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1. Introduction

In the previous paper [8], we showed the existence of the space-time Mar-
kov processes associated with certain time dependent Dirichlet forms. The
situation treated there can not be covered by either the theory of symmetric
Dirichlet forms or the theory of coercive non-symmetric Dirichlet foms. Ne-
vertheless, as we saw in that paper, the methods of symmetric Dirichlet forms
had been effective for the construction of space-time Hunt processes associated
with time dependent Dirichlet forms. The purpose of this paper is to show that
many of the properties similar to the case of symmetric Dirichlet forms given
by Fukushima [4] still hold in the time dependent cases. To give the more
precise statements of the results, we shall introduce the notations which will be
used in this paper. Let X be a locally compact separable metric space and m
be an positive Radon measure on X such that Supp [m]=X. We shall suppose
that we are given a family E™ (r&R") of Dirichlet forms on H=L*X;m)
with common domain V, that is, we are given a Hilbert space (V, ||+||y) which
is densely and continuously embedded in H and a family of bilinear forms
E™(@, 4r) on V X V satisfying the following conditions:

(E.1) For all @, r€V, E(ep, ) is a measurable function of TR,
(E.2) For any p>0, there exists a positive constant M=2»M(p) such that

|ES (@, ¥) | <M llglly 1l

for all @, y»€V and rER?, where by using the inner product (-, ), in H, E{’
is given by

EA(;)(¢» "1’) = E(T)(g’! "I")"‘P(?’a ‘!")H .

1. This work was partially supported by Grant-in-Aid Science Research (No. 03640221), Mini-
stry of Education.
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(E.3) For any p>0, there exists a constant a=c(p) such that
Efﬁ”(‘P, ?’)Za ||¢”%’ ’

for all pEV.
(E4) Forany oV and ¢=>0, pAc belongs to I and satisfies

E(@Ne, p—pAc)20, ET(p—pAc, pAc)20,

for all TeR!.

(E.5) There exists a subset D of the space Cy(X) of continuous functions on
X with compaat support such that DNV is ||+||y-dense in V' and uniformly
dense in Cy(X).

We shall identify H and its dual space H’'. Under this identification, H is
continuously and densely embedded in the dual space V' of V. Let X=R'X X
and dv=dr X dm, where dr is the Lebesgue measure on R'. Define the spaces
H, <V and XV’ by A=L*R'; H), V=L*R'; V) and V'=L*R*; V'), respec-
tively. The norm of 4 is defined by

(1) lullz, = ., lir, -l -

Define ||+||cy and ||+||q» similarly by using ||+|ly and ||+||;» instead of ||+||5 in
(1.1), respectively. We shall define the space (<, ||+||&) by

(1.2) F = {uecv;%}ecv'} iy = ||uu%v+ng—jn%w.

The condition (E.5) guarantees that Co(2) N < is uniformly dense in the space
Cy(2) of continuous functions on ¥ with compact support, and ||-||g-dense in
F (see [9]). Define the bilinear form & by

A(u, 7))——(%, 7)) , ued, vey

(1.3) E(u,v) =

A(u, v)—}—(%, u) , ueY veg,
where
14 Ay ) = | B (r, ), o6, ) e

and (-, +) is the coupling between the elements of ¢}’ and €I/. As usual, set

Ey(u, v) = E(u, v)+p(u,v).

Then, for any p>0 and f&CV’, there exist tesolvents G,f €S and G, feg
such that



TiME DEePENDENT DIRICHLET FoRrMs 105

(1.5) ENG,f,u) = Eyu, G, f) = (f,u) forall ucCy,

(see [5]). In [8] we have seen that there exists a Hunt process M=(Y (¢), P,)
on the extended state space X whose resolvent I, f is a quasi-continuous (q.c.
in abbreviation) modification of G,f for all f €4, where the quasi-continuity
is defined with respect to the capacity defined by (£, F). Similarly there exists
the (weak) dual Hunt process M:(Y(t), 15,) associated with é, in a similar
sense.

In Section 2 in this paper, we shall give the notations and preliminary
results which will be used in this paper. In Section 4, we shall discuss the &,-
orthogonality property of the resolvent V-;?S —Bf of the part process on ¥—B
and H% V,g as well as its consequences, where H% is the p-th order hitting
distribution of the set B with respect to the dual process M. To show it, we
need to extend the domain of the form & to a class of pairs of functions con-
taining {F B(PO P)} x {FD(PSP)}, where P and P are the set of all 1-
excessive and 1-coexcessive functions, respectively, FP(PO P)= {u=u,+u,—
Uy, MEF, Uy, u; P} and F GB(_C? GQ’) is defined similarly. Such an extension
will be given in Section 3. In Section 5, we shall introduce the notions of
measures of finite energy integral as well as smooth measures and show a cor-
respondence between such measures and positive natural additive functionals
(PNAF’s in abbreviation) (cf. [3], [4], [11], [12]). As in [4], the energy of an
additive functional (AF in abbreviation) A(z) of M is defined by

(1.6) o(4) = % lim 7° E(S: e Axt) dt)

(see also [7], [13]). An AF M(¢) is called a martingale additive functional (ab-
breviated to MAF) if M(t) is an AF such that E(M?t))<oo q.e. and E,(M(t))=
0 gq.e. The set of all MAF’s with finite energy is denoted by M. Also, let J1
be the set of all NAF’s of zero energy. Note that an additive functional A(?)
is called a NAF if A(¢) and Y(t) do not jump simultaneously a.s. P, for q.e.y.
In Section 6, we shall show the following decomposition theorem which have
been given by Fukushima in the case of symmetric Dirichlet forms; if €@
(PO P), then there exist uniquely M1 & JH and N“1€ Jl such that

(1.7) a(Y (8))—a(Y (0)) = M™(2)+NM(),

where # is a q.c. modification of u if u€SF and the difference of 1-excessive
regularizations if u is the difference of l-excessive functions. In particular,
if ue<, then the NAF N in (1.7) becomes continuous. In the decompo-
sition (1.7), the energy of M is given by

(18) (M) = A, 0)— [ #(9) K@)



106 Y. OsHIMA

for a positive Radon measure k2 on . From this representation, most of the
stochastic calculi discussed in [4: Chapter 5] follow in our setting but we shall
not trace it because the proofs are similar. We shall only conider the case

d
19 B ) =3 an 0 2D 8D 4y o peciry,
»J=1 $ I
in which the explicit form of the quadratic variation of MU, N*1 will be given
and an equivalence of the E-polarity of a subset B of R and the £-polatity of
a subset (@, b) X B of R'X R* will be established.
The author thanks the referee for his careful reading and valuable com-

ments.

