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1. Introduction

In the previous paper [8], we showed the existence of the space-time Mar-
kov processes associated with certain time dependent Dirichlet forms. The
situation treated there can not be covered by either the theory of symmetric
Dirichlet forms or the theory of coercive non-symmetric Dirichlet foms. Ne-
vertheless, as we saw in that paper, the methods of symmetric Dirichlet forms
had been effective for the construction of space-time Hunt processes associated
with time dependent Dirichlet forms. The purpose of this paper is to show that
many of the properties similar to the case of symmetric Dirichlet forms given
by Fukushima [4] still hold in the time dependent cases. To give the more
precise statements of the results, we shall introduce the notations which will be
used in this paper. Let X be a locally compact separable metric space and m
be an positive Radon measure on X such that Supp [m]=X. We shall suppose
that we are given a family £ ( τ )

 (TGJ? 1 ) of Dirichlet forms on H=L\X\m)
with common domain V, that is, we are given a Hubert space (F, || ||y) which
is densely and continuously embedded in H and a family of bilinear forms
E(r\φ, ψ) on VxV satisfying the following conditions:

(E.I) For all φ, ψ G F , E(τ)(φy ψ) is a measurable function of
(E.2) For any^>>0, there exists a positive constant M—M(p) such that

\EΐXφ,ψ)\<M\\φ\\γ\\ψ\\r,

for all ^ , ψ G F and TGJ? 1 , where by using the inner product ( , *)H in //,

is given by

1. This work was partially supported by Grant-in-Aid Science Research (No. 03640221), Mini-
stry of Education.
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(E.3) For any^>>0, there exists a constant a=a(p) such that

(E.4) For any φ^V and c>0, φ/\c belongs to V and satisfies

c, φ-φΛc)>0 , E<>τ>(φ-φΛc, φΛc)>0 ,

for all
(E.5) There exists a subset D of the space C0(X) of continuous functions on
X with compaat support such that DΓiV is || ||7-dense in V and uniformly
dense in CQ(X).

We shall identify H and its dual space H''. Under this identification, H is
continuously and densely embedded in the dual space V of V. Let 3£— RιxX
and dv=dτχdm, where dr is the Lebesgue measure on R1. Define the spaces
Λ, <V and q ; ' by M=L\Rι\ H), q^=L2(Λ?; Γ) and q ^ ^ L 2 ^ 1 ; F ) , respec-
tively. The norm of M is defined by

(i.i) IMIi=f JI«(τ, )IIWτ.
J R

Define 11 ||cχ/ and || | |qr similarly by using || | | 7 and || ||v/ instead of || |l# in
(1.1), respectively. We shall define the space (£F, H ll^) by

(1.2) ff={Meq;;|^eq;'}) \\u\\b = | j

The condition (E.5) guarantees that Co(3?) Π 3 is uniformly dense in the space
C0(2C) of continuous functions on 3£ with compact support, and || ||g?-dense in
3 (see [9]). Define the bilinear form 6 by

(1.3) 6{u,v) =

where

(1.4) JL{u, v)=\χ E?\v(τ, •), » (τ, •)) dr
J R

and ( , •) is the coupling between the elements of c[?' and CV. As usual, set

Then, for any p>0 and /e^t 7 ' , there exist tesolvents Gpf^3 and
such that
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(1.5) e,(G,f,u) = e,(u,Opf) = (f,u) for all «€=qp,

(see [5]). In [8] we have seen that there exists a Hunt process M=(Y(t), Py)
on the extended state space 3C whose resolvent Vpf is a quasi-continuous (q.c.
in abbreviation) modification of Gpf for a l l / e j # , where the quasi-continuity
is defined with respect to the capacity defined by (<?> 3). Similarly there exists
the (weak) dual Hunt process M=(Ϋ(t), Py) associated with όp in a similar
sense.

In Section 2 in this paper, we shall give the notations and preliminary
results which will be used in this paper. In Section 4, we shall discuss the 6P-
orthogonality property of the resolvent Vψ~Bf of the pait process on 3C—B
and ήp

B Vpg as well as its consequences, where ήp

β is the p-th order hitting
distribution of the set B with respect to the dual process M. To show it, we
need to extend the domain of the form 6 to a class of pairs of functions con-
taining {3®{βQS)} X {3®(&θ&)}, where & and Φ are the set of all 1-
excessive and 1-coexcessive functions, respectively, 3®{9?Q3?)={u—uι-\-u2—
u3; u^ΞF, u2y ^Ef f } and £Fφ(.ίPθ ίP) is defined similarly. Such an extension
will be given in Section 3. In Section 5, we shall introduce the notions of
measures of finite energy integral as well as smooth measures and show a cor-
respondence between such measures and positive natural additive functionals
(PNAF's in abbreviation) (cf. [3], [4], [11], [12]). As in [4], the energy of an
additive functional (AF in abbreviation) A(t) of M is defined by

(1.6) e(A) = — limp2 Ev([° e'pt A\t) dt),
2 P +°* Jo

(see also [7], [13]). An AF M(t) is called a martingale additive functional (ab-
breviated to MAF) if M(t) is an AF such that Ey(M\t)) <co q . e . and Ey(M(t))=
0 q.e. The set of all MAF's with finite energy is denoted by 3ί. Also, let 57
be the set of all NAF's of zero energy. Note that an additive functional A(t)
is called a NAF if A(t) and Y(t) do not jump simultaneously a.s. Py for q.e.y.
In Section 6, we shall show the following decomposition theorem which have
been given by Fukushima in the case of symmetric Dirichlet forms; if we£Fφ
( ^ θ ^ ) , then there exist uniquely M^^3ί and N^^ΐΠ such that

(1.7) u(Y(t))-u(Y(0)) = Mi»\t)+NW{t),

where u is a q.c. modification of u if wEff and the difference of 1-excessive
regularizations if u is the difference of 1-excessive functions. In particular,
if t/GΞF, then the NAF iVM in (1.7) becomes continuous. In the decompo-
sition (1.7), the energy of MtM] is given by

(1.8) e(MW) = Jl(u, u)- j ^ u\y) k(dy),
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for a positive Radon measure k on 3£. From this representation, most of the
stochastic calculi discussed in [4: Chapter 5] follow in our setting but we shall
not trace it because the proofs are similar. We shall only conider the case

(1.9) E*\φ> * ) = Σ J ,
OX j φ>

in which the explicit form of the quadratic variation of M [ κ ], iVM will be given
and an equivalence of the £(τ)-ρolarity of a subset B of Rd and the <?-polaiity of
a subset (a, b)xB of JR*X Rd will be established.

