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Abstract
The n-th modular equation for the elliptic modular functioj(z) has large
coefficients even for smal, and those coefficients grow rapidly as— oo. The
growth of these coefficients was first obtained by Cohen .([Fhd, recently Cais
and Conrad ([1],§7) considered this problem for the Hauptmodi(z) of the
principal congruence group(5). They found that the ratio of logarithmic heights of
n-th modular equations foj(z) and js(z) converges to 60 as — oo, and observed

that 60 is the group inde) (1) : T'(5)]. In this paper we prove that their observation
is true for Hauptmoduln of somewhat general Fuchsian gradphke first kind with
genus zero.

1. Introduction

Let § ={ze C|Imz > 0} be the complex upper half plane amn¢z) =q—1+744+
196884y + - - - be the elliptic modular function 0SLy(Z) with z € § andq = ez,

Further, let®}(X, Y) = 0 be then-th modular equation foi(z) (see [6, 10, 11]). Then
<1>£,(x, Y) is a polynomial with integral coefficients satisfyir(g%(j(z), j(n2)=0, and
is irreducible as a polynomial irX over C(Y). Moreover it is known thatb{)(x, Y)
satisfies the Kronecker congruences, amiqx, Y) has large coefficients even for small
n. For example,

DL(X, Y) = X(X +2!°.3. 833 + Y(Y +215. 3. 5% — x3Y3
+2%.32.31X2Y3(X +Y) — 22 . 33. 9907X Y(X? + Y?)
+2.3%.13.193.6367X2Y2+216.35.5%.17. 263X Y(X +Y)
—231.58.2297KY.

Note that the coefficients ocbé,(x, Y) grow quite rapidly a:m — oo, which was first
estimated by Cohen ([5]) as follows.

For a nonzero polynomiaP(Xy, ..., X;) € C[Xy,..., X;], let h(P(Xy,..., X;)) be
the logarithmic heightof P(X4,..., X;) defined by the logarithm of the maximum of
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the absolute values of its coefficients. And, throughous #riticle we use)-notation
which has the following meaning; let andg be complex valued functions defined on
some setS and h be a real valued positive function defined 8n Then f = g+ O(h)
means that there exists an absolute positive constastich that|f —g| < A-h on

S With the aid of height and-notation Cohen showed that how rapid1(/<1>,j1(x, Y))
grows asn — oo, that is, for any positive integar we have

log p

(1.1) h(@)(X, Y)) = 6y(n){logn -2

pin

+01Q)¢,

wherey(n) =n ]'[pm(l +1/p).

On the other hand Cais and Conrad recently considered thelleroelquations of
the Hauptmoduljs(z) = qY5(1+q —q®+qg®+.--) of I'(5). For a positive integen
with (n,5) =1 we IetCI>,j15(X, Y) = 0 be then-th modular equation fojs(z) defined as in
[1, Definition 6.4]. Then(br‘f(x, Y) is a polynomial with integral coefficients satisfying
d>,j$(j5(z), js(n2)) = 0, and is irreducible as a polynomial X over C(Y). In addition,
@{,S(X, Y) also satisfies the Kronecker congruences ([1, Theoren). 6B]Jt unlike the
case of@%(x, Y), <1>£,5(x, Y) has much smaller coefficients, for example,

(X, Y) = X3+ X3 - 3X2Y2 - XY* -V,

They indeed estimated the logarithmic height@ilf(x, Y), precisely, for any positive
integern with (n, 5) =1

log p

h(®ls(X, Y)) = %w(n) logn—2%"
pIn

+0Q)y¢,

from which they derived by comparing with(cbrj](x, Y)) that

j
im NP Y) oo iy )
tom h(®F (X, Y))
whereT(1) andT'(5) denote the images df(1) andI'(5) in PSLy(R). But Cais and
Conrad did not explain why the ratio of logarithmic heightsneerges to the group
index.

So it is natural and worthwhile to ask whether
h(®h(X, Y .
h(®a(X, ¥)) ?( ) — [F@) :T]
h(®n (X, Y))

asn — oo with some conditions om for a Hauptmodulf (z) of arbitrary congruence
subgroupl’. In Theorem 2.1 (1) we shall prove that the answer is affiveafior clas-
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sical congruence subgroups. We further consider a similastipn about subgroups
(Co(N), We)ecs Of SLy(R) which appear in “Monstrous Moonshine” phenomenon. And
we will prove in Theorem 2.1 (2) that the ratio of logarithnieights in this case is
also related to a certain summand of group indices.

In what follows we fix an integeN, and define necessary congruence subgroups

an=(2 3)eser| (2 3)=(5 ) mon
(2 D)eson (2 3)-
(2 s (2 )
roo=|(2 8) esum| (2 8) -
(2 2)esr| (2 2)-(3 or]

2. Preliminaries and statements of the results

I'%N) = mod N ¢,

I1(N) =

I(N) =

In this section we recall the definition of modular equatidos Hauptmoduln of
various subgroups dBLy(R).