2. Notations and preliminary results

Let (&, &) be the form defined by (1.2) and (1.3). As we mentioned in
Section 1, for any f€CV’, there exist resolvents G, f €S and é, [ ET satisfy-
ing €,(G, f, vV)=E,(v, G, f)=(f, v), where &,(u, v)=E(u, v)+p(u, v) and (4, v) is
the coupling between ¢I" and /. In what follows we shall also use the no-
tation (u, v) to represent the inner product of functions #, vEJ becauss it will
not cause any confusion. The resolvent G, satisfies the following conditions
(see [8], [9], [10]):

(1) for any f €4 such that 0< f<1v—ae., 0<pG,f<1v—ae,
(i) if fE4 then pG,f converges to f in H as p— oo, furthermore, if f&CY
[resp. f €] then pG, f converges weakly to f in €V [resp. in F].

A function uE€CV is called p-excessive if it satisfies €,(u, v) >0 for all ve
Fr={weF;w>0v—ae.}. Then the following statements are equivalent to
each other:

(i) wuis l-excessive.
(if) = is non-negative and satisfies ¢G,,, u<u, v—a.e. for any ¢=>0.
(iii) There exists a positive Radon measure w, on X such that &(u, v)=
S 9(y) pu(dy) for any v €F N Cy(X).
In this case u is called the 1-potential of p, and denote by u=V,; u,.

The family of all 1-excessive functions is denoted by 2. Similarly, the no-
tions of p-coexcessive functions, 171 i, and the family P of all 1-coexcessive func-

tions are defined by using £,(v, ) instead of £,(%, v) in the definition of p-exces-
sive functions.

For any function z€ 9, set
(2.1) e, = inf fucsP;,u>hv—ae}.
Then ¢,€ P and ¢,=e,+ v—a.e. for all k€I (see [10]). Mignot and Puel [6]
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proved that the solution #,E of

2.2) ey v) = % (h—)", 0), Voe,

converges increasingly a.e., strongly in H and weakly in ¢/ to e, as € | 0. When
h=1Iy for a Borel set B we shall denote e, by ez. Since ¢, is a 1-excessive func-
tion, there exists a measure y,, such that ¢,=V, u.,. For any open set O of X,
define the capacity Cap(O) of O by Cap(O)=puo(0), where po=p,, for h=1I,.
The capacity can be extended to all Borel sets as a Choquet capacity. A func-
tion u on 2¥ is called quasi-continuous (q.c. in abbreviation) if there exists a
decreasing sequence of open sets {O,} such that Cap(O,) | 0 and % is continuous
on each X—0,. It is known that any function of & has a q.c. modification
([9], [10]). In the previous paper [8], we proved that there exist a Hunt process
M—(Y(t), P)) and its dual Hunt process M_(Y(t) b ,) on 2, whose resolvents

V,fand V,f are q.c.modifications of G,f and éi, f, respeatively. For any 1-
excessive [resp. 1-coexcessive] function u, we shall define its 1-excessive [resp. 1-
coexcessive] regularization @ by

(23) #(y) = lim nV,, u(y) [resp. &(y) = lim nV,, u(y)]
We shall start with the following lemma which will be used in many places.

Lemma 2.1. For any u€ 9, if p(u—pV,u,u) remains bounded as p— oo,
then ue<V and

(2.4) lir? inf pu—pV,u,u)=>A(u, u) .

In particular, if uEF then, for any vECY, lim,,. p(u—pV,u, v) exists and
equals to E(u, v).

Proof. For any p>0, since
APV, u,pV,yu) = E(PV,yu, pVyu) = plu—pV, u, pV, u)
= pu—pV,u, w)—pllu—pV,ull5%< plu—pV,u,u),

{pV,u} is uniformly bounded in € from (E.3). Hence there exist a sequence
{p.} increasing to infinity and a function #,&V such that p,V,,u converges
to %, weakly in €}/ as »—oco. Then, for any fE4H ,

(f) uo).ﬂ = 81(Vlf) uO) = !'I_IE 6,l(r/'lf’,pn Vi’,, u)
= 11_23 (f’ Dx Vﬁ,,u) = (f: u) .

This implies that u=u,&C.
(2.4) follows from the inequality in the fitst paragraph of the proof.
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The last assertion is obvious from
E(pV,u,v) = plu—pV,u,v), YoEV.

For any open set O of 2¥, the 1-excessive function e, was defined by (2.1)
with A=1I,. For any compact set F, the following result holds.

Lemma 2.2. If F is a compact subset of X, then
er = inf (usP;u>1 v—a.e. on a neighbourhood of F}, v—a.e.

Proof. Denote by up the righthand side of the above equality. Obviously
up>ep v—a.e. Since ex=~&p v—a.e., it is enough to show that u,<é; v—a.c.
According to the definition (2.3), &5 is quasi-lower semicontinuous, that is, for
any €>0, there exists an open set N, such that Cap(/N,)<<€ and ér is lower
semicontinuous on X—N,. Thus, for any >0, we can find an open set Oj
such that {y; ér(y)>1—08} =0;N (X—N,). Set u,,= {1/(1—(1/m))} é+
éya/m+ Then u, ,€%P and u,,>1ae. on Oy for &=1/n and §=1/m. Since
Enaym decreases q.e. and converges in €I to zero by [8;(3.8)], .., converges
g.e. to 5. 'This implies the result.

Lemma 2.3. For any Borel set B of X,
(2.5) é5(y) = E(e™"?) q.e. ,
where oy is the hitting time of B.

