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THE DUAL KNOTS OF DOUBLY PRIMITIVE KNOTS
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Abstract

For certain(1, 1)knots in lens spaces with a longitudinal surgery yieldihg t
3-sphere, we determine a non-negative integer derived fter(lj 1)splitting. The
value will be an invariant for such knots. Roughly, it copesds to a ‘minimal’
self-intersection number when one consider projectionsaa dénot on a Heegaard
torus. As an application, we give a necessary and sufficiemtlifon for such knots
to be hyperbolic.

1. Introduction

A lens space [p,q) is a 3-manifold obtained by thp/qg-surgery on a trivial knot
in the 3-sphereS® and is homeomorphic neither ® nor to S* x St. Throughout this
paper,—L(p, q) denotes the same manifold a¢p, q) with reversed orientation.

A knot K in a closed orientable 3-manifol is called a (1, Lknot if (M, K) =
(V1,t11) Up (Vo, 1), where V1, Vo; P) is a genus one Heegaard splitting ands a trivial
arcinV; (i =1 and 2). (An ara properly embedded in a solid toris is said to be
trivial if there is a diskD in V with t C 9D anddD\t C aV.) SetW =(V,,t) (i =1
and 2). We call the tripletW:, W,; P) a (1, 1}splitting of (M, K). We regardP as a
torus with two specified point® N K. Let E; (E; resp.) be a meridian disk &f; (V»
resp.) disjoint fromt; (t, resp.). It is known that such a disk is unique up to isotopy
on Vi \t; (V2 \ 1tz resp.) (cf. [13, Lemma 3.4]). A (1, 1)-splittindAy, Wh; P) is said
to be monotoneif the signed intersection points &fE; and 0E, have the same sign
for some orientations 0§ E; and dE,.

Berge’s work [1] indicates that it is very important to stufly, 1)-knots. Which
knots in S* admit Dehn surgeries yielding lens spaces? This problemntilisopen.
In [1], Berge introduced the concept of doubly primitive kh@nd gave an integral
surgery to obtain a lens space from any doubly primitive kratthis paper, we call
such a surgenBerge’s surgery He also gave a list of doubly primitive knots i&
(cf. Section 6). It is expected that Berge’s list would be ptete.

If a lens spaceM comes from a Dehn surgery on a knktin S°, then there is
the dual knotK* in M such that a Dehn surgery d¢* yields S2. It has been proved
in [1] that when Berge’s surgery on a doubly primitive knotlgis a lens space, its
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dual knot is isotopic to a (1, 1)-knot defined as follows.

DEFINITION 1.1. LetV; be a standard solid torus &, m a meridian ofV; and
| a longitude ofV; such that bounds a disk in cB®\ V1). We fix an orientation ofm
and| as illustrated in Fig. 1. By attaching a solid tor\Ms to V; so that fn] = p[l] +
g[m] (p > 0) in Hy(8V1;Z), we obtain a lens spade(p, q), wherem is a meridian of
V,. The intersection points ah and m are labelledP,, ..., Pp_1 successively along
the positive direction ofm. For an integem with 0 < u < p, let t' be a simple arc
in Dj joining Py to P, (i =1, 2). Then the notatioK (L(p, q); u) denotes the knot
t Uty in L(p, q).

SetW = (Vi, t") (i =1, 2), whereV; andt" are those in Definition 1.1. Then
the pair of Wy and W, gives a (1, 1)-splitting ofK = K(L(p, g); u) which is mono-
tone. We will prove that any (1, 1)-splitting oL(p, q), K) is monotone ifK admits
a longitudinal surgery yielding® (see Lemma 4.1).

In this paper, we prepare the following notations.

DEFINITION 1.2. Letp and g be coprime integers withp > 0. Let {Uj}1<j<p
be the finite sequence such thak@; < p andu; =q-j (mod p). For an integeu
with 0 < u < p, W, 4(u) denotes the integej with u; = u, and ®,4(u) denotes the
number of elements of the following set:

{Uj 11<j <Wpq(u), uj <ul.
Also, ®,4(u) denotes the following:

®pq(U) = Min{dp (U), Ppq(u) — Ypg(u)+p—u
\lJp,q(u) — <I>p,q(u) -1, u-— d>p,q(u) — 1}
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In Definition 1.1, lett’} (t’; resp.) be a projection off (t3 resp.) onP with
'} C 9Dy (t'3 C 3D, resp.). Set”] =cl(3Dy\t'}) andt”y =cl(3D, \t'). Each oft’]
andt”} (t' andt”; resp.) are callednonotone projectionsf t' (t) resp.). There are
four projections ofk = K(L(p, q);u): t'jUt3, t'7Ut";, t"{ UL, andt”] Ut";. These
are calledmonotone projectionsf K on P. We remark thatb, 4(u) corresponds to a
self-intersection number of a monotone projectionkofon P which is minimal among
the four monotone projections. We will show thdt, 4(u) is an invariant forkK if
K admits a longitudinal surgery yielding® (see Corollary 4.6). Hence, in this case
@y q(u) will be denoted byd(K).

The following is our main result.

Theorem 1.3. Set K=K(L(p,q);u). Suppose that K admits a longitudinal
surgery yielding & Then we have the following
(1) &(K)=0if and only if K is a torus knot
(2) ®(K)=1if and only if K contains an essential torus in its exterior
(8) ®(K) =2 if and only if K is a hyperbolic knot

In Section 5, we will give formulae to obtain representasioof dual knots of
Berge’s examples. We remark that the arguments in Sectiome &lenost restatements
of those by Berge [1].

2. Preliminaries

Let B be a sub-manifold of a manifold. The notationn(B; A) denotes a regular
neighborhood oB in A. By E(B; A), we mean thexteriorof B in A, i.e., E(B;A) =
cl(A\n(B; A)).