For a Fuchsian group of the first kind with genus zero, we define a Haupt-
modul of I" by an automorphic functiorf (z) for I' satisfying Ag(I") = C(f(2)). Here
by Ao(I") we mean the field of all automorphic functions for(see [11]). In this paper
we fix thatI" = T'y(N) N T'o(mN) for a positive integem, and f(2) =q 1+ n2pa.q"
is a Hauptmodul ofl” with a, € R for all n > 0. While considering this Hauptmodul
f(2) of T, it is a necessary condition that the genud’ofs zero, and as for the genus
formula of I we refer to [9, Theorem 1.1].

For a positive integen with (n, mN) = 1 we have the following disjoint coset
decomposition

10 _ a b
r(o n)r-l U Foa<0 d),
a>0 O<b<d
ad=n (a,b,d)=1

whereo, € SLy(Z) satisfieso, = (a(;l g) mod mN This can be proved by observing

‘rw(é g)r‘ :nn(1+%) =y ()

pin

and using [11, Proposition 3.36].
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REMARK. Sinceo,l'o, 1 =T for any positive divisora of n, we haveC(f) =
Ao(T) = Ag(01T"oa) = C(f 0 0a), and hence for givem we can define a rational func-
tion P,(T) € C(T) such thatf o o, = Py(f). For positive divisorsa, b of n we easily
see that
(1) a=+1 modN & P,(T)=T, anda=b e (Z/NZ)*/{£1} & Ps(T) = Py(T),

(2) Pa(Po(T)) = Pan(T) = Pp(Pa(T)).

If we let Py(T) = A(T)/B(T) € C(T) with A(T), B(T) € C[T] and (A(T), B(T)) =
1, then degA(T), degB(T) < 1 except when deg(T) = degB(T) = 0 becauseC(f o
oa) = C(f).

We now consider the following polynomialfnf(x, z) with the indeterminatex

wix,2=T] [I (x—foaao<g 5’>(z)>.

a>0 0O<b<d
ad=n (a,b,d)=1

Note that deg \ynf(x, z) = ¥(n). Since all the coefficients oﬁfnf(x, z) are the ele-
b

0 d
Wl (X, 2) € C(f(2)[X] and we may write¥, (X, f(2)) instead of ¥ (X, z). Then as
in the usual argument of modular equations, we see m%(tx f(2)) is irreducible
over C(f(2). And we see from [8] thatf(z rn\IJnf(X, f(2) € C[X, f(2)] for ry =

—Zseslmmsz’o ords f(2), whereS, o, (respectively,$; o) is the set of all points O(F N

mentary symmetric functions of thé o o, o ( ) they are invariant under, i.e.,

(8 (i)_ll“(g g)) \ $H* such thatf(z) (respectively, f(nz)) has poles (respectively,
zeros) (see also [3, Theorem 3.3] or the proof of [4, Theord}). 1Here we note
thatrn < =3 g 0rds f(2) = [C(f(2), f(n2) : C(f(2))] < n[]n(1+1/p), because
Wi (Pa(f(n2), f(2) = 0.

Therefore for those Hauptmodulf(z) of I' and integemn with (n, mN) =1 we
define then-th modular equationb,';(x, Y)= Y'"\I/,I(X, Y), namely

o (X, f@)=f@" [ I (X—fooao<g 3)(2))

a>0 O0<b<d
ad=n (a,b,d)=1

Here we remark that if we confine ourselves to a Hauptmdda) =g+ 2, a,q"
with a, € Z, we could justify thatd, (X, Y) € Z[X, Y] and ®y(X, Y) satisfies the
Kronecker congruences depending BR(T) in the above remark. But we will not go
further into this direction.

Next, unlike the casd” = I'1(N) N I'h(mN) we further consider a subgroup
(To(N), We)ees of SLy(R) which appears in “Monstrous Moonshine” phenomenon. For
the details, we recommend the readers to refer [2].
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Let N > 1 be an integer an@ be a Hall divisor ofN, that is, e is a positive
divisor of N such that ¢, N/e) = 1. For a Hall divisore of N we define an Atkin-
Lehner involution of['o(N) as a matrix with determinant 1 of the form

b
a/e —
N Ve where a, b,c, deZ.
c— d./e
€

Let We be the set of all Atkin-Lehner involutions with a fixed Hallvidior e of N.
Then these sets satisfy the following multiplication rule:

e f

2.1 WoWr = Wi W, = Wi wh k= . )
(2.1) W tWe = Wk where e n ©n

Notice thatk is a Hall divisor of N if e and f are Hall divisors ofN. Assume that
Sis a subset of the Hall divisors dfl closed under the above multiplication rule. By
(To(N), We)ees We mean the subgroup &Ly(R) generated by all elements d%(N)
andW; for all ee S If (I'o(N), We)ees is of genus zero, then we can choose a Haupt-
modul f(z) =q 1+ 22pa.q" with a, € Z. In [2] Chen and Yui defined, for a positive
integern prime to N, the n-th modular equatiorﬂ),ﬁ(x, Y) = 0 for which

of(x, f@) =[] [I (x—fo<‘g1 g>(z)>.

a>0 O<b<d
ad=n (a,b,d)=1

And they proved that@,ﬁ(x, Y) is a polynomial with integral coefficients satisfying
d)rﬁ(f(z), f(nz) = 0 and it is irreducible as a polynomial iX over C(Y). But, for
the purpose of this article, it is enough to assume th@) has only real Fourier co-
efficients, i.e.,a, € R for all n > 0.