Proof. We shail first note that

(2.6) E(w, u) < Ay (u, w)+ A (w, u)
holds for all u€ P and weF*. In fact, since u P and w>0.
Ei(u, w) = (—aﬂ, u)+J1(u, w)>0.
or

(2.6) follows from this since
& (w, u) — —(g—’;’ u)—{—Jl(w, ) < Ay (11, w)+ A0, ) -

Now we shall show the lemma in the case that B is an open set such that
Cap(B)<<oo. Denote by %, the righthand side of (2.5). Then it is clea: that
2Gpri(es Ahg)<egAhp v—a.e. Furthermote, since

Jll(p G,.,_l(eB A hB)’ P Gp+1(eB A hB)) =& 1(PGp+1(eB A\ ha), PGp+1(eB A\ ha))
<p(esAhs—pGyi(es A h5), es A hp)
<p(esAhs—pGyi:(es Ahs), e5)
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= 81(PG1>+1(33 A hs): ea)
S (PG pri(es A b)), e5)+Ai(es, pGyii(es A b))
L2M||pGpr(ea A bs)llcy llesllcy

it follows that ||pG (e Ahi)llcy is bounded and hence, by Lemma 2.1, ez Ak
belongs to €. In particular, e Ak EP. Combining this with that e Akz=1
v—a.e. on B, we have ez Ahp>ep, which is nothing but e;<h;. Operating
nV 4, both sides of the inequality and letting n— oo, we have é;<h; q.e.

The converse inequality can be proved similarly to [8; Lemma 4.1]. Since
the set C={yEB; é3(y)=*1} is a v-null set, for any fixed time s>0,

B et By (1Y (5) )

= B[ e I (s1)) )

< oD E,(S" =0V [ (Y (2)) dt)
]

— e(p+1)s 174

p+11c(y) =0 q.ey.
In particular, if D= {a,, a,, :**, a,} is a finite subset of (4, b) and
o(D) = inf {teD; Y(t)EB} ,
then with P, probability one,
Pyy(@5(Y (o(D)))F1)
< 31 Pyo(Y(a)EC, o(D) = @) = O ae. .

Hence, by noting that (e™* &5(Y (2)), P,) is a right continuous supermartingale,
we have

ny([ et By ) di)
= B[ e By (77 2,V (o(D)) dt)
< nE,(S: = g (Y (1)) dt)
= nV,4185(y) q-e.

By letting D increase to a dense subset of (0, o), we see that nV, ., hg<nV,,, ép
q.e. and which implies that 2;<é; q.e.

Suppose next that B is a compact subset of X. According to Lemma 2.2
and [10; Corollary I.2], there exist a sequence {u,} of functions of & and a se-
quence {O,} of open sets of X containing B such that #,>1 »-a.e. on O, and
lim, . #,=ez v-a.e. We may suppose that {O,} is decreasing. Since u,>¢,,
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we see that ¢, decreases to e; v-a.e. Therefore,

e5(y) = il_)m” MV 11 €8(y) = }g& lnl_gla MV 11 €0,()

= lim lim mV 41 ho ()

meoe n-poo

= lim mV1y hs(y) = hs(y) q-e-
The proof of (2.5) for Borel sets can be done by the usual capacitability theorem.

3. Extension of (&, ¥)

So far, we considered the form &£ defined on F X<V and UV x ¥. But for
later discussion, we need to extend the domain of & to a class including L X P,

PxPand PxP. For any u€CV, since pV, u belongs to & and converges to
u strongly in 4{, we can naturally consider that lim,,. &(pV,u, u) defines an
extension of &. In fact, if either # or v belongs to & then the limit exists and
coincides with £(x, v) (see Lemma 2.1). Now, we shall set

B1)  Ewv)=lmE(pV,uu) and é(u,v):iimwé’(;pvpu,v),

if the limits exist. Note that &(u, v)=& (4, 2) if u€F or vEF, and that £ (u, v)
satisfies
(3.2) &, v) = lim E(u, pV,0) = lim p(u—pV,u, )
if it exists.
Lemma 3.1. If one of }gg E(pV,u,v), &1_)12 E(v, pV,u), ,I,er} E(u, W,, )

and lim &( pV,, v, u) exists for u, vECY, then the others exist. In this case,
p>oe

(3.3) E(u,9) = lim E(pV, u,0) = lim E(y, pV,0),
(3.4) E(v,u) = lim E(pV,v,u) = lim &(v, pV, u),
(3.5) Eu, v)+E (v, u) = A(u, v)+A (v, v) .

Proof. Since
E(w, u)+E(u, w) = A(w, u)+A (1, w)

for all ueCY and wESF, we have

(3.6) EPV,u,0) = Eu,pV,v) = A, pV, v)+A(pV, v, )—E(BV, v, u),

VoEV. According to the fact that lim (s, pV,v)=A(u,v) and lim A
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( pV,, v,u)=A(v,u) the equivalence of the existences of lim &(pV,u,v),
p>oe

9_{2 E(u, pVP v) and }him E(pV, v, u) as well as the equalities (3.3) and (3.5) follow

from (3.2) and (3.6). The other part of the lemma is a consequence of (3.6) and

E@V,u,v) = APV, u, v)+A(v, pV,u)—E (v, pV, u) .

Theorem 3.2. The spaces FD(POP) and FD(POP) are identical.
Moreover, if we denote the space by I then X I is cantained in the domains of

& and & extended by (3.1).

Proof. If usP, then there exists a positive Radon measure u, on X such
that &,(u, w)=<p,, w) for all weF N CX). According to the definition of
&, it then holds that

81('10, u) = _<ll4m w>+qul(wa u)+Jl(u’ ‘ZU)

for all weF NCy(X). Since the linear functional f on €V defined by (f, w)=
A(w, u)+ Ay (u, w) belongs to €Y', there exists a function G, fET such that
Exw, G, f)=(f, w) for all wEZF. Hence the function G, f—u satisfies

Ew, Gy f—u) = {p,, w>

for all wEF N Cy(X). This implies that G, f—u="V, p, & P and that PCF O
P Similarly, we can see that PCFOP. Thus the first assertion has been
proved.