The author thanks the referee for his careful reading and valuable com-
ments.

2. Notations and preliminary results

Let (δy 3) be the form defined by (1.2) and (1.3). As we mentioned in
Section 1, for any/e^t 7 ' , there exist resolvents Gpf^3' and Gpf^3 satisfy-
ing ep(Gpf, υ)=ep(υ, Opf)=(f, υ), where βp(u, v)=β(u, v)+p(u, v) and (u, v) is
the coupling between CV' and OJ% In what follows we shall also use the no-
tation (u, v) to represent the inner product of functions uyv^Jί because it will
not cause any confusion. The resolvent Gp satisfies the following conditions
(see [8], [9], [10]):
(i) for znyftΞM such that 0 < / < l i/-a.e., 0<pGpf<l i/-a.e.,
(ii) if f^M then pGpf converges t o / in M as p-+ooy furthermore, if
[resp. /e£F] thenpGpf converges weakly to/ in ^V [resp. in £F].

A function U^L^V is called p-excessive if it satisfies βp(u, v)>0 for all
£F+= {w^:3\ W>0 v—a.e.}. Then the following statements are equivalent to
each other:
(i) u is 1-excessive.
(ii) u is non-negative and satisfies qGq+1u<u, v—a.e. for any q>0.
(iii) There exists a positive Radon measure μu on 3C such that Sλ{u> v)=
f v(y) μu(dy) for any v e f f n C0(5l?)

In this case u is called the 1-poteκtial of μu and denote by u—V^ μu.

The family of all 1-excessive functions is denoted by 3*. Similarly, the no-
tions of p-coexcessive functions, V1 fru and the family Φ of all 1-coexcessive func-
tions are defined by using 6p{vy u) instead of 6p(uy v) in the definition of ^-exces-
sive functions.

For any function AGcίί, set

(2.1) eh = inf {u(Ξ$>; u>h z -a.e.} .

Then eh^S and eh=ek+ v—a.e. for all h^M (see [10]). Mignot and Puel [6]
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proved that the solution hz^3 of

(2.2) £,(*., «0 = j ((*.-*)-,»),

converges increasingly a.e., strongly in Si and weakly in ̂ V to eh as £ j 0. When
A = / B for a Borel set B we shall denote eh by £5. Since eA is a 1-excessive func-
tion, there exists a measure μβA such that eh=V1 μeh. For any open set O of 3ζ>
define the capacity Cap(O) of O by Cap(O)=μo(O), where μo=μeh for h=I0.
The capacity can be extended to all Borel sets as a Choquet capacity. A func-
tion M on j f is called quasi-continuous (q.c. in abbreviation) if there exists a
decreasing sequence of open sets {On} such that Cap(OM) j 0 and u is continuous
on each 3£— On. It is known that any function of 3 has a q.c. modification
([9], [10]). In the previous paper [8], we proved that there exist a Hunt process
M=(Y(t), Py) and its dual Hunt process M=(Ϋ(t), Py) on 3f, whose resolvents
Vpf znά Vpf are q.c.modifications of Gpf and Gpf, respeatively. For any 1-
excessive [resp. 1-coexcessive] function u, we shall define its l-excessive [resp. 1-
coexcessive] regularization u by

(2.3) u (y) = lim nVn+1 u(y) [resp. u(y) = Urn nΫn+1 u(y)] .

We shall start with the following lemma which will be used in many places.

Lemma 2.1. For any u^.Sίy if p(u—pVpu,u) remains bounded as p-*oo}

then « G φ and

(2.4) lim inf p(u—pVpu3u)><A(uy u).

In particular, if u^3 then, for any v^CV, limp+,0p(u—pVp u, v) exists and
equals to 6{u} v).

Pίoof. For any j&>0, since

Jl(pVpu,pVpu) = e(pVpu,PVfu) =p(u-pVpu,pVpu)

= p{u-pVpu,u)-p\\u-pVtu\\2

M<,p{u-pVpu,u),

{pVp u} is uniformly bounded in ̂ V from (E.3). Hence there exist a sequence
{ρn} increasing to infinity and a function ί^eCl-7 such that pnVPnu converges
to WQ weakly in Q? as n-*oo. Then, for

(/, «b)Λ = e^vj, MO) = lim e1(v1f,p. vκ «>

= lim (f,pnVPn «) = (/,«).

This implies that u=
(2.4) follows from the inequality in the fiist paragraph of the proof.
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The last assertion is obvious from

β(pVpu,v)=p(u-pVpuyv),

For any open set O of 3?, the 1-excessive function e0 was defined by (2.1)
with h=I0. For any compact set Fy the following result holds.

Lemma 2.2. If F is a compact subset of 3£, then

eF = inf { « G ί ; u> 1 v—a.e. on a neighbourhood of F}, v—a.e.

Proof. Denote by uF the righthand side of the above equality. Obviously
uF>eF v—a.e. Since eF=eF v—a.e., it is enough to show that uF<eF v—a.e.
According to the definition (2.3), eF is quasi-lower semicontinuous, that is, for
any£>0, there exists an open set Nt such that Cap(iVε)<£ and eF is lower
semicontinuous on 3C—NS. Thus, for any δ>0, we can find an open set 01
such that iy;eF(y)>ί-δ}=Oln(3e-Nζ). Set uu,Λ= {l/(l-(l/m))} eF+
&NCi/ny Then w ^ e ί P a n d umtn>\ a.e. on 01 for £=\\n and δ=l/m. Since
&N(.i/n) decreases q.e. and converges in ^l? to zero by [8; (3.8)], umtfn converges
q.e. to eF. This implies the result.

Lemma 2.3. For any Borel set B of 3£,

(2.5) eB(y) = EJίe'") q.e.,

where σB is the hitting time of B.

