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1. Introduction

It has been known that alternating knots and links have many nice properties,
and there have been many generalizations of the notion of alternating links. For in-
stance, homogeneous, adequate, augmented alternating and almost alternating links.
C.C. Adams introduced the notion of toroidally alternating links in [ 1]. The class of
toroidally alternating links turned out to contain those of alternating links, almost
alternating links, pretzel links and Montesinos links (See [1] and [3]). C. Hayashi
also studied alternating links on surfaces of arbitrary positive genera in [3].

The purpose of this paper is to determine incompressibility of given closed
orientable surfaces in toroidally alternating link complements.

Let M be a lens space or the 3-sphere S3, and let T be.a torus which gives a
Heegaard splitting of M. This torus is unique up to isotopy (See [2]). A link L
in M is called toroidally alternating (with respect to T') if it can be isotoped into a
neighborhood T x I of T so that it has an alternating diagram 7(L) on T such that
T — w(L) consists of open discs with respect to a projection 7 : T x I — T.

Let FF C M — L be an embedded connected closed surface. F' is called incom-
pressible in M — L if either F is a 2-sphere and F' does not bound a 3-ball in M — L,
or F' is not a 2-sphere and for each disc D C M — L with D N F = 3D, there is a
disc D' C F with 0D = 8D’. F is called pairwise incompressible if there does not
exist a disc D C M meeting L transversely in one point with DN F = 8D. An
embedded disconnected surface F in M — L is called incompressible in M — L (resp.
pairwise incompressible) if every component of F' is incompressible in M — L (resp.
pairwise incompressible).

A link L C M is called non-split if every 2-sphere embedded in M — L bounds
a 3-ball in M — L.

W. Menasco defined the notion of standard position for surfaces either without
boundary or with meridional boundary in alternating knot and link complements
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Fig. 2.1.

in [4], and he showed that there is no closed incompressible and pairwise incom-
pressible surface in non-split prime alternating link complements. He also gave a
sufficient condition for surfaces with meridional boundary in standard position to
be incompressible in [5]. Adams proved that there is no closed incompressible and
pairwise incompressible surface in some toroidally alternating knot complements.
But it is known that there are toroidally alternating link complements which con-
tain incompressible and pairwise incompressible surfaces. Adams and Hayashi gave
examples of such surfaces in [1] and [3] independently. In this paper we define the
notion of standard position for closed orientable surfaces in toroidally alternating
link complements, and we see that we can easily determine whether given surfaces
are incompressible or not using the notion of standard position.

Theorem. Let M be S® or a lens space (excluding S? x S1). Let L be a non-split
toroidally alternating link in M, and let F C M — L be a closed orientable surface in
standard position. Then F is incompressible in M — L and pairwise incompressible.

In §2 we consider some properties which incompressible and pairwise incom-
pressible surfaces satisfy, and define for closed orientable surfaces in toroidally al-
ternating link complements being in standard position as satisfying such properties.
In §3 we define the notion of standard position for compressing -discs, and finally
show that there exists no compressing disc of closed orientable surfaces in standard
position in toroidally alternating link complements in §4, §5 and §6.

2. Standard position

Let L C M be a non-split toroidally alternating link with respect to T'. Through-
out this paper we assume that L has been isotoped so as to eliminate nugatory
crossings shown in Fig. 2.1.

As in [4], we place a bubble at each crossing of the diagram (L) and isotope-
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L so that overstrand at the crossing runs on the upper hemisphere and understrand
runs on the lower hemisphere as shown in Fig. 2.2.

Let T (respectively T-_) be the torus obtained from T with each equatorial disc
inside a bubble replaced by the upper (resp. lower) hemisphere of the bubble. We
define V. (resp. V_) to be the solid torus bounded by T (resp. T—) which does not
intersect the interiors of the bubbles. We use the notation 7. (resp. V) to mean T’y
or T_ (resp. V or V_).

Let FF C M — L be an incompressible, pairwise incompressible closed orientable
surface. Following [4], we isotope F to be in good position with respect to the
diagram = (L).

Proposition 2.1. We can isotope F' so that;
(i) F meets T transversely in a pairwise disjoint collection of simple closed curves,
and
(ii) F meets each 3-ball bounded by a bubble in a collection of saddle-shaped discs
(Fig. 2.3).

Such a saddle-shaped disc is called a saddle.

For a surface F satisfying (i), (ii) of Proposition 2.1, we define the complexity
¢(F) of F to be the lexicographically ordered pair (¢,u), where ¢ is the number of
the saddles of F' and w is the total number of components of FNT} and FNT_.
We say F has minimal complexity if ¢(F) < ¢(F’) for any surface F” isotopic to F.

Lemma 2.2. Suppose F' has minimal complexity. Then each loop of F N Ty
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is a component of boundary of one of a peripheral disc, a peripheral annulus or a
meridian disc.

Fig. 2.4.

Proof. It follows from the incompressibility of F' and the non-splittability of
L. ]

We call a loop C C FNTy a trivial loop if C is boundary of a peripheral disc,
and a non-trivial loop otherwise.

Let H be a upper(or a lower) hemisphere of a bubble. We say a loop C C FNTy
meets a bubble twice with encircling a disc if there are arcs a C C and 8 C OH such
that o U 8 forms a loop bounding a disc on T as shown in Fig. 2.4.
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Proposition 2.3. Suppose F' has minimal complexity. Then no loop of F N Ty
meets a bubble twice with encircling a disc.

Proof.  See [4, Lemma 1(ii)]. O

Since L is toroidally alternating and T — w(L) consists of open discs, F N T4
has the following alternating property:
(x)  Suppose that a loop C C F NT4 crosses two bubbles B; and B; (they are
possibly the same bubble) in succession. Then two arcs of L N Ty in By and
B, lie on opposite sides of C with respect to an arbitrary orientation of C.

Proposition 2.4.  Suppose F has minimal complexity. Then each loop of FNT;
is boundary of a meridian disc of F N V.

The proof of Proposition 2.4 is obtained by Lemma 2.2 and the following two
Lemmas.

Lemma 2.5. Suppose F has minimal complexity. Then there is no trivial loop
in FNTy.

Proof. See [4, Lemma 1]. U

Lemma 2.6. Suppose F' has minimal complexity. Then there is no non-trivial
loop which is a component of boundary of a peripheral annulus of F N'V,.

Proof.  See proof of [1, Theorem 3.1]. O

Proof of Proposition 2.4. Proposition 2.4 follows immediately from Lemmas
2.2, 2.5 and 2.6. U

Let F C M — L be a closed orientable surface. We say F is in standard position
if F satisfies the conclusions of Propositions 2.1, 2.3 and 2.4. That is;
(i) F meets T transversely in a pairwise disjoint collection of simple closed
curves, and
(ii) F meets each 3-ball bounded by a bubble in a collection of saddle-shaped
discs. (Fig. 2.3), and
(iii) No loop of F N Ty meets a bubble twice with encircling a disc, and
(iv) Each loop of F N Ty is boundary of a meridian disc of F'N V.
In this section we showed that every closed orientable incompressible and pair-
wise incompressible surface in a toroidally alternating link complement can be
isotoped into standard position.
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3. Compressing discs in standard position

We prove Theorem by reduction to absurdity. Let F' C M — L be a closed surface
in standard position. From now on we examine compressing discs and pairwise
compressing discs for F'. Menasco also defined the notion of standard position for
compressing discs in [5].

First as in [ 5], we place a compressing or a pairwise compressing disc in suitable
position. We omit the proof of Proposition 3.1.

Proposition 3.1. Suppose F has a compressing or a pairwise compressing disc
D. Then we can isotope D so that;
(i) D meets Ty transversely in a pairwise disjoint collection of simple closed curves
and properly embedded arcs in D, and
(ii) D meets each 3-ball bounded by a bubble in a collection of saddles.