For the proof of the second assertion, we shall only prove that the limit
&(u, v) in (3.1) exists for all u, vE P, since the other cases can be proved simi-
larly by using Lemma 3.1. If u, v€P, then {pV,,, u} increases and, conse-
quently, {€,(v, pV,+, )} increases as p t co. Also, by noting that pV,,, uc P
and v>0, we have the uniform boundedness of {£,(v, pV,+, %)} with respect to
p>>0, because

0<8y(v, PV w) < Ay(v, PV u)+J1(PVp+1 u,v),

from (2.6). Then the existence of lim,,. &(v, pV,4, u) follows and which im-
plies the existence of £ (u, v) by Lemma 3.1.

ReMaRk 3.3. We noted after (3.1) that &(x, v)=E (4, v) if either u€TF or

veZF. But, for general u,v, the values £(u, v) and é (u, v) will not coincide.
For example, if €% and ve P, then they can be written as u=V, u, and
v=171 4, for some positive Radon measures p, and 4, on 2, respectively, In
this case,
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Eiw, ) = lim E,(pV, u,0) = lim [ 57, u(») aldy)

Eiw, 0) = lim E(pV, 4, 0) = lim [ 5V, u(») dy) .

In the last terms of these two equalities, #=lim,,. pV, u is the 1-exsessive regu-
larization of # and lim,,. pvp u(y) (if exists) is expected to be equal to the
cofine limit of # at y, which will be different from % on a semipolar set.

RemMARK 3.4. As we have seen in the above Remark 3.3, the relation

&, ) = [0 209) i)

holds for all u€P and veFPH(POP), where ¥ is the q.c. modification if
vEY, and the l-excessive regularization if v&P. Also the inequality (2.6)
holds for u, wE P.

4. Decomposition of the Dirichlet forms

In the case of symmetric Dirichlet form (E, V') on L X;m), if we denote
by V5 the resolvent of the associated Markov process, by H%(x, dz) the p-th
order hitting distribution and by V3% the resolvent of the part process on
X—B, then it is well known that the decomposition

Vie=Vitet+tH} Vo

is the orthogonal decomposition with respect to E, of V5 ¢ into the elements of
the subspace V*~8={p&V; =0 q.e. on B} and its orthogonal complement,
where @ is the q.c. modification of @ with respect to the E-capaaity (see [4]).
In this section we shall show that the analogous result holds in our situation.

Now, as before, we shall denote by V7, the resolvent of the Markov process
M=(Y(t), P,) associated with &, by H% the p-th order hitting distribution of a
Borel set B of ¥, and by V£~2 the resolvent of the part process on X¥—B, res-
pectively, that is

Hb u(y) = B2 (Y (05))
VE )= BA| e (v @) an.

For h& %P and a Borel set B of ¥, set
(4.1) hy = inf {ucP; u>h v—a.e. on B} .

Then as noted before, i3 € P and the unique solution 22 € PNF of

EhE, v) = % (hF —I5 by, v), Vo
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converges to hp v-a.e. increasingly, strongly in  and weakly in €V (see (2.1),

(2.2)).

In the remainder of this paper, we shall consider that the elements of &,
P and &P are taken to be their q.c. modifications, 1-excessive and 1-coexcessive
regularizations, respectively. The following lemma can be proved similarly to
Lemma 2.3.

Lemma 4.1. If hEP, then H} h(y)=Hh3(y), q.e.

Theorem 4.2. If he P [resp. hE P), and B is a Borel subset of %, then
HY heP [resp. Hs he P] and

(4.2) E(Hs hyw) =0 [resp. Ey(w, Hs b) = 0],
for all we 9 such that w=0 v-a.e. on B.

Proof. Since Hy h=hj3 q.e., it belongs to P and v-a.e. equals to the weak
limit in € of functions A’ €<. Hence, by noting that (b} —1I;k)~=0 v-a.e.
outside of B, we have

EHY b, w) = lim Ey(h?, w) = lim % (W2 —Iy k), w) =0,
20 >0

for any function wEY¥ such that w=0 v-a.e. on B. If weP satisfies the
condition of the theorem, then &,(hZ, prH w) increases as p } oo and also as
&1 0. Hence

EH by w) = lim E(pV s Hs b, w) = lim E(H} &, pV 1y w)
p>oo proe
= lim lim 6’1(hf,p17,,+, w) = lim lim 81(hf,p171,+1 w)
830 p>oo

pre €30
= lim &,(?, w) = 132)1% (=TI b)) = 0.
Finally suppose that w € & satisfies the condition in the theorem, then
E(H} b, w) = lim E(pV s Hb b, w)
= lim { A (PV p H hy )+ (@, BV s Hy )~ Exaw, pV iy H )}
= A(Hp h, w)+ A(w, Hp h)_},ifﬁ}. Ew, pV,y Hy h) .

Since E\(w, pV 41 he) increases as p 1 oo and & | 0 and also as lim,,, &y(hZ, w)=0,
we have

lim &,(, V1 H ) = lim &( DV per w, Hy b)

>0 830

= lim lim £(pV 110, 1) = lim lim &,(w, pV/,, hY)
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— lim lim &,(w, pV,1 h7) = lim lim &( DV pir w0, hE)

€0 p-poo e8>0 proo
= leim E\(w, h?) = leln;l { Ay (B, w)+ Ay(w, ) —E (RS, w)}
= (H by w)+A(w, Hy b) .

Hence &,(H}% h, w)=0 for all w satisfying the condition in the theorem. The
proof of the dual case is similar.

Corollary 4.3. For any f, g€ YL and p>0.
43 EV S V,8) = EHL V,f, Hs V,0)+E(VE VT g)
(4-4) ENVof, Vy8) = ESHS V, f, Hy V, )+ E(VE L, VE " g)
(4.5) EV,fV,g)=EHL V,f, A4 V,0)+E(VE S, VE T g).

Proof. Since &,(VE~2f, H% V,)=0 and &,(H% V,f, V¥~? g)=0 from
Theorem 4.2, (4.3) follows obviously. 'The proofs of (4.4) and (4.5) are similar.

Corollary 44. Ifu=V, u, €L and v= 171 ﬁ,EQA), then
(46) oy Hy Vi 1) = <oy Hy Vi > -
Proof. Since
E(Hsu,o—Hsv)=0 and E(u—Hyu, Hyv)=0
are known from Theorem 4.2, it follows that
EHb u,v) = E(Hy u, H v) = Ey(u, Hy v).
The result is an easy consequence of this equality.