For two curvesx and y in a surface(i.e., connected compact 2-manifold), the
notation fi(x, y) denotes the number of transverse intersection points lamchoétation
fic(X, y) denotes a (minimal) geometric intersection number radativ the endpoints of
x andy. We say thatx andy intersectessentiallyif f(x, y) = fic(X, V).

A triplet (Hy, Hp; S) is agenus g Heegaard splittingf a closed orientable 3-manifold
N if Hy (i =1 and 2) are genug handlebodies withN = H; U H, and H; N H, =
dH1NoH, =S. The surfaceS is called aHeegaard surface A properly embedded disk
D in a genusg handlebodyH is called ameridian disk of Hif a 3-manifold obtained
by cuttingH along D is a genugy—1 handlebody. The boundary of a meridian disk of
H is called ameridianof H. A collection of mutually disjointy meridians{xy, ..., Xg}
of H is called acomplete meridian systeof H if {xy,...,Xg} bounds mutually disjoint
meridian disks ofH which cutsH into a 3-ball.

Let (Hy, Ho; S) be a genus two Heegaard splitting 8t. Let {x1, Xo} and {y, y»}
be complete meridian systems by and H, respectively. AHeegaard diagranof S
is (S; {x1, X2}, {y1, ¥2}). If X1, X2, y1 and y, are isotoped orS so that they inter-
sect essentially, then we calb;({x1, X2}, {y1, ¥2}) @ normalized Heegaard diagramf



406 T. SaITo

g(x1, Y1) =1, (%2, ¥2) = 1, xoNy; =¥ andx; Ny, =@, then the Heegaard diagram is said
to be standard Let X, (Zy resp.) be the 2-sphere with four holes obtained by cutting
S alongx; andx, (yp andy, resp.), and lex" andx~ (y;” andy~ resp.) (=1, 2)
be the copies ok; (y; resp.) inXy (Xy resp.). Awavew associated with x(i = 1

or 2) is a properly embedded arc By such thatw is disjoint from {; U y,) N 2y,

w joins x;" or X to itself andw does not cut off a disk fronEy. Similarly, awave

w associated with jy(i =1 or 2) is a properly embedded arc By such thatw is
disjoint from (x; U x2) N Ty, w joins yi or y; to itself andw does not cut off a disk
from Z,. A Heegaard diagram&{ {x1, X2}, {y1, ¥2}) contains a wavef there is a wave
associated withx; (i =1 or 2) ory; (i =1 or 2). The following has been proved by
Homma, Ochiai and Takahashi [8].

Theorem 2.1 ([8, Main Theorem]). A normalized genus two Heegaard diagram
of S is standard or contains a wave

Let M be a closed orientable 3-manifold. thivial knot in M is a loop bounding
an embedding disk iM. It is easy to see that a Dehn surgery on a trivial knot in a lens
space cannot yiel@®. A torus knotin M is a non-trivial knot which can be isotoped
on a genus one Heegaard surfaceMbf The following has been proved in [13].

Theorem 2.2 ([13, Theorems 2.2-2.4]).Let K be a non-trivial(1, 1yknot in M
and (W;, Ws; P) a (1, 1)splitting of (M, K) with W = (V;, t;) (i =1, 2), where Y is a
solid torus andtis a trivial arc in Vi. Suppose that there are projectionjsand t, of
t; and & respectively and there is an essential loop z oyKPsuch that 2 (t; Ut)) = @.
Then one of the following holds
(1) K is a torus knat
(2) E(K; M) contains an essential torus
(3) K =K(«a, 8;r) for somea, B and r.

Here, K(«, B;r) is a knot obtained by the following construction. Li€§ UK, be
a 2-bridge link of type ¢, 8). ThenK(«, B8;r) denotes the knoK; in Ki(r), where
Ki(r) is the manifold obtained by the-surgery onKj (cf. [12, Chapter 9]). By an
argument similar to that in [10, Section 1], we can see Wé&t, 8;r) is a (1, 1)-knot
in Ky(r) for any 2-bridge link and surgery coefficient

We remark the following which has been essentially provedtLi].

Lemma 2.3. Set K= K(«, 8;r) for some«, B and r. If K admits a Dehn
surgery yielding & then K is a torus knot

Proof. Recall that the exterior d&f is obtained from the exterior of a 2-bridge link
by filling a single solid torus. It has been proved in [11] tlzety closed 3-manifold
obtained by any non-trivial Dehn surgery on a 2-bridge lisknot homeomorphic to
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S® unless the 2-bridge link is a torus link (cf. [11, Theoremsrl 8]). This implies
that if K admits a Dehn surgery yielding®, thenK is a torus knot. ]

3. Dehn surgeries onK(L(p, q); u)

We use the notations in Definition 1.1. L&; (D, resp.) be a meridian disk of
V1 (V, resp.) withdD; = m and £(dDy, dD;) = #c(3D1, dD,). Lett’] (t'; resp.) be
the monotone projection df' (t resp.) whose initial point i and whose endpoint
is P, passing in the positive direction of (I resp.). Thert’] (t'; resp.) is called the
positive projectionof t;' (tJ' resp.). Setv] = Vo U n(t3; Vo), V, = cl(Va \ n(ty; V»)) and
S =09V, =0dV,. Then ¥/, V,; S) is a genus two Heegaard splitting ™ = L(p, q).
Let D, C (D2 N V,) be a meridian disk of; with D, > (t'; N’ S). Let m be a
meridian of K =t; Ut} in the annulusS Nan(ty; V,). Letl” be an essential loop I8
which is a union oft’; NS and an essential arc in the annulN dn(t}; V,) disjoint
from D} (cf. Fig. 2).