For a compressing or a pairwise compressing disc D of F satisfying (i) and (ii)
of Proposition 3.1, we define the complexity c(D) of D to be the lexicographically
ordered pair (t,u), where t is the number of the saddles of D and u is the total
number of components of D NTy and D NT_. We say D has minimal complexity
if ¢(D) < ¢(D’) for every compressing or pairwise compressing disc D’ of F. From
now on we assume that D has minimal complexity.

We call a component of T — w(L) a region.

Proposition 3.2. D satisfies the following;
(i) No loop or arc of D N Ty meets a bubble twice with encircling a disc (see §2
for the definition of this situation), and
(ii) No arc component of D N Ty that is contained in a single region cobounds a
disc in the region together with a subarc of a loop of F N Ty (Fig. 3.1), and
(iii) Each component of D N VL is incompressible in V.

Proof.  For (iii), suppose DNV, say, is compressible in V. Since M does not
contain a non-separating 2-sphere, the boundary of a compression disc of D NV,
bounds a disc also on D — (L N D). As in Lemma 2.2, we can isotope D so that
DNV, is incompressible in V.. This isotopy reduces the number of the components
of DN Ty, which contradicts the minimal complexity of D.

For (i) and (ii), see Lemma 4(b) and (a) in [5]. O

We say a compressing or a pairwise compressing disc D is in standard position
with respect to F if D satisfies the conclusions of Propositions 3.1 and 3.2.
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4. Loops in DNT,y (I)

In §4 and §5, we will prove Proposition 4.2, that is, there is no loop in DN T%.
In §4 we make some preparations. First we prove that if there were a loop of DNT%4,
then it would bound a meridian disc of Vi in Proposition 4.1. Second we study
some parts of (FUD)NT4 and prove three Propositions 4.3, 4.6 and 4.9. Proposition
4.2 is proved in the end of §5.

From now on we assume that D is in standard position with respect to F'.

Since L is a toroidally alternating link, D N Ty also satisfies the following
alternating property:

Suppose @ C D NTy crosses two bubbles By and B; in succession, then,

(i) If two arcs of LN Ty in By and B, lie on opposite sides of o, then a
(+%) does not cross the puncture D N L between B; and Bs.
(ii) If two arcs of LN Ty in By and B, lie on the same side of a, then o
crosses the puncture D N L between B; and Bs.

Note that since a loop of F'NTy satisfies the alternating property (), a subarc
of (F'U D) N Ty satisfies the alternating property (*).

Let & be a component of FNTy (resp. FNT_) or DNTy (resp. DNT_) which
meets some bubble B. We define the mate to ¢ at B to be the component of FNT,
(resp. FNT_) or DNT, (resp. DNT-) which meets the other side of B and contain
a subarc of the boundary of the saddle which is incident to § at B.

From (i) of Proposition 3.1, D N Ty consists of loops and properly embedded
arcs. First we deal with loops. From (iii) of Proposition 3.2, each loop of DNTy is
a component of boundary of one of a peripheral disc, an incompressible peripheral
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annulus or a meridian disc.

Proposition 4.1.  No loop of DNT.. is a component of boundary of a peripheral
disc or a peripheral annulus.

Proof. Suppose there exists a trivial loop of D N T, which is boundary of
a peripheral disc. Let C be an innermost one of such loops on T} and d the disc
bounded by C on T',. If C intersects no bubbles, then C bounds peripheral discs in
both V; and V_, which is impossible. So C intersects bubbles. If C' does not intersect
L or intersects more than two bubbles, then by the alternating property () and
Proposition 3.2(i) we can find a mate to C in d. Let C’ be the mate. Suppose C’
is a loop of D NT,. Then C’ cannot exit from d, C' is a trivial loop in d, which
contradicts the choice of d. Hence C’ is an arc of DNT,. Then C’ connects with a
loop of FNT} in d, and the loop of FFNT, cannot exit from d, which contradicts
that F is in standard position (See Proposition 2.4). Suppose C intersects L and
intersects exactly one bubble. Then there is a loop or an arc of DNT_ which violates
Proposition 3.2(i). Therefore trivial loop cannot exist.

Suppose there exists a non-trivial loop which is a component of boundary of
a peripheral annulus. Note that an incompressible annulus has a non-meridional
boundary slope. Since every loop of F' N T bounds a meridian disc of V., the
annuli of D N VL intersect F N V. Then (intD)NF' is not empty. But it contradicts
the choice of D. O

Hence every loop of D NT. would bound a meridian disc of V.
Proposition 4.2.  There is no loop component in D NTy.

To prove Proposition 4.2, we need some preparations. From now on we study
some parts of (FUD)NTx.

First we consider a part of (F U D) N Ty shown in Fig. 4.1. That is, there are
a bubble B, an arc a of DN T, (resp. D NT_) and a loop B of FF NT, (resp.
F NT_) such that & meets B, both ends of o connect with 3, and « and a subarc
of 3 cobound a disc d on Ty (resp. T ). Moreover (L N B)Nd = ¢ and there is no
saddle incident to 8N Od.

Proposition 4.3.  If there exists a part of (F U D)NTy shown in Fig. 4.1, then
a meets the puncture D N L and no bubble other than B.

To prove Proposition 4.3, we assume for a contradiction that a N (DN L) = ¢.
We need following two Lemmas 4.4 and 4.5.
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Fig. 4.1.

Lemma 44. We can find in d a smaller copy of the pattern as shown in Fig.
4.1. That is, there is another arc & of DT, which cobounds a disc d, in d together
with a subarc of 3N 8d such that £ meets a bubble B’ and (LN B')Nd; = ¢.

The same argument below will do for the case of (FUD)NT-.

Proof. Suppose there is a part of (FU D)NT, shown in Fig. 4.1. There is a
part of LNT which enters d at the bubble B. Since the part of LNT exits from d, «
meets another bubble than B. Let B’ be the bubble. Then by (xx) and Proposition
3.2(i), there is the mate to « at B’ in d, which is not a. Let £ be the mate. If £ were
a loop, it could not exit from d, which violates Proposition 4.1. Hence £ is another
arc and its both ends connect with 8N dd and it cobounds a disc d; C d together
with a subarc of 3N &d. O

Note that the arc £ may intersect L. We can find a collection of discs in d which
are cobounded by arcs of D N7} and subarcs of 8N dd as shown in Fig. 4.1.

We can define a partial ordering on the set of such discs by declaring that
d’ < d” if and only if d’ C d”, where d’ and d” are such discs. We take one of discs
which are minimal with respect to this partial ordering. Let d,, be the disc and ¢
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the arc of D N7, which cobounds d,, together with a subarc of 3N dd. Let B,, be
the bubble which { meets.

Lemma 4.5. The arc ( meets the puncture D N L and no bubble other than
B,.

Proof. From the definition of (, there is a part of L N T entering d,, at B,.
Suppose first that ¢ does not contain the puncture. Then we can apply Lemma 4.4 to
¢U(BNad,), and we have a contradiction to the fact that we take d,, to be innermost
on d. Therefore ¢ contains the puncture. Suppose { meets another bubble than B,,.
If ¢ meets at least two bubbles other than B,, we can find a mate to ¢ in d. Then
as we did above we can find a mate of ( which violates that d,, is innermost. Hence
¢ meets at most one bubble other than B,. If ( does meet a bubble other than B,,
then let B], be the bubble. Then there are exactly one or three parts of LNT entering
d,, at B}, Therefore there are exactly three or five parts of L N\ T entering d,, at B,
at B), and at the puncture, which is a contradiction. Hence ¢ meets the puncture
and no bubble other than B,,. This completes the proof of Lemma 4.5. O

Proof of Proposition 4.3. We take the disc d,,—; such that d,, < d,—; and
there does not exist a disc d; other than d, or d,_; satisfying d,, < d; < dp_1.
Note that we can take d,_; uniquely. Suppose there is another such disc d; than
d, satisfying d; < d,_;. We take the disc in d; which is minimal with respect to

Bn—l

Fig. 4.2.
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the partial ordering. Let dj, be the disc. Since ¢ contains the puncture, 8d; does not
contain the puncture. Then we apply Lemma 4.4 to dy and have a contradiction.
Hence there is no such disc other than d,, in d,,_;. Note that this means there is no
other component of D N Ty in int(d,—; — d,,) which meets a bubble. If there is a
component of D N T, in int(d,_; — d,,) which meets no bubbles, then it violates
Proposition 4.1 or (ii) of Proposition 3.2.

