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Abstract
The equations inp-curvatures, which is a key to prove a stable equivalence of
Jacobian problem and Dixmier conjecture in the author'siptes paper, is provided
an easier proof, related to the existence of ‘intertwinipgrator’. In an appendix,
we show that every symplectic morphism between nonsingsylarplectic varieties
are of Jacobian 1, regardless of the characteristics.

1. Introduction

In a recent paper [6], the author derived a set of differémtipations which leads
to a stable equivalence of Jacobian problem and Dixmierecuje.

The aim of the present paper is to provide an easier derivatidhe equations, re-
lating them to the existence of ‘intertwining operat@’ It makes the argument much
clearer, and may introduce a new insight into the theory.

As the first appendix, we show that every symplectic morphigtween non sin-
gular symplectic varieties are of Jacobian 1, regardlesth@fcharacteristics. This is
an elementary fact, but may help some people.

As the second appendix, for the sake of being self-contaesx] we prove an
important formula in the theory op-curvatures (Proposition A2.2), which already ap-
pears in an argument of Katz [3, Proposition 7.1.2]

2. Simplification

2.1. Integrability of connections. A fundamental tool of this paper is the fol-
lowing

Proposition 2.1 (A very special case of [2, Theorem 5.1])Let k be a field of
characteristic p# 0. Let X be a smooth scheme ov@peck). Let F be a coherent
sheaf with a connectioW. ThenF is locally spanned by parallel sections if and only
if the curvature and the p-curvature o are both zero

Proof. We only prove the “only if” part. (The “if” part is coeptually important
but is not used in the proofs of our results.) bat ..., X, be a local coordinates.
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AssumeF is spanned by parallel sectioss, ..., sy. Then we have
[Vaox» Vajax ] =0, Vi, s =0.
So the curvature tensor argtcurvature tensor are both zero. ]

2.2. A review. In this subsection we review and summarize some results ob-
tained by the author [5], [6].

DEFINITION 2.2. Letk be a field of characteristip # 0. Letn be a positive in-
teger. A Weyl algebraA,(k) over a commutative rind is an algebra ovek generated
by 2n elements{yy, y», . .., y2n} With the “canonical commutation relations”

(CCR) W, vil Gnyi—vin)=h; (L<i,j=<2n),

whereh is a non-degenerate anti-Hermitian 2 2n matrix of the following form:

m=(2 o)

Throughout this paper, the lettdr will always represent the matrix above. We
denote byh the inverse matrix oh.
Let us define operators (matriceg);}2, acting on p"-dimensional vector space

Vi = K[Xq, X, - -+, Xn] /(X X5, ... xP)
by
i = multiplication by x;
_ 0 i=1,2,...,n
Mi+n = 3_)(|
Let

S =K[Tw, Toy .oty Tono1, Tonl

be a polynomial ring of 8-variables ovek. Then we have a faithful representation
D Ay —> Mn(S)
of the Weyl algebraA,, by putting

O() =T - Ly + i
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Let ¢: A, — A, be ak-algebra endomorphism of,. Then we have a matrix
valued functionG € GLy(S,) and a morphismf: Spec&,) — Spec,) which enables
the following diagram commute;

Ar— s A

[ [
M (S) —2— Mis(S),
where ¢ is defined as
P(x) = GF*(x)G %
We may write down the commutative diagram above as the faligvequation.
P(¢p(a) = GH*((@)G .

2.3. Proof of the main result. In the author’s paper [6, Proposition 3.2], we
obtained a result which is essentially equivalent to ourmfioposition 2.3. It plays
an essential role concerning the stable equivalence of d@eebdan problem and the
Dixmier conjecture.

In this section we give an improved proof of the proposititay, focusing the re-
lation between the existence of differential equations #ral existence of the inter-
twiner G.

To do the task, we follow a general theory on connections omdlas. Readers
who are not familiar with this kind of argument may as well chehe following com-
putations by direct calculations.

In what follows, we employ the following notation.

An = Ox, @z, An,
Vh = OXn ®s, Vh.

Apn is an algebra-bundle o, whose generic fiber isMy. In other words, it is a
PGLy-bundle onX,. In our case it has a flat connectio® on A,. To introduce it
let us put a matrix valued functioR on Spec,) by

n
F=—> hjuT,
ij=1

Whereﬁij is theij-component of the inverse matrixof h, as we stated in Section 2.2.
Then we define

vO = d + add F).
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It is the unique connection oM (Ox,) which vanishes on the imagé(A,). It fol-
lows that the connectio®¥® is a flat connection and that it is preserved under algebra
endomorphisms of\,.