Now we are ready to state our main theorem.

Theorem 2.1. (1) Let f(z)=q 1+ p2pa.q" be a Hauptmodul of =T'1(N)N
To(mN) with a, € R. For a positive integer n witin, mN) = 1, we get

6v(n) log p
h fX,Y = ———1| -2 OQ);.
(@4(X, Y)) [m)ﬂ{ogn p; ot ()}

(2) Let f(2d=q7 1+ n2pang" be a Hauptmodul of "o(N), We)ees With &, € R. For
a positive integer n witi(n, N) =1, we have

h(@g(x,v»:z&”—("){logn_zz

99P | oy
2 [T(@) : To(N/9)] . |
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Combining (1.1) and Theorem 2.1, we can readily achieve ¢lilewing corollary.
Corollary 2.2. (1) With the notations as iTheorem 2.1 (1)we obtain

h(@a(X,Y) _ 1
gz N(@A(X, Y))  [T(@):T]

(2) With the notations as iTheorem 2.1 (2)we get

: h(®a (X, Y)) _ 3 1
e h(@A(X, Y)) [T(D) : To(N/€)]

eeS

We conclude this section with some remarks. For an arbitirdgrsection of clas-
sical congruence subgroups

I’ = To(Ny) NTO(Np) N I'1(Ng) N T(Ng) N T'(Ns),

we havea Ia = T'1(N) N To(mN) where N = lcm(Ns, N4, Ns) and

_ (lCm(Nz, N4, N5) 0) _ |Crn(N1, Ns, N5) Icm(Ng, N4, N5)
a= , m= .
0 1 N

If g2 = a7t + Yoo anq is a Hauptmodul offt” with h = lcm(Ny, N, Ns) and g, =
e?12/ then f(2) :=goa(2) =q7 1+ Y ey anq" is a Hauptmodul of"'1(N) N To(mN).
Since then-th modular equatiombi(X,Y) for g(2) is, essentially, irreducible as a poly-
nomial in X over C(Y) satisfying ®3(g(2), 9(n2)) = 0, we obtaind! (X, Y) = (X, Y)
by observing®3(g(hz), g(hn2) = 0 and f(z) = g(hz). Thus Theorem 2.1 (1) holds
for any congruence subgroup ©%(N1), T%(Ny), I'1(N3), T'Y(Ns), I'(Ns) or arbitrary
intersection of them. For example, since

(5 9) o(§ §)=rennes

and f(2) := js(52) is a Hauptmodul ofl"1(5) N T'x(25) with the samen-th modular
equation whenr, 5) = 1, we can recover the result of Cais and Conrad from Theo-
rem 2.1 (1).

If Scontains all the Hall divisors dfl, we writeT'o(N)+ as the grougl'o(N), We)ees.
In [2, Appendix 2] Chen and Yui calculated some modular eguatfor Hauptmoduln
of T'o(N) andT'o(N)+. For instance,

(X, Y) = X3+ (Y2 + 108)X? + (—153Y +2268)X
+ (Y3 +108Y? + 2268 — 46224),
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D5 (X, Y) = X3+ (—Y2 + 1566)X? + (17343 + T41474K
+ (Y3 +1566v2 + 7417474 — 28166076),

where <I>£°(3) and cb£°(3)+ stand for the second modular equations of the (normalized)
Hauptmoduln ofT"g(3) andI'g(3)+, respectively. We remark that Theorem 2.1 (2) also
gives a reason why the logarithmic height ®f°® is smaller than that ofo[*®* for

not only n =2 but also sufficiently large.

3. Proof of Theorem 2.1

To prove Theorem 2.1 it is necessary to study the behaviorafptinodul at each
cusp of ' =I'1(N)NTo(MN) or (I'g(N), We)ees. In this section we recall some lemmas
which give us useful informations about these cusps.

First lemma provides us a criterion to determine whether argiven two cusps
are equivalent under.

Lemma 3.1. LetTl' =T3(N)NTy(mN) and
A={+(1+NK) € (Z/mNzZ)* |k=0,1,..., m—1}.

We assume that,&, a’ and ¢ are integers such thafa, c) = (&’, ¢’) = 1. By +£1/0 we
meanoo. Then the cusp & is equivalent to gc’ underI" if and only if there exist
X € A and ne Z such that

/ xa+n
<‘3) = ( i—lcc) mod mN.
Proof. Suppose that/c is equivalent toa’/c’ underT, i.e., there existy € T’

such thata’/c’ = y(a/c). Sincea, ¢, &, ¢’ are integers satisfyinga(c) = (&, ¢') = 1,
we have(g) = iy(i). By putting y = ()Z( 3) e I' we have the desired assertion.