Proof. We shall first note that

(2.6) ex{w, u) < JLλ{u, w)+<ΛK u)

holds for all u^S* and w^3+. In fact, since M G ^ and w>0.

el(u9 to) = ( | ^ , uj+Jlfa w)>0 .

(2.6) follows from this since

ει(zo9 u) = - ( | ^ , «)+oϊ1(w, u)<JLλ{u, w)+Jl1(wy u).

Now we shall show the lemma in the case thai B is an open set such that
Cap(l?)<oo. Denote by hB the righthand side of (2.5). Then it is clear that
pGp+1(eBΛhB)<eBΛhB v—a.e. Furthermoie, since

^ι(pGp+1(eBAhB),pGp+1(eBAhB)) = εi(pGp+ι(eBAhB),pGp+1(eBAhB))

<p(eBAhB-ρGp+1(eBAhB), eBAhB)

<>P(eBAhB—ρGp+1(eBAhB)yeB)
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£i(pGp+1(eBΛhB),eB)

ι(eB A hB), eB)+JLx{eB, ρGp+1(eB A hB))

it follows that WpGp+ι(eBAhB)\\c[/ is bounded and hence, by Lemma 2.1, eBAhB

belongs to CV. In particular, eBAhB&3?. Combining this with that eBAhB— 1
v—a.e. on B, we have eBAhB>eBi which is nothing but eB<hB. Operating
nVn+1 both sides of the inequality and letting n->oo, we have eB<hB q.e.

The converse inequality can be proved similarly to [8; Lemma 4.1]. Since
the set C = {^Gΰ; βB(y)φ 1} is a */-null set, for any fixed time s>0,

Ic(Y(t)) dt)
Jo

1Ic(y) = 0q.e.y.

In particular, if D = {au a2, •••, an} is a finite subset of (a, b) and

σ(D) = in

then with Py probability one,

Σ P r ω ( F ( β » ) e C , σ φ ) = β») = 0 a.e. t.

Hence, by noting that (e~' eB(Y(t)),Py) is a right continuous supermartingale,
we have

eB(Y(<r(D))) dt)

O

= nVH+1eB(y)q.t.

By letting D increase to a dense subset of (0, oo)? we see that nVn+1 hB<inVn+ι eB

q.e. and which implies that hB<eB q.e.
Suppose next that B is a compact subset oi 3C. According to Lemma 2.2

and [10; Corollary 1.2], there exist a sequence {utt} of functions of 3? and a se-
quence {On} of open sets of 3£ containing B such that un>ί z/-a.e. on On and
limΛ^oottΛ=^ z/-a.e. We may suppose that {On} is decreasing. Since un>eOft,
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we see that eOn decreases to eB z -a.e. Therefore,

eB(y) = lim mVm+1 eB(y) = lim lim mVm+1 eOn{y)

= lim lim mVm+1 ho(y)

= lim mVm+1 hB(y) = hB(y) q.e.
»»-> <x>

The proof of (2.5) for Borel sets can be done by the usual capacitability theorem.

3. Extension of (β9 £?)

So far, we considered the form 6 defined on £?XOJ and Φ x 9 " . But for
later discussion, we need to extend the domain of 6 to a class including ί? X ίP,
3?χΦ and £Px£P. For any U^CV, since pVp u belongs to £F and converges to
u strongly in 3ί, we can naturally consider that lim^eo <5(pVp u, u) defines an
extension of β. In fact, if either υ or v belongs to 2" then the limit exists and
coincides with 6(u, v) (see Lemma 2.1). Now, we shall set

(3.1) β(uyv) = limε(pVpu,u) and <S(u, v) = Vim6{pfpu, v),

if the limits exist. Note that Q(uy v)=<5(u, v) ifu^Soΐv^S7 and that £(u, v)
satisfies

(3.2) S(u, v) = lim S(u, pψp v) = limp(u-pVp u, v)

if it exists.

Lemma 3.1. If one of lim 8{pVp u, v), lim S(vypVp ύ)% lim 8(u,pvp v)

and lim 6{pV0 v, u) exists for u, v^^V, then the others exist. In this case,

(3.3) 6{u, v) = lim G(pVp u, v) = lim 6{u,pft v),

(3.4) 6{v, u) = lim β{ptt v, u) = lim 6{v,pVp «),
p->°° p->°°

(3.5) β(u, v)+β(v, u) = Jί{u} v)+Jl(v} u).

Proof. Since

β(w, u)+β(u, to) = Jl(to, u)+Jl(u, to)

for all uG:^V and «jGS,we have

(3.6) β(ρVpu,v) = β(u,pΫpυ) = Jl(u,pVpv)+Jl{pfpvyu)-e{pΫpvyu),

. According to the fact that lim Jl{u,pVpv) = Jl(uyv) and lim Jl
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(pvpv,u) = Jl(v,u) the equivalence of the existences of lim 6{pVp u, v)>

lim 6(U)pVp v) and lim 6(p^p v, u) as well as the equalities (3.3) and (3.5) follow

from (3.2) and (3.6). The other part of the lemma is a consequence of (3.6) and

S(pVpu, Ό) = Jί{ρVpu, υ)+Jl(v,pVpu)-S(v,pVpu).

Theorem 3.2. The spaces 3®(&Q&) and 3@(&Q&) are identical
Moreover, if we denote the space by 3 then 3x3 is contained in the domains of

6 and 6 extended fry (3.1).

Proof. If MGff, then there exists a positive Radon measure μu on 3£ such
that 6χ{uy w)=<μu> ^> for all w^3 f]C0(3C). According to the definition of
<?; it then holds that

6x(w, u) = —<μu, wy+JLλ{w, u)+Jl1(u9 w)

for all w^3f] Co(3£). Since the linear functional / on QJ defined by (/, w)=
cJl^w^tή+Jl^U W) belongs to C[7'y there exists a function Gιf^3 such that
δι(w, O1f)=(fy w) for all w&3. Hence the function G1f—u satisfies

for all w(=3 Π Co(!£). This implies that GJ-u= fιμu^Φ and that

9?. Similarly, we can see that ^ C S ' Θ S 5 . Thus the first assertion has been
proved.

