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0. Introduction. The Grassmann manifold SG;,-,(R)=SO(n+1)/SO
(n—1)x SO(2) with its canonical Riemannian metric is known to be a Rieman-
nian symmetric space of rank 2. Hence the algebra D(SG,,,-,(R)) of SO(n-+1)-
invariant (linear) differential operators on SG,,,,(R) is generated by two differ-
ential operators.

It is the aim of our paper to exhibit simultaneous eigenspace decomposition
of appropriate generators Ay and A7 of the algebra D(SG,,-,(R)). We have
obtained in [7] the followings:

(1) the eigenspace decomposition of A, restricted to K*(S”, g,) is given,
where g, is the canonical metric on S” and A, is the Lichnerowicz operator
acting on the graded algebra S*(S”, g,) of symmetric tensor fields on the standard
sphere (S”, g,) and K*(S", g,) is the graded subalgebra of S*(S", g,) generated
by Killing vector fields,

(2) Radon transform A :

8*(S", 80)=>C=(8G,u-1(R))
intertwines A, with the Laplace Beltrami operator Aj on SG, ,_,(R), i.e.,
(Af)" = AGE"

for E€S*(S", g,),

(3) the eigenspace decomposition obtained in (1) is transferred to that of
A3, since the kernel of the Radon transform restricted to K*(S”", g,) is the prin-
cipal ideal generated by g,/2-1 and the image of K*(S”", g,) is uniformly dense
in C*(SG;,,_,(R)).

In the present paper a new differential operator A; which acts on S*(S”, g,)
with analogous properties as (1), (2), (3) above is constructed.

Especially Aj together with the differential operator A7 corresponding to
A, by the Radon transform are found to be a set of generators of the algebra
D(SG;,,-(R)).

In 1 and 2, we recall the results obtained in [7] with some improvements.
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where {, > and do are the inner product at each point of M and the volume
element induced from the Riemannian metric, respectively. Now define five
fundamental linear operators on the graded algebra S*(M).

DEeriNITION 1.1. (1) Denote by 7* the linear map of degree 2:
SAM)EE > —;—g 0 EESP(M).

(2) Denote by T the adjoint operator of T*:
(T*E,7) = (&, Tn) -
Evidently, S(M)=E& — TEES? "% M), i.e., T is of degree —2.
(3) Denote by &* the linear map:
S/ M) - % = g, E|eS*(00),

(4) Denote by & the adjoint operator of 8%: S?(M)—S?~'(M) defined as
(88, 7) = (£, 8*n) EESUM), nES*(M).
(5) As the fifth operator let us define the degree operator d by
S M)E > dE := pEeS?*(M) .
Then 8* and d are derivations on S*(M), i.e.,

8*(Eom) = (8%E)on+Eod*y,
and

d(Eon) = (dE)on+Eed(n),
The proofs of these two assertions are direct and easy.

Lemma 1.1. ([7] pp. 54-55)
[T,8]=0, [T%8]=0, [%T]=3, [I*8]=23%

) 2 ) ) 2 .

DerFINITION 1.2, A= —2337;.08V,V,—[8, 6*] acting on S*(M) is
called the Lichnerowicz operator on (M, g). 'The restriction of A, to C=(M) co-
incides with the ordinary Laplace Beltrami operator, which we denote by the
same notation A,.

Lemma 1.1. ([7] p. 55)
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[Ay T] =0, [Ay T*]=0.

Lemma 1.3. ([6] Lemma 1.5) Let (M, g) be a locally symmetric Riemannian
manifold. Then

[Ag 8*] =0, [Ay8]=0.
Ker §*(M, g) := éo (Ker 8*)NS*(M, g) (direct sum)
2

is a graded subalgebra of S*(). Each element of Ker §%(4, g) is called a
Killing tensor field. 'The graded subalgebra of Ker §*(, g) generated by Ker
3*(M, g) N SY(M), is denoted as

K*(M, g) = gﬂ K*(M, g) (SKer 8§*(M, g)) (direct sum).

