ON THE HIGHER DIMENSIONAL MORDELL CONJECTURE OVER FUNCTION FIELDS

Kazuhisa MAEHARA

(Received November 2, 1989)

Introduction

The purpose of this note is to give a partial answer to the following conjecture which is a function theoretic analogue of Mordell conjecture and was formulated by S. Lang, E. Bombieri and J.Noguchi ([6], [10], [11]):

Let K be a function field over the complex number field \boldsymbol{C}. Let V be a projective variety defined over $K, \Omega_{V / K}$ the sheaf of regular differential 1-forms ω_{V} the canonical invertible sheaf. Recall that V is called a variety of general type if the rational mapping associated with the l-th pluri-canonical system $\left|\omega_{V}^{l}\right|$ for an integer $l>0$ is birational. We say that V is isotrivial if there exist a projective variety V_{0} defined over \boldsymbol{C} and a finite extention K^{\prime} of K such that $V \otimes_{K} K^{\prime}$ is birationally equivalent to $V_{0} \otimes_{c} K^{\prime}$.

Conjecture M. Let V be a projective variety of general type defined over K. Suppose that V is not isotrivial. Then the set of K-rational points of V cannot be Zariski dense in V.
(i) Mordell conjectured that any curve of genus ≥ 2 defined over a number field Ω does not admit an infinite number of Ω-rational points, which is proved by G. Faltings. An analogue of Modell conjecture over function fields was proved by Y. Manin and H. Grauert ([2], [3], [6]).

In this case a curve is assumed to be not isotrivial over the definition function field.
(ii) J. Noguchi ([11]) and M. Deschamps ([1]) proved Conjecture M under the assumption that $\Omega_{V / K}$ is ample, in other words the fundamental sheaf $\mathcal{O}_{\boldsymbol{P}\left(\Omega_{V / K}\right)}(1)$ of the projective bundle $\boldsymbol{P}\left(\Omega_{V / K}\right)$ is ample. Note that if $\mathcal{O}_{\boldsymbol{P}\left(\boldsymbol{\Omega}_{V / K}\right)}(1)$ is ample then $\mathcal{O}_{P\left(\Omega_{V / K}\right)}(\alpha) \otimes \omega_{P\left(\Omega_{V / K)}\right.}{ }^{-1}$ for some $\alpha>0$ is ample, which turns out to be nef and big (for the definition see §1).
(iii) A compact analytic space X is said to be hyperbolic if any holomorphic map from \boldsymbol{C} into X is constant, i.e., X does not contain any singular elliptic curve as well as any rational curve. It is conjectured that a hyperbolic variety is a
variety of general type.
(iv) D. Riebesehl ([12]) proved Conjecture M under the hypothesis of negative curvature and the assumption that all the fibres have negative curvature. Further J. Noguchi ([10]) proved it under the hypothesis that V is hyperbolic with the Chern class $c\left(\omega_{V}\right)$ represented by a semipositive $(1,1)$-form.
(v) Conjecture M follows from the boundendness hypothesis to the effect that the intersection number $\left(\Gamma, \omega_{X}\right)$ is bounded above for any non-singular curve Γ with fixed genus contained in a given variety ([9]).

The main result of this paper is the following:
Let K be a function field over C and let V be a projective non-singular variety over K.

Theorem. Assume that V is of general type and that the fundamental sheaf $\mathcal{O}_{P\left(\Omega_{V / K}\right)}(1)$ of the projective bundle $\boldsymbol{P}\left(\Omega_{V / K}\right)$ is K-nef and K-big and that there exists $\alpha>0$ such that $\mathcal{O}_{P\left(\Omega_{V / K}\right)}(\alpha) \otimes \omega_{P}^{-1}\left(\Omega_{V / K}\right)$ is K-nef. \quad The set of K-rational points $\left\{s_{\lambda}(K)\right\}$ is not dense in V provided that V is not isotrivial over K.

Remarks. (a) Under the same assumption as above, V does not contain any rational curve but may contain a singular elliptic curve.
(b) In the previous paper ([9]), the same result was proved under the assumption that $\mathcal{O}(\alpha) \otimes p^{*} \omega_{X}^{-1}$ is $f \circ p$-nef over the whole X, not only over the generic fibre.