Conversely suppose that there exist A andn € Z satisfying the above congruence in
the hypothesis. Since the natural reduction maigieiZ) into SLy(Z/mNZ) is surjec-

tive, lety € SLy(Z) be a preimage o(é xgl) € Slp(Z/mNZ). Note thaty € {£1}-T
and(i‘d/) = y(i) modmN. Now it is an elementary fact that if, v, z, w are integers

such that ¢, v) = (z, w) =1 and (3) = (;) mod N, thenu/v and z/w are equiv-

alent underl’(N) ([11, Lemma 1.42]). So in our case there exigtse I'(mN) such
thata’/c = y’(y(a/c)). This completes the proof sinde(mN) C T. ]

Let ¢(x) be the Euler function. Then it is worthy of remarking that

[C(@) : To(mN)I¢(mN)
Al

.1 [[(2) :T]=[T'(2) : To(MN)J[To(mN) : T] =
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which will be used in the proof of Lemma 3.10 and Lemma 3.1lonfthe next two
lemmas we can determine whether a given cusp is equivaldhetousp infinity under
(FO(N)1 We)ecs.

Lemma 3.2. Let Sy n) be the set of pairgc, a) satisfying
(1) (1, 0)€ Son)-
(2) c>1,c|N, 1<a<c, (c,a)=1.
(3) If (c, @), (c, a1) € S,y and & = amod €, N/c) then a= a;.
Then the seta/c | (c,a) € Sy} is @ set of complete representatives of all inequivalent
cusps ofl"g(N).

Proof. This lemma is indeed well-known ([7, Proposition3])2 For the reader’s
convenience we give an alternative proof. We first obserae tte cardinality ofS
is 1+ . 1 ¢n ¢((c, N/c)) because the natural magg (cZ)* — (Z/(c, N/c)Z)* is sur-
jective. Since the number of inequivalent cuspd'efN) is Zd‘N ¢((d, N/d)) (see [11,
Proposition 1.43]), it is enough to prove that arbitrary tdistinct pairs €, a), (c',a’) €
SNy are inequivalent to each other. Suppose that they are demivanderI'o(N).
By substitutingN =1, m= N, and A = (Z/NZ)* in Lemma 3.1, we must have that
c=c andx =1modN/c. Thusa = xa+ncmodN with x = 1 modN/c implies
thata’ = amod (€, N/c). By hypothesis (3) we have’ = a. O

Lemma 3.3. Let S be a subset of Hall divisors of N closed under the miltipl
cation rule (2.1). Then the cusps

1
—— |ee S
{N/e © }
are all those equivalent undgfi’o(N), We)ees to co among the set of representatives
{a/c | (c, @) € Sy} described inLemma 3.2.

Proof. For givene € S there existb, d € Z satisfyingde— b(N/e) =1. Thus we
_ NN NN
have W, = FO(N)< N/JE d/e )’ Since N/JE de (00) = 1/(N/e), we have the

assertion. O

Using the above lemmas we are able to prove Theorem 2.1 bytiagape idea
of Cais and Conrad ([1]). For convenience,fifz) = q=1+) repang" with a, e R is a
Hauptmodul ofl" (respectively,(T'o(N), We)ecs), then we simply write f(z) is onT™”
(respectively, on{T'o(N), We)ecs)-

Lemma 3.4. T and (I'o(N), We)ecs have no elliptic points onlR. .
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Proof. Ifit (t > 1) is a fixed point of an elliptic elememnt € SL,(R), then the ab-
solute value of the trace af, |tr(o)|, is less than 2. Moreover, i € SLy(Z), we have

o= ﬁ:( 0 1) which gives rise to a contradiction. ¥ € SL(R) \ SLy(Z), then we

-10
may assumer = i(cﬁl*//:e/é Zﬁ) for a,b, c,d € Z and a Hall divisore of N. Since
o fixesit and |tr(o)| < 2, we havea = d; hencea=0 ando = i(cN(/)\/é b/a/é>.

Sinceo has determinant 1, we obtainbcN = e and sobc(N/e) = —1, that is,b/c =
—1. On the other hand fixesit, so we haveb = —cNt. Thus Nt2 = 1, which is a
contradiction. ]

Since f(z2) =q~t+. .- has real Fourier coefficients(it) is real and| f (it)] — oo
ast — oo. Moreover f'(z) is nonvanishing oriR.; by Lemma 3.4, so we see that
f(it) is strictly increasing fot > 1. Thus we can choose real numbers- 1 and
1 <ty <t; such thatf(itg) =s, f(it) =2s.

Lemma 3.5. For tp <t <t;, we have

h(@f (X, (i) =Y Su(t) + O(¥(n)),

a>0
ad=n

where
> Iogmax{l,‘foaa<alt+b>‘} if f(z) ison T,
d
I Fes
S() = ait +b . .
> logmax1,|f 5 if f(2) ison (Fo(N), We)ecs.
0<b<d
(b,d)=1

Here the implicitO-constant depends only on fy and t.