Theorem 1.1. ([7] p. 62) (1) Ker §*(S*, g,) coincides with K*(S", g,).
(2) For any E€ K*(S* g,), there exists a differential operator Dy with &
as its symbol tensor field such that

[De, Al =0.

2. Differential operators acting on S*(S™).

Lemma 2.1. ([6]) Let M; (i=1,2) be differentialbe manifolds. There are
subalgebras B(M;) (i=1, 2) of B(M,x M,), being canonically isomorphic to E(M,)
(1=1, 2) respectively, each one of which is the centralizer of the other ir: E(M, X M,).

Let ¢: S">R**' be the canonical imbedding of S” onto the unit sphere in
R*', Tt induces a trivialization 7: S" X R—>R**'-— {0} of the real line bundle
R**'— {0} defined by (x, #)+—>¢(x, #)=e'x. By Lemma 2.1 a vector field £ on S”
is uniquely identified with the vector field £ on S”X R such that

2.1) [E,£1=0 and [£8/0f]=0.

The condition (2. 1) for E=3_, E‘aaa e E'(R*'— {0}) is written as
x

2.1y SUE—0 and %% — B (0<axn),
a=6 =0 Qx®

since 7z (x, t)=e' and 7 4(0/0f)=3}t0 x“gf, where 7=33;. (x°)%.
More generally, we can identify E*(S") with the subalgebra
(2.2) E*(S"): = {DeE*(R***—{0})|[D, ] =0
and [D, 2 x°9/0x"] = O}

of E*(R**'— {0}) in virtue of Lemma 2. 1. Each coefficient £+"% of D& E*(S")
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(p=k=0) is a homogeneous function of degree k& with respect to the variables
% -, x". 'This identification is transferred to the identification of the two alge-
bras S*(S") and S*(S"):=a*(E*(S")), where & is the symbol operator of
E*(R**'—{0}). Let us identify S$*(S") with §*(S™) via the symbol operators
o* of E*(S") and a* of E*(S").

Namely,

(1pOE *4(8[0x1)o -+ o(8/0"2) € S*(R**'— {0})
is in 82(S™) if and only if

»—141...aﬁ
8:; . vaPEa1 ap.
X

(2. 3) 2 Eal...ap_lﬂxa — O and é

From now on, the componentwise expression of £€S?(R*"'— {0}) will be
expressed as

E — . Ea_ §“1'""ﬁya1"'yaw
oo p._o

1
»!
where £ 1% e C~(R*""'—{0}). Here y, (0=<i=mn) are regarded as current coordi-
nates of T#(R*"'— {0}),= {3} y:dc|.} at x=(xy, +**, %,).

That is, we regard a contravariant symmetric tensor field of degree p as a homo-
geneous polynomial of order p with respect to y;’s.

Denote by E(R““— {0}) the set of all differential operators of 2(n+1) vari-
ables &% -+, x", ¥, =+, ¥, the coefficients of which being C* with respect to the
variables x”’s on R**!-{0} and polynomials with respect to the variables y,’s.

Elements of ﬁ(R"“-{O}) are differential operators acting on symmetric tensor
fields on R**1— {0} .

Lemma 2.2. (1) A symmetric tensor field £€S?(R***—{0}) belongs to
S*(S™) if and only if
S1a'0E/0y, = 0 and 3] a"0E/0x" = pE .

(2) If EeSHR—A{0}), then 31i-0 y.08[0y,=PpE.

Proof. (1) is another expression of (2.3) in terms of differential operators
belonging to E(R**'—{0}). (2)is evident. Q.E.D.

DeriNITION 2.1. (1) Denote by I the left ideal in EV(R"“— {0}) generated
by S0 x°0/0x"— 350 ¥,0/8y, and (1/7%) 3% x°0/0y,.
(2) Put
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EO(S") :=
{DEE(R*'—{0})|[D, 3} '0/0x'— 33 .,0/0y.]<1
and [D, (1/7%) 2 x*8/0y,]I} .