Let m* be a meridian ofK in an(K;V;) and|* a longitude ofK in an(K; V;)
such that’ Ul* bounds an annulus in & \ n(K; V;)) and thatl* > (61 N an(K; V;)),
where §; is the disk inVy bounded byt} Ut’i. Note thatm* and|* are oriented as
illustrated in Fig. 1. Ther{[m*],[1*]} is a basis ofH.(dn(K;V;);Z). LetV; be a genus
two handlebody obtained from &(\ n(K;V,)) by attaching a solid toru¥ so that the
boundary of a meridian disP of V is identified with a loop represented bym*] +
s[I*]. SetM’ =V, Ug V,. Then we say thaM’ is obtained by ther(/s)*-surgeryon
K. If r/s is an integer, ther(/s)*-surgery is called dongitudinal surgery A core
loop of V in M’ is called thedual knotof K in M’.

ExampLE 3.1. In Definition 1.2, setp =18, g =5 andu =7. Then we have
the finite sequencéu;} determined in Definition 1.2 as follows:

{uj}i<j<18: 5, 10, 15, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13, 0.
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Hence we see thabig5(7) =5 and ®yg 5(7) = P15 5(7) = 2.

SetK = K(L(p, q); u) = K(L(18, 5); 7). We use the same notations as the above
and in Definition 1.1. Then we can regabdD, as an (18, 5)-curve odV;. When
one fixesPy as an initial point and followsD, in the positive direction of, 9D,
intersectsdD; in the following order:

(PO _>) PU1 - PUz o PU17 - PU18 — Po.

Let E; (E> resp.) be a meridian disk of; (V> resp.) disjoint fromt;' (t3 resp.).
Recall thatt’y (t'5 resp.) is the positive projection df (t3 resp.). Then¥pq(u) =
W15 5(7) represents the number of intersection pointsd& andt’y, and ®pq(u) =
d1g 5(7) represents the number of intersection_pointﬂ’bfand the interior oft’;.

We next calculate the fundamental groupMf= E(K; L(18, 5)). By the argument
above, we see thaS( {9 E.}, {0E», dD5}) gives a Heegaard diagram &f(K; L(18, 5)).
Setx; = 9E;. Lety; andy, be loops onS with y; NaD; =@, fi(y, 9E2) =1, yo N
9E> =0, ti(y2, dD5) = 1. Then we see thafl(M) has the following representation.

(M) = (y1, Y2 | X1 = 1).
By using the sequencg;}i<j<1s, We see

(M) = (y1, V2 | K = 1)
(Y1, Y2 | YiY2Yo YoV YaYayayiYaysyaysy, = 1).

1R

In fact, the relation is obtained by changing to y,y» if u; <u (=7) and chang-
ing u; to y; otherwise.

We finally consider the Gsurgery onK. Let M’ be a 3-manifold obtained by the
0*-surgery onK*. Sety; = dE; andy, = dD,. Let D; be a meridian disk oV, with
D; D D. Let x; and x, be loops onS with x;NoD; =9, (X1, 0E1) =1, XoNIEL =0,
i(x2, D7) = 1. Then we see

(M) = (x5, %2 | Y1=1, y2=1)

= <X1. X2

= (Xg, XpX2 | X1 = 1, XX = 1).

X1 X2 XXX X XS Xp X1 Xo X3 X X3 X = 1,>

X1 XoX3XoXy = 1

Since Poincaré conjecture is true for genus two 3-manif¢ddis[3] and [5]), we
see thatM’ is homeomorphic tc&®. We remark thatk c L(18, 5) is the dual knot of
the (-2, 3, 7)-pretzel knot.
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4. An invariant of K(L(p, q); u) with a longitudinal surgery yielding S*

We first prove the following.

Lemma 4.1. Set K= K(L(p,q);u). Suppose that K admits a longitudinal surgery
yielding $. Then any(1, 1)-splitting of (M, K) is monotone

Proof. Let i, W;; P) be a (1, 1)-splitting of M, K) with W, = (Vj, t;) (i = 1, 2).
Let E; (E, resp.) be a meridian disk dof; (V, resp.) disjoint fromt; (t, resp.). Let
D; (D2 resp.) be a meridian disk of; (V, resp.) which containg; (t; resp.) and is
disjoint from E; (E, resp.). We may assume thaD; \ K intersectsi D,\ K essentially
in P\ K.

Lett’; (t', resp.) be a projection df (t; resp.) witht’y C Dy (t'2 C 9D, resp.).
SetV] = Vi Un(ty; Vo), V5 =cl(V2\ n(t2; Vo)) and S =9V, = 9V,. Then V[, V;; S) is
a genus two Heegaard splitting &. Let D, C (D, NV;) be a meridian disk oW,
with 8D; D (2N S).

We now consider a longitudinal surgery ¢n Let V" be a genus two handlebody
obtained from clY; \ n(K; V/)) by attaching a solid toruy so thatdD intersects a
meridian of n(K; V]) transversely in a single point, whe@ is a meridian disk of
V. Let D} be a meridian disk of/;’ with D; > D. Since we consider a longitudinal
surgery onK, we may assume that 6ID; \ n(tz; V2)) is equivalent tat’y N9V,". Then
(S;{0Dj, 0E4}, {0D,, dE>}) is a Heegaard diagram of the manifoM’ obtained by
such a surgery orK.

Let S (S, resp.) be the torus with two holes obtained by cuttiigalong dE;
(0E resp.). LetdE] anddE; (9E; anddE, resp.) be the boundary components of
S (§ resp.).

To prove Lemma 4.1, we suppose th&ti( W»; P) is not monotone. Then there
are two arc components, say andy,, of dE; NS, such thaty; (y; resp.) joinsdE;
(0E; resp.) to itself. Since

dE; N(IE1 N S) =0E; N(IEL N S),

we see thaty; (y; resp.) separates the specified pointsPin, dE,. Similarly, there
are two arc components, say andy;,, of dE; NS, such thaty, (y; resp.) joinsdE;]
(0E] resp.) to itself and separates the specified point® NJE;.