Corollary 4.5. Let u=V, p€P and Hp u=V, u® for some positive Radon
measures y, and p® on X, respectively. Then

(+7) wo(dy) = nils(dy) = (o, H(z, @) (d2)
In particular, u® is supported by the set of coregular points of B.

Proof. LetveP—P. Since pV,+, v is dominated by an excessive function
and converges q.e. to v, we have

EHy u,0) = lim E(H} 1,0V 0) = lim | pV 1 0(5) w?(dy)

= | o0) w2y
On the other hand,
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E(Hy u, ) = Ey(u, Hy v) = 536' HS o(2) u(dz) .
Hence
[ 20 w2(@y) = [ s 0(2) @)

for all ve PO P. In this equality, set v=nV,., ffor fEeC(X). If we take a
1-coexcessive function % such that | f| <k a.e. (for example, A=|| fl|w é(suppLr)>
then | nV,,H fl<hforall n>1. This admits to use Lebesgue’s theorem to get

[/ 0) w2@) = [ Bb 1) i)
Therefore we have the result.

REMARK 4.6. If u€ S is dominated by a l-excessive function, then there
exists a sequence {u,} of functions of F N (P O P) such that lim,,e. #,=u in F
and lim,,. Hp #,=H}p u in C}/. In particular H} u belongs to C{/.

In fact, since pV,u converges to u weakly in & as p— oo, there exists a
sequence {u,} of functions of FN(PLOSP) which can be written as convex
combinations of functions of the form pV, u such that u,—wu in &. Each func-
tion u, has the form V,f,ePS P, because pV,u=V,(p(u—(p—1)V,u)).
From Lemma 2.1, (3.2) and Theorem 4.2,

a || Hy(uw,—un)l| 2 < A H b (4, — ), Hy(4,—%,,))
<SE(Hp(u,—tp), Hy(u,—ty)) = E(Hp(1y—1ty), 1t,—1y,)

for some constant K. Hence
K

The strong convergence of {H% u,} in €I/ is an easy consequence of this ine-
quality. The limit is equal to Hju q.e. because Hp u,—~H} u q.e. by the
bounded convergence theorem.

DerINITION. We say that & possesses the local property if (E, V') pos-
sesses the local property for a.e. TR, that is, for a.e. TR, EM(p, ¥)=0 for
every @, Y€ IV such that their supports are disjoint compact subsets of X.

As in the case of symmetric Dirichlet forms, we can show the following

Theorem 4.7. The following conditions are equivalent to each other.
(i) & possesses the local property.
(ii) The Markov process M on X associated with £ is a diffusion process.



116 Y. OsHIiMA

(iii) The dual Markov process M of M is a diffusion process.

The proof of the theorem is similar to [4; Theorem 4.5.1] according to the
next lemma.

Lemma 4.8. The following conditions are equivalent to each other.
(i) & possesses the local property.
(i) For any relatively compact open set O of £, Hae_ o(y, *) is concentrated on
the boundary 80 for g.e. y€O.

Proof. (i)=>(ii): Let O be a relatively compact open set of 2, ueF NG,
(2€) be a function such that Supp [u]C ¥—O0, and {u,} be the sequence in
Remark 4.6. For any non-negative function f such that Supp [f]CO, set v=
V.f—H Y—0 V.f. Then v is supported by O and

Eu,—He_ o thy, v) = E(uy, v) = Ex(u,v) = 0.
Therefore
0 = lim & (u,—HY_q ty, v) = lim Eu,—HY_q 1, V.f)
— lim (4, —Hy ot f) = (o= Hlp_ou,f).

This implies that u=H%_,u q.e. on O. In particular Hy._,u=0 q.e. on O
and (ii) follows.

(if)=(i): Let @ and 4 be functions in ¥ whose supports are compact su-
bsets of X—4 and 4, respectively, for an open set 4 of X. For any interval
(a,b) in R, set O=(a,b)x A. Let £(r) be a function belonging to Ci(a, b).
Then the support of EQg is contained in ¥—O0 and, by (ii), H 2_o(E®p)=0
q.e. on O. Therefore we have £Qp—H % _(EQ®)=0 a.e. on X. Since
ER® =0 a.e. on X¥—O0, it follows that

0=CE(EQp—Hy_o(EQp), EQV¥) = E(EQp, EQY) .
~ (B, v) gy ar.
This implies that E™ (¢, 4r)=0 for a.e. 7.

5. Measures of finite energy integrals and associated additive
functionals

In this section, similarly to Fukushima [4], we shall define the notions of
measures of finite energy integral as well as smooth measures and show a corres-
pondence between such measures and positive natural additive functionals
(PNAF’s). Such a correspondence has also been studied by Revuz ([11], [12])
for Hunt processes satisfying the duality condition (see also [3]).
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DEFINITION. A positive Radon measure x on ¥ charging no set of zero
capacity is said to be a measure of finite energy integral if there exists a constant
C such that

(5.1) [ 1) du(m<Clisllg, forall weFncy).

The set of all measures of finite energy integral is denoted by &,.

If u€8,, then (5.1) holds for all wEF by taking its q.c. modification. To
give a characterization of the measures of finite energy integral, we need the
following two lemmas.

Lemma 5.1. (cf. Pierre [10]) If wESF, then there exists a constant K such
that

(5.2) lerllcy<Kllwllg .
Proof. We shall first note that there exists a constant K, such that
(5.3) llewllay<K(llellqy+lle-nlla), YoEV .

To show it, let |v|.€F NP be the solution of (2.2) corresponding to A= |v].
Since

l‘UIgSemse,ﬁ“}‘er = e,Fe-y,
and e,+¢(,, €L, we have from (2.6)
Alvle [v]e) = EIvle, 0] ) SE(I0] e €0e-1)

Suql( | v | e ev+e(_v))—|—J,(eu+e(_,), l ‘Z)I e)
<2M|[1v]llc lle,+-e-nllcay -

Then the condition (E3) shows that

ol dlay <Ki(llellcy+lle-nllcy)

for some constant K;. The inequality (5.3) follows from this by letting &—0.
Therefore to show (5.2), it is enough to prove that there exists a constant K,
such that ||e,||cy < K,||w||g for all weF. To this end, let w,EF NP be the
solution of (2.2) for ~=w. 'Then,

Aty ) = (g ) = (@, —w)", )
= £ (@) m )+ (), )

<~ ((we—w)7, w) = Ey(w,, w) <Kyllwillcy [[wllz

1
€
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for some constant K;. Use again (E.3) to show
Ilwellcv< *lwllg .