Proof. It is well-known that the coefficients of a monic pabynmial P(x) = (x —
w1) -+ (X — wq) are laid in between ZM and 2'M where M = []_; max(1, |wj|}.
Taking logarithm we see that

d
3.2) h(P) = log max1, |wj[} + O(d)

j=1

with an implicit absoluteO-constant which is independent dfand P.
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If f(2)is onT, then fortyg <t <ty

s =t T [T (x-(52))

a>0 O<b<d
ad=n (a,b,d)=1

Applying (3.2) we have
h( (X, f(it))

=rylog f(it) + Z Z log max{l, ‘f Oaa(aitd+ b)‘} + O (n)).

a>0 O<b<d
ad=n (a,b,d)=1

Since 0<r, < ¢(n) ands = f(itp) < f(it) < f(ity) = 2s, we getr,log f(it) = O(y(n))
where the implicitO-constant depends only ofy t, andt;.

As for the case wherd (2) is on (I'g(N), We)ecs, the same argument can be ap-
plied, and hence we omit the detailed proof. ]

Next goal is to calculate each term in the summati®it). For this purpose we
are in need of the following lemma.

Lemma 3.6. For z=£+ine®, let g(2) =a 1q, 1+ nep@dn” with g, = €712/n
for a positive integer h We assume that if @ = 0 (respectively a_; # 0), then (2)
(respectively gng(2)) is absolutely convergent faf > 0. Then forn > 1/2, we have

O(1) if a4=0,

log max1, [9(2)[} = 2min LOW) it ay#0
—1 .

Here the implicitO-constants depend only(z).

Proof. Sinceg(z+h) = g(z), we may assume thath/2 < & < h/2. Suppose first
thata ; =0. Since|g(z)| — |ag| asn — oo, there is a real numbeyy > 1/2 such that
for n > no, |aol/2 < 19(2)| < lag| + 1. Hence, fom > no we derive logmafd, |g(2)|} =
O(1). Here the implicitO-constant depends only aa, that isg. For /2 <n < ng
we note that log ma¥, |g(z)|} is a continuous function on the set

{§+|nefj <é <E nd1'<;7<;70}
=5§=35 5 =N=
and hence is bounded on this set. Note that the upper bourghdemnly ong and
is independent of the choice a@f.
If a; #0, |0hg(2)] — la 1] asn — oo so that we obtain the assertion by the
same argument as above. O
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Let M be a positive integer. Then it is more convenient to consierdisplaced
interval Iy = [1/(M +1), (M +2)/(M + 1)) rather than the usual interval [0, 1). Cohen
proved in [5] thatly can be expressed as

which is a disjoint union of set$y (h/k). Here eachly(h/k) is an interval of the

form [p{"9, o9y containingh/k and

Loh e 1
2Mk T k (M + 1)k
Lo ML
2MKk k = (M+1)k
For real numberd, k and x, we put
2nt/d?k?
Onhk(X) = /

(at/d)? + (x — h/k)?’

which will be used for estimating the su(t). Thusa, d andt are related toS(t).
Note that the width of the cus@,(co) is 1, becausef oo, = Po(f) as remarked irg2.
Also observe thatI'g(N), We)ees cont::xins((lJ i) Hence in any case we may reindex
the sum ing(t) via

. b 1
b if a € |:N ¥ 1, 1),
b b 1
+ if — .
b+d i g € |:O, N +1>
Lemma 3.7. Let f be onT.
(1) If at/d > 1/2, then we have
. 2z nt L
camaf 12| [ 00 € 52
0Q1) otherwise

(2) Put M=[d//nt]. If at/d <1, then M> 1 and, for b/d e I\y(h/k), we get

log max{l, ‘ fo Ga<a|td+ b)}

[ ghk(o/d)+0O(1) if k=0modmN and heaa,
| o) otherwise
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In both cases the implici©-constants depend only on f

Proof. (1) By Lemma 3.10,(c0) is equivalent tooo underI" if and only if
a e A. Using this, Lemma 3.6 gives us the assertion.

(2) Since b,k) =1, we can findy  := (_Uk lﬁ) € SLy(Z). By routine calculation
we see that

m ait+b\\ _ nt/d?k? 1 b
(”"k< d ))'(at/d)2+(b/d—h/k)2‘Zg“'k(E)

sinceb/d € Iy(h/k) = [p", oY) we obtain

.1 _ynt
= (M+1k — dk

b h
d k

Moreover, we achieve

which implies that

o (#5%) 4

By Lemma 3.1,0a(y{’kl(oo)) is equivalent toco underT if and only if k = 0 mod
mN andh € aA. Takingg(z) = f oog 0 yhf,f(z) in Lemma 3.6, we have the assertion.
More precisely, ifk =0 modmN andh € aA, then

‘f (ait+b)‘_‘f )/_1<)/h (ait+b>)‘
003 = 0030 Yhk kKl —
d ’ d
ait+b b
2im(me(%5)) 20 (5)

Other case corresponds to the holomorphic one in Lemma érefore we prove the
lemma. O

Lemma 3.8. Let f be on(I'g(N), We)ees.
(1) If at/d > 1/2, then we have

log max{l, ‘f(alt(; b)“ = ? +O(1).
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(2) Put M=[d/+/nt]. If at/d <1, then M> 1 and for b/d e I\ (h/k), we establish

)

_ gh,k(g> +0O() for eeS, k=0modN/e and he (Z/(N/e)Z)",
0Q) otherwise

log max{l,

In both cases the implici©-constants depend only on f

Proof. Since the first assertion can be proved in a similar teayemma 3.7,
we only prove (2). The fact tha)tfhfkl(oo) is equivalent toco under (I'g(N), We)eces
yields by Lemma 3.7 thah/k is equivalent to I(N/e) under I'o(N) for some Hall
divisor e € S exactly. In other words, by Lemma 3.1 there && (Z/NZ)*, n€ Z
such thath = x2+n-(N/e) mod N andk = x - (N/e) modN. This is equivalent to
h=x"1mod (N/e) andk = 0 mod (N/€), becauseN/e is also a Hall divisor. Thus
we have the conclusion. O

Now, we calculateS;(t) more precisely in Lemma 3.10 and 3.10. To this end we
need the following lemma in advance.