Let n be the arc of D NT, which cobounds d,_; together with a subarc of
BN dd. From the way of taking n, n meets B, otherwise we can find the mate to ¢
at By, in int(d,—1 — d,). Suppose 7 and ¢ meet the same side of B,. See Fig. 4.2.
From the way of taking d,,_1, there is a part of LNT entering d,_; at some bubble
B, _; such that (L N B,_1) Ndn—1 = ¢. Suppose B,_1 coincides with B,. Since
there is a part of LN T existing from d,, at the puncture, we need at least one more
saddle incident to n other than B,,. Then 7 violates (i) of Proposition 3.2 or we can
find a mate to 7 in int(d,—; — d,). In both cases we have a contradiction. Hence
B, _; is different from B,,. Since 7 satisfies the alternating property (**) and since 7
does not contain the puncture, 7 meets another bubble between meeting B,,_; and
B,,. Then we can find another component of D N T in int(d,—; — d,), which is a
contradiction.

Therefore 1 and ¢ meet distinct sides of B,. Let 7, (resp. n,) the subarc of
n which connect B,, with 8 and does not meet B,_; (resp. meets B,_;). Let d,
(resp. dp) be a disc in d,,—1 which is cobounded by 7, (resp. 1), and subarcs of
and 8H,,, where H,, is the upper hemisphere of B,,. See Fig. 4.3. Suppose ¢ N 8d,

Fig. 4.3.
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contains the puncture. Since there are three parts of L NT entering d;, at B,_1, at
B,, and at the puncture, we need at least one more saddle incident to 7. Then it
follows either 7 violates (i) of Proposition 3.2 or we can find a mate to 7, in intd,
C int(d,—; — d,), which is a contradiction. Hence ¢ N dd, contains the puncture.
Suppose 7, meets another bubble B; than B,,. Then from the alternating property
(*x), there is a part of L NT entering d,. It follows that there are three parts of
LNT entering d,, at By, at B; and at the puncture. Then we need at least one more
saddle incident to 7n,. Then either n, violates (i) of Proposition 3.2 or we can find a
mate to 7, in intd, C int(d,—1 — d,), which is a contradiction. Therefore 7, meets
no other bubble. Then the crossing at B, is a nugatory crossing, which contradicts
our assumption. See Fig. 4.4.

Hence it follows that o meets the puncture. If there is another component of
D NTy in d, by Propositions 3.2(ii), 4.1 or Lemma 4.4 we have a contradiction.
Hence d is minimal with respect to the partial ordering. Then as in Lemma 4.5, we
can show the proposition. This completes the proof. O

Next we study another part of (FFUD)NTy shown in Fig. 4.5. That is, there are
two bubbles B; and Bs, an arc a of DNT, (resp. DNT_) and a loop B of FNT,
(resp. FNT_) such that « meets By, 3 meets By and both ends of a connect with
with cobounding a disc d on T'; (resp. T_) together with a subarc of 8. Furthermore
dd meets By and Bz, 8N 8d meets no bubble other than By, (LN B1)Nd= ¢ and
(LNB)Nd=¢.

Proposition 4.6.  There does not exist a part of (F U D) NTy shown in Fig.
4.5.

To prove Proposition 4.6, we need two Lemmas.

Lemma 4.7. Suppose there is a part of (FUD)NT, shown in Fig. 4.5. Then
there is an arc £ of DN T, in d which meets a bubble and cobounds a disc dy in d
together with a subarc of BN ad.

Proof.  Since d satisfies the alternating property (**) and 8N dd meets only
B; and (LNB;)Nd = ¢ and (LN Bz)Nd = ¢, it follows that o meets another bubble,
say B’, than B;. Then there is the mate to o at B’ in d. Let £ be the mate. Then,
by Proposition 4.1, £ is another arc and its both ends connect with 8N dd. ]

Note that in Lemma 4.7 the arc 8N &d; may not meet the bubble Bs.

Then in the same way as we did in the paragraph before Lemma 4.5, for the
set of discs in d which are cobounded by subarcs of 3N dd; and arcs of D N T
which meets a bubble, we define a partial ordering. We take one of the discs which
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are minimal with respect to this partial ordering. Let d,, be the disc and ¢ the arc
of DN T, which cobounds d,, together with a subarc of 8N dd.
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Lemma 4.8. The subarc 3N 8d,, does not meet Bs.
Proof. Follows from Lemma 4.7 O

Proof of Proposition 4.6. From Lemma 4.8, N 8d, does not meet B,. By
Proposition 4.3, ¢ contains the puncture. From the definition of (, it meets exactly
one bubble. Let B,, be the bubble. As in proof of Proposition 4.3, we take the disc
dn—1. Then we can prove Proposition 4.6 similarly as in the proof of Proposition
4.3 by hand. (]

Next we study a particular part of (FFU D) N Ty (resp. (FUD)NT_) shown
in Fig. 4.6. To be more precise, there are a bubble B, a loop &£ of FNT, (resp.
FNT_)and an arc n of DNT, (resp. D NT_) such that n connects with &, both &
and 7 meet B and subarcs of £, n and dH cobound a disc dy, where H is the upper
(resp. lower) hemisphere of B. Let s and s’ be the saddles inside B which n and ¢
are incident to respectively.

We say a part of (FFUD)NT, shown in Fig. 4.6 satisfies the condition X if the
arc £N H is nearer to the arc LN H than the arc nN H, that is, the saddle s’ is upper
than the saddle s.

We also study parts of (F U D) N Ty shown in Fig. 4.7 which are special cases
of Fig. 4.6. In (i), (ii) and (iii) of Fig. 4.7, we assume that £ and 1 meet the same
side of B.

Moreover in (i) of Fig. 4.7, int(¢ N 8dy) meets no bubble, int(n N ddy) meets
the puncture D N L and only one bubble, and the bubble is nearer to B than the
puncture.

In (ii) of Fig. 4.7, int(£ N 8dy) meets only one bubble and int(n N ddp) meets
the puncture and no bubble.

In (iii) of Fig. 4.7, int(£ N &dp) meets no bubble, int(nNddy) meets the puncture
and only one bubble, and the puncture is nearer to B than the bubble.

Proposition 4.9.  Suppose there is a part of (F U D) N Ty shown in Fig. 4.6.
Then there is a part of (F U D)NTy shown in Fig. 4.7.

To prove Proposition 4.9, we need following seven Lemmas.
Lemma 4.10.  Suppose there is a part of (F U D) N Ty shown in Fig. 4.6.
Suppose £ and n meet distinct sides of B (Fig. 4.6(ii)). Then we can take another

part of (FU D) N Ty shown in Fig. 4.6 in do.