Let X, (X resp.) be the 2-sphere with four holes obtained by cut8ngS, resp.)
alongaD; (aDj; resp.). Sincen andy; (y. andy, resp.) separates the specified points
in P\9E, (P\dE; resp.),y1 andy; (y2. andy;, resp.) assure that there are no waves
in X, (X1 resp.). Hence it follows from Theorem 2.1 thist’ is not homeomorphic
to S°.

This completes the proof of Lemma 4.1. O
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Lemma 4.2. Let K be a(1, 1}knot in a lens space M an@W;, W,; P) a (1, 1)}
splitting of (M, K). If (W1, W,; P) is monotone then there is a monotone projection
of K on P.

Proof. Recall thaWy = (Vi, tj), whereV; is a solid torus and; is a trivial arc in
Vi. Let E; (E; resp.) be a meridian disk of; (V. resp.) disjoint fromt; (t, resp.).
Let D; be a parallel copy ofE; which containst;. We suppose thaoD; N dE;| is
minimal among such all meridian disks ®;. We first prove the following.

Claim. If 9D; and 0E;, are oriented then the signed intersection points 8D;
and 0E, have the same sign

Proof. Suppose that the claim does not hold. ket be the annulus with two
specified pointsP N K which is obtained by cuttind® along dE;. Let y be a com-
ponent of dE, N Ap. Since Wi, W,; P) is monotone, we see that joins distinct
boundary components ohp. Let Dp be the disk with the specified points which are
obtained by cuttingAp along y.

Suppose that there are no component®Bf N Dp separating the specified points
in Dp. Then this implies that each componentadE, N Dp is parallel toy in Ap\ K.
Hence we can regarBp as a square [0, § [0, 1] such that each component ®E, N
Dp is vertical, i.e., each component &fE, N Dp corresponds tgp} x [0, 1]. We may
assume that the specified points are in [0s11/2}. Let o be a loop onP such thatx
corresponds to [0, I {1/2} in the squareDp. Then we see that bounds a meridian
disk D, of V; andt; is isotoped intoD,, relative to the endpoints (cf. [13, Section 3]).
Since we suppose that the claim does not hold, we sedabgtNoE;| < |[0D1NIE,|.
This contradicts the minimality ofdD; N dE,|. Hence there is a component, spy
of 9E, N Dp separating the specified points Dy (cf. Fig. 3).

Let D, and DY, be the disks obtained by cuttinDp along y’. Note that each
of Dy and D} contains exactly one of the specified points. Then we canrdeBa
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(D% resp.) as a square [0, 4]0, 1] such that each component ®E, N D}y (dE>N D%
resp.) is vertical and that the specified point is in [Ox1J1/2}. Let o’ be a loop on
P such thate’ N Dy (o’ N Df resp.) corresponds to [0, ¥ {1/2} in the squareD,
(D% resp.). Then we see that bounds a meridian disbP, of Vi andt; is isotoped
into D, relative to the endpoints. Since we suppose that the claies dot hold, we
see thatjoD, N AE;,| < |0D1 NdE3|. This contradicts the minimality ofo D; N dEy|.
Hence we have the claim. O

Let D, be a parallel copy oE; with 3D, > (PN K). Thent; is isotoped intoD,
relative to the endpoints. Hend®; and D, imply that there is a monotone projection
of K on P.

This completes the proof of Lemma 4.2. O

The following is well known.

Lemma 4.3 (cf. [4] and [7]). There is an orientation-preserving homeomorphism
between two lens spacegp, q) and L(p’,q’) if and only if one of the following holds
(1) pPP=p and d =q (mod p), and
(2) pP=pand d=q " (mod p).

We note that the following is mentioned by Berge [1] (cf. [IBection 6]).

Lemma 4.4 ([1, Theorem 3]). Set K= K(L(p, q);u) and K' = K(L(p, q); u)
for some integers pq, u, p, 9 and U. Suppose that (p, q) is homeomorphic to
L(p/,q) and that both K and Kadmit a longitudinal surgery yielding3s Then K is
isotopic to K if and only if [K] = £[K'] in H1(M;Z), where M= L(p,q) = L(p’,q).

By using lemmata above, we show the following.

Proposition 4.5. Set K= K(L(p, q);u) and K' = K(L(p’, q'); u) for some inte-
gers p g, u, p’, g and U. Suppose that there is an orientation-preserving homeo-
morphism between (Ip, g) and L(p’, q") and that both K and Kadmit a longitudinal
surgery yielding & Then K and K are isotopic if and only if one of the following
holds
(1) In case of (1) of Lemma 4.3,u'=u or U =p—u.

(2) In case of(2) of Lemma 4.3,u’ = Wy q(u) or u' = p — W, 4(u).

Proof. Note that it is easy to see thit(L(p, q); u) and K(L(p, q); p — u) are
isotopic. It follows from Lemma 4.4 thak and K’ are isotopic if and only ifu’ =u
or U = p — u under the assumptiog’ = q. By Lemma 4.3, we have the following
two cases:
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Claim 1. g = q (mod p). In this case K and K’ are isotopic if and only if
uU=uoru=p-—u.

Proof. Setq’ =q+np for some integen. Let (Vi, Vz; S) be a Heegaard splitting
of L(p,q) such that the boundary of a meridian disk\&fis a (p,q)-curve indV;. Let
(V{, V;; S) be a Heegaard splitting df(p’, g’) such that the boundary of a meridian
disk of V, is a (p/, g)-curve in dV;. Since genus one Heegaard surfaces of a lens
space are isotopic, we may assume t8at S. Moreover, sinceq’ = q+np, we see
that V; =V, and V; = V, (cf. [4] and [7]) andV] is obtained by twistingv; along a
meridian disk ofV;. Therefore we see thaK|] = +[K’] in Hy(L(p, q);Z) if and only
if U =uoru =p-u. Hence it follows from Lemma 4.4 tha and K’ are isotopic
if and only if U =u or ' = p—u. Hence we have Claim 1. O

Claim 2. g =q~! (mod p). In this case K and K’ are isotopic if and only if
U =Wpq(u) oru' =p—Wyq(u).