Lemma 2.3. D E(R""'—{0}) preserves S*(S") if and only if D&
EO(S").

Proof. This assertion is an immediate consequence of Lemma 2.2. Q.E.D.

Put

I := E'?)(S”) ni.
]: is easily proved to be a two-sided ideal of E’Tb(S”). So
EO(S") := EO(S")/I,

can be regarded as an algebra of differential operators acting on symmetric
tensor fields on S”. Now we can regard the fundamental operators T*, T, §*,

8, and d, as elements of EO(S"). In the following, a representative in ENé(S")
for each of these operators will be given explicitly.

Lemma 2.4. The following operators T, T*,§, §* and d acting on S*(S™),
Zive representatives for the fundamental operators :

(1) T+ = (1 /2),,,,,% (728% —x*x*)y, v, = EO(S") N S(S™) .
® T = (1)2r) 33 6%y, BO(S") .

3) 5% = 72 z: y.0/0x*= BO(S™) .

4 5= —31(@%/03°0y,+ 7" (x, y) 8*/0y.0y,) € EO(S"),

where (x, y):=31x%,.
Proof. The operators T, T#, §, and §* in E*(S") are introduced in [7]
and proved to correspond to T, T%*, §, and 8*. They are expressed as above

as elements of @(S”), respectively. That a representative d of the degree
operator d is given by the Euler operator, can be observed immediately from
the second equation of Lemma 2.3. Q.E.D.

DeriNITION 2.2. Define
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1) Kgp 1= x°0[0x"—x0[0x" = E'(S")

for 0=<a, b<# and a=+b, and

@) Rpp 1= %7002 —x%0/0x°+v,0 0y, —v,0/0y, € EO(S™)
for 0<a, b<n and a=b.

Lemma 2.5. Between «,; and k,; we have the following relation :

[’ca.b) g] = ;za,b(g)
for arbitrary EES*(S", g,), where the bracket product in the left-hand side is the
one in S*(S", g,) defined in (1. 1).
Proof. This can be easily verified. Q.E.D.
Lemma 2.6.
(1) [#ep T1=0, 2) [Kep T*]1=0,
(3) [Ea b 8*] =0, (4) [k{a.ba 8] =0.
Proof. In virtue of the Lemma 2.5 these can be easily verified. Q.E.D.

Denote by «¥, the adjoint operators of «,; as elements of E'(S"), and
k¥, the adjoint operators of k,, with respect to the canonical linner product de-

fined on S*(S” go).

We can see easily

K:b = —Kgp and IC,’,k_b = —Kgp .

Lemma 2.7. (1) The Laplace Beltrami operator A, on (S*,g,) coincides
with

2 Maak,b’ca.b
a<b

as a differential operator of order 2 acting on C=(R**'— {0}).
(2) The Lichnerowicz operator on (S”, g,) coincides with
> ok, , € EO(S").
a<h
Proof. (1) X,<sx¥ sk, can be expanded as follows:

—23 o +2"} x"xP 0 —l—néx“a

a=0 9x°0x" = ap=0 0x°0x® =0 9x°

This operator satisfies the following three conditions: (i) its symbol tensor field
coincides with the (contravariant) metric tensor g; (ii) it is a self-adjoint linear
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ditferential operator; (iii) it annihilates the constant function 1. Such an op-
erator must coincide with the Laplace Beltrami operator.
(2) A, on S*(S”", g,) is known to be (cf. [7]):

[8, 8*]+2d(n+d—2)—8T*T = — 5‘_. (P8u—a's) 2

aa b
—2(x, y)*T+d(2n+d—3)—4T*T,

_2<<x’ y» ,,2=;', 6x“a

where the operator 4 is as in Lemma 1.1 and the notation { , ) is as in Lemma
2.4. On the other hand, 33,«; ¥¥ %, ; is equal to

9

2 ==
ay,,)

a 8 Gl
—112. 33 (-0, o

— 2 (rP8%—u x") +(n—1)d—2{x, y) 2

a,b=0
a

—2{x, y))zT—f—(n+d—2)d—4T*T.
This coincides with the Lichnerowicz operator reviewed above. Q.E.D.