1. Notation

We recall the following
Definition ([4]). Let $f: X \rightarrow S$ be a proper morphism onto a variety S and L an invertible sheaf on X. Let η be the generic point of S and L_{η} denote the restriction of L to the generic fibre X_{η}. An invertible sheaf L is f -ample if for any coherent sheaf \mathscr{F}, the natural homomorphisms $f^{*} f_{*}\left(\mathscr{F} \otimes L^{m}\right) \rightarrow \mathscr{F} \otimes L^{m}$ for some m_{0} and any $m \geq m_{0}$ are surjective. An invertible sheaf L is said to be f big, if for any invertible sheaf M on X, the natural homomorphism $f^{*} f_{*}\left(M \otimes L^{m}\right)$ $\rightarrow M \otimes L^{m}$ for some $m>0$ is not zero, in other words $f_{*}\left(M \otimes L^{m}\right) \neq 0$. And an invertible sheaf L is said to be f-nef if $\operatorname{deg}_{D} L_{D} \geq 0$ for every curve D which is mapped to a point on S by f. When $S=$ Spec K, f-big and f-nef are said to be K-big and K-nef, respectively.

Let $f: X \rightarrow S$ be a proper surjective morphism of projective complex manifolds. Let K be the function field of S and V the generic fibre of f. We let $\Omega_{V / K}$ denote the sheaf of the Kahler differential on V, let $\boldsymbol{P}\left(\Omega_{V / K}\right)$ denote the projective bundle associated to $\Omega_{V / K}$ over V and let $\mathcal{O}_{P\left(\Omega_{V / K}\right)}(1)$ denote the funda-
mental sheaf over $\boldsymbol{P}\left(\Omega_{V / K}\right)$. We denote by ω_{V} the canonical invertible sheaf, i.e., $\operatorname{det} \Omega_{V / K}$. We have the exact sequence

$$
0 \rightarrow f^{*} \Omega_{K} \rightarrow \Omega_{V} \rightarrow \Omega_{V / K} \rightarrow 0
$$

Then $\boldsymbol{P}\left(\Omega_{V / K}\right) \subset \boldsymbol{P}\left(\Omega_{V}\right)$. We have $\Omega_{V}=\mathcal{O}_{V} \otimes_{\mathcal{O}}\left(\left.\Omega_{X}\right|_{V}\right)$ and $\Omega_{K}=K \otimes_{\mathcal{O}} \Omega_{S}$;

Here \square means that the diagram is cartesian.

2. Proof of the main theorem

In order to prove the theorem, we first consider the case in which tr. deg $K / C=1$. In this case, we denote S by C.

Lemma 1. Some power $\mathcal{O}(\beta)$ of the fundamental sheaf $\mathcal{O}(1)$ on $\boldsymbol{P}\left(\Omega_{V}\right)$ is generated by its global sections for any $\beta \gg 0$.

Proof. We will use the following Kawamata-Shoklov's base point free theorem (see [4], Base Point Free Theorem):

Let X be a compact manifold and $f: X \rightarrow S$ a proper surjective morphism onto a variety. Assume that $L^{\infty} \otimes \omega_{\bar{X}}{ }^{1}$ is f-nef and f-big for some $\alpha>0$ and that L is f nef. Then there exists a positive integer m_{0} such that $f^{*} f_{*} L^{m} \rightarrow L^{m}$ is surjective for any $m \geq m_{0}$.

We return to the proof.
Observing the exact sequence $0 \rightarrow \mathcal{O}_{V} \rightarrow \Omega_{V} \rightarrow \Omega_{V / K} \rightarrow 0$, one sees that $\boldsymbol{P}\left(\Omega_{V / K}\right)$ is identified with a member D of the complete linear system $|\mathcal{O}(1)|$ on $\boldsymbol{P}\left(\Omega_{V}\right)$. One has the following exact sequence:

$$
0 \rightarrow \mathcal{O}(\beta-1) \rightarrow \mathcal{O}(\beta) \rightarrow \mathcal{O}_{D}(\beta) \rightarrow 0 .
$$

By the assumption of the theorem, one has $H^{1}\left(\mathcal{O}_{D}(\beta)\right)=0$ for $\beta>\alpha$ using Kawamata-Viehweg vanishing theorem ([4]). Hence $\operatorname{dim} H^{1}(\mathcal{O}(\beta))$ is a monotonous decreasing function in β if $\beta \gg 0$. Thus $H^{0}(\mathcal{O}(\beta)) \rightarrow H^{0}\left(\mathcal{O}_{D}(\beta)\right)$ is surjective for sufficiently large number β. On the other hand, applying KawamataShoklov's base point free theorem [4] to $\mathcal{O}_{D}(1)$, one sees that $\mathcal{O}_{D}(\beta)$ is base point free for $\beta>\beta_{0} \gg 0$. Combining these observations, one proves the lemma.