For the proof of the second assertion, we shall only prove that the limit
β(u, v) in (3.1) exists for all uyv^£B, since the other cases can be proved simi-
larly by using Lemma 3.1. If u, τ;e£P, then {pVp+ι u} increases and, conse-
quently, {Sι(v,pVp+1u)} increases as p | °° Also, by noting that pVP+XU^L3?
and v>0, we have the uniform boundedness of {Si{vypVp+lu)} with respect to
jί>>0, because

0^€i(v9pVp+l lή^JlfapV^ u)+Jl1(pVp+1 uy v),

from (2.6). Then the existence of limp+oo <5(v,pVp+1u) follows and which im-
plies the existence of β(u, v) by Lemma 3.1.

REMARK 3.3. We noted after (3.1) that S(u, v)=β(uy v) if either M G S or

But, for general u,v, the values 6(uyv) and β(u,v) will not coincide.

For example, if u e f f and #e£P, then they can be written as u=Vx μu and

v= V1 μv for some positive Radon measures μu and μυ on 3?, respectively, In

this case,
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£,(«, v) = lim ε,{pVp u, v) = lim J ^ F , u(y) fip(dy),

Sι(u, v) = lim 5 j ( ί ^ M, β) = lim ( pΫt u(y) βv(dy).

In the last terms of these two equalities, ϋ=\\mp+oopVp u is the 1-exsessive regu-
larization of u and Yvm.p^oopvp u{y) (if exists) is expected to be equal to the
cofine limit of u at y, which will be different from u on a semipolar set.

REMARK 3.4. As we have seen in the above Remark 3.3, the relation

holds for all wGff and v&3@{£Q£)y where ϋ is the q.c. modification if
v^3 , and the 1-excessive regularization if v^S*. Also the inequality (2.6)
holds for u,

4. Decomposition of the Dirichlet forms

In the case of symmetric Dirichlet form (E, V) on L\X; m), if we denote
by Vp the resolvent of the associated Markov process, by Hp

B(x> dz) the p-th.
order hitting distribution and by VP~

B the resolvent of the part process on
X—B, then it is well known that the decomposition

is the orthogonal decomposition with respect to Ep of Vp φ into the elements of
the subspace Vx~B={φ^V;φ=0 q.e. on B} and its orthogonal complement,
where φ is the q.c. modification of φ with respect to the E^-capaaity (see [4]).
In this section we shall show that the analogous result holds in our situation.

Now, as before, we shall denote by Vp the resolvent of the Markov process
M=(Y(t), Py) associated with 6, by HP

B the ^>-th order hitting distribution of a
Borel set B of 3£, and by Vψ~B the resolvent of the part process on 3C—B, res-
pectively, that is

For AeίP and a Borel set B of 3C, set

(4.1) hι

B = inf {ωeίP; u>h i/-a.e. on B} .

Then as noted before, hB e 5 " and the unique solution hξ e f f Π 3 of
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converges to hB *>-a.e. increasingly, strongly in Si and weakly in ^ ( s e e (2.1),
(2.2)).

In the remainder of this paper, we shall consider that the elements of £?,
& and 9? are taken to be their q.c. modifications, 1-excessive and 1-coexcessive
regularizations, respectively. The following lemma can be proved similarly to
Lemma 2.3.

Lemma 4.1. Ifh^Sy then HB h(y)=hB(y), q.e.

Theorem 4.2. If h^S [resp. A 6 # | , and B is a Borel subset of T, then
HB hϊΞ& [resp. ήB h(=Φ] and

(4.2) eiH\ h,w) = 0 [resp. βλ{wy ίtB h) = 0],

for all w^3 such thai w=0 v-a.e. on B.

Proof. Since HB h=hB q.e., it belongs to 3* and p-a.e. equals to the weak
limit in <~V of functions hξ e£F. Hence, by noting that (h£—IBh)~=0 z/-a.e.
outside of B, we have

βx{HB hf to) = lim ex(h*, to) = lim — ((hζ-IB h)~, to) = 0 ,

for any function w^SF such that w=0 v-a.e. on B. If w^S* satisfies the
condition of the theorem, then £i{h^,pVp+1w) increases as p | °o and also as
610. Hence

βx{Hι

B K «0 = lim Sx{pVp+ι HB h, to) = lim ex{HB h}ptfi+1 to)

= lim lim 6x{hξ,pVp+ι w) = lim lim GΛhΐtpΫp+x w)
!->0 £-*<»

Ί(Af, w) = lim— {{hξ-IB A)", to) = 0 .

Finally suppose that w^:S? satisfies the condition in the theorem, then

ε}(HB h, to) = lim Sι{pVp+ι HB K w)
p-ϊ-oo

{pvt+1 m h, w)+jι1(w,pvp+1 m h)-e1(to,

h, α)+JUm, Hι

B A)-lim SMpV^ HB h).
P+o°

Since <?i(^,ί>^+i h\) increases aŝ > f oo and £ | 0 and also as Iim8^o Qι(hB

z,
we have

lim ^(w, ί>F ί + 1 HB h) - lim ^ ( j p ^ H to, HB h)

= lim lim β^p^^ w, hξ) = lim lim βι(w,pVp+ι K
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= lim lim €1(w,pVp+1 hB) = lim lim Sx{pfp+l w, hB)

= lim εx{w, hB) = lim {Jk{hξ, n)+Jψ>, h^-e^hξ, to)}
3 > 0 S > 0

Hence OΊ(i7]; /t, w)=0 for all eσ satisfying the condition in the theorem. The
proof of the dual case is similar.

Corollary 4.3. For any f, g<=J{ andp>0.

(4.3) ep{vpf, ϊtg) = εp{H"B vpf, At fpg)+εt{vψ-Hf, tψ-B

g)

(4.4) sp(vpf, vpg) = εp(m vpf,m vpg)+ε jy?-Bf, vψ-B

g)

(4.5) ejγtf, fpg) = εpφ% ΫJ, to t^+etfr-f, f?-'g).
Proof. Since εp{Vψ~B f, AP

B Ϋtg)=0 and €P(HP
B Vpf, Ϋψ-Bg)=0 from

Theorem 4.2, (4.3) follows obviously. The proofs of (4.4) and (4.5) are similar.