DEerFINITION 2.3. Define an endomorphism S of degree —2 on the graded
algebra S*(S", g,):

S#(S”, go)DE > SEES* XS, g0)
by
(1) S 1= AT —N, T+ (16/3)T*T?+(1/3)[8*, T'8] on S?(S”, g,) ,
where

Mo 1= 2(p—R)n+2p*—4(k+1)p-+4k*+-6k .
(Eventually A, , = 2( p—1)n-+2p*—8p4-10.)

Moreover we define

2 BY 1= 2/*T*+(8*) (j=1),
3) AF = (1"11 BE)T* (k=1), AF — 1.

DErFINITION 2.4. (1) Denote the restriction of T* to K*(S", g,) by T'¥.
(2) Denote the image of T'§ by Im T§ < K*(S", g)) and denote the
orthogonal complement of Im T¥ in K*(S”, g,) by

P*(S", g,) .
We have
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K*(S", g) = Im TE®P*(S*, g,
P*(S" g)) = i‘a P¥S" g) (direct sum)
&
with P(S", g,)=P*(S", g) N K*(S", &,).

Lemma 2.8. (1) As an endomorphism of degree —2 on the graded algebra
S*(S"), S preserves K*(S", g,) invariant.
(2) A¥ also preserves K*(S", g,) invariant.

For the proof c.f. [7] Lemma 4.3.

Denote the orthogonal projection:

K*(S", g0) = P*(S", &)
by II,. II, can be proved to be commutative with A, (cf. [7]). Let
C¥ :=II,A%.
C¥’s satisfy
Aocz‘—xp,kcwrmcz:l:o on EX(S" g,).
(cf. [7] p. 69, Lemma 4.3 and (4. 10).)
Define

n+2p—4k—3 [%3'] (— 1)K n+2p—2k—2i—5)!

= 5
Pos: El(n2p—2k—3)I1 i=F (2i)! (i—k)! )T

where p=2k=0. Denote the image of P,,: K*(S", g)—>P*(S", g,) by E, 4.
Theorem 2.1. (1) For p=2k=0 we have
AOPp,k = hp,lcpp,k on KP(S”, ga) ,

where N, 4 is as in Definition 2.3 (1).
(2) We have the two direct sums :

[p/21
K/(S", ) = 35 (TH(PP(S", ),

" [s/21 i
P¥S", g)) = 1@20 E,;,

which thus together with (1) give the eigenspace decomposition of A, on K*(S", g,).
(3) Ewvery E,; is nonzero for n=3.

For the proof of (1) refer to [7] lemma 4.4. For the proof of (2) and (3)
cf. [7] p. 69 and pp. 75-76.
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In the remainder of this section we assume n+1=4.

DEFINITION 2.5. Define

1 : e Pyl sy ”
(1) Dabcd = ?c,f§h=osa{§gxefxlh EEO(S );
(2) Al = 4‘i'a b :d=0 D;kb"dDabcd EEO(S”)'

Notice that D,;,, is a self-adjoint operator.

Theorem 2.2.
(1) [Kas» Ao] = 0.
2) [as» Ar] = 0.
Proof. These are obtained by direct calculations. Q.E.D.
Theorem 2.3.
6)) [T*,A]=0.
(2) [T, A] = O.°
3) [6*,A]=0.
4) [8,A]=0.
Proof. From Lemma 2.7 we obtain easily. Q.E.D.

Note that thus A, preserves P?(S", g,) invariant.

3. The eigenspace decomposition of K*(S*, g,).

In this section we assume n+1=4.