Proof. Setq'q=np for some integen. Let (V1, V2; S) be a Heegaard splitting of
L(p, g) such that the boundary of a meridian disk\&f is a (p, q)-curve inaV;. Let
(V{, V;; S) be a Heegaard splitting df(p’, g’) such that the boundary of a meridian
disk of V, is a (p, g)-curve in dV;. Since genus one Heegaard surfaces of a lens
space are isotopic, we may assume tBat S. Moreover, sinceg'q = np for some
integern, we see thav, =V, and 'V, =V, (cf. [4] and [7]).

We now isotopeK so thatK NV; =t (K NV, =t resp.) is a trivial arc in
Vi (V, resp.). Lett’] ('3 resp.) be a monotone projection df (ty resp.). Since
#(t',0E1) = Wp q(u) or p—Wpq(u), we see thaK is isotopic toK (L(p',q'); ¥p,q(u)) =
K(L(p’, q); p— W¥pq(u)). HenceK and K’ are isotopic if and only ifu’ = W, 4(u) or
U =p—Wpq4(u). Hence we have Claim 2. O

This completes the proof of Proposition 4.5. ]

As a corollary of Proposition 4.5, we have the following:

Corollary 4.6. Set K=K(L(p,q);u) and K' = K(L(p,d’);u’) for some integers
p, q, u, p/, g and U. Suppose that there is an orientation-preserving homeohisinp
between Ip, q) and L(p’, q") and that both~ K and Igadmit a longitudinal surgery
yielding S. If K and K’ are isotopi¢ then @, q(u) = @ o (U).

By this corollary we see thaﬁ),),q(u) is an invariant forKk = K(L(p, q); u) if K
admits a longitudinal surgery yielding®. Hence we define the following:

DEFINITION 4.7. SetK = K(L(p, q); u) and suppose thadt admits a longitudi-
nal surgery yieldingS®. Then @, 4(u) is denoted by®(K).
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5. Proof of Theorem 1.3

We first remark the following.

Lemma 5.1 ([6, Theorem C] and [9, Theorem 3]).Let K be a torus knot in M
and (W, Ws; P) a (1, 1)splitting of (M, K). Then there is a projectioty (t, resp)
of t; (t, resp) on P such that; is disjoint from the interior oft,.

Proposition 5.2. Set K= K(L(p, q); u). Suppose that K admits a longitudinal
surgery yielding & Then®(K) =0 if and only if K is a torus knot

Proof. Let W, Ws; P) be a (1, 1)-splitting of M, K) with W, = (V;, t;) (i =1, 2),
whereV; is a solid torus and; is a trivial arc inV;. Since K admits a longitudinal
surgery yieldingS®, it follows from Lemma 4.1 thatW, Ws; P) is monotone. Let;

(t; resp.) be a monotone projection af (t, resp.) such that; U t; gives the value
®(K).

If ®(K) =0, thent; is disjoint from the interior oft,. Hence we see th& is a
torus knot.

Suppose thaK is a torus knot. Then it follows from Lemma 5.1 that there is a
projectiont; (t, resp.) oft; (t, resp.) onP such thatt; is disjoint from the interior of
t,. Let x; (Y resp.) be the boundary of a meridian disk\af (V» resp.) disjoint from
t1 (t2 resp.). Note that it follows from [13, Lemma 3.4] thet (y, resp.) is unique up
to isotopy onP \ K. Note also that we may assume that any projectioty ¢f, resp.)
on P is disjoint from x; (y» resp.). LetXy, (Xy, resp.) be the component obtained
by cutting P along x; (y: resp.). We may assume that(t, resp.) is isotoped so that
t; (to resp.) intersectss (x; resp.) essentially. Lex; and x; be the boundary of
2y Since Wi, Ws; P) is monotone, we see that each componenyoff £, is an
arc joining xj to X; .

CAsE 1. t, is not a monotone projection dj.

Then there is a component, s@y of t,N Xy, which joins X; to itself. Then since

X; N (G20 Ex,) =X N (RN ),

we see that there is also a component, %‘ayof t,N Xy, which joins X] to itself. This
implies that it is impossible to obtain an arc which joins tepecified pointsP N K
in Xy, and is disjoint fromt, N pIV Sincet; is contained inAp, this implies that
t; Nty # ¢, a contradiction.

CASE 2. t, is a monotone projection db.

To obtain the conclusio®(K) =0, we further suppose thad@t(K) # 0. Then there
is a component, sa, of t; N Ty, which joins x] to x; and intersects; transversely
in a single point. Also, there is a component, $&y of t, N =y, which joins x; to x;”
and is disjoint fromt’]. This implies thatt_é Ut_é’ separates two specified poinsn K
in . Sincet; is contained inAp, this implies thatt; Nt, # @, a contradiction.
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This completes the proof of Proposition 5.2. 0

Dehn surgeries on satellite knots 8 yielding lens spaces have been completely
classified as the follows (cf. [2, 15, 16]).

Lemma 5.3 ([2, Theorem 1]). Let K be a satellite knot in Swhich admits a
Dehn surgery yielding a lens space. Mhen K is the(2pg+1, 2)-cable on the(p, q)-
torus knot and M= L(4pg %1, 492).

Here, a knotk C S is called the I(, s)-cable on a knot K C S if K is isotoped
into an(Ko; S°) and is homologous to[lg] + s[mg] in 9n(Ko; S°), where [, mo) is a
standard meridian-longitude system 6§ on 9n(Ko; S%).