Corollary 4.4. Ifu=V1μu^£E>andv=Ϋ1 βυeΦ, then

(4.6) ζμ,, A], ̂  £„> = <A» ^ ^ ̂  μu> .

Proof. Since

^ W ^ - ^ ^ - O and δι(u-H1

Bu9ή
1

Bυ) = 0

are known from Theorem 4.2, it follows that

6X{HB u, v) = ex{Hι

B u, ft), v) - δι(u, Aϊ v).

The result is an easy consequence of this equality.

Corollary 4.5. Let u— Vγμ^S and Hι

B u— Vx μ
B for some positive Radon

measures μ and μB on 3C, respectively. Then

(4.7) μ'{άy) = μA], (dy) = \ χ ήι

B{z, dy) μ{dz).

In particular, μB is supported by the set of coregular points of B.

Proof. Let v £ &—SP. Since p Vp+ι v is dominated by an excessive function
and converges q.e. to v> we have

6X{HB u, v) - lim δι(H1

B uypVp+1 v) = lim LpVp+1 υ(y) μ\dy)

= \χ*(y) μ*(dy).

On the other hand,
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7,(Jϊi u, v) = £,(«, A'B υ) = i ίlι

B v{z) μ(

Hence

for all V<=ΦQΦ. In this equality, set v=nΫn+1f for f<=C0(3C). If we take a
1-coexcessive function h such that | / | <h a.e. (for example, A=||/||oo ̂ {suPP[/]})>
then \nVH+1f\ <h for all n>\. This admits to use Lebesgue's theorem to get

Therefore we have the result.

REMARK 4.6. If u^3 is dominated by a 1-excessive function, then there
exists a sequence {un} of functions of 2 Γ Π(5 > θ5 ) ) such that Hindoo un=u in 3
and lim^oo i/]? un=Hβ u in ̂ IΛ In particular Hι

B u belongs to ^V.
In fact, since pVpu converges to u weakly in £F as p—>oo, there exists a

sequence {un} of functions of 3!Γ[{3?Θ3?) which can be written as convex
combinations of functions of the form pVp u such that un->u in 3. Each func-
tion un has the form V1fn^S>Q3>, because pVpu=Vι{p{u—(p—\)Vpu)).
From Lemma 2.1, (3.2) and Theorem 4.2,

a \\HB(un-um)\\hv<<Jli(HB(un-um), HB(un-um))

<εiH\(un-um\ HB(un-um)) = ελ(H\(un-um\ un-um)

<K\\HB(un-um)\\cv\\un-um\\c?,

for some constant K. Hence

The strong convergence of {Hι

B un} in OJ is an easy consequence of this ine-

quality. The limit is equal to HB u q.e. because HB un->HB u q.e. by the

bounded convergence theorem.

DEFINITION. We say that 8 possesses the local property if (E(τ\ V) pos-

sesses the local property for a.e. rG]?1, that is, for a.e. T^R1, E(τ\φ, ψ)=0 for

every φfψG:V such that their supports are disjoint compact subsets of X.

As in the case of symmetric Dirichlet forms, we can show the following

Theorem 4.7. The following conditions are equivalent to each other.

(i) 6 possesses the local property.

(ii) The Markov process M on 3C associated with 8 is a diffusion process.
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(iii) The dual Markov process M of M is a diffusion process.

The proof of the theorem is similar to [4; Theorem 4.5.1] according to the
next lemma.

L e m m a 4.8. The following conditions are equivalent to each other.

(i) 6 possesses the local property.

(ii) For any relatively compact open set O of 3£, Hhc-o(y> * ) z ί concentrated on

the boundary 3 0 for q.e.

Proof. (i)=#>(ii): Let O be a relatively compact open set of 3C> u^SF Π Co

be a function such that Supp [u]C.3C— O, and {un} be the sequence in
Remark 4.6. For any non-negative function / such that Supp [f]dθy set v=

\f—Hlr£__0 Vxf. Then v is supported by O and

Therefore

0 = lim 6λ{un~Hι

τ_0 uni v) = lim S1(un-H1

3C_0 un, VJ)

= \im(un-Hι

χ_ounJ) = (U-H^QUJ) .

This implies that U=HI^__QU q.e. on O. In particular H\g_ou=0 q.e. on O
and (ii) follows.

(ii) =Φ (i): Let φ and ψ be functions in V whose supports are compact su-
bsets of X— A and A, respectively, for an open set A of X. For any interval
(a,b) in R1, set O=(ayb)xA. Let ξ(τ) be a function belonging to C\{ayb).
Then the support of ξ®φ is contained in 3C—0 and, by (ii), Hlc£_o{ξ®φ)=0
q.e. on O. Therefore we have ξ®φ—H1^_o(ξ®φ)=:=0 a.e. on 3C. Since

= 0 a.e. on 3f—O, it follows that

0 = Sι

This implies that E(T\φ, ψ)=0 for a.e. r.

5. Measures of finite energy integrals and associated additive
functionals

In this section, similarly to Fukushima [4], we shall define the notions of
measures of finite energy integral as well as smooth measures and show a corres-
pondence between such measures and positive natural additive functionals
(PNAF's). Such a correspondence has also been studied by Revuz ([11], [12])
for Hunt processes satisfying the duality condition (see also [3]).
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DEFINITION. A positive Radon measure μ on 3C charging no set of zero
capacity is said to be a measure of finite energy integral if there exists a constant
C such that

(5.1) \DC\w(y)\dμ(y)<C\\w\\&y for all weff ΠC0(3?)

The set of all measures of finite energy integral is denoted by So.

If μ^S0, then (5.1) holds for all w^3ϊ by taking its q.c. modification. To
give a characterization of the measures of finite energy integral, we need the
following two lemmas.

Lemma 5.1. (cf. Pierre [10]) Ifw^.3!', then there exists a constant K such
that

(5.2)

Proof. We shall first note that there exists a constant Kx such that

(5.3) \^

To show it, let \v\z&:{3!C\3? be the solution of (2.2) corresponding to h= \v\.
Since

and £„+£(_,,) e ί P , we have from (2.6)

Jli{\v\99\v\9) = ei{\

<Jlι(Iv18, e9+e(-9))+Jlι{e9+e(-9h \v\9)

£2M\\\v\,\\cv\\e.