Theorem 3.1. As a differential operator acting on S*(S")

A, = —AT*T Ay+d(n+-d—3)Ag—16(T*)?*T?—2T*8*—2(8*)*T'— (n-+2d
—4)8*8+4(2d—3)n+2d*—10d+11)T*T—d(d—1) (n+d—2)(n+d—3) .

Proof. From the definition of A, in 2 and Lemma 2.4 we can obtain
the result by direct calculations. Q.E.D.

Lemma 3.1.

A, = (d+1)(n+d—2) {Ag—d(n+d—1)} —26*T 5%+
(n-+d—2)38*—6T*S on S*(S", g,) .

Proof. Apply T* to the operator S in its definition reviewed in 2. Then
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we can express T*S in terms of fundamental operators, from which we can

eliminate —47T*A,T in virtue of Theorem 3.1. The resulting relation is the

required one. Q.E.D.
Theorem 3.2. We have

[p/21 n
A = ,E, Il'p,ka,k on PX(S", g,),

where
pa = (—2R) (p+1) (n-+p—2) (n-+p—3—2)..

Thus P*(S”, )= E, , gives the eigenspace decomposition of A, restricted to
P*(S", go).

Proof. Restricting A, on E,; we have from Lemma 2.8 (1) and Lemma
3.1,

APy = (p+1) (n+p—2){AcP; s —p(n+p—1)P, 1}
= (p+1)(n+p—2){2(p—F)n+2p*—4(k+1)p
+4k+6k—p(n+p—1)} Py s

which coincides with the desired eigenvalue. Q.E.D.

Lemma 3.2.
(1) Ker T*\P/(S", 2)C 33 B,

where p=2k=0.
(2) Let E€P*(S", g,) be an eigen tensor field of A,. Then EEE,, if and
only if T*e+0 and T*'E=0.

Proof. (1) From the definition of the projection operator P,,; in 2 the
assertion follows immediately. (2) follows from (1) directly. Q.E.D.

Theorem 3.3. Let EEE,, and let £ be a simultaneous eigen tensor field of
A; (1=0,1). Then & has the eigenvalues N, and p,; for Ay and A,, respectively.

Proof. From the commutativity of T with A, and from that T*¢==0, T*¢
is proved to be an eigen tensor field of A, with eigenvalue X, ;. On the other
hand, as (k+1)8T*g=[8*, T**')E=8*T*"'£=0, we obtain

A(T*E) = (p—28) (n+p—2k—3) A THE)—
(p—28) (n-+-p—2—3) (p—2k—1)(n+p—2k—2)THE .

Thus T*£ is a simultaneous eigen tensor field of Aj and A;.  p,, is regained as
an eigenvalue if we substitute the A, , in place of A, in the right-hand side of
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the expression of A)(7T*£). The commutativity of A, with T obtained in Theo-
rem 2.3 implies that AjE=p, ;& Q.E.D.

4. Main theorems.

Denote by W,(R**') the manifold of all 2-frames in the Euclidean space
(R™, g,) of dimension n+1 and call it a Stiefel manifold. The submanifold
of Wy(R™?) defined as the set of orthonormal 2-frames is denoted by Vy(R**)
and we call it an orthogonal Stiefel manifold. V,(R**') is identified with the
homogeneous space

SO(n+1)/SO(n—1) .

Denote by SG;,,-,(R) the Grassmann manifold of all oriented 2-planes in R*+!
passing through the origin. As is well known SG; ,_,(R) is identified with the
homogeneous space

SO(n+1)/SOn—1)x SO(2) .

The orthogonal Stiefel manifold V,(R**') can be regarded as a principal bundle
with the base space SG, ,_,(R) and the structural group SO(2), where the pro-
jection 7, is defined canonically.