Now the result follows by letting €—0.
Lemma 5.2. For any fe<V’,

(54) nclfngsa#” 1) fllar

Proof. Set w—G, [ for fEXV". Then llwlly<-- |Iflla (see [8; (2.12)]).
Hence, for any vV, @

|(_giT", )| =1(f, 9)— A, )| (I fllvr+Milwli) llolley

s(1+i0‘f—) I fllellelly -

Therefore we have Hg—wllCU’S(l—l—ﬁ) || fllev and
T a

M+1

“w“9<“-~—“CV’+Hw||CVS(1—I— ) 1 fllev.

Now we can show the following theorem which characterizes the measures
of finite energy integral.

Theorem 5.3. The following conditions are equivalent to each other.
1) we So.
(ii) There exists u€ P such that p=p,.
(ili) There exists vE P such that p=p,.

Proof. (ii)=(i): If u=up, for u€ P, then, by using the solution |w|, of
(2.2) corresponding to A= |w|, we have

[ 18O (@< erni(9) i) = tim [ 10105 w(dy)
= lim E,, || ) SHm (A, 0] )+ Al )

= A, €1u1)+ A1), ¥) <2M |lullcy lleruillcy

forallweS. To show (i) it is enough to apply Lemma 5.1 to this inequality.
The proof of (iii)=> (i) is similar.
To show (i)=>(ii), suppoes that €S, and set

L(f) = | VifG) m(dy) for fed.
Then L(f)>0 if f >0 v-a.e. and
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M+1 M—H

|L(f)| <C IV fllg<C+2T2) I fllov < CR, (1+25) 1 fll g »

where K, is a constant such that || f HCV’SK, [l fll.gr- Hence there exists a non-
negative function # €9 such that

L(f) = [ f3) u(2) (@)

Moreover, since

[ F U v =1Ly <c+PE

Y fllevr,

it is extended to a continuous lineat functional on ¢{’’. This shows that u&<)/
and

(55) | VifO) (@) = [ FG) u9) (@) = €, Vi), Vf ek

For any wE Y, since nV,w converges to w weakly in & (see Prieire [10]), there
exists a sequence {w,} constituted of convex combinations of {nIA/,,w} and con-
verging to w q.e. uniformly and strongly in &. Then, {w,} converges to w in
LY(u) by (5.1). Noting that each w, can be written in the form V. 1f, for some
[ €4, we have from (5.5),

(5.6) S L 2(3) wldy) = Ew, w,), Vn=1.

Letting n—oco we see that (5.6) also holds for w in place of w, and which implies
that W=y
The proof of (i)=(iii) is similar.

Now we shall concern the problem of the correspondence between the
measures in S, and NAF’s.  To show it, we need the following

Lemma 5.4. If u€P, then, for any decreasing sequence {B,} of nearly
Borel sets such that P (lim,,,.. o5 >{)=1 q.e.,

(5.7) lim Hy u=0gq.e.

nr

Proof. Since {H} u} is a decreasing sequence of excessive functions, it
is enough to show that lim,,. H5 u=0 a.e. (see [1; Proposition VI. 3.2]). For
any f €C3(X),

lim (H} u, f) = lim &(H}, Vy s Vo f)
= lim E(V, pay Hi, Vi) = lim <u, By, Vi f> .

The righthand side is equal to zero because
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¢
o, 0, f(0) = By, e f(Y@)d) >0 ge.
from the hypothesis.
By using this lemma, we can prove the following:

Theorem 5.5. If uc P, then there exists a unique PNAF A, such that
(5.8) w(y) = E,(So et dd,) ge.
Proof. Set B,={y;u(y)>n}. 'Then, fiom the fine continuity of u,

u(y)2 Ey(exp(—os,) u(Y(a3,) 2nE,(exp(—0s,); 05,<E) .

Hence P(lim,,. o3,>8)=1 q.e. Therefore, for any stopping time 7'

E e u(Y(T)); w(Y(T))>n)
<E(eTu(Y(T)); 05, <T)<E,exp(—o3s,) (Y (cs,)))
= Hjp u(y)—>0q.e.asn— oo,

This implies that {e~* u(Y (¢))} is a potential of class (D) with respect to the
e~!-subprocess of M. Hence the theorem is a consequence of Meyer’s theorem

(see [2]).

From Theorems 5.3 and 5.5, for any u € S,, there exists a PNAF A(t) such
that

(5.9) Vin() = By edd) qe.

Due to this relation, it holds that
(5.10) <o f> = lim pE| " e £(7 (1)) A1)

for all non-negative measurable function f on 2 (see [4; Lemma 5.1.3]). Fur-
thermore, this correspondence can be extended to the class of all smooth mea-
sures defined as follows. A positive Borel measure p on X is called a smooth
measure if it satisfies the following conditions:

(i) w charges no set of zero capacity,

(ii) there exists an increasing sequence {F,} of compact sets of € such that

p(F)<eo, w(X—NiuF,)=0, limCap(K—F,)=0,

for any compact set K of 2.

We will not give the proof of the following theorem because it can be shown
similarly to [4; §3.2, §5.1].
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Theorem 5.6. The following conditions are equivalent to each other.
(i) w is a smooth measure.
(i) There exists an increasing sequence {F,} of compact sets of 2 such that

w(X—Upa F,)=0, limCap(K—F,)=0,
for any compact set K of X and I - n€S, for each n>1.
(iii) There exists a PNAF A(t) of M satisfying (5.10).