Then the condition (E3) shows that

for some constant Kv The inequality (5.3) follows from this by letting £—*0.
Therefore to show (5.2), it is enough to prove that there exists a constant K2

such that IkJIq ^ i ζ l N I ^ for all ^ e 2 \ To this end, let HJβe£FnίP be the
solution of (2.2) for h=w. Then,

Jl^w.y w9) = 6x(w9y wζ) = — ((ws—w)~, zo9)

= — ((wζ-w)~, w2-w)+-— ((wβ—w)", w)

< 1. ((«,-«>)-, to) = 5,K,
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for some constant K3. Use again (E.3) to show

a

Now the result follows by letting £—>0.

Lemma 5.2. For any / £ φ ' ' ,

(5.4) ||

Proof. Set w=GιfίoτfeCV'. Then |M|ct;< — ||/||q// (see [8; (2.12)]).
Hence, for any v^^V,

I {~, V)\ = \ (/, oJ-oϊKw, β
OT

Therefore we have | | — | | c v ' ^ ( l + — ) ||/||q;' and
8τ a

d
) \\f\\cv.

Now we can show the following theorem which characterizes the measures
of finite energy integral.

Theorem 5.3. The following conditions are equivalent to each other.

(i) μGcS0.
(ii) There exists MGff such that μ=μu.
(iii) There exists v^S such that μ—βv.

Proof. ( i i )=^(i) : If μ=μu for ί/Gff, then, by using the solution \w\9 of

(2.2) corresponding to h= \ w \, we have

= lim 6?x(u, \w\ζ)<limiJl1(uf \w\ζ)+Jl(\w\ζyu)}
ε o s o

for all wEz3'. To show (i) it is enough to apply Lemma 5.1 to this inequality.
The proof of (iii)=Φ(i) is similar.
To show (i)=^(ii), suppoes that μ^S0 and set

J{y)μ{y) for

Then L(/)>0 if / > 0 i>-a.e. and
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\L{f)\<,C | | F 1 / | | a r ^ C ( l + ^ ^ ) \\f\\cV^CK1(ί+1-^ri) WfWjc,
a a

where Kx is a constant such that WfWcv'^Kj \\f\\j{. Hence there exists a non-

negative function uGLSi such that

Moreover, since

y) v{dy)\ =
Cί

it is extended to a continuous lineal functional on CV'. This shows that

and

(5.5) J^ tf{y) β(dy) = l^Ay) u(y) v{dy) =

For any w^3"> since nVnw converges to w weakly in 3 (see Prieire [10]), there

exists a sequence {zυn} constituted of convex combinations of {nVnw} and con-

verging to w q.e. uniformly and strongly in 3'. Then, {wn} converges to w in

L\μ) by (5.1). Noting that each wn can be written in the form V1fn for some

/ΛGcΛ, we have from (5.5),

(5.6)

Letting n-^oo we see that (5.6) also holds for w in place of wn and which implies

that μ=μn.
The proof of (i) =#> (iii) is similar.

Now we shall concern the problem of the correspondence between the

measures in <S0 and NAF's. To show it, we need the following

Lemma 5.4. If wGff, then, for any decreasing sequence {Bn} of nearly

Borel sets such that P^lim^co σBn>ζ) = l q>e-,

(5.7) lim Hι

B u = 0 q.e.

Proof. Since {Hι

Bn u} is a decreasing sequence of excessive functions, it

is enough to show that lim^oo HBn u=0 a.e. (see [1 Proposition VI. 3.2]). For

lim (Hι

Bn u,f) = lim ει{HBn Vx μu, VJ)

= lim ε^V, μu, Aι

Bu ?,/) = lim <μu,

The righthand side is equal to zero because
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frBnflf{y) = Ey{\[Bj->f{Y{t))dt)-»Q q.e.

from the hypothesis.

By using this lemma, we can prove the following:

Theorem 5.5. Ifu^S, then there exists a unique PNAF At such that

(5.8) u(y) = EΛ~e-*dAt) q.e.
Jo

Proof. Set Bn= {y; u(y)>n}. Then, fiom the fine continuity of u,

u(y)>Ey(cxp(-σBn) u(Y(<rBn))>nEy(cxp(-σBn); σBn<ζ).

Hence P^lim^oo σBn>ζ)=l q.e. Therefore, for any stopping time Γ,

Ey(e-τu(Y(T));u(Y(T))>n)
τu{Y{T)); σBn<Γ)^^(exp(-σβJ u(Y(σBn)))

— HBft u(y) -» 0 q.e. as n -> co .

This implies that {e"* u(Y(t))} is a potential of class (D) with respect to the
e~'-subprocess of M. Hence the theorem is a consequence of Meyer's theorem
(see [2]).

From Theorems 5.3 and 5.5, for any μ^S0, there exists a PNAF A{t) such
that

(5.9) Vιμ(y) = E^e-*dAt) q.e.

Due to this relation, it holds that

(5.10) <μ,f> = KmPEΛ e-»f(Y(t)) dA(t)),
ρ+°° Jo

for all non-negative measurable function/on 3£ (see [4; Lemma 5.1.3]). Fur-
thermore, this correspondence can be extended to the class of all smooth mea-
sures defined as follows. A positive Borel measure μ on 3C is called a smooth
measure if it satisfies the following conditions:
(i) μ charges no set of zero capacity,
(ii) there exists an increasing sequence \FU} of compact sets of 3£ such that

for any compact set K of 3£.
We will not give the proof of the following theorem because it can be shown

similarly to [4; §3.2, §5.1].
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Theorem 5 6. The following conditions are equivalent to each other.
(i) μ is a smooth measure.
(ii) There exists an increasing sequence {Fn} of compact sets of 3? such that

- U Γ.i Fu) = 0, lim Cap (K-Fn) = 0 ,

for any compact set K of 2C and Ip^μ^^of0^ each n>\.
(iii) There exists a PNAF A(t) of M satisfying (5.10).