Lemma 3.9. Let k j and a be positive integers satisfying| k and (j, a) = 1.
We further let; be a primitive k-th root of unity and let

ay= > ¢ for lez.

he(z/kz)*
h=a mod j

Then

(3.3) ) <j-(k) forany leZ.

Proof. Using a primitivej-th root of unity £%/ we may rewrite the sum as

1 . .
(;I’((|):JT Z g*kla/l Z §(I ik/ph

ieZ/izZ he(Z/KZ)*

Let u(x) be the Moébius function. Since the Ramanujan’s sum satisfies

hX: L) k/ < k )
he(;ka)x; “((k,x) 20 /9 %
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for x € Z and ¢(xy) < x¢(y) for any X, y € Z.o, we have

i $(K) L Ly
> e < ey = (1) = (k1+0)

he(Z/KkZ)*
SWJUEy($Qsjwmm

which implies|c ()] < j - (k, I). O

Here we remark that Cais and Conrad dealt with the case ofienahtprime j
dividing k in [1, Lemma D.3], but it seems to be not true. Indeed, we cad én
counterexample whek = p = 3, a = m = 1 with the notations as in there. So we
correct it and prove the expanded version. It doesn’'t chyciaatter, however, to the
results because we need just its boundedness.

Lemma 3.10. Let f be onr.
(1) If d < +/nt, then $(t) = O(n/d). Here the implicitO-constant depends only upon
f, top and t.
(2) If d > /nt, then

__ 1 6d d? d doy((a, d))
0= mar@ () (@ g)) ()

where ¢(x) is the Euler function andri(x) is the sum of positive divisors of xHere
the implicit O-constant depends only updn f, ty and t.

Proof. (1) Since the number of elements{in| 0 <b < d, (8, b,d) =1} is
do((a, d))/(a, d), by Lemma 3.6 and the fact that((a, d))/(a, d) < 1 we have

1St < Y log max{l,‘f oaa(ait+b>“
0<b<d d
(ab,d)=1
do((a, d)) 2rnt do((a, d))\ .. _
@ d) 3 +O< @ d) ) if aeaA,
O(%) otherwise
@ +C.d if aea
B C’'d otherwise.

Using the fact thatl < nt/d < nt;/d we conclude the first assertion.
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(2) Note that the assumptioth> /nt implies at/d < 1. PutM = [d/+/nt] > 1.
Then we have by Lemma 3.7

MoK ait +b
Si(t) = E E E log max{l, ‘f oaa< . )H
k=1 h=1 b/dely(h/K)
(h,k)=1 " o<b<d
(ab,d)=1

i Z b/delzm(h/k)<gh’k<g>+0(l)>+ Z Z oW

1<h<k<M b/dely(h/k)
0<b< (h,k)=1 O<b<d
N (a,b,d)=1 otherwise  (a,b,d)=1

- Z > aug) o

1<h<k<M by/dely(h/k)
0<b<d

(hk)=1 <b<
k=0 modmN (a,b,d)=1

heaA

Since the total number for error terni¥(1) is less thard and soO(d) lies outside of
the summation, we can get the last expression in the abovenatiom.
Meanwhile, we see from [5, Lemma 6] that

> gh,k(g> =k > w(f)Fy (fk) +O<[|fl((z d))>.
b/dely (h/k) f)(a.d) (@ d
0<b<d, (a,b,d)=1
where F¢(0) = (272d/f) Y, ., e ZIVn/dfe2rivé and u(x) is the Mdbius function.
Since we have as in [1]

«/— o1((a, d)) 1 ¢ JNoi((a, d)) #(K) o Jioi((a, d))
(a, d) 1<r§<|v| k (a, d) 1§M K <C M—(q, )
(3.4) Thk=1 ==

fal((a d) d _ doi(a d)
= @d st~ (ad)

we establish that

st= > k> M(f)Ff<fk>+o(‘/—lf(§(z)d))>}+(9(d)

1<h<k<M fl(a,d)
(h,k)=1

k=0 modmN
heaA

B _ dh doi((a, d))
DR LY u(f)Ff<fk)}+o<—(a’d) )

1<h<k<M fl(a,d)
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Y0 ¥ (4ot )
fi(a,d) 1<h<k<M (a, d)
(h,k)=1
k=0 modmN
heaa