Proof. Without loss of generality, suppose (F'U D) N Ty contains the part
shown in Fig. 4.6(ii). We can find the mate to £ or to n at B entering dy. First
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suppose that it is the mate to £. Let & be the mate. Since &’ is a loop of F N Ty,
&' exits from dy at B. It violates Proposition 2.3. Suppose secondly that there is
the mate to 7 entering dg. Let 1’ be the mate. Then it follows (1) n’ connects with
another loop of FN T, than £ in intdg, (2) 1’ exits from dy at B or (3) n’ connects
with £Nddy. In the case (1), the loop exits from dg at B, which violates Proposition
2.3. In the case (2), n’ violates Proposition 3.2(i). In the case (3), we can find another
part of (F U D) N Ty shown in Fig. 4.6 in dy. Note that £ and n’ meets the same
side of B. |

From now on, in case there is another part of (FUD)NT4 shown in Fig. 4.6 in
dp, we take one of the innermost such parts with respect to the discs they bound. Let
d be the disc the part bounds. Hence we can assume £ and 7 meet the same side of
B as in Fig. 4.6(i). First we consider the case where a part of (F'U D) N Ty satisfies
the condition X in Lemmas 4.11, 4.12 and 4.13. Later the other case in Lemmas
4.15, 4.16 and 4.17. Finally we give a proof of Proposition 4.9 in the end of this
section.

Lemma 4.11.  Suppose there is a part of (FUD)NTy shown in Fig. 4.6 which
satisfies the condition X. Then there is no saddle incident to int(§ N 0d).

Proof. Suppose for a contradiction that there is a saddle § incident to int(£N
dd). Let B be the bubble which contains 5. From the alternating property (%), (1)
we can find the mate to £ at B in d or (2) both £ and n meet B. In the case (1),
since every loop of F'NT, is non-trivial, the loop exits from d at B, which violates
Proposition 2.3. In the case (2), it contradicts that d is innermost. Hence there is no
saddle incident to int(§ N dd). O

Lemma 4.12.  Suppose there is a part of (FUD)NT, shown in Fig. 4.6 which
satisfies the condition X and there is no saddle incident to int(§ N dd). Suppose
int(n N 8d) contains the puncture D N L. Then we can find a part of (F U D) NTy
shown in (i) of Fig. 4.7.

Proof.  First suppose that int(nMNA&d) meets more than one bubble. Since there
is a part of L N T entering d at the puncture, int(n N 8d) meets odd numbers of
bubbles. Then from the alternating property (xx), there is a mate to n N dd in d.
Let ' be the mate. Then (1) ' connects with another loop of F NT, than £ in d,
(2) both ends of ' exits from d at B, (3) one end of n’ connects with ¢ and the
other exits from d, or (4) both ends of ' connect with . In the case (1), the loop
exits from d at B, which violates Proposition 2.3. In the case (2), n’ violates (i) of
Proposition 3.2. In the case (3), we can find a part of (FU D) NT} shown in Fig.
4.6 in d, which contradicts that d is innermost. In the case (4), ’ and a subarc of ¢
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cobounds a disc in d as shown in Fig. 4.1. Since n contains the puncture, n’ does
not contain the puncture. This violates Proposition 4.3.

Suppose secondly that int(n N dd) meets only one bubble. Let B be the bubble.
Suppose the subarc of 7 N &d between B and B contains the puncture. It follows
from (ii) of the alternating property () that (L N B) is contained in d. Hence we
can find a mate to nN dd in d. Then as we did above we have a contradiction. Thus
subarc of N &d between B and B does not contain the puncture. There are exactly
two parts of LN T entering d at B and at the puncture. Hence we can find a part of
(FUD)NTy shown in (i) of Fig. 4.7. O

Lemma 4.13.  Suppose there is a part of (FUD)NT, shown in Fig. 4.6 which
satisfies the condition X and there is no saddle incident to int(§N9d). Suppose int(nN
dd) does not contain the puncture. Then there is no saddle incident to int(n N &d).

To prove Lemma 4.13 we need following Sublemma 4.14.

Sublemma 4.14.  Suppose that there is a part of (F U D) N Ty shown in Fig.
4.6 which satisfies the condition X, that there is no saddle incident to int(¢Ndd), and
that int(n N 8d) does not contain the puncture. Suppose there is a saddle incident to
int(n N 8d). Then there is an arc of D N'T in intd which is a mate of n N 8d, and
both ends of the arc connect with £ N dd.

Proof. If there is a saddle incident to int(n N &d), then we can find a mate to
n at, say B, in d. Apply similar argument in the first paragraph of Proof of Lemma
4.12. O

Let ¢ be the mate at B in Sublemma 4.14. We assume that there is no such
bubble between B and B.

Proof of Lemma 4.13.  Suppose for a contradiction that there exists a saddle
incident to int(n N dd).

Then ¢ and a subarc of £ N Ad cobound a disc d; C d. See Fig. 4.8. There is
a part of L NT which enters d; at the bubble B. By using Proposition 4.3, we can
show that ¢ meets the puncture and no bubble other than B. There is a part of LNT
exiting from d; at the puncture. Note that d — (d; U B) consists of two discs which
are cobounded by subarcs of £, 1 and (. Let dy be the disc which a part of LNT
enters at the puncture.

Suppose ddy meets B. Then from the definition of B there is exactly three parts
of L NT entering dy at B, at the puncture and at the bubble which is between B
and B. This is a contradiction.

Suppose dd; N B = ¢. There is a part of LNT entering d, at B. Suppose nNdd,
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meets no bubble. Then the crossing of B is a nugatory crossing, which contradicts
our assumption. See Fig. 4.9. Hence n N dd; meets a bubble. Then we can find a



CLOSED SURFACES IN TOROIDALLY ALTERNATING LINK COMPLEMENTS 209

B

mate (3 to 7 in ds.

By using Propositions 2.3, 3.2(i) and 4.3, it follows that one end connects with
£NAd, and the other exits from dj at B. Let ds be one of the component of d—(d,UB)
which is not ds. See Fig. 4.10. Then it follows (1) {; exits from d3 at B, (2) (; exits
from ds at B, (3) {1 connects with £ N dds, (4) {; connects with another loop of
FNT, than &, say C, in d3 and C exits from dz only at B, or (5) C exits from dj
at B and at B. In the case (1), we can find a part of (F U D) N Ty shown in Fig.
4.6 in d which consists of subarcs of £ and (3 and B, which contradicts that d is
innermost. In the case (2), {; meets B twice with encircling a disc, which violates
(i) of Proposition 3.2. In the case (3), ¢; and a subarc of £ N dd bounds a disc, say
dy, as shown in Fig. 4.1. Since there is no saddle incident to £ N dd and ¢; does not
contain the puncture, we have a contradiction to Proposition 4.3. In the case (4), C
violates Proposition 2.3. In the case (5), the subarc of C' loop which exits from ds
at B enters dy. Then it exits from dy at B. Hence it meets B twice with encircling
a disc, which violates Proposition 2.3. Thus we proved Lemma 4.13. O

Hence in case a part of (F'UD)NTy satisfies condition X, either there is a part
of (FUD)NTy shown in (i) of Fig. 4.7 or we can show that there is no saddle
incident to int(€ N &d) nor int(nNdd) and nNAd does not meet the puncture DN L.

Next we consider the case where a part of (F U D) N Ty does not satisfy the
condition X.
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Lemma 4.15.  Suppose there is a part of (F U D)NT, shown in Fig. 4.6 which
does not satisfy the condition X . Suppose that there is no saddle incident to int(§N9d)
and that n N 8d contains the puncture. Then we can find a part of (FUD)NT,
shown in (iii) of Fig. 4.7.