6. Decomposition of additive functionals

In the case of symmetric Markov processes (X (t)) associated with regular
Dirichlet forms, it is well known that the additive functional (AF in abbreviation)
of the form #(X(¢))—u(X(0)) can be decomposed uniquely into the sum of
martingale AF and continuous AF of zero energy (see [4]). In this section, we
shall show that the analogous result remains valid in our situation. As in [4]
(see also [7], [13]), for an AF A(t) of M, define the energy e(4) of 4 by

6.1) o(4) = % lim 7 E,(S" o~ AX(f) dt).
oo 0
An AF M(2) of M is called a martingale AF (MAF in abbreviation) if, for all £>0,
E(M¥#))<oo, E,(M(t)=0q.e.

The set of all MAF’s of finite energy is denoted by M. A NAF N(2) is called
a NAF of zero energy if

E(IN(@)|)<oo qe. and e(N)=0.

The set of all NAF’s of zero energy is denoted by JI. For any function ue€F
B(POP), we shall define the AF A by

AM(t) = w(Y (2))—u(Y (0)),
where u is taken to be the version stated in §4.

Lemma 6.1. If we, then there exists a positive Radon measure k on ¥
such that

(6.2) (A = Ao, w) - | L w(9) Ky
Proof. For any p>0 and ucs 4,
0<* (| em#u(Y () —u( Y (0))*

= <o, V, —2uV, u+% W2 = 2p(u—pV 4, )— (@, 1—pV, 1)
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Hence
(6.3) @, 1—pV , ) <2p(u—pV, u, u), Yuc I .

In particular, when w €, since 2p(w—pV, w, w) converges to 2& (w, w)=21
(w, w) as p—>oo, there exists a sequence p, ? oo such that the measure k,(dy)=
Da(1—ps Vs, 1) () v(dy) converges vaguely to a positive Radon measure k(dy)
on X. Then (6.3) tells us that

(6.4) [ o #) K@) <20, w), Vwe TN Cy2),

holds. For general weY, by taking a sequence w,EF N Cy(X) such that
w,—w in &F, we can see from (6.4) that w, converges to w in LA 2; k) and (6.4)
holds for all weF. Moreover (6.3), (6.4) and the triangle inequality give us
the following inequality.

4] oo w0 Bl =4 w(0) ka2
< 4] o wh(0) Ba (@) 4§ k() W)
+1{ o om0 (9) B (@) 141 [ (w—20)(9) By 12
<14] , wh(0) k()4 wi(y) K™
+ L2u(wn—w—pa Vs, (0n—), wp—w)} 2+ 2A(wp—w, wp—w)} .
Let n—co and use Lemma 3.1 to get
tim [{{ ,, 0%(9) R (@12 4], w4(3) K|
<27 Hwa—w, wa—w)"*.
Since the righthand side tends to zero as m—>oco, we have
tim | @) k(@) = |, #4) K@), vweF .

Now, to prove (6.2), it is enough to take p=p, in the equality of the first para-
graph of the proof and let #—oco.

To show the decomposition theorem, we need the following lemma (see
[4: Theorem 5.2.2]).

Lemma 6.2. If wEF, then for any T>0 there exists a constant K(T)
depending on T such that

(65) Pu(sup 1Y ()| >6) <D 17, ey s



TIME DEPENDENT DIRICHLET FORMS 123

for all £>0 and p€S8,.
Proof. Let B={y; |w(y)|>&}. Then, from Lemma 2.3, we have
P,L(osslfgr (Y (2))| >€) = Pu(os<T)

<e™ Bule) = & { o) md)<e | o) wldy)

= 5;— S Croi() #(dy)

for all y=&,. Let |w|, be the function defined in the proof of Theorem 5.3.
Since #V 4, || /m increases q.e. with respect to both of m and 7, we have

1w = lim nlV,, e, = lim lim nV, 4| w| a/m
n-» N> my>o

= lim lim nV, @] qm = lim |w]q/m q.e.

Combining this with (2.6) and the property that |w] ;. converges to ¢, weakly
in ¢/, we have
[ i) atd) = tim [ 1l am(2) (@)

= 11:5 EV1 s | w] arm)

< '}gi} {JI(VI oy || (1/m))+°’ql( l w| (1/m)» V P’)}'

= ’lel(Vl 122} e|w|)+uql(elwla " /-l‘)

< 2M |V plley llealley -
Thus, to prove the lemma, it is enough to apply Lemma 5.1.

Similarly to [4: Lemma 5.1.2], this lemma implies the following

Corollary 6.3. If {w,} is a Cauchy sequence in F, then there erists a sub-
sequence {w,,} such that w, (Y (t)) converges uniformly on each compact interval

of [0, o) a.s. P, for g.e. y.

Also similarly to [4: Theorem 5.2.1], it holds that if {M,} is an e-Cauchy
sequence of elements of ¥ then there exists a subsequence {M,,} such that
M, (t) converges uniformly on each compact interval of [0, o) to an element

Me M as. P, for q.e.y. These facts will be used to prove the following de-
composition theorem.

Theorem 6.4. If ucF B(PSP), then there exist uniquely MWe HY and
N Jl such that

(6.6) At = M4 N
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In partucular, if uEF then N™X(t) becomes continuous.

Proof. (Uniqueness): If M j{, then it is easy to see that E,(M7) is sub-
additive with respect to ¢ and hence e(M)=sup,so(1/2¢t) E,(M?). This shows
that M=0if e(M)=0. The uniqueness of the decomposition follows easily fiom
this.

(existence): Assume first that u€S. Since pV, u—u weakly in &, there
exists a sequence {u,} of convex combinations of functions of the form pV, u,
which sequence converges to u strongly in &. We may suppose that u,=V, f,
for some f,eH. Define

Nn(t) = S: (unﬂfn) (Y(S)) ds ) Mn(t) = un( Y(t))_un(Y(O))_Nn(t) .

As in [4;(5.2.11)], it is easy to see that N,EJ] and M,,E(f/i{. Also, from Lem-
ma 6.1.