Set $\mathrm{g}=f \circ \mathrm{p}$. Then the surjection $\mathrm{g}^{*} \mathrm{~g}_{*} \theta(l) \rightarrow O(l)$ for $l \gg 0$ gives a g -birational morphism $\varphi: \boldsymbol{P}\left(\Omega_{V}\right) \rightarrow \boldsymbol{P}\left(g_{*} O(l)\right)$. Thus one obtains the following diagram:

Let \mathscr{F} be a coherent sheaf over V and let $T \rightarrow V$ be a map such that there exists a surjection $\mathscr{F}_{T} \rightarrow \mathcal{L}$, where \mathcal{L} is an invertible sheaf over T. Then there exists a unique map $T \rightarrow \boldsymbol{P}(\mathscr{F})$ over V such that $\mathscr{F}_{T} \rightarrow \mathcal{L}$ is the pull-back to T of the fundamental surjection $\mathscr{F}_{\boldsymbol{P}(\mathscr{F})} \rightarrow \mathcal{O}_{\boldsymbol{P}(\mathcal{I})}(1)$. Applying this to the natural surjections $\left.\Omega_{V}\right|_{s_{\lambda}(K)} \rightarrow \Omega_{s_{\lambda}(K)}$, we have the Gauss maps $\sigma_{\lambda}: s_{\lambda}(K) \rightarrow \boldsymbol{P}\left(\Omega_{V}\right)$. Let Z be a component of the Zariski closure of the set of K-rational points $\left\{\sigma_{\lambda}\left(s_{\lambda}(K)\right)\right\}$ defined by Gauss map such that $p(Z)=V$. For each l, the l multiple of the divisor $D=\boldsymbol{P}\left(\Omega_{V / K}\right)$ is the pull-back of a hyperplane Σ of $\boldsymbol{P}\left(g_{*}(l)\right)$. We denote $\varphi(Z)$ by W. We divide into two cases:
(i) $\operatorname{dim} W=0$,
(ii) $\operatorname{dim} W>0$.

We prove some preliminary lemmas.
Lemma 2. Let U denote $\boldsymbol{P}\left(\Omega_{V}\right)-\boldsymbol{P}\left(\Omega_{V / K}\right)$. Put $\sigma_{\lambda}\left(s_{\lambda}(K)\right)=$ the rational point defined by the natural surjection $\left.\Omega_{V}\right|_{s_{\lambda}(K)} \rightarrow \Omega_{s_{\lambda}(K)}$ defining $\sigma_{\lambda}: s_{\lambda}(K) \rightarrow \boldsymbol{P}\left(\Omega_{V}\right)$. Then σ_{λ} factors through U. Let T be any scheme over V such that there exist an invertible sheaf L and a surjection $\left.\Omega_{V}\right|_{T} \rightarrow L$. Then we have a V-morphism ϕ : $T \rightarrow \boldsymbol{P}\left(\Omega_{V}\right)$. We have the following diagram:

Let t be a point of T. If $\phi(t) \in D$, we have $a(t)=0$ and if $\phi(t) \in U, a(t)$ is bijective. Hence if $T \subset U, a(T)$ is bijective and the exact sequence above splits over T.

Proof. Since $f^{*} \Omega_{K}=\sigma_{\lambda}^{*} O(1)$, the result follows. (cf. [1])
Lemma 3. Let $u: M \rightarrow N$ be a proper surjective morphism between varieties. Suppose that N is a normal variety. Then the exact sequence $0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0$ of locally free sheaves of finite rank on N splits if and if the pull back of this sequence splits on M.

Proof. It follows from the injectivity of the natural map $H^{1}(L) \rightarrow H^{1}\left(u^{*} L\right)$ for any locally free coherent sheaf L.

Case (i).
Note that $\varphi(Z)$ consists of a single point. From Lemmas 2 and 3, one has
the splitting of the exact sequence $0 \rightarrow f^{*} \Omega_{K} \rightarrow \Omega_{V} \rightarrow \Omega_{V / K} \rightarrow 0$. We take a projective non-singular model of $f: V \rightarrow \operatorname{Spec} K$, denoted by $f: X \rightarrow C$. Thus $f: X \rightarrow C$ is locally trivial in the sense of etale topology.

Case (ii).
Note that $Z \cap D \neq \phi$.
Lemma 4. The K-rational points $\left\{\sigma_{\lambda} \circ s_{\lambda}(K)\right\}$ on $\boldsymbol{P}\left(\Omega_{V}\right)$ are not contained in $\mathrm{Bs}\left|\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k}\right|$ for general λ nad some β and $k>0$.