Theorem 4.1. (cf. [7]) Let P(M,G) be a principal bundle with a Lie group
G as its fibre. Let FC(P) be the subalgebra of E(P) which consists of G-invariant
differential operators on P. Then there is an isomorphism : E¢(P)|J=E(M), where
J is the two-sided ideal of E°(P) generated over R by G-invariant vertical vector
fields.

Applying Theorem 4.1 to the principal bundle
Vy(R*) — SG, ,—1(R)
with SO(2) as fibre, we obtain
(#-1) E(SG; - \(R))=E?(V(R™))J

where J is the two-sided ideal in ES9®(V,(R"**')) generated by SO(2)-invariant
vertical vector fields. On the other hand, there is a polar decomposition of the
Stiefel manifold Wy(R**"):

(+.2) WAR)=P,x Vy(R*"),

where P, is the space of real positive definite 2X2 symmetric matrices. (cf.
([7]) Applying Lemma 2.1, the polar decomposition assures the existence of two
subalgebras each one of which is the centralizer of the other in E(W,(R**")) and
the second one is canonically isomorphic to E(V,(R**')). Thus a differential
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operator DEE(V,(R**")) can be identified with a differential operator Dt€
E(W,(R**")) satisfying

[Df’ Pzﬂ] =0,

0
]=0’
Pf»p

[DY,

where each of pZs(1<a, 8<2) denotes the (a, B)-component of the P,-part p?
in the polar decomposition (4.2). The totality of such operators is designated
as E1(V,(R*)).

Connecting the isomorphism (4. 1) with the identification “}”” we obtain
representatives in E(W,(R*)) of elements in E(SG,,,_,(R)).

Let Geod(S”, g,) be the space of oriented geodesics on (S*, g,) with respect
to the canonical metric. We have a natural identification

¢: 8G,,,_,(R) — Geod(S", g,) .
Let £€S?(S"). Define £* € C*(SG,..-1(R)) by

Ay 1 .
e =g &,

where ¢? is the p-th symmetric power in S*(v) of the unit tangent vector field
v along y=¢(T'). The mapping defined by

S*(S”, g)) DE—E* €C(SG, 4-1(R))
is called the Radon transform.

DreriniTION 4.1. (1) Denote by (P?) the system of normalized Pliucker
coordinates P of the Grassmann manifold SG,,_,(R), where a system of
Plucker coordinates P* is said to be normalized if and only if

P (Pnb)z =1.

a<lb

(2) Denoted by
R(P*: n=b>a=0)

the subalgebra of C=(S@,, ,_,(R)) generated by the normalized Pliicker coordinates.
Theorem 4.2. (cf. [7])
(1) (ta,0)" = P,

where (P®) are the system of normalized Pliicker coordinates of the Grassmann
manifold S@,,,-,(R)).
(2) The image of the Radon transform restricted to K*(S”, g,) is the uniformly
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dense subalgebra R(P®: n=b>a=0) of C*(SG;,,-1(R)).
(3) The kernel of the Radon transform retricted to K*(S", g,) is the ideal
generated by g,/2—1.

Corollary.
(Eon)" = E'9"
for EE K*(S", g,) and n=S*(S™).

Proof. The assertion follows from the fact that <, ¥*> is constant along
y=¢T). Q.E.D.

From now on we often confuse an element of E(SG,,_,(R)) with its re-
presentative in E(W,(R**")) as well as an element of C=(SG,,-,(R)) with its
representative in C*(Wy(R*™')). For an element g=(q,, ¢;) of W,(R*"') the
components of ¢, ¢, will be denoted by ¢f, ¢3(0<a=n), respectively.