Proof. If int(nN Od) meets more than one bubble, then as we did in the proof
of Lemma 4.12, we have a contradiction. Hence int(n N dd) meets only one bubble.
Let B be the bubble. Suppose first that the subarc of N dd between B and B does
not contain the puncture. Then by the alternating property (xx), it follows that we
can find a mate to n N &d in d. Then as we did in the proof of Lemma 4.12, we
have a contradiction. Suppose secondly that the subarc of n N dd between B and
B contains the puncture. There are exactly two parts of L N T entering d at B and
at the puncture. Hence we can find a part of (F U D) N T4 shown in (iii) of Fig.
47. U]

Lemma 4.16.  Suppose there is a part of (FUD)NT, shown in Fig. 4.6 which
does not satisfy the condition X. Suppose there is no saddle incident toint(éNOdd) and
nNad does not contain the puncture. Then there is no saddle incident to int(n N ad).

Proof.  Suppose for a contradiction that there is a saddle incident to int(npNdd).
We take a saddle which is nearest to B. Let B be the bubble which contains the
saddle. Then it follows that we can find a mate to N Ad in intd. Let ¢ be the mate.
Then as in Sublemma 4.14 we can show that both ends of ¢ connects with £ N dd
with cobounding a disc d; together with a subarc of £ N dd. As we did in Proof of
Lemma 4.13, we can show that { meets the puncture and no bubble other than B.
Let dy be the component of d— (d, UB) which a part of LNT enters at the puncture.
Hence 8d; meets B. Then from the definition of B there are exactly two parts of
LNT entering dy at B and at the puncture. Then it follows that the crossing of 7 (L)
at B is a nugatory crossing, which contradicts our assumption. Suppose ddyNB = ¢.
Then from the definition of B there is exactly one part of L N T entering another
component of d — (d; U B) at B, which is a contradiction. ]

Lemma 4.17.  Suppose there is a part of (FUD)NT, shown in Fig. 4.6 which
does not satisfy the condition X. Suppose there is a saddle incident to int(¢§ N dd).
Then we can find a part of (F'U D) NT, shown in (ii) of Fig. 4.7.

Proof.  First suppose int({ N 8d) meets more than one bubble. Then (1) we
can find a mate to £Ndd in d or (2) both £ and n meet the same bubble other than
B. In the case (1), the mate is a loop of FF N T, and it exits from d at B, which
violates Proposition 2.3. In the case (2), it contradicts that d is innermost. Hence
int(¢ N &d) meets only one bubble, say B.
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Suppose for a contradiciton that int(pNdd) does not contain the puncture. Since
there is a part of L NT entering d at B, int(n N 8d) meets a bubble. Let B’ be the
bubble such that 7 meets no other bubble between B and B’. It follows that we can
find a mate, say 7/, to N dd at B’ in d. Then as in Proof of Lemma 4.12, we can
show that both ends of ’ connects with £ N dd. Let d; be the disc in d cobounded
by i’ and a subarc of £ N Od.

Suppose £ N dd; does not meet B. Then we can .find a part of (F U D) N T,
shown in Fig. 4.1. Hence by applying Proposition 4.3, ' contains the puncture. As
we did in Proof of Lemma 4.5, we can show that n/ meets no bubble other than B’.
Note that d — (d; U B') consists of two discs which are cobounded by subarcs of ¢,
n and 7. Let dy be the disc which a part of L NT enters at the puncture and let ds3
be the other. See Fig. 4.11. Then similar argument in Proof of Lemma 4.13 will do.
However we need a slight change. That is, we must use Proposition 4.6 rather than
Proposition 4.3.

Therefore £NAd; meets B. By applying Proposition 4.6, we have a contradiction.

Hence 7 N &d contains the puncture. Suppose int(n N dd) meets a bubble. Since
there are two parts of L N T entering d at B and at the puncture, int(n N &d) meets
at least two bubbles. It follows we can find a mate to n N dd in intd. Let i’ be the
mate. Then as we did in the proof of Lemma 4.12 we can show that n’ is an arc of
DNT, and both ends of n’ connects with £ N &d. Then by Propositions 4.3 and 4.6
we have a contradiction. Hence int(n N dd) meets no bubble. Since there is exactly
two parts of LNT entering d, they connect. Hence we can find a part of (FUD)NT,
shown in (ii) of Fig. 4.7. O

W

B

Fig. 4.11.
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Proof of Proposition 4.9.  Suppose there is a part of (F U D) N T4} shown in
Fig. 4.6. We assume d is innermost. Suppose the part satisfies the condition X. By
applying Lemmas 4.12 and 4.13, we can find a part of (F U D) N T, shown in (i)
of Fig. 4.7 or we can show that n N dd does not contain the puncture and there is
no saddle incident to int(¢ N dd) nor int(n N &d). Suppose the part does not satisfy
the condition X. By applying Lemmas 4.15, 4.16 and 4.17, we can find a part of
(FUD)NT, shown in (ii) or (iii) of Fig. 4.7 or we can show that N dd does not
contain the puncture and there is no saddle incident to int(¢ N 8d) nor int(n N dd).

Now we show that we can isotope D so as to reduce the complexity in case
where n N 0d does not contain the puncture and there is no saddle incident to
int(€ N 8d) nor int(n N &d).

We can assume that s and s’ are adjacent saddles inside B. That is, there is
no component of F N1, or DN T, between £ and 7 at B. Otherwise it violates
Propositions 2.3, 3.2(i) or contradicts the way of taking the parts. Suppose there is
a part of LN T in intd. Since 7 N 8d does not contain the puncture and there is no
saddle incident to int(£ N Ad) nor int(n N dd), dd becomes a simple closed curve on
T which does not cross L. Hence the projection «(L) is split by the simple closed
curve on 7. Then there is a region (see §2 for the definition) which is not a disc,
which contradicts the definition of a toroidally alternating link. Hence there is no
part of LN T in intd. If there were a component of D N7y in intd, it would violate
Proposition 4.1 or (ii) of Proposition 3.2.

Now we look at the other sides of the saddles s and s’. Then there is a subarc
of a loop ¢’ of FNT, and a subarc of a component ' of DNT, such that they are
mates to £ and to 7 respectively.
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First we consider a special case, where £/, ' and 8D are placed as shown Fig.
4.12. That is, n’ connects with £’ with cobounding a disc together with subarcs of
¢ and OH, ' N &d’ does not contain the puncture and there is no saddle incident
to int(¢’ N Ad’) nor int(n’ N Ad'). Moreover £ Nd and &' Nd' are subarcs of boundary
of a disc Q of FNV_ and the two points ENnNd and £’ Nn' Nd' are connected by
an arc a of 3D N Q. Doing the same argument above, we can show that there is no
component of FNT, nor DNT, in d’. We take an arc A on FNV_ near B which is
parallel to a subarc of OH and is not contained in @ as shown in Fig. 4.13. There
is a disc Q on F which contains Q and is cobounded by ), o and subarcs of ¢ and
&’. We isotope 8D along Q so as to eliminate the saddle s as shown in Fig. 4.14.
This contradicts minimality of complexity of D.

For general case, we can apply the above argument as in the following mannar.
Take a triangle zyz on 7_ as shown in Fig. 4.15, where « is at the point 7 connects
with &, y € n’ NOH and z € £ N OH. We isotope this triangle into V_ so that
ze€edDNV_,ye DNT,ze FNTandzy C DNV_,yz2CT, zz C FNV_.

Fig. 4.13.
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Fig. 4.16.

See Fig. 4.16. We isotope D along this triangle so that FNTy, DNTy and 8D near
B is as shown in Fig. 4.17. Now as we did above, we isotope D so as to eliminate
the saddle s. Then this contradicts minimality of complexity of D. Hence we have
proved Proposition 4.9. U

In the proof of Proposition 4.9, we proved the following Lemma.
Lemma 4.18.  Suppose there is a part of (F U D) N T, shown in Fig. 4.6.

Suppose there is no saddle incident to int(§ N 8d) and int(n N 8d). Then we can
isotope D so as to eliminate the saddle s.
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5. Loops in D NTy (1Y)

In §5 we give a proof of Proposition 4.2.