Proof. Observing the exact sequence $0 \rightarrow \mathcal{O}_{V} \rightarrow \Omega_{V} \rightarrow \Omega_{V / K} \rightarrow 0$, one sees that $\boldsymbol{P}\left(\Omega_{V / K}\right)$ on $\boldsymbol{P}\left(\Omega_{V}\right)$ is a divisor of the complete linear system $|O(1)|$. One has the following exact sequence:

$$
0 \rightarrow \mathcal{O}(\beta-1) \otimes \omega_{P}^{-k} \rightarrow \mathcal{O}(\beta) \otimes \omega_{P}^{-k} \rightarrow \mathcal{O}_{D}(\beta+k) \otimes \omega_{\bar{D}}{ }^{-k} \rightarrow 0
$$

By the assumption of the theorem we can apply Kawamata-Viehweg's vanishing theorem to obtain $H^{1}\left(\mathcal{O}_{D}(\beta+k) \otimes \omega_{\bar{D}}^{-k}\right)=0$, if $\beta>\alpha(k+1)-k$. Hence $\operatorname{dim} H^{1}\left(\mathcal{O}(\beta) \otimes \omega_{P}^{-k}\right)$ is a monotonous decreasing function in β if $\beta \gg 0$. Thus $H^{0}\left(\mathcal{O}(\beta) \otimes \omega_{P}^{-1}\right) \rightarrow H^{0}\left(\mathcal{O}_{D}(\beta+k) \otimes \omega_{D}^{-k}\right)$ is surjective for sufficiently large number β. By the hypothesis of the theorem, applying Kawamata's base point free theorem [4] to $\mathcal{O}_{D}\left(\alpha^{\prime}\right) \otimes \omega_{D}^{-1}$ for $\alpha^{\prime}>2 \alpha$, one concludes that $\mathcal{O}_{D}\left(k \alpha^{\prime}\right) \otimes \omega \bar{c}^{-k}$ is base point free for sufficiently large $k \gg 0$. On the other hand some power of $\mathcal{O}_{D}(1)$ is generated by its global sections by Kawamata's theorem. Thus $\mathcal{O}_{D}(\beta+k) \otimes \omega_{D}{ }^{k}$ is generated by its global sections for sufficiently large β and $k \gg 0$. Hence $\mathrm{Bs}\left|\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k}\right| \cap D=\phi$. Since $Z \cap D \neq \phi$, we 'conclude that $\mathrm{Bs}\left|\mathcal{O}(\beta) \otimes \omega_{P}^{-k}\right|$ does not include Z.

Considering $f: X \rightarrow C$, we have some ample invertible sheaf L on C such that the natural map

$$
\left.\mathcal{O}_{\sigma_{\lambda} o_{\lambda}(c)} \otimes H^{0}\left(\sigma_{\lambda} \circ s_{\lambda}(C), \mathcal{O}(\beta) \otimes \mathcal{O}\left(\omega_{P}^{-k}\right) \otimes p^{*} f^{*} L\right) \rightarrow \mathcal{O}(\beta) \otimes \mathcal{O}\left(\omega_{P^{k}}^{-k}\right) \otimes p^{*} f^{*} L\right|_{\sigma_{\lambda} s_{\lambda}(c)}
$$

is generically surjective for suitable $\beta, k>0$. Hence we have a dense set of curves $\left\{\sigma_{\lambda}\left(s_{\lambda}(C)\right)\right\}$ in Z such that the intersection $\left(O(\beta) \otimes \omega_{\bar{p}}^{k} \otimes p^{*} f^{*} L, \sigma_{\lambda} \circ \circ_{\lambda}(C)\right) \geq 0$. recalling that

$$
\left(\mathcal{O}(1), \sigma_{\lambda} \circ \circ_{\lambda}(C)\right)=2 g-2, \quad \omega_{P / X}=\mathcal{O}(-n-1) \otimes p^{*} \operatorname{det} \Omega_{X}
$$

one has

$$
\operatorname{deg}_{\sigma_{\lambda}\left(s_{\lambda}(c)\right)} p^{*} \omega_{X}^{k}=\left(\sigma_{\lambda}\left(s_{\lambda}(C)\right), p^{*} \omega_{X}^{k}\right) \leq(g(C)-1)(\beta+n-1)+\frac{1}{2} \operatorname{deg}_{c} L
$$