We now consider the sum

dh 2n2d dv
-2 — —2m|v|nt/df
(3.5) E k™ “F;¢ <_f k) - E Cwm <_f )e ,

1<h<k<M veZ
hk)=1
k=0 modmN
heaA
where
— -2
Cu)= Y k()
1<k<M
k=0 modmN
and

()= Y ek forany IeZ.
1<h<k
(h.k=1
heaA
We have to calculat€y (1) and ck(l) to know the upper bound of the sum of (3.5).
By Lemma 3.9 we know thafc(l)] < |A|mN(k, |) for | € Z — {0}. So whenl # 0,
we have

[e¢] o0 l
Cu®l = 1AIMND K2 ) < [AMND Sd ) 57
k=1 dil j=1
721 || 72 oy(ll)
= IAIMN=—=Y " = = |A|ImN— ;
AMNE I 2ag T IAIMNE =

djl

hence
_ o)
) -o(—m )

for | # 0, where the implicitO-constant depends only di In case ofl =0 we con-
sider the natural surjective homomorphism (Z/kZ)* — (Z/mNZ)* which gives us

P(K)
$(MN)”

c(0) = [77H(A) = |A] [ker | = |A]
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Hence by [1, Lemma D.1] and (3.1) we obtain
|A]

Cw(0) = k2 o(K)
lskst #(mN)
k=0 modmN
6 |A|

72 gmNIT (D) : Tomy) oM O

= W |Og M + O(l),

where the implicitO-constant is absolute, i.e., it is independentlofind M.
Therefore we get

5, ()l

1<h<k=<M

(h,k)=1
h=0 modmN
heaA

N O( Z O’l(d||;||/f)e2nu|nt/df>'

veZ—{0}

where the implicitO-constants depend only dhandt. Sincef | (a,d) and @,d) |a=
n/d, we havedf < n; hence 1<ty <t implies that

e72n(|v\7l)nt/df —27 (Jv|—1)t < efzn(\vlfl).

<e

By putting

and using the fact

we obtain

Z Ul(d|U|/f)e_2n\v|nt/df - C161<E)e—znm/df - Clo,l<g>e—2nn/df'
- f - f

veZ—{0} |l)|
Thus we deduce

O( Z O’l(d||:||/f)e2nv|nt/df) — O(Ul<%>62ﬂn/df>,

veZ—{0}
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where the implicitO-constant depends only dn

SinceM =[/d?/(nt)] and 1<ty <t <t;, we see that lod = (1/2) logd?/n) +
O(1) where the implicitO-constant depends only dp andt;.

Consequently, we have

,_ (dh\ _  6d o2 d d\ poras
M;w < <W>‘ RO '°g<F>+O(?>+O<“1<?>e o )

(h,k)=1
k=0 modmN
heaA

where the implicitO-constants depend only of, to andt;. By substituting this for
the sum ofS(t) we obtain

S0= 3 u f)(ﬁ‘;ﬂ Iog<dF2) R o(%) R o(gl(g)ezm/df»

(M)

where the implicitO-constants depend only an, f, to andt;. Since

2

fl(a,d)

d - d _doi((a, d))
u(f);‘ < f%,;)? ==

the first error term contribute®(do,((a, d))/(a, d)).
Similarly, sinceoy(df/(a, d)) < o1(d/(a, d))oy(f) and e=2*"f/d@d < g=27f e
derive

Z M(f)gl($)827m/df < Z Ul(%>82nn/df — Z Ul( d; )ehnf/d(a,d)
flad) fl@d) fag \@d
d
<o| —= o1(f)e % ',
1<(a, d)> 2, o

and so the second error term contribut8éo;(d/(a, d))). From the factg((a, d)) =
Zfl(a’d) u(f)(a, d)/ f we finally obtain

- T @ @ ) oo(5) o (@a) o “ae )

where the implicitO-constants depend only oR, f,ty andt;. This completes the
proof. O

Su(t)
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Lemma 3.11. Let f be on(I'o(N), We)ees.
(1) If d < /nt, then § = O(n/d). Here the implicitO-constant depends only upon
f, to and .
(2) If d > /nt, then

1 2
S Fa vl @ d)““(a d))"’g( )

o(o(@a)) (Fes)

Here the implicitO-constant depends only updig(N), We)ees, f, to and t.

Proof. It is possible for us to prove (1) with similar argurteeas in Lemma 3.10,
so we omit the detail. We only give a proof of (2). By using Leen.8 we have

Mo & ait +b
Si(t) = Z Z Z logmax 1, | f .
7 ol S
(ab,d)=1

> XY au(g)rous,

eeS 1<h<k<M b/delu(h/k)
(h,k)=1 0O<b<d
k=0 modN/e (a,b,d)=1
he(Z/(N/&)Z)*

where M = [d/4/nt] and s is the number of Hall divisors irs. From [5, Lemma 6]
and (3.4) we can see that

_ 2 Jiow(@, d) |
s®O=> > k2 )" M(f)Ff<fk>+o< @, ) +0O@d-s)
eeS 1<h<k<M fl(a,d)
(h,k)=1
k= OmodN/e
he(Z/(N/e)Z)*
d
=Y Y e X wnr(f) o Yre D) ow-y
eeS 1<h<k<M fl(a,d) (a, )
(h,k)=1
k=0 modN/e
he(Z/(N/e)Z)*
=Y > ) Y Kk 2Ff(?z>+o<—d“1((aéd» -s).
eeS fi(a,d) 1<h<k<M (a,d)
(h,k)=1
k=0 modN/e

he(z/(N/e)Z)*
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As we did in (3.5) we change the inner summand as

Z - 2Ff<dh> 272d ZCM< ) ~2rluint/df

1<h<k=M veZ
(h,k)=1
k=0 modN/e
he(Z/(N/®)Z)*
where
cu)= > k%)
1<k<M
k=0 modN/e
and

a(l) = Z eZi/k forany | e Z.