DerFINITION 4.2.  Define
itop 1= q10/0q}—q10/0qi+450/045—¢40/0g5 ,
where 0<a<<b<m, and
AG == 2 ;‘;k.bka,b )
a<lb
where ¥, is a representative via the connecting isomorphism of (4.1) with
t, of the adjoint operator of Killing vector field on (S, ,-,(R), g;) correspond-

ing to #,,, where g, is the canonically normalized SO(n-1)-invariant Rieman-
nian metric on SG,,_,(R). Moreover we define

2 & BA A
dbed 1= — ) Ssz{d’cs,fxg,h ’
1 e.righ=o0
1 ”
A :=— 3 (Dasca)*Disea -
41 a,6,c,a=0

Notice that Ag is a representative of the Laplace Beltrami operator on
(SG;,,-,(R), g)) and expressed explicitly as

— (8" —4aqa(p*)*")p7:0°/0430¢3 +(n—1)g20/0ga ,
where the convention of dummy indices is adopted. (cf. [7] p. 64.)

Theorem 4.3. The natural SO(n+1)-action on S*(S™) and C=(SG, ,-,(R))
commutes with the Radon transform.

Proof. This follows from the definition of the Radon transform. Q.E.D.
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Corollary. Let n" €C~(Wy(R"*™)) be the image of n=S*(S") by the Radon
transform. Then

/Afa,m/\ = (/fa,lﬂl)A .
Proof. 'The assettion is an infinitesimal version of Theorem 4.3. Q.E.D.

Theorem 4.4. Let n=S*(S") and let " be its Radon transform.

(1) (Ag)" =A%7",
(2) (Am)" =Alp"

Proof. By the definitions of A, A, (A,)", and (A,)", the assertion follows
from the previous corollary. Q.E.D.

DerINITION 4.3. Denote by E;'; the image of E,, by the Radon trans-
form.

Theorem 4.5. Assume n+1>4.
(1) A% and A} are generators of the algebra D(SG, ,_(R)) of SO(n+1)-
invariant differential operators on SG, ,_(R).

2) 01ghy = Npalpn and Alpp, = ppalys
where 1, is the identity operator of Ej} . The totality of
Eg,k, Png;O )

gives all of the simultaneous eigenspaces of A5 and A?.
(3) Each Ej; is an SO(n-+1)-irreducible subspace.

Proof. Notice that SG,,(R) is known to be globally homothetic to S*x S?
with the canonical metric. So we omit to detail of D(SG;(R)) as the reduced
case.

(1) That Ag and A% are invariant differential operators is a direct con-
sequence of Theorem 4.4. It is known that the algebra D(SG; ,_,(R)) is gen-
erated by two operators of order 2 and 4, respectively. (cf. [3] Ch.IL) It remains
to show that A§ and A? are algebraically independent. Suppose that they are
not so, then we can write

A} = a(AG)H+bAG+c
for some constants @, b and ¢ ((a, b, ¢)#(0, 0, 0)). On the other hand, in virtue
of Theorem 3.2 we can eassily verify that A} acts trivially on 237-0E2%, (direct
sum). If we restict the action of A} to each E3 ,, we would obtain an poly-
nomial equation of one variable of order at most four with an infinite number

of solutions k=1, 2, :--, from which we can conclude a=b=c=0. This is a
contradiction. Thus our assertion (1) is proved.
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(2) follows from Theorem 4.4 and Theorem 4.2 (2). In order to prove
(3) we need

Lemma 4.2. If\,;=\y v and p, ;=py y then p=p' and k=F'.

Proof. We can easily verify

(1) Ap k= Np ptl >
(2) Ap e <Apt1k s
(3) Ap e <<Api1,p+1 s

On the other hand, we can see

(4) #p,b>lllp,k+1 ’
(5) Pop e <Mp+1,k >
but

(6) :U‘p,k>llfp+l,k+l

in contrast with (3). From these the required property follows immediately.
Q.E.D.

Proof of Theorem 4.5. (3) In virtue of Lemma 4.2, E} ; is known to be
maximal in R(P®: n=b>a=0) as the subspace of simultaneous eigenfunctions
of the eigenvalues N, and p,, for Aj and A7, respectively. For the irre-
ducibility of £} ;, we refer to [2] p. 401, Corollary 3.3. Q.E.D.
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