We prove Proposition 4.2 as follows. We show that if there were a loop of
D N Ty, then we could find two of “bigons” or “trigons” as in Fig. 5.2 satisfying
some property. In Proposition 5.1, we prove that if there were such a bigon or a
trigon then we could find a part of (F'U D) NT. shown in Fig. 4.7 in it. Then it
follows that there would be two punctures, which is a contradiction.

First we define bigons and trigons. A bigon consists of two bubbles and two
subarcs of loops or arcs of F N Ty or DN Ty. See for example (i) or (iii) of
Fig. 5.2. A trigon consists of two bubbles and three subarcs of loops or arcs of
FNTy or DNTy. See (ii) or (iv) of Fig. 5.2.

Next we add some restriction to the shape of bigons or trigons. Before starting
that we introduce some notation.

Let £ be a component of FNT, or DNTy and 7 a component of FNT_ or
DNT._ such that £ and 7 meet the same bubble, say B. We say ¢ crosses n at B and
n crosses £ at B if £ and n connect with distinct saddles s and s’ at B respectively
and s is upper than s’. See Fig. 5.1.

Now we consider bigons or trigons described as blow. Typical examples are
shown in Fig. 5.2.

We mean, for (i) of Fig. 5.2, there are two bubbles B; and Bs, a component o
of FNT, or DNT; and a component 3 of FNT_ or D NT_ such that o crosses
B at B, and B, and subarcs of a, B8, 0H, and dH; cobound a disc dg, where H;
and H, are upper hemispheres of B, and B2 respectively.

For (ii), there are two bubbles B; and B3, a component & of FNT, or DNTy
(resp. FNT_ or DNT_), an arc 3 of DNT_ (resp. DNT,) and a loop v of FNT-
(resp. FNTy) such that 8 connects with v, B crosses o at By, «y crosses o at B, and
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subarcs of a, 8, v, H, and O0H; cobound a disc dp.

For (iii), there are two bubbles B, and B, a component o of FN T, (resp.
DNT,) and a component 8 of FNT_ (resp. DNT_) such that o and 8 connect
with the same saddle, say s, at By, a crosses 3 at B, and subarcs of a, 3, 8H;, and
OH, cobound a disc dp.

For (iv), there are two bubbles B; and Bz, a component o of FNT, (resp.
DNT,), acomponent 3 of FNT_ (resp. DNT_) and a component -y of DNT_ (resp.
F N T_) such that v connects with 3 (resp. 3 connects with 7), o and (B connects
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with the same saddle, say s, at Bj, y crosses « at By and subarcs of «, 8, v, 0H;
and 0H; cobound a disc dy. We also consider the case where « is a component
of FNT_ (resp. DNT_), B is a component of FNT, (resp. DNT,) and v is a
component of DN T, (resp. FNT_).

From now on we study these bigons and trigons.

Proposition 5.1.  Suppose there is a part of (F U D) N Ty shown in Fig. 5.2.
Then we can find a part of (F U D) N Ty shown in Fig. 4.7 in dy.

To prove Proposition 5.1, we need the following seven Lemmas.

First we consider a part of FFNTy or DNTy shown in Fig. 5.3, which is a kind
of bigons. That is, there are two bubbles B; and B,, a component . of FNT, (resp.
DNT,) and a component 3 of FNT_ (resp. D NT_) such that a and @ connect
with the same saddles at B; and at By, and subarcs of «, 3, 9H; and 0 H, cobound
a disc do, where H; and H, are upper hemispheres of B; and B, respectively.

Lemma 5.2. Suppose there is a part of F N'Ty or D NTy shown in Fig. 5.3.
Then there is a part of (F U D) NTy shown in Fig. 5.2 in do.

Proof.  Suppose there is a part of FNTy or DNT,y shown in Fig. 5.3. If there
is another part of F NTy or D NTy shown in Fig. 5.3 in dp, we take one of the
innermost such discs in dy with respect to the discs they bound. Let d be the disc.

If there were no part of (F'UD)NTy shown in Fig. 5.2 in d, then we can show
that it is as in Fig. 5.4 by hand, which violates Proposition 3.2(i). U

o
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Fig. 5.4.

We assume without loss of generality « C FNTy or DNT,, 5 C FNT_ or
DNT_,and yC FNT_ or DNT_ in Fig. 5.2 rather than a« C FNT_ or DNT_
and so forth.

Lemma 5.3. Suppose there is a part of (F U D) N Ty shown in Fig. 5.2. We
assume the part is innermost one with respect to the disc which it bounds. Suppose
there is a mate to o, 3 or v at By or B, in intdy. Then we can find a part of
(FUD)NTy shown in Fig. 4.7.

Proof.  Suppose there is a mate of «, 8 and v at B; or B in intdy. Let £ be
the mate. Then it follows either (a) £ enters dg crossing one of «, 8 and v at By or
B; (See Fig. 5.5), (b) both ends of a subarc of £ near the bubble are contained in
do (See Fig. 5.6), or (c) a and (3 connect with the same saddle at B; and there are
mates to a and to § at B; which enter dy (See Fig. 5.7).

In each cases we can show that we can find a part of (F U D)N Ty as in Fig.
4.7 or another part as in Fig. 5.2 by examining the mate. For example, suppose the
condition (a) holds. Suppose furthermore that £ connects with ~. See Fig. 5.7. By
applying Proposition 4.9, we can find a part of (F U D) N T4 shown in Fig. 4.7 in
dp. U

From now on we assume there is no mate to «, 8 nor « at B; and B, in intdy.

Lemma 54. Suppose there is a part of (F U D)NTy shown in Fig. 5.2. If we
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take the part to be innermost one, then it is not one as follows;
o and 3 connects with the same saddle s at B, as in (iii) or (iv) of Fig. 5.2,
and a subarc of N C DNT or FNT enters intdy at By.
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Proof. Suppose there is a subarc of a N3 entering intdy at B; which connects
with the saddle s. For example, see Fig. 5.8. Then one end of 3 enters intdy at B;.
It follows (1) the end exits from dy crossing «, (2) the end connects with a saddle
incident to a, (3) the end of 3 connects with another loop of FF NT_ than « in dp,
or (4) the end connects with . In the case (1), it contradicts the choice of dy. In
the case (2), from Lemma 5.2 we can find another part of (F'U D) N Ty shown in
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B

B, ,_/ B,

Fig. 5.2 in dp, which contradicts the choice of dy. In the case (3), it violates Propo-
sition 2.3 or contradicts the choice of dy. In the case (4), this contradicts the choice
of do. D

By taking one of the innermost such discs in do and by applying Lemmas 5.3
and 5.4, either we can find a part of (F U D) N Ty shown in Fig. 4.7, or we can
assume that the part is shown in Fig. 5.9.

For (i) and (ii), we mean there is no part of L N'T which enters d at B; and
Bs,, where d is the disc the part bounds.

For (iii) and (iv), we mean there is one part of L NT which enters d at B; and
there is no part of L N'T which enters d at Bs.
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Lemma 5.5. Suppose there is a part of (FU D) N Ty shown in Fig. 5.2 such
that it is innermost and as shown in (i) of Fig. 5.2. Then we can find a part of
(FUD)NTy shown in Fig. 4.7.

Proof. We can assume that the part is as shown in (i) of Fig. 5.9. Let d be
the disc the part bounds.