REMARK 5.4. (1) LetK be the (2q=+ 1, 2)-cable on theg, q)-torus knot and
K’ be the (g +£ 1, 2)-cable on theq, p)-torus knot. ThenK and K’ are isotopic.
(2) Let p andqg be coprime integers. Then we see that the following are atgrit:

(4pq+1)(4pg—1)=0 (mod 4pq=+1),
16p?q> —1=0 (mod 4pq+ 1),

(4p*)(49*) =1 (mod 4pq =+ 1).
Hence we see that ¢4) ! = 4p? (mod 4pq =+ 1) and therefore

L(4pq £ 1, 494%) = —L(4pq + 1, —4q?)
= —L(4pq+1, —4p?) = L(4pq+ 1, 4p?).

Lemma 5.5. Let p and q be coprime integersSuppose that p- 1 and q #
0, +1. Set K= K(L(|4pq =+ 1|, £49°); 2|q]). Then K admits a longitudinal surgery
yielding § and ®(K) = 1.

Proof. Since the argument is similar (cf. Remark 5.6), wes givproof in case of
1l<q<pandK =K(L(4pg-—1, 49?); 29).

Claim 1. ®gpq 1.42(20) = 1.

Proof. For a pair of #q — 1 and 42, we consider the finite sequenée;} de-
termined in Definition 1.2. Sincec- p—q =0 (mod 4pg— 1), we see thati, =q.
Suppose that there are integgg'sandqg’ with 0 < p’ < p, 0<q <29 anduy =¢'.
Then there is a non-negative integelsuch that 4%- p' =n-4pg?+q’. This indicates
that 44%(p' —n-p) =q’. Since O< p’' < p andg’ > 0, we see thah = 0 and hence
4p'g% = g’. However, this contradicts that @ q’ < 2q. This implies that for each
integer j with 1 < j < p—1, we see that; > 29. Similarly, we see thati;, = 2q
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andu; > 2q for each integerj with p+1 < j <2p— 1. Hence®,pq_1,42(2q) = 1.
Note that

dpq(u) =min{l, 4pq — 2p — 2q, 2p — 2, 29 — 2}.

Since we assume that4d q < p, we see thaﬁ>4pq,1,4qz(2q) = 1. Therefore we
have Claim 1. ]

Claim 2. TheO*-surgery on K yields S

Proof. We use an argument similar to that in Example 3.1 anttdieve use
the same notations as those in Example 3.1. Métbe a 3-manifold obtained by
the O-surgery onK*. Recall thatx; and x, are loops onS" with x; N aD] = ¥,
8(xq, 0E1) = 1, xo NOE1 =@, t(x2, dD]) = 1. Recall also thay; = dE, andy, = dD5.
Then we see

(M) = (x5, X2 | y1=1, y2=1)

X, X [ Y1=1, Vo= 1) (X5 1= X1X2).

It follows from the argument in the proof of Claim 1 thgt = xxox” = xP " xxP.

Sincey, = 1, we see thak; = xi_zp. This implies thatx; andx, are commutative with
each other and hence,(M’) = Hy(M’; Z). We note that

Hi(M’; Z) = <X1, X5

(4pg—1)—2q) - x1 +29- %5 =0,
2p—1)-x+x,=0

This implies thatH;(M’; Z) is trivial and hencer,(M’) is trivial. Since Poincaré
conjecture is true for genus two 3-manifolds (cf. [3] and)[5)e see thatM’ is home-
omorphic toS® and hence we have Claim 2. ]

The conclusion of Lemma 5.5 follows from Claims 1 and 2. O

REMARK 5.6. To prove Lemma 5.5 in other certain cases, we need tadssns
the sequence obtained by reversing the order of the seqyenke

Lemma 5.7. Let K be the(2pg+1, 2)}cable on the(p, q)-torus knot with p> 1
and q# 0, £1. Then the following holds
(1) If g > 1, then K* = K(L(4pg+1, 49%); 2q) is the dual knot of K in (4pg+1, 492).
(2) If q < —1, then K* = K(L(|4paxl|, —49?);2|q]) is the dual knot of K in [J4patl],
—49°).
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Proof. First we prove the case whénis the (2pg—1, 2)-cable on the, q)-torus
knot. The case wheK is the (2pg+1, 2)-cable on the, g)-torus knot will be proved
similarly. SetK* = K(L(4pqg — 1, 49°); 2q). Let (Wi, Ws; P) be a (1, 1)-splitting of
(L(4pg—1,49?), K*). Recall thatw, = (V;,t) (i =1,2), whereV; (V, resp.) is a solid
torus andt; (t, resp.) is a trivial arc irvy (Vo resp.). LetE; (E, resp.) be a meridian
disk of V; (V> resp.) disjoint fromt; (t; resp.). SinceK* admits a longitudinal surgery
yielding S* (cf. Lemma 5.5), we see thai\g, W»; P) is monotone (cf. Lemma 4.1).
Hence we may assume thaE, is a (4pq — 1, 49°)-curve ondVy (cf. Lemma 4.2).
Let t; (t; resp.) be a monotone projection tf (t; resp.) such that; Ut; gives the
value ®(K). It follows from Lemma 5.5 thatb(K) = 1. Letv be the self-intersection
point of t; Ut,. Lett] (t; resp.) be the subarc of (t; resp.) which joinsP, to v. Let
z; be a loop onP obtained by moving; Ut; slightly so thatt; Ut} is disjoint from
t; Ut,. Then it follows from Claim 1 in the proof of Lemma 5.5 thiat(zy, 0E1) = p
andfig(z1, dE2) = Q.