6. Decomposition of additive functionals

In the case of symmetric Markov processes (X(t)) associated with regular
Dirichlet forms, it is well known that the additive functional (AF in abbreviation)
of the form u(X(t))—u(X(0)) can be decomposed uniquely into the sum of
martingale AF and continuous AF of zero energy (see [4]). In this section, we
shall show that the analogous result remains valid in our situation. As in [4]
(see also [7], [13]), for an AF A(t) of AT, define the energy e(A) of A by

(6.1) e(A) = — lim p2
 EΛ~ e'pt A\t) dt).

2 p*°° Jo

An AF M(t) of M is called a martingale AF (MAF in abbreviation) if, for all

Ey(M\t))<oof Ey(M(t)) = 0 q.e.

The set of all MAFs of finite energy is denoted by J / . A NAF N(t) is called
a NAF of zero energy if

Ey( I N(t) I ) < oo q.e. and e(N) = 0 .

The set of all NAF's of zero energy is denoted by 37. For any function
), we shall define the AF A** by

AW(t) = u(Y(t))-u(Y(Q)),

where u is taken to be the version stated in §4.

Lemma 6.1. If w^3', then there exists a positive Radon measure k on 3£
such that

(6.2) e(AW) = Jl(w, w)-± \τ^{y) k{dy).

Proof. For any p>0 and

e-»(u(Y(t))-u(Y(0))f dt)

= p2 <yy Vp u
2-2uVp u+— u2> - 2p(u-pVp u, M ) - (

P
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Hence

(6.3) p(u\ 1-ρΫp l)^2p(u-pVpuy u),

In particular, when we£F, since 2p(w—pVpwyw) converges to 2S(w,w)=2<Jl
(w, w) asp-+°o, there exists a sequence/>„ f °o such that the measure kn(dy) =
pn(l—pnVρnl)(y)p(dy) converges vaguely to a positive Radon measure k{dy)
on X Then (6.3) tells us that

(6.4) J^w\y) k(dy)<2Jl(wi w\ VaΈΪfl C0(X),

holds. For general « ι G Ϊ , by taking a sequence ^ G ί f l Q j f ) such that
wn->w in £F, we can see from (6.4) that wn converges to w in L\3£; k) and (6.4)
holds for all w^S*. Moreover (6.3), (6.4) and the triangle inequality give us
the following inequality.

{dy))m- \ χ

J {wa-w)\y) k{dy) | ̂

+ {2pn(wm-w-pn VPn{wm-w), wm-w)}w+ {2Jί{wm-w,

Let n—>©o and use Lemma 3.1 to get

Jl(«u-to, wm-wγ*.

Since the righthand side tends to zero as m-*oo; we have

\\m\w\y)kn{dy) = ( w\y) k{dy),

Now, to prove (6.2), it is enough to take p=pn in the equality of the first para-
graph of the proof and let w—»oo.

To show the decomposition theorem, we need the following lemma (see
[4: Theorem 5.2.2]).

Lemma 6.2. If zo^SF, then for any T>0 there exists a constant K(T)
depending on T such that

(6.5) P^sup I w{ Y(t)) I >6)<L^p || V,
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for all £>0 and μ^S0.

Proof. Let B= {y | w(y) \ >£}. Then, from Lemma 2.3y we have

sup \w(Y(t))\>6) = P^σs^T)
o^t<τ

e-*) = eτ \χe^y) μ{dy)ζeτ\3CeOwUt)(y) μ(dy)

for all μ^S0. Let \w\e be the function defined in the proof of Theorem 5.3.
Since nVn+x \ w | (1/w) increases q.e. with respect to both of m and w, we have

e\w\ = lim nVn+1 e\w\ = lim lim nVn+ί | w | d/m)

= l im l im nVn+1 \w\(1/m) = l im \w\(1/β) q.e.

Combining this with (2.6) and the property that |α>lα/m) converges to e\w\ weakly
in C{?j we have

, I w I (!/«))

lim {Jlι(Vι μ,\w\a/m))+Jli(Iw|(1/mh Vx μ)}

JLiVλ μ, β

Thus, to prove the lemma, it is enough to apply Lemma 5.1.

Similarly to [4: Lemma 5.1.2], this lemma implies the following

Corollary 6.3. If {wn} is a Cauchy sequence in 3ϊ, then there exists a sub-
sequence {wnk} such that wnk(Y(t)) converges uniformly on each compact interval
°f [0, °°) as. Pyfot q.e. y.

Also similarly to [4: Theorem 5.2.1], it holds that if {Mn} is an e-Cauchy
o

sequence of elements of c3ί then there exists a subsequence {Mnk} such that
Mnk(t) converges uniformly on each compact interval of [0, oo) to an element
M^cJH a.s. Py for q.e.y. These facts will be used to prove the following de-
composition theorem.

Theorem 6.4. Ifu^3®{βQS), then there exist uniquely MW(=Jn and
Nίul<Ξjl such that

(6.6) AM = M
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In particular, ifMG? then Nίul(t) becomes continuous.
o

Proof. (Uniqueness): If AiGc5i, then it is easy to see that Ey,(M2

t) is sub-
additive with respect to / and hence e(M)=suΌt>0(ϊl2t) Ey,(M2

t). This shows
that M=0 if e(M)=0. The uniqueness of the decomposition follows easily fiom
this.

(existence): Assume first that u^SF. Since pVpu->u weakly in £F, there
exists a sequence {un} of convex combinations of functions of the form pVpu,
which sequence converges to u strongly in £F. We may suppose that un = Vzfn

for some fn^M. Define

Nn(t) = ^ (ii.-/.) (Y(s)) ds , Mn(t) = un(Y(t))-un(Y(0))-Nn(t).

As in [4; (5.2.11)], it is easy to see that Nn<=ϋl and M^Jk. Also, from Lem-

ma 6.1.

0<te(Mn-Mm) = e(A^n'umi)

= Jί(un-umy un-um)-^(un-um)2(y) k{dy)

< Jl(un—umyun—um).

Hence {Mn(t)} forms an e—Cauchy sequence and consequently a subsequence
{Mnk} of {Mn} converges to some M[M] e 3i uniformly on each compact interval
a.s. Py for q.e.y. According to Corollary 6.3, we may suppose that {uΛk(Y{i))}
converges to u(Y(t)) uniformly on each compact interval of [0, oo) a.s. Py for
q.e.y. Hence i\Γ[u](ί) = lim/̂ OoΛ^Mjfe(ί) exists as a uniform convergence limit on
each compact interval and satisfies

u(Y(τ))-u(Y(0)) == MM(f)+JVM(f).