We would like to consider a lift of the connectigi® of a PGL,-bundle to that
of a GL,-bundleV. Such thing may or may not exist in general, but in our paldicu
case, it does.

V=d+dF.

Since it is a lift of a flat connection, a general theory teltsthat it is a projectively
flat connection.
The matrix valued functiorG may be interpreted as an intertwiner

G € W = Homp, (f*V, V).

Again from a general theory of connection, we know that thexists an connec-
tion on W = Homp, (f*V, V)

VERIE= 4+ A(dF) — o(d(f7F)),

where 1 (respectively, o) is the “multiplication from the left (respectively, fromhe
right)”. That means,

VI = do +dF - o —Ud(f*F)

for any local sections of W.
V9auleis compatible with the connectio on V, in the sense that it satisfies the
following “Leibniz rule”.

V(o . f*v) = V¥'No). f*v +o . (f*(Vv)).

for all local sectiono of YW andv of V.
Since V is projectively flat, V98U9€ is also projectively flat. Now, let us consider
an operator

n = G~ lyoeausg,
For anya € Ay, let us putb = f*(®(a)). Then we have
0 = vO(o(¢(a))
=vOG o(@)G™)
= (VIY9GB)GL + GF(VO)(b)G™L + Gb- (-G HVIUIB)G™Y)
= G[GY(V9IG), b]G™1 = G[n, b]G~L.



EQUATIONS IN p-CURVATURE AND INTERTWINERS 741

Therefore,n commutes with all theu;’s. So it is a scalar valued 1-form.
Under these conditions, we have the following proposition.

Proposition 2.3. n=7)"; n; dT; satisfies the following equations

(1)
d(f*p—p+n)=0

where p is a one-form on X = Spec§,) defined as

n
p=Y TidTum,
i=1

and

@)

T+
‘ZT TP +(3T)p12< 9 J“):o i=1,23,..,2n)

where we pufT; = f*(T;) (j =1,2, 3,..., 2n).

Proof.
VvV = ydauge_ n

hasG as a parallel section.n(is designed to be so.) It is also easy to verify tRét
satisfies the following compatibility condition.

vi(ax) = vO@)x +av’(x) (va e End(), Vx € W).
Then we see that a set
Wo=A,-GCW

consists of V-flat connections. On the other hand, from the definitiondofve see
that A, generatesM(S,) as aS,-module. (This is also a result of Lemma 2.5 of
[6].) Since G is invertible, we see tha¥V is generated by\p. ThusW is generated
by flat connectiond\y. (One may also see th&ty coincides with the set of parallel
sections of).)

Therefore, by Proposition 2.1 we conclude that the cureaand thep-curvature
of V" should be 0.

Let us put

n=n—p+fp
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and define the following subsidiary connections )ah
V! =d +(d(F +p) + 1),
Vi =d — o(f*(F +p)) = £*(d — o(F + p)).
These connections are created by a connectiorr V +dp in the following manner:
vl =ve+7,
Vil = r((ve)duay,

Then we may easily verify that for arg, b € W = M»(Ox,), the following for-
mula holds:

V'(a-b)=(V'a) -b+a-(V'"b).
Now, for any vector fieldsD,, D, on X,,, we have

[V3,, Vb,I(a-b) = ([Vp,, Vp,]a)-b+a- ([Vp,, Vp,Ib),
CUNV(Y")(Ds A D2)(a - b) = (curv(v')(Dy A D2)a) - b +a - (curv(v'")(Dy A Do)b),
curv(V') =dij, curv(v") = 0.

Thus we see that
curv(V’) =0 <= curv(v) =0 < dij=0.

Let us now assume thal7 = 0 and proceed to the computation pfcurvatures of these
connections. We first note that for any vector fiédon X,, we have

<k
(VBK@b) =Y (| )«v'D)'a)«v's)k—' b).
1=0
In particular, we have
(VB)P(ab) = ((Vp)Pa)b +a((Vp)Ph).
So we have the following relation of thp-curvatures.
curvp(V")(D)(ab) = (curvy(V')(D)a)b + a(curvy(V")(D)b).

By taking p-th power of the equation

Vi =V} + (ii, D)
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and using Proposition A2.2 in Appendix 2, we obtain
(Vo)P = (Vp)P + (ij, D)P + DP((7j, D)).
So for any vector fieldD with DP =0, we have
curvp(V')(D) = (p, D)P + (i, D)P + DP*((7}, D)).