Let A; (A, resp.) be an annulus obtained by pushing the interioE (df;; 9V;)
(E(zz; 0V2) resp.) into the interior oVy (V2 resp.) so thatA; (A, resp.) is disjoint
from t; (t, resp.). ThenA U A, cuts (L(4pg—1, 492), K*) into (M1, K*) and (Ma, 9).
Note thatM; is a solid torus containing(*. Sincefig(z1,dE1) = p andfg(z1,0Ep) =q,
we see thatM, is homeomorphic to the exterior of the,(q)-torus knot inS®. Hence
ALUA; is an essential torus i&(K*;L(4pgq—1,4qg?). SinceK* admits a longitudinal
surgery yieldingS® (cf. Lemma 5.5), we see thd* is the dual knot of a cable of
the (p, q)-torus knot inS®. Hence it follows from Lemma 5.3 thak* is the dual
knot of K. O

Corollary 5.8. Set K= K(L(p, q);u). Suppose that K admits a longitudinal
surgery yielding & Then®(K) =1 if and only if E(K; M) contains an essential torus

Proof. Suppose first thab(K) = 1. Then by an argument similar to that in the
proof of Lemma 5.7, we see that there exists a lagpas in the proof of Lemma 5.7.
This implies that a (1, 1)-splitting ofM, K) satisfies the assumption of Theorem 2.2.
Hence it follows from Theorem 2.2 and Lemma 2.3 tKais a torus knot orfE(K; M)
contains an essential torus. Sind¢K) =1, K is not a torus knot (cf. Proposition 5.2)
and henceE(K; M) contains an essential torus.

Suppose next thaE(K; M) contains an essential torus. Th&nhis the dual knot
of the (2pg £ 1, 2)-cable on the [, q)-torus knot for some integerp and q. Hence
it follows from Lemmata 5.5 and 5.7 that(K) = 1. ]

Theorem 1.3 immediately follows from Proposition 5.2 anddllary 5.8.

6. Appendix

Here, we will recall Berge’s argument [1] to obtain a relaship between Berge’s
examples and their dual knots. We first recall Berge's syrger doubly primitive
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Y1 y2
1 1
1 1 H
Xy \ /! X\ ! H'

Fig. 4.

knots. Let H, H’; S) be a genus two Heegaard splitting 8. A knot K C Sis

a doubly primitive knotif K represents a free generator bothmafH) and of 71(H’).

If K is doubly primitive, then there are meridian disksand E (D’ and E’ resp.) of
H (H’ resp.) withg(dD,K)=1 anddENK =@ (4(dD’, K) =1 anddE'NK =@ resp.).
Then it follows from [1, Theorem 1] that a Heegaard diagrén{¢D, 9E}, {K, dE’})

represents a lens space. We call such a surBerge’s surgeryon K. We remark that
aD’ corresponds to the dual knot &f.

Let (H, H’;S) be a genus two Heegaard splitting 8t and (S; {x1, X}, {1, Y2}) its
standard Heegaard diagram wittxs, y1) =1, (X2, ¥2) =1, xo Ny =@ and x; Ny, = 4.
We fix orientation ofx;, X2, y1 andy, as in Fig. 4.

Then {[x41], [X2], [Va], [Y2]} is a basis ofHi(dH; Z). Let K be an oriented doubly
primitive knot on S with [K] = a[x1] + b[Xz] + ¢[y1] + d[y2] in Hi(dH;Z). Let h be
an orientation-preserving homeomorphism téf with h(x;) = K. Then h induces a
symplectic transformatiogp on H.(dH’; Z) which satisfies the following:

¢(x1) = alxa] + b[xz] + c[yi] +d[ya],
P(x2) = s[xa] +t[xz] +uly:] + v[y2],
#(y1) = t[yi] — slyal,
B(y2) = — blyi] + a[y,]
where, s, t, u andv are integers witrat —bs=1 and @u+bv) — (cs+dt) =0. Recall
that sinceK is doubly primitive, K] is a free generator oH;(H; Z). Let [K'] be
the other generator oHi(H;Z). We now consider a projectiop onto [K’]. Then
we have:
p(x2) = (cv —du)[K'],
p(y1) = (=cs—di)[K],
p(y2) = (ac+bd)[K’]

where, we remark thap(x;) =0. Let M =L(p,q) be a lens space obtained by Berge’s
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surgery onK and K* = K(L(p, g); u) the dual knot ofK. Let V be a 3-manifold ob-
tained from H by attaching a 2-handle along. Since K is doubly primitive, we
see thatV is a solid torus and tha¥ and V' = E(V; M) give a genus one Heegaard
splitting of M. Note that a core oV corresponds to a generatdk’] of Hy(H; Z), a
meridian of V' corresponds t@(y.), a core ofV’ corresponds t@(x;) and K* cor-
responds tap(y1). Hencep of K(L(p, q); u) satisfies thatp = ac+ bd.

We divide the rest of the arguments into the following threses.

Case 1. Knots of types (I)—(VI).

Each knots of types (I)—(VI) in Berge's examples satisfiest #h= +1. Sinceat —
bs =1, we see thas andt are coprime and hence we hage= —1 +aj andt =
a(l—b) +bj, wherej is an integer. Hence we haws+dt = —c+ad(1 — b). Also,
it follows from (au+ bv) — (cs+dt) = 0 thatau = (cs+ dt — bv).

Let my be a meridian olV. Recall thatga(my, ¢(y2)) = p =ac+bd, wherega(-, -)
means an algebraic intersection number. Note thaf K(L(p, q); u) corresponds to
ga(my, ¢(x2)). Hence we need to calculate the valte— du. Since we assuma =
+1, we have:

g=cv—du
=cv Fd(cs+dt — bv)
= (c £ bd)v ¥ d(cs+dt)
= —ad(cs+dt) (mod p=ac+bd)
=ad(c+ad(b—1)) (mod p=ac+hd).

We remark thaimy is a (p, q)-curve ondV’. HenceV (V' resp.) corresponds to
V, (Vi resp.), whereV; and V, are those in Definition 1.1. SinckK* corresponds to
¢(y1), we see thatK*] = (—cs—dt)[K’]. Hence we see that of K(L(p, q);u) satis-
fies thatu = c+ad(b+1) (mod p =ac+bd) (cf. Claim 2 in the proof of Lemma 4.5).
Therefore we have the following.