Since Nnk(t) is continuous, Nίul(t) is also continuous. From the inequality

we have

<6Jl(u—unyu—un).

By taking n=nk in this inequality and letting &->oo we see that e(Nίul)=0.
When ί/Gff, we saw in Theorem 5.5 that there exists a PNAF A(t) which

has u as its 1-potential. Then

Λ~ e-dA(s)\&t) =
o
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is a martingale. Defining the MAF M ^ by M^(t)= Γ e dM(1)(s), we have
Jo

u{Y{t))-u{Y{0)) = MM(t)+A(t)

(see [2]). Hence what remains is only to show that e(A)—0. The proof of this
can be done similarly to the proof of e(Nίu^)=0 in the above case because it
has only used the property that {un} converges to u in ^V which holds in the
present case.

Corollary 6.5. // t<eS'θ(5 > eS > ) , then

(6.7)

Proof. If u&ζ£@(&Q£P)y then there exists a sequence {un} of functions
of £F which converges to u strongly in ÎΛ Then (6.2) shows that {un} con-
verges to u in L2(3C; k) and, furthermore M^u^ converges to M[M] with respect
to the £-norm. Then (6.7) holds because it holds for each un.

We know that most of the stochastic calculi of Fukushima [4; Chapter 5]
related to the MAF's are based upon the equality (6.7). Hence one can natural-
ly expect that the similar calculi would be possible in our setting. Moreover,
it seems to be advantageous for the calculi that the equality (6.7) does not (at
least explicitly) depend upon the derivative du/dτ or, in other words, it does
not depend on S but does on Jt. This property will be natural if one thinks
of the Itδ's formula applied to smooth functions (recall that the time derivative
appears in the bounded variation term). From this property, most of the sto-
chastic calculi in [4; §5] hold in our case by replacing Jl instead of 6, but
we will not go into details because the calculations are similar. Instead we shall
only mention the following formulas chaiacteiizing the smooth measure
associated with the CAF <M[α:ι> and the CAF Nw of zero energy for

(6.8) J^ω^αiM^

(6.9) lirn^2E,.Λ~ e-» N™(t) dt) = -δ(u,f),
ρ->°° Jo

for a l l / e S i (see [4; Theorems 5.2.3 and 5.3.1], [7], [13]).
Finally we shall give an example of a time dependent Dirichlet form. In

the example we give the explicit forms of the quadiatic variation of MCα] and
JV[M] for u^3? and, furthermore show the equivalence of the £(τ)-polarity of a
subset B oίRd and the <?-polarity of the subset (α, b)χB of RλχRd for an> in-
terval (a, b) of R1.

EXAMPLE 6.6. Let (E(T\ V) be the symmetric form on Co(Rd) defined by
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(6.10) EV(φ, *) = Σ ί , a^r, x) ̂ - *£& dx t φ> φε,

for the family (α, ; (τ, x)) such that, for some positive constants λ and Λ,

(6.11) λ Σ ξ, ξ, β,y(τ, x)£ Σ ζ{ ζj a,j(σ, *)^Λ Σ ξ, ξj a,j{τ, x),

for all x^Rd and T, σei? 1 . We assume that (£ ( τ ) , CSrίiR )̂) is closable on H =

L2(Rd] dx) for some τ(ΞR\ Then (£ ( σ ) , Co(Rd)) is also closable on H for any

σeJR1. Let (£ ( τ ) , F) be the Dirichlet form determined by the closure. Obvi-

ously a subset B of Rd is £(τ)-ρolar if and only if it is £(<r)-polar. Furthermore,

we can show that a set B is an E(τ)-polar set if and only if (a, b)χB is an 6-

polar set for some (or equivalently for all) interval {a, b) in R1.

In fact, if B is a polar set of X> then there exists a sequence {φn} of func-

tions of V such that <pM=l a.e. on B and limŵ oo E[T\φn, φn)=0 uniformly with

respect to T. For any interval (a, b) take a C^i^-function ξ(τ) such that

£(τ)=l on (a, b) and set wn^=ξ®φn. Then wn^3, wn>\ a.e. on (#, b)xB and

(6.12) HwJIfr^lWIS- Γ {(?'(τ))2+(f (τ))2} rfr ,
J — o o

for some constant K. Since Iku.^xBllq ^ll^i^illq ^i^ll^llc^ for all n from

Lemma 5.1, we see that

This implies that the set (α, ft) X B is an <?-ρolar set.

Conversely if (α, 6 ) χ 5 is an <?-polar set, then e(atb)XB=0 p-a.e. Hence by

Fubini^s theorem, for a.e. τE(fl,5)^ ( β )j)X ΰ(τ, ) = 0 dx-a.e. Furthermore, for

a.e. τ^R\ e(atb)xB(τy •) belongs to V and e(afb)XB(τ, -)>l a.e. on B. This

shows that B is a polar set.

In this case, the AF <M C M ] > for u^S is given by

(6.13) <AfM> (*) = 2 Σ Γ J ^ β

because

ί.R'XR"

~ ^ V <i{T' X) ~dx~{ dx~ΓK ' > '

from (6.8). Furthermore, if a^C^R1; C\R")) then, for any u<=C1 2(RixR<1),

it holds that
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(6.14, ΛΓΓ-W _ £ £ < κ(l), Λ + Σ , £ £ « , , £ 4 (y(.» *,Σ ,

because the righthand side of (6.14) satisfies (6.9). In this case, (6.14) can aslo

be proved by Itδ's foimula, but for geneial wGff, iV™ is not locally of bounded

variation. In that case, let p ( ε ) be the molifier in Rd supported by the ball of

radius £. Then the function w(ε)(τ, )=#(τ, )*p(8) converges in £F to u as 6 I 0.

Then, by Corollaries 6.3 and 6.5, JVCuCε>1 converges to Nίul uniformly on each

compact interval of [0, oo) a.s. Py for q.e. j>.
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