y,u) in 2.
Indeed such a function exists as proved above.l Set
g, ) =ulx, y)+v&, y), v(x,y) =A(x—a)¥+pux?",
where 4, # are positive numbers and # is a positive integer such that
LR<2n(2n—1).
Then for any 4 and g,
dg=du+4v=f(x,y, u)+ L|v|
>f(x,y 8.
Thus g is a sub-§ function desired in Postulate 6* provided that A and x are
so chosen that
£(0,0)=u(0,0) +4a2"=N,
gla, 0)=u(a,0)+pna®>M.
The existence of super-§ functions is shown similarly.
EXAMPLES. du=c(x, Dute(x,y), clx,y)=0;
du=c(x,y)(u+sinu)+¢(x,y), c(x,y)=0.
4. Next we consider the elliptic equation
du=f(x,y,u)
under different conditions: f and all its first partial derivatives are continuous for
(x,9) €D and —oo<u<oo, and further we suppose that =0, f,/=0 and f, is
increasing with respect to «.
Then for any small circle # € & contained with its interior K in D and for

1) See the foot-note of page 11,
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any continuous function % defined on &, there exists a unique regular function #
which satisfies

du=f(x,y,u) in K,

u=nh on «.

We take for & a family of such circles, that is, circles for which the boundary
value problem relative to du=f(x,y,u) and relative to continuous boundary values
are always solvable, and for § the family of solvations of the above boundary value
problems. Then Postulates 1~5 are satisfied as in the previous paragraph. Hence
Theorems 1~10 hold for this case. Postulate 6 will not be verified but we can
show that Theorem 11 remains true.

LeMMA 1. Let 2 be a bounded rvegion such that QCD, and P, @ be two dif-
Sferent points in Q. Then, for any set of constants M and N, there exists a super-F
Sfunctions h in 2, such that

h(@) =N, h(PH)<M.

Proor. Assume without loss of generality that @=(0,0), P=(a,0), a=0, and

that
max [|x]2, |[x—al2]< R<eco,

(*, »HEQ
Let w be a regular function, continuous in £, such that

dw =f(x,y, w) in £,

w(0,0)>N.
Such a function exists by Postulate 3.1 Set

h(x,y) =w(x, y)—v(x, »), v(x, y)=A(x—a)*"+px™,
where 4, 22 are positive numbers and » is a positive integer such that
L= max |w(x, )|,
*, )€q

R max [ f/(x,9,4) lu=r<2n(2n—1).

(x, »)€EQ
Then for any 2 and u,

dh=Adw—4v = f(x, y, w) —v[ fu' (%, 3, ) Ju=t
=flx,y,w—0v)=f(x,9,h),
since v=0 and f, is increasing with respect to u.
Thus £ is a super-§% function desired in Lemma provided that 4 and x are so
chosen that
7(0,0) =w(0,0) —ia*" =N,
h(a, 0) =w(a, 0)— pa®" <M.
LEMMA 2. Let Q be a point of D. Then for any set of constants N and M
(>N), there exist a circle £ € & with center at @ and a function g, such that
a)y g(P) is continuous in K and sub-§ in K,

1) See the footnote of page 11.
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b) g(Q) =N,g(P)=N in K and g(P)=M on &.

ProoF. Let us assume that @ is the origin of coordinates. Let x, be a fixed
circle with center at @ and of radii p, such that Ko,CD. Then there are a positive
number a(<p) and a function #(x), such that

a) u(¥) is a solution of the ordinary differential equation
d2u

=F(u)= max f(x,y,u in |x|=a,
e ~FG0= max fnyw in 2

b) u(x) is increasing in |x|=a and #(0) =N, u(a)=M. Indeed such a function
is given by the form

“ dt
ng /Const. +2 JI F(§)d¢
N N

Putting
Zo(x, y)=u(x cosf+y sing), x2+y2>=a?,
we have 4go(x,y)=F(go) =f(x,, &o).
Then the function g defined by
8 y)= sup £o(x,y)= u(V/ x*+y?)

is a sub-§ function desired in Lemma.

Proor or THEOREM 11. By Lemma 1 the existence of sub-barriers at @ is
clear» We shall give the construction of a super-barrier for a suitable small
circle £ with center at @ and for any set of constants ¢>0, M and N.

By Lemma 2 there exist a circle £ € & with center at @, such that K CD, and
a function g such that

a) g(P) is continuous in K and sub-§ in K,
b) g(@)=N, g(P)=N in K and g(P)=max[M, N]+1 on «.

Choose a infinite sequence of circles &; € & such that

R.cK—4, ﬁl[?,:K—A,

and define the functions S;(P) by

Si(P) = {%(P;S'—l’ Kj() for P€ K,
S,'_;[(P) for Pe€ K—A—Kj(;),
where Sy=g and {(j(4)}=1,2,1,2,3,1,2,3,4,1,2, ==+ for 1=1,2,3, «++eee . Then

S;(P) are sub-§ in K—4 and
Si-1(P) = Si(P) in K—4.
We note that
4S,=f(x,y,S)=0  in K;i», P=(x,3),
that is, S,(P) are subharmonic in K.
Now we define

1) See the proof of Theorem 11 in Paragraph 2.
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H(P) = {@(P;Hi-b ki) for Peffim -
H_,(P) for Pe K—4—K;;»,
for i=1,2,3,...., where Hy=g. Then in Potential theory we know that

lim H,(P) = H(P)
is harmonic in K—4 and, since @ is regular relative to the harmonic equation,
Li_r’% H(P)=g(@) =N.

Comparing S; and H;, we obtain
g(P)=S;(P)=H,(P) in K—4.
From this it follows that
tlirgol S:(P)=S(P)

exists and is an §-function in K—4. Also

g(P)=S(P)= H(P) in K—4,
therefore S(@) =N,
S(P)=N in K—4,

S(P)=max[M,N]1+1>M on £N (K-—4).
This shows that S(P) .is a super-barrier S(P;«x, ¢, M, N) in KN, since 4 is
outside 2. Thus the proof of Theorem 11 is completed.

By replacing K—4 by KN& in the above proof we can show the existence of
super-barriers S(P; &, ¢, M, N) provided that @ is regular relative to the Laplace
equation 4d#=0. Hence we obtain

Tueorem 13. If a boundary point Q of 2 is regular velative to the Laplace
equation, then we have

H@Q=h@
Sor every bounded boundary value function h.

Finally we add the following theorem.

TueoreEM 14. If all boundary points of Q ave regular relative to the Laplace
equation, then we have

' H*(P)=H,(P)
Jor every continuous boundary value function.
Proor. By Theorem 13 we have
H*(Q)§h<Q) on ,
for every continuous boundary value function 4. Since H*(P) is an {-function
in £, it is an under-function, so that
H*(P)= H,(P),
therefore H*(P)=H(P).

ExaMPLE. du=c(x,y)e"+o(x,y), c(x,y)=0, ¢(x,y)=0.

ReMmark. We return to the general case as treated in Paragraphs 1~2. Then
Theorems 13~14 remain valid if we add the following postulate.
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PostuLAaTE 7. If FEF and D(F)=K, then F is subharmonic in K.
Hence Theorems 1~14 hold for the elliptic equation
' du=f(x,y,u),
where f=0, f,/ =0 and f,/ is bounded.

RLC))

ExAMPLE. 150"

+o(x,3), c(x,9) =0, ¢(x,y)=0.