Theorem 6.1. Let K be a doubly primitive knot witfK] = a[x3] + b[x2] + c[y1] +
d[yo] in H1(0H;Z). Let L(p, q) be the lens space obtained by Berge’s surgery on K and
K* the dual knot of K If a = 41, then K* admits a representation ¢L(p, q); u) with

p =ac+bd,
g =ad(c+ad(b—1)) (modp=ac+hbd),
u=c+ad(b—-1) (modp=ac+hbd).

Case 2. Knots on Seifert surfaces of genus one knots.

Let g1 and g, be oriented loops o@H illustrated in (a) or (b) of Fig. 5. Set
Ko =9n(g1 U g; 9H). Then Ky is the right-hand trefoil knot in case of (a) and is the



DuAL KNOTS OF DOUBLY PRIMITIVE KNOTS 419

(a) (b)

Fig. 5.

figure-eight knot in case of (b), anglg; U g2; 9H) is a genus one Seifert surface of
Ko. Let K be a knot inn(g1 U gz; dH) with [K] = a[gi] + b[gz], wherea and b are
coprime integers.

Suppose first thaKg is the right-hand trefoil knot. Sinceg{] = —[x1] +[y1] and
[92] = —[Xd] — [*%2] +[¥2] in Hi(0H;Z), we see that] = —(a+b)[xi] —b[x2] +a[yi] +
b[y.] in Hi(0H; Z). In this case, we have(a+b)t+bs=1 and ((a+b)u —bv) —
(as+Dbt) =0, wheres, t, u andv are integers ofp(xz) = s[X1] + t[xo] + u[y1] + v[ya].
Hence we see thap of K(L(p, q);u) satisfies thatp = —a® — ab — b?. Recall that
u of K(L(p, q);u) corresponds to the valueas — bt and thatq of K(L(p, q); u)
corresponds to the valuay — bu. Since—a(a+b) = b? (mod p = —a? —ab—b?), we
have —(a + b)(—as — bt) = —b(—(a + b)t + bs) (mod p = —a? — ab — b?). Hence we
have —(a + b)(—as— bt) = —b (mod p = —a? — ab — b?), because-(a+b)t +bs= 1.
Therefore we see that = —as— bt = b(a + b)~! (mod p = —a? — ab— b?). Forq
of K(L(p, q);u), we see that] = —u? (mod p = —a? — ab — b?) by the following.
(Recall that—a(a +b) = b? (mod p = —a? — ab - b?).)

(—(a+b)u — bv) = (as+ bt),
b(—(a+b)u —bv) = —bu (mod p = —a? — ab— b?),
(a+b)(av —bu) = —bu (mod p = —a?—ab—b?),
av —bu= —u?> (mod p=—a?—ab— b?).
Suppose next thakg is the figure-eight knot. Sinceg{] = —[x1] +[y1] and [gz] =
—[xa] + [xe] + [y2] in Hy(9H; Z), we see thatK] = —(a+b)[xi] + b[x] + a[y] + b[yz]

in H1(dH;Z). By an argument similar to the above, we have the conclugprof the
following Theorem 6.2.

Theorem 6.2. Let K be a doubly primitive knot and (b, q) a lens space ob-
tained by Berge’s surgery on .KLet K* be the dual knot of K In the following a
and b are coprime integers witha 0 and b> 0.
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Q) If [K] = —(a+b)[x] — b[x2] + a[y1] + b[y2] in Hi(0H;Z), then K* admits a
representation KL(p, q); u) with

=—a’ —ab—b?
= —b?(@@+b)? (mod p=—a?—ab—b?),
u=b@a+b)™* (mod p=—-a?—ab—b?.
(2) If [K]=—(a+b)[xi]+ b[xz]+ alyi] +b[y-] in Hi(dH; Z), then K* admits a rep-
resentation KL(p, q); u) with
p=—a’—ab+b?
q=—b%@a+b)? (mod p=—a?—ab+b?),
u=b@a+b)™* (mod p=—a®—ab+b?.

Case 3. Sporadic cases.
By an argument similar to the above, we have the following.

Theorem 6.3. Let K be a doubly primitive knot and (b, q) a lens space ob-
tained by Berge’s surgery on .KLet K* be the dual knot of K In the following j
is a non-negative integer
(1) f [K]= (6] + Dixa] — jixo] + (4] + Dyl + (2] + DIyz] in Hi(0H; Z), then K*
admits a representation {(p, q); u) with

p=22j2+9j+1,
q=—(22j +5¢ (mod p=22j2+9j +1),
u=22j+5 (modp=22j%+9j+1).
(2) If [K]=(@4] +D)xa] — jixo] + (6] + 2)[ya] + (2] + 1)[y] in Hi(0H; Z), then K*
admits a representation {(p, q); u) with
p=22j2+13j +2,
q=—(22j +7¢ (mod p=22j2+13j+2),
u=22j+7 (mod p=22j?+13j +2).
(3) If [K]= (4] =3)xa]+ (] + Dixe] + (6] +4)[y1] + (2] + 1)[y2] in Hy(dH; Z), then
K* admits a representation ¢ (p, q); u) with
p = 22j%+31j + 11,
q=—(22j +15¢ (mod p = 22j2+31j +11),
u=22j+15 (mod p=22j2+31j +11).
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(4) If [K]=(=6] —5)[x] + (] +1)[xz] + (4] +3)[ya] + (2] + 1)[y2] in Hi(dH;Z), then
K* admits a representation ((p, q); u) with

p=22j%+13j +2,

q=—(22j +17¢ (mod p =22j2%+13j +2),

u=22j+17 (modp=22j2+13j+2).
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