1<h<k=M

“(hk)=1
he(z/(N/e)Z)*

Then, by Lemma 3.9 we know thatk(l)] < ¢(N/e)-(N/e)-(k,I) for | € Z — {0}. So

whenl # 0, we have
Cu)l = O((’l'(l"' ')>,

where the implicitO-constant depends only airg(N), We)ees. Whenl =0, we obtain
ck(0) = ¢(k). Hence it follows from [1, Lemma D.1] that

Cu@= > k%K
1<k<M
k=0 modN/e

6 1
:—:| M 01,
i@ range] oW

where the implicitO-constant is absolute, namely it is independentIef(N), We)ecs
and M.
Therefore we get

dh
Z K=2F ( fk)
1<h<k<M

(h,k)=1
k=0 modN/e

he(Z/(N/e)Z)"

= 1d E o1(dlvl/f) __oriuntar
fT(D To(N o) '°9M+O(f)+0< ) P ’

veZ—{0}
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where the implicitO-constants depend only ofi'o(N), We)ecs and t. Applying the
same estimates as in the proof of Lemma 3.10 we have

dh
Z k~2Fy ( fk)
1<h<k<M
(h,k)=1
k=0 modN/e
he(Z/(N/e)Z)*

— 6d d_2 g o E —27m/df>
" T  To(N/9)] '°g< n ) +O<f)+0< 1<f>e ’

where the implicitO-constants depend only gi'g(N), We)ees, to andt;. By plugging
this into the sum ofSy(t) we achieve

50=2, 2, u )< I Fo(N/e)] °g<dF2> +O(%> *O(‘H(%)e_z””/df))

dos (@, d))
+O( (@.d) 'S>’

where the implicitO-constants depend only ai'g(N), We)ees, f, to andt;. Thus, in
like manner as in the proof of Lemma 3.10 we finally conclude

d d?
s Z[r(l) o) (@ & D) '°g<F)

eeS

o(o@a) ) oFay )

where the implicitO-constants depend only girg(N), We)ees, f, to andty. The num-
ber s depends only on the groufio(N), We)ecs, and so we have the assertion. [J

Lemma 3.12. For 1<ty <t <ty,
(1) if f(2) is onT, then we have

f o 6yr(n) B log p
h(cpn(x,f(n)))_—[mﬂ(logn 2% ) +c9(1)>,

(2) if f(2) is on (I'p(N), We)ecs, then we achieve

. 6y (n) log p
L% 100 = 3 s (oan -2 22 <o)

In case (1) (resp, (2)) the implicit O-constant depends only ol (resp,
(FO(N)v We)eeS)y f! I’-0 and tl
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Proof. In each case we are able to use the same method. Thustwewn only
the first case. From Lemma 3.10 we know that

h(@7 (X, F(i) =) Sult) + O (n) = Hi+ Ha + O(¥ (),

den

where
Y s =0wM)
az(i,\e}%:n
and
6y (n) log p
=27 -2 1
Ozd nsd() D F]< ogn le 5t ))
d>y/nt

by means of Cohen’s results in [84]. ]

Lemma 3.13. Let P(X) € C[X] be any nonzero polynomial of degreeD. Then
for any 6 > 0, there exists an absolute constapt=€0, depending only o, such that

|[(h(P(X)) —log sup [P(x)|| < cD.
0<x<29

Proof. We refer to [1] or [5]. O

Now we are ready to prove our main theorem.

Proof of Theorem 2.1. To avoid troublesome, we defi{@) = —co. Let D =
¥(n) and we write

o f (X, Y) = Po(Y)XP + P (Y)XP~2+... + Pp(Y)

with P;(Y) € C[Y] and Py(Y) # 0. Certainly,h(dDrﬁ(X, Y)) = max<j<p h(P;(Y)). Since
degP;(Y) < D, Lemma 3.13 yields that

h(d> (X, Y))— max Iog sup |P;(y)| + O(D)

S<y<2s
= sup max log |Pj(y)| + O(D)
s<y<2s 0<j=
where the implicit O-constant depends only os. Since may<j<p log|P;(y)| =
h(®4 (X, y)), we obtain
h(<I> (X,Y)) = sup h(<I> (X, y)) +O(D).

S<y<2s
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Here we note that the intervaip[t;] corresponds bijectively to the intervad,[2s], and

so we have
h(@1(X, Y)) = sup h(®{(X, f(it))) + O(D).
to<t<ty
Therefore, we get the conclusion by Lemma 3.12. ]
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