Similarly, for any vector fieldD, we have

curvp((V)*¥)(D) = —(p, D)P.
So we see

curvp(V")(D) = —(f*p, D)P. O

One may rewrite the above formula in terms of Cartier oper@io Proposition 5.4]).
It is also possible to prove the “formal scheme version” o firoposition above (as
in [7, Proposition 5.4]) in a similar manner.

Appendix 1. Symplectic implies non-zero Jacobian

In this section we prove the following proposition which iermmentary but may
supplement/help reading our previous paper [7].

Proposition Al.1. Let d be a positive integer_et (X, wx), (Y, wy) be smooth
symplectic algebraic varieties of dimensi@n over a field k Let¢: X — Y be a
symplectic morphism That meansit is a morphism which preserves the symplectic
structure

¢*(wy) = wx.
Then the tangent map @f is of full rank at every point P on X

We make an effective use of the theory of the PfaffianvRfpf a given matrixM.
A good reference is in [4, XV§9]. Especially important theorem we need to know is
the following lemma.

Lemma A1.2 ([4, XV, Theorem 9.1]). Let R be a commutative rind-et (m;;) =
M be an alternating matrix with ;g € R. Then

det(M) = (Pf(M))2.
Furthermore if C is an nx n matrix in R then

Pf(C M'C) = det(C) Pf(M).
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Proof of Proposition A1.1. We may assume tkas algebraically closed and that
P is ak-valued point. Let us represent the tangent mapf cdt P by Tp f. One may
choose a local coordinate system ..., X2, on X around P such that the symplectic
form wx at P is represented by the matrixwhen expressed in terms dfk, ..., dXg,.
Likewise one may choose a local coordinate system. ., y», around f (P) such that
the symplectic formwy at f(P) is represented by the matrix when expressed in
terms ofdyi,...,dy,. Then using the bas@&/ox;, d/0X,...,d/0Xon 9/0Y1,98/0Y>,...,
d/0yon, Tpf may be identified with a2 x 2n-matrix. Since by hypothesi$p f re-
serves the symplectic form, we have

(‘Tp f)(Tp f) = h.
Let us compare the Pfaffian of the both hand sides.
det(Tp f)2 - Pf(h) = Pf(( Tp f)Tp ) = Pf(h).

Since Pff) =1, we conclude that the determinant™f f should be equal to 1 or1).
O

NOTE. It goes without saying that wheX is connected, and if the coordinate
systemsxy, ..., Xon @andys, ..., Yo, are able to chosen globally (for exampleXf Y
are affine spacé?" = Spe[Ti, To, Ta, . . ., Ton] With

0w=dTp AdTh1 +dToAdT2 +dT3 AdTeg + - - - +d T, Ad Ty,

as the symplectic form), then the Jacobianfothould either be 1 on the whole of
or be —1 on the whole ofX.

Appendix 2. A formula on p-curvature

In this section we prove a formula op-curvature (Proposition A2.2). The treat-
ment here is based on an argument which appears in [3, Ptiopogil.2].
We first cite a formula of Jacobson [1]

Proposition A2.1. Let p be a prime numberLet A be an algebra ovef, (which
is not necessarily commutativbut unital associative as we always assujn&€hen for
any elements @ € A, we have

p—-1
(a+b)P=aP+bP+) "si(a, b)

j=1

where § is a universal polynomial in gb given by the following manner

sj(a, b) = Tl coeff(adTa+b)P~ta, TI71).
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(Here, coeff(e, T1) denotes the coefficient ofiTin e.) In particular, sj(a, b) belongs
to the Lie algebra generated by, b.

Proposition A2.2. Let p be a prime numberLet D be a derivation on a com-
mutative algebra C of characteristic. pAssume that there exists a non commutative
algebra A which contains C as a subalgebra and that theret®xia element x A
such that

[x, f]= D(f)
holds for all f e C. Then for any element f of C we have
(x+ f)P=xP+DP () + P

Proof. We substitute = f andb = x in the Proposition A2.1. We need to know
ad(T f +x)P~1f. To do that, first we see by induction that

ad(T f +x)<f = D*f
holds for anyk € N. In particular,
ad(Tf+x)P1f =DP1f,

So

DP-Lf if j=1

0 otherwise. -

sj(f. x) =jflcoeff(ad(rf +x)PLf, TiThy = {
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