From the alternating property (*) or (*x), there is a saddle incident to int(3Ndd)
or int(8 N &d) meets the puncture. Suppose there is a saddle incident to int(5 N dd).
Let B be the bubble which contains the saddle. Then from the alternating property
() or (**), we can find subarcs of components of FNT, or DNT, entering d at B.
Let £ be one of the subarcs. It follows (1) £ connects with another saddle incident
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to 3, (2) ¢ exits from d crossing 3, (3) £ connects with another loop of FNT, than
o in intd, (4) £ connects with a. In the case (1), we can find a part of F NTy or
D NTy shown in Fig. 5.3 in d. Then from Lemma 5.2, we can find another part of
(FUD)NTy shown in Fig. 5.2 in d, which violates the choice of d. In the case (2),
we can find another part of (F U D) N Ty shown in Fig. 5.2 in d. In the case (3),
the loop exits from d crossing 3. Then the loop violates Proposition 2.3 or there
is another part of (F U D) N Ty shown in Fig. 5.2 in d, which contradicts that d
is innermost. Thus there is no saddle incident to int(3 N dd). It follows int(8 N dd)
contains the puncture. This means 3 C D NT_ rather than 5 C FNT_.

From the alternating property (*x), there is a saddle incident to int(c: N 8d) or
int(aN 8d) contains the puncture. Suppose there is a saddle incident to int(a:N 8d).
Then as we did above we have a contradiction. Hence int(a N 8d) contains the
puncture. Since there is exactly one puncture, and since SN dd also has the puncture,
a N dd coincide with 8N &d. But it is impossible. O

Lemma 5.6. Suppose there is a part of (F'U D) N Ty shown in Fig. 5.2 such
that it is innermost and as shown in (ii), (iii) or (iv) of Fig. 5.2. Then we can find
a part of (F UD)NTy shown in Fig. 4.7.

Proof. Similarly by using the arguments in §4 and §5, we can prove this lemma
by hand. ]

Proof of Proposition 5.1. Lemmas 5.5, and 5.6 form a proof of Proposition

5.1 O

Let S; be the set of all the saddles incident to the loops of D N Ty, and S, the
set of all the saddles incident to the arcs of D N T%.

Lemma 5.7. Suppose S, is not empty. Then each of Sy and S; N Ss is not
empty.

Proof. Suppose for a contradiction that Sy = ¢. Then (D NTy) U (saddles)
consists of four-valent graphs which are disjoint from 9D and possibly arcs properly
embedded in D. See Fig. 5.10(i). Then we can find a loop of D N Ty which does
not bound a meridian disc of Vi in D N V., which contradicts Proposition 4.1.

Suppose S; NS, = ¢. We can find a component of (DNT4)U (saddles) which is
a four-valent graph and disjoint from dD. See Fig. 5.10(ii). Then we can again find
a loop of D NT. which does not bound a meridian disc. This is a contradiction.

]

Proof of Proposition 4.2.  Suppose there is a loop component in DNT%. From
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Proposition 4.1, a loop bounds a meridian disc of V.

From Lemma 5.7, each of S, and S; N Sy is not empty. We choose a saddle s

of S NSy, a loop C of DN Ty and a subarc n of an arc of D N T4 such that 7

connects s with 8D, that s is incident to C, that if C C DNT, (resp. DNT_) then

n C DNT_ (resp. DNT,) and that intn does not meet a saddle which is incident

to a loop of DNT, (resp. DNT_). Note that int may meet a bubble incident to a

loop of DNT_ (resp. DNT,). We call  a nice arc of s. Without loss of generality,

we can assume C C DNT,. The same argument below will do in case s is incident
to a loop of DN T_. It follows that n is a subarc of an arc of D NT_. Let C’ be

a loop of FFNT_ which n connects with. The behavior of 7 is classified into the

following four cases. See Fig. 5.11.

(i) n connects with C’ before crossing C, and there are subarcs o C C and 8 C C’
such that 7 connects with 3, (int3)NC = ¢ and o U 3 forms a loop bounding
adiscd, onT.

(ii) m connects with C’ before crossing C, and C’ crosses C without cobounding
a disc together with a subarc of C.

(iii) There are subarcs v C n and o C C such that (inty)NC = ¢ and a U~ forms
a loop bounding a disc ds on T.

(iv) 7 crosses C without cobounding a disc together with a subarc of C before it
connects with C’.

For (i), C’ crosses C. Then we can find a part of (FUD)NTy shown in Fig. 5.2.

Since C’ bounds a meridian disc in DNV_, C’ crosses C once more so that a subarc

of C’ cobounds a disc together with a subarc of C. Then we can find another part
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Fig. 5.11. (ii)
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Fig. 5.11.
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of (FUD)NTy shown in Fig. 5.2. Since we can take two disjoint discs as shown
in Fig. 5.2 by taking another discs if necessary, by applying Proposition 5.1 we can
find two punctures, which is a contradiction. Therefore the case (i) never happens.

For (ii), there are subarcs £ C C’ and ¢ C C such that 7, £ and ¢ form a loop
bounding a disc dy. We will find a disc as shown in Fig. 4.7 in d, as follows. This
means the existence of the puncture in d;. We can find a part of (FUD)NTy shown
in (iv) of Fig. 5.2, or £ crosses C' at B. In the former case, by applying Proposition
5.1, we can find a part of (FU D) N Ty shown in Fig. 4.7 in d,. In the latter case,
by applying Proposition 4.9 we can find a part of (F U D) N Ty shown in Fig. 4.7
in dg. Thus we can find a disc as shown in Fig. 4.7 in d, in the case (ii). It follows
there is the puncture in ds.

For (iii), by applying Proposition 5.1 to d3 we can find the puncture in ds.
We consider the behavior of a subarc of C’ which contains the point at which n
connects with C’. It follows (1)there are subarcs « C C and 3 C C’ such that n
connects with 3, (int3)NC = ¢ and a U 3 forms a loop bounding a disc ds on T,
or (2)C’ meets C without cobounding a disc together with a subarc of C. In the
case (1), as we did in the case (i), we have a contradiction. In the case (2), there are
subarcs £ C C, n” C n and ¢ C C’ such that &, ' and ¢ form a loop bounding a
disc dg and intn’ and int{ do not cross C. Then as we did in the case (ii), we can
find the puncture in dg. Hence we found the puncture in d3 and in dg.

Suppose ds and dg are disjoint. Then there are two punctures, which is a con-
tradiction. Hence ds and dg are not disjoint. Suppose (intdz) N (intds) = ¢ and ds
and dg have an edge in common, where an edge means a subarc of the boundary
of d3 or dg. Let e be the edge. Suppose the puncture is not contained in e. Then it
follows that there are two punctures, which is a contradiction. Hence the puncture
is contained in e. It follows that the part of (FUD)NTy shown in Fig. 4.7 in d3 and
dg have e in common. Since d3 and dg cannot have a subarc of v C 7 in common,
e is contained in C. That is, the puncture is contained in the loop C. Suppose at
least one of the parts of (F'U D) N T4 contained in ds and dg is as in (i) or (ii)
of Fig. 4.7. Then since 1 does not meet a bubble between the point n N ¢ and the
puncture, the puncture is contained in arcs of D N T} and D NT_ rather than in a
loop of DNTy, which is a contradiction. Hence both parts are as in (iii) of Fig. 4.7.
Then we can also show that the components of D N1y and D NT_ which contain
the puncture are arcs as shown in Fig. 5.12, which is a contradiction. Then one
disc is contained in another. Suppose dg is contained in d3z. Since C’ exits from d3
crossing a, a subarc of C’ cobounds a disc in d3 together with a subarc of a C C.
See Fig. 5.13. Then as we did in the case (i), we have a contradiction. Suppose d3
is contained in dg. Then a subarc of n cobounds a disc together with a subarc of C
such that interiors of the disc and d3 are disjoint. Then as we did above we have a
contradiction. Hence the case (iii) never happens.

