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1. Introduction

Let FG be the group algebra of a finite group G over an algebraically closed
field F of characteristic p>>0. We call an FG-module V' monomial if V is induc-
ed from some 1-dimensional FH-module for some subgroup H of G. An
ordinary character X of G is called monomial if X is induced from some linear
character of some subgroup of G. We call G an M,-group if every irreducible
FG-module is monomial. We call G an M-group if every irreducible ordinary
character of G is monomial. For details, see a paper of Bessenrodt [1] and a
book of Isaacs [4]. It is well known that M-groups are solvable (15.7 in [2]).
M ,-groups are also solvable (3.8 in [6]). By Fong-Swan’s theorem, M-groups
are M,-groups for any prime p. But M,-groups need not be M-groups. For
example, SL (2, 3) is an M,-group but not an M-group. So we investigate con-
ditions for M,-groups to be M-groups. Namely,

Theorem 3. Let G be a p-nilpotent group. Then G is an M-group if and
only if G is an M ,-group.

Throughout this paper, groups are finite groups, F is an algebraically clos-
ed field of characteristic p>>0, FG-modules are finitely generated right FG-
modules, and characters are ordinary characters. Let X be a character of a
group G. We write X* for the Brauer character corresponding to X. Let H
be a subgroup of G and ¢ be a chaiacter of H. We write X for the restriction
of X to H and ¢ for the induced character fiom . We use the same notation
for modules. When M and N are FG-modules, we write N |M if N is a direct
summand of M. We write Irr(G) for the set of all irreducible characters of G.
For the other notation and terminology we shall refer to books of Dornhoff [2]
and Nagao and T'sushima [5].

We wish to thank S. Koshitani for many helpful conversations during
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2. Consequences

Let H be a normal subgroup of G and @ be an irreducible character of
H. We denote the inertia group of @ in G by I;(p). When ¢ is irreducible,
we put

Irr (G| @) = {XEIrr (G)| (X, )+ 0} .

Next theorem will be a powerful tool if we consider conditions for M,-
groups to be M-groups.

Theorem 1. Let G be a finite group. Assume that G has a normal p'-
subgroup N such that G and N satisfy the followings.

(@) G is an M-group.

(b) GIN is an M-group.

(c) Ewvery proper subgroup of G containing N is an M-group.

(d) Every G-invariant irreducible character of N is extendible to G.

Then G is an M-group.

Proof. Let XEIrr(G|p) where pEIrr(N). If I () is a proper subgroup
of G then there exists £EItr(Io(@)| @) such that £=X. From (c), £ is mo-
nomial so is X.

Assume I;(p)=G. From (d), ¢ is extendible to G. Let X, be an exten-
tion of @. Because (X§)y=¢™* and N is a p’-group, X§ is an irreducible Brauer
character of G. Since G is an M,-group, there exist a subgroup H of G and a
linear character \ of H such that (W¥)=X§. Since (A¢)*=XF¥ is irreducible, A¢
is irreducible and an extention of @. By 3.5.12 in [5],

Irr (G| @) = {\C 5| nEIrr (G/N)} .

Now every 7 is monomial, so is A°%. So X is monomial. The proof is com-
pleted.

Generally, normal subgroups of M,-groups need not be M,-groups. But
next theorem holds.

Theorem 2. Let G be an M,-group and N be a normal subgroup of G such
that |G: N|=p. Then N is an M,-group.

Proof. Let U be an irreducible FN-module. Since N is normal in G,
there exists an irreducible FG-module V" such that U|Vy. Since G is an M,-
group, there exist a subgroup H and a 1-dimensional FH-module W such that
V=W?¢. 1If the ineitia group of U in G is G then U is extendible to G. Thus
we may assume U=Vy. By Mackey’s decomposition,

U= VN = (WG)N = @teH\G/N(WtH‘nN)N .
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But U is irreducible. So G=HN and U is monomial. We may assume that the
inertia group of U in G is N. Then by Clifford’s theorem, Vy=®,cc/nU".
If H is contained in /N then by Mackey’s decomposition,

VN = (WG)N = @:GH\G/N(W'H’ nN)N = @:eGIN(WtH')N .

Since U is irreducible, Usz(W!y)¥ for some t&G/N. So U is monomial.
We may assume that H is not contained in N. So G=HN. Let Q be a vet-
tex of W. Since dim, W=1, Q is a Sylow p-subgroup of H. Since V=W¢
and V=U¢ Qisin HNN. Now

p=|G:N| = |HN:N| = |H: HO\N|||H: Q| .

But Q is a Sylow p-subgroup of H, a contradiction. Hence U is monomial.
So N is an M ,-group.

Next theorem is our main result.

Theorem 3. Let G be a p-nilpotent group. Then G is an M-group if and
only if G is an M ,~group.

Proof. We know that M-groups are M,-groups. So we shall show that G
is an M-group if G is an M,-group by induction on |G|. Since G is p-
nilpotent G has a normal p-complement N. We show that G and N satisfy
the conditions in Theorem 1. Now (a) and (b) are satisfied. By 3.5.11 in
[5], (d) is satisfied. Let H be a proper subgroup of G containing N. Since
G/N is a p-group, H is an M,-group by Theorem 2. Then H is an M-group by
inductive hypothesis. So (c) is satisfied. Then G is an M-group.

Corollary 4. Let G be an M-group and p-nilpotent. Then a subgroup H
of G such that |G: H| is p-power is an M-group.

Proof. This is immediate from Theorem 2 and Theorem 3.
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