By the projection formula, one obtains

$$
\left(s_{\lambda}(C), \omega_{X}\right) \leq \frac{\beta+n-1}{k}(g(C)-1)+\frac{1}{2 k} \operatorname{deg}_{c} L .
$$

By the Viehweg formula ([14]), one has $\kappa\left(\omega_{X} \otimes f^{*} L\right)=\kappa\left(\omega_{V}\right)+1$. Hence for any ample invertible sheaf H over X there exist a positive integer ν and an effective divisor F such that $\left(\omega_{X} \otimes f^{*} L\right)^{\nu}=H+F$. Thus we can bound the degree of sections $C_{\lambda}=\sigma_{\lambda}(C)$ which are not contained in F of X and we have at most a finite number of Hilbert polynomials of the graphs Γ_{λ} of sections C_{λ} in $C \times X$. Thus we let H be a Hilbert scheme parametrizing proper subschemes in $C \times X$ with the Hilbert polynomials mentioned above. Thus we have a subvariety T^{0} which parametrizes the graphs Γ_{λ} of sections C_{λ}, whose set is dense in X. Let T be a compactification of T^{0}. Hence we have the following commutative diagram:

Thus $f: X \rightarrow C$ is birationally trivial over C from the lemma ([7], section $5(p .115)$, Appendix (p. 119)):

Let T be a complete variety and $\phi: T \times S \rightarrow X$ be a dominant S-rational map. Then X is birationally trivial over S.

We can easily reduce the general case to the case when $\operatorname{tr} . \operatorname{deg} K / C=1$. Considering the pluri-S-canonical mapping $X / S \rightarrow \boldsymbol{P}_{S}\left(f_{*} \omega_{X / S}^{\otimes k}\right)$ for $k \gg 0$ and noting that varieties of general type have no infinitesimal automorphisms except for finite automorphisms, we have a dense open S^{0} in S such that every fibre of X / S is birational, since we can join any two points in S^{0} by a non singular curve in S^{0}. Hence one can find etale covering S^{\prime} over S such that the pull-back of the pluri-S-canonical mapping $X / S \rightarrow \boldsymbol{P}_{S}\left(f_{*} \omega_{X}^{\otimes k}\right)$ is trivial. Q.E.D.

References

[1] M. Deschamps: Propriétés de descente des variétés à fibre cotangent ample, Ann. Inst. Fourier, Grenoble, 33 (1984), 39-64.
[2] M. Deschamps: La construction de Kodaira-Parshin, Seminaire sur les pinceaux arithmetiques: la conjecture de Mordell, Soc. Math. France, Asterisque 127 (1985), 261-271.
[3] H. Grauert: Mordells Vermtung uiber rationale Punkte auf Algebraischen Kurven und Functionenkörper, Publ. Math. IHES 25 (1965), 1-95.
[4] Y. Kawamata, K. Matsuda, K. Matsuki: Introduction to the minimal model problem, Advanced Studies in Pure Mathematics 10, Algebraic Geometry, 283-360,

Sendai (1985), 1987.
[5] K. Kodaira and D.C. !Spencer: On deformation of complex analytic structures I, Ann. of Math. 68 (1958), 328-401.
[6] S. Lang: Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. 14 (1986), 159-205.
[7] K. Maehara: Finiteness property of varieties of general type, Math., Ann., 265 (1983), 101-123.
[8] K. Maehara: The weak 1-positivity of direct image sheaves, J. Reine und Angewante Math. 364 (1986), 112-129.
[9] K. Maehara: The Mordell-Bombieri-Noguchi conjecture over function fields, Kodai Math. J. 11 (1988), 1-4.
[10] J. Noguchi: Hyperbolic fibre spaces and Mordell's conjecture over function fields, Publ. R.I.M.S. Kyoto Univ., 21 (1985), 27-46.
[11] J. Noguchi: A higher dimensional analogue of Mordell's conjecture over function fields, Math. Ann. 258 (1981), 207-212.
[12] D. Riebesehl: Hyperbolische komplexe Raüme und die Vermutung von Mordell, Math. Ann 257 (1981), 99-110.
[13] P. Samuel: Lectures on old and new results on algebraic curves, Tata Inst. F.R., Bombay, 1966.
[14] E. Viehweg: Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic Varieties and Analytic varieties, Advanced Studies in Pure Math. 1, 329-353: Tokyo and Amsterdam, 1983.

> Tokyo Institute of Polytechnics 1583 Iiyama, Atsugi city, Kanagawa, 243-02
> Japan