0<e(M,—M,,) = e(At*=*n)
= Aty t— ) — | o (a2 (3) F(dY)
< AUy — Uy Uy —Uy) -
Hence {M,(¢)} forms an e—Cauchy sequence and consequently a subsequence
{M, } of {M,} converges to some MM & uniformly on each compact interval
a.s. P, for q.e.y. According to Corollary 6.3, we may suppose that {u, (Y (2))}
converges to #(Y(t)) uniformly on each compact interval of [0, o) a.s. P, for

q.e.y. Hence NM(t)=lim,,.. N, () exists as a uniform convergence limit on
each compact interval and satisfies

w(Y (1)) —u(Y(0)) = M(2)+-Nt(2) .
Since N, (t) is continuous, NI() is also continuous. From the inequality
E,(N™())")
SE({AM7(8)+ N, (1) — (MU(8)— M, (1))} )
SSHE(A ) (@) +E(Na(8))*)+ EL(MEI(1) — M, (1))}
we have
e(NU1) <3 {e( At~ “sl)+- (M1 — M,,)}
S6 L)4(1‘_“») u—un) .
By taking n=mn, in this inequality and letting k— oo we see that e(/N*1)=0.

When u€ P, we saw in Theorem 5.5 that there exists a PNAF A(¢) which
has u as its 1-potential. Then

e~ u(Y (1)) —u( Y(O))—S e dA(s) = Ey(S e~ dA(s)| F,) = MD(2)

t )
0 0
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is a martingale. Defining the MAF M by M ["](t)_——gt e’ dM®(s), we have
0
w(Y (1)) —u(Y (0)) = M™(2)+A(2)

(see [2]). Hence what remains is only to show that e(4)=0. The proof of this
can be done similarly to the proof of ¢(N*1)=0 in the above case because it
has only used the property that {u,} converges to # in €V which holds in the
present case.

Corollary 6.5. If ucFPH(PAP), then
(6.7) (D) = Ay w)——- | 1%(3) k()

Proof. If ueFPH(POSP), then there exists a sequence {u,} of functions
of & which converges to u strongly in €Y. Then (6.2) shows that {u,} con-
verges to u in LA2X; k) and, furthermore M converges to M with respect
to the e-norm. Then (6.7) holds because it holds for each u,.

We know that most of the stochastic calculi of Fukushima [4; Chapter 5]
related to the MAF’s are based upon the equality (6.7). Hence one can natural-
ly expect that the similar calculi would be possible in our setting. Moreover,
it seems to be advantageous for the calculi that the equality (6.7) does not (at
least explicitly) depend upon the derivative du%/dt or, in other words, it does
not depend on &€ but does on JA. This property will be natural if one thinks
of the It6’s formula applied to smooth functions (recall that the time derivative
appears in the bounded variation term). From this property, most of the sto-
chastic calculi in [4; §5] hold in our case by replacing A instead of &, but
we will not go into details because the calculations are similar. Instead we shall
only mention the following formulas chatactetizing the smooth measure 1,
associated with the CAF <Mt} and the CAF N of zero energy for u€<F;

68) | 079 daatn(dy) = 20w, uf) — A, ) L2 (5) Rdy)
(6.9) lim 7 E,.,,(gj e NUI(t) dt) = —Eu, f) ,

for all f €S, (see [4; Theorems 5.2.3 and 5.3.1], [7], [13]).

Finally we shall give an example of a time dependent Dirichlet form. In
the example we give the explicit forms of the quad:atic variation of M and
N™ for uSF and, furthermore show the equivalence of the E™-polarity of a
subset B of R? and the &-polarity of the subset (@, )X B of R*x R? for any in-
terval (a, b) of R".

ExampLE 6.6. Let (E, V) be the symmetric form on C7(R?) defined by
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6.10)  E™(gp, ¢)=ég a;,(r, ) 22X V) 4 o eCr(RY,
ii=1 Jrd Ox; Ox;

J

for the family (a; (7, x)) such that, for some positive constants . and A,
d

(611) A ZDEE 0, )< SEE ai(e OSASIEE a7 ),

i.j=1

for all x€R? and 7,0 ER'. We assume that (E, C7(RY)) is closable on H=
L*(R?; dx) for some 7€R'. Then (E, C5(R?)) is also closable on H for any
c€R'. Let (E™, V) be the Dirichlet form determined by the closure. Obvi-
ously a subset B of R? is E™-polar if and only if it is E”-polar. Furthermore,
we can show that a set B is an E™-polar set if and only if (a, 4)x B is an &-
polar set for some (or equivalently for all) interval («, b) in R

In fact, if B is a polar set of X, then there exists a sequence {p,} of func-
tions of ¥ such that ¢,=1 a.e. on B and lim, . E{”(@,, ,)=0 uniformly with
respect to 7. For any interval (a, b) take a Cj(R')-function &(r) such that
&(r)=1 on (a, b) and set w,=EQ@,. Then w,eF, w,>1a.e. on (a, b)X B and

(6.12) ol E<Klgally |” A€ @P+EEN dr,

for some constant K. Since (e, 5xsllcy<lleiw,llay < K|lw,|lg for all n from
Lemma 5.1, we see that

”e(a,b)xB”CVSK 1{{2 ”‘wn”.cf =0.

This implies that the set (a, )X B is an &-polar set.

Conversely if (@, b)) X B is an &-polar set, then e, 5 .5=0 v-a.e. Hence by
Fubini’s theorem, for a.e. TE(a, 5), e 5xs(7, *)=0 dx-a.e. Furthermore, for
a.e. TERY, ey nxs(T, +) belongs to V and e sxp(T, *)=1 a.e. on B. This
shows that B is a polar set.

In this case, the AF {<M™> for u < is given by

(6.13) MWy (1) = 23]

ij=

S‘ ou Ou
1

06x,-6—xj

a;(Y(s))ds,

because

[ T Baatn(dy) = 200w, ) — AG2 )

: J

from (6.8). Furthermore, if a;;& C(R'; CY(R%)) then, for any uC"*(R' X R%),
it holds that




(6.14)

because the righthand side of (6.14) satisfies (6.9).
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ey = 8 vy ast 33§ e, 22y (v s,

In this case, (6.14) can aslo

be proved by Ito’s foimula, but for genetal u€F, N*! is not locally of bounded
variation. In that case, let p® be the molifier in R? supported by the ball of
radius &. Then the function (7, <)=u(r, -)*p® converges in F to « as & | 0.
Then, by Corollaries 6.3 and 6.5, NI“*1 converges to N™ uniformly on each
compact interval of [0, oo) a.s. P, for q.e. y.
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