For (iv), we consider the behavior of a subarc of C’ which contains the point
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c

Fig. 5.13.

at which 7 connects with C’. It follows (1) there are subarcs o C C and 8 C C’
such that n connects 3, (int3) N C = ¢ and o U 8 forms a loop bounding a disc d7
on T, or (2) C' meets C without cobounding a disc together with a subarc of C. In
the case (1), as we did in the case (i), we have a contradiction. In the case (2), there
are subarcs £ C C, 7' C n and { C C’ such that ¢, ' and ¢ form a loop bounding
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a disc d4. Then as we did in the case (ii), we can find a disc as shown in Fig. 4.7.

Hence in the case (iv), we can find the puncture in dy.
In the cases (ii) and (iv), by using similar arguments above we can show that
there are two disjoint part of (FUD)NT shown in Fig. 4.7, which is a contradiction.
U

Therefore there exists no loop in DN Ty.

6. Arcsin DNTy

Hence D NTy is composed of properly embedded arcs. In §6 we deal with arcs
in DN Ty and we give the proof of Theorem. Let G = (DN (T UT-)) U (saddles).

Lemma 6.1. Suppose D is in standard position. Then G satisfies at least one

of the following properties,

(i)  There is a component of D — G whose boundary is an arc in D N Ty and an
arc in 0D, or

(ii) There are two adjacent components of D — G, E, and E_, such that OE+ =
v+ Uy, where v C DNTy and {x C 8D N Vi are arcs. Furthermore each
of v+ and vy_ meets one single bubble, v, N~_ consists of an arc and v+ does
not contain the puncture, or

(iii) G is a single arc which intersects L as the puncture.

Proof. We consider G as a kind of four-valent graph on D as follows. We
regard a saddle as a vertex. Each segment of D N T}, NT_ which is between two
adjacent saddles, between a saddle and a point of 0D N T, NT_ or between two
points of 0D NT, NT_ is considered as an edge of G.

If there is no vertex in G, G satisfies (i) or (iii). In case there is a vertex, a
standard outermost fork argument will do and the lemma follows. O

Proposition 6.2. D NTy is empty.

The proof of Proposition 6.2 is divided into three Lemmas according to (i), (ii)
and (iii) of Lemma 6.1.

Lemma 6.3. G is not as shown in (iii) of Fig. 6.1.

Proof. Suppose G is as shown in (iii) of Fig. 6.1. Let v (resp. y-) be the arc
of DNTy (resp. DNT-) and let 6 (resp. 6_) be the arc 8D NV, (resp. 8D NV_).
See Fig. 6.2.

First we claim there are two loops @« C FNT} and § C F NT_ with subarcs
a, b C an B such that (1) @ and b contained in adjacent regions, and (2) there is
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a subarc of « (resp. 8) which cobounds a disc d (resp. d') together with v, (resp.
~v_). See Fig. 6.3. Since every component of F'N Ty bounds a meridian disc of Vg,
and v+ has only one puncture and no saddle, we can take «, 3, a and b satisfying
the former condition (1). We will show that o and  satisfy the latter condition (2).
Since the meridian disc which a bounds in F NV, is boundary incompressible in
V., and since there is a disc d; = D NV, cobounded by é; and 74 as shown in
Fig. 6.2, there is a subarc 7, C « such that 64 Uny forms a loop bounding a disc
di in FNV,. Then d; U d] is a peripheral disc or a meridian disc of V. In case
of a peripheral disc, v+ U 74 forms a loop bounding a disc on 7. In case of a
meridian disc, let 7/, be the complement of 7, in a. Since o = 14 U7/, bounds a
meridian disc, v4 U7, forms a loop bounding a disc on T;. Hence in both cases o
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satisfies the condition (2). In exactly the same way, we can show 3 also satisfies the
condition (2).

Let n4 be the subarc of a which cobounds d together with «,. There is a part
of L NT entering d at the puncture. Since the part of L NT goes out of d, n meets
a bubble. If n, meets more than one bubbles, then either ny violates Proposition
2.3 or we can find a mate to 74 in d. The mate is a loop of F N7 and it cannot
exit from d. Since it is a trivial loop, which contradicts F is in standard position.
Hence 74 meets only one bubble.

Suppose subarcs of & and @ cobound discs together with v, and ~_ respectively
on the same side of .. In this case # meets the bubble twice with encircling a disc
in d’, which violates Proposition 2.3.

Therefore subarcs of @ and 3 cobounds discs d, d’ together with v, and ~_
respectively on distinct sides of 4. Then [ also meets the bubble twice with
encircling a disc in d U d’. Hence (iii) cannot exist. O

Lemma 6.4. G does not have a part shown in (i) of Fig. 6.1.

Proof.  Suppose (i) exists. We call the arc a. Since there is no saddle incident
to o, o is contained in a single region, say R. Suppose without loss of generality
that the component of D — (D N Ty ) which is cobounded by « and a subarc of 9D
is contained in V. Since every loop of F'NTy bounds a meridian disc of V4, both
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ends of a connect with the same component, say C, of FNT,.. If C connects the two
points Oa: without exiting from R, it violates Proposition 3.2(ii). Hence C goes out
of R. We consider two loops v; and 2 on Ty which are composed of « and halves
of C. Let 3; and (3, be halves of C such that v; = aU ; and 2 = aU 3. Suppose
v1 and 7, do not bound a disc on 7. Since C bounds a meridian disc of V., each
loop has a different slope from the meridian of V.. Hence if there is another loop of
FNT, than C, then it intersects v, or 7. Since every closed surface in S or a lens
space (excluding S% x S?) is separating, and F cannot be contained in V. because
of the incompressibility of F, there are at least two component of FFNT, (Each core
of V4. must intersect F' at least twice). Hence we have a contradiction. Therefore at
least one of v; and ~2, say 71, bounds a disc d on T%. Since 3; exits from R and
enters R, there are at least two saddles incident to 3. From the alternating property
(%), there is a mate to (; in d. The mate is a loop of FNT, and it cannot exit from
d, which violates Lemma 2.5. Therefore (i) cannot exist. J

Lemma 6.5. G does not have a part shown in (ii) of Fig. 6.1.

Proof. Suppose (ii) exists. Let v, (resp. v_) be the arc of DNT (resp.DNT-)
and s be the saddle which is incident to 4. Let B be the bubble which contains
s. If we see the circumstance around B in T4, there is a loop a C F NT} which
connects two points 94 and a loop 8 C F NT_- which connects two points 97y_.
We take subarcs a,c C « and b,c C 8 which contain dv4. Let L; and L. be parts
of L N'T which are incident to B. See Fig. 6.4.

We separate « into two subarcs a; and as so that a; U~y and as Uy form
loops on T, in the same way as we did in the proof of Lemma 6.4. Then we can
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Fig. 6.4.
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show either a; U~y or ap U~y bounds a disc d, on T. Note that a; U v, (resp.
a9 U~y) bounds d,, so that d, does not contain a (resp. a;). Otherwise the loop
a is contained in d,, which is a contradiction. We also do the same things for S.
Then we can show that, say v4 U oy (resp. y— U ;) forms a loop bounding a
disc d,, (resp. dg) which does not contain L; (resp. Ly) and that there is no saddle
incident to «; and B; by hand. It follows that the crossing at B is a nugatory
crossing as in Fig. 6.5, which is a contradiction. |

Proof of Proposition 6.2. From Lemma 6.1 G has at least one of the parts
shown in Fig. 6.1. But Lemmas 6.3, 6.4 and 6.5 prohibit that. |

Proof of the Theorem. We take a compressing or a pairwise compressing disc
D of F which has minimal complexity and is in standard position. By Propositions
6.2, D N Ty is empty. Hence D is contained in V4. Since DNL = ¢, if D is a
pairwise compressing disc, we have a contradiction. Hence D is a compressing disc.
Then F N VL is compressible in V.. However since F' N V. consists of meridian
discs, F'N V4 is incompressible in V... Hence we have a contradiction. Thus D does
not exist. Therefore F is incompressible and pairwise incompressible. O
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