COMPLETE MINIMAL HYPERSURFACES IN $\mathbf{S}^{4}(\mathbf{I})$ WITH CONSTANT SCALAR CURVATURE

Qing-ming CHENG

(Received October 31, 1989)

1. Introduction

Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere $S^{n+1}(1)$. If the square S of the length of the second fundamental form h on M satisfies $0 \leqslant S \leqslant n$, then $S \equiv 0$ or $S \equiv n$. In [3], S.S. Chern, M. do Carmo and S. Kobayashi proved that the Clifford tori are the only minimal hypersurfaces with $S=n$. C. K. Peng and C. L. Terng [6] studied the case $S=$ constant and shown, among other things, that if $n=3$ and $S>3$, then $S \geqslant 6$. The condition $S=6$ is also assumed in the examples of Cartan [1] and Hsiang [4]. On the other hand, in Otsuki's examples of minimal hypersurface in $S^{n+1}(1)$ (see [5]), H. D. Hu proved that there exist complete and non-compact minimal hypersurfaces in $S^{n+1}(1)$. Hence, it is interesting to study complete minimal hypersurfaces in $S^{n+1}(1)$. In [2], the author considered a compete minimally immersed hypersurface M in $S^{n+1}(1)$ with $S=$ constant, and proved that if $0 \leqslant S \leqslant n$, then $S=0$ or $S=n$.

In this paper, we generalize the above theorem due to C. K. Peng and C. L. Terng [6] to complete minimal hypersurfaces. That is, we obtain the following.

Theorem. Let M^{3} be a complete minimally immersed hypersuface in $S^{4}(1)$ with $S=$ constant. If $S>3$, then $S \geqslant 6$.

Corollary. Let M^{3} be a complete minimally immersed hypersurface in $S^{4}(1)$ with $S=$ constant. If $0 \leqslant S \leqslant 6$, then $S=0, S=3$ or $S=6$.

Proof. According to Theorem and the result of the author [2], Corollary is true obviously.

2. Preliminaries

Let M be an n-dimensional immersed hypersurface in the $n+1$-dimensional unit sphere $S^{n+1}(1)$. We choose a local field of orthonormal frames e_{1}, \cdots, e_{n+1} in $S^{n+1}(1)$ such that, restricted to M, the vectors e_{1}, \cdots, e_{n} are tangent to M. We use the following convention on the range of indices unless otherwise stated:

A, $B, C, \cdots=1,2, \cdots, n+1, i, j, k, \cdots=1,2, \cdots, n$. And we agree the repeated indices under a summation sign without indication are summed over the respective range. With respect to the frame field of $S^{n+1}(1)$ chosen above, let $\omega_{1}, \cdots, \omega_{n+1}$ be the dual frame. Then the structure equations of $S^{n+1}(1)$ are given by

$$
\begin{gather*}
d \omega_{A}=-\sum \omega_{A B} \wedge \omega_{B}, \omega_{A B}+\omega_{B A}=0 \tag{2.1}\\
d \omega_{A B}=-\sum \omega_{A C} \wedge \omega_{C B}+\Omega_{A B} \tag{3.2}\\
\Omega_{A B}=\frac{1}{2} \sum K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.3}
\end{gather*}
$$

Restricting these forms to M, we have the structure equations of the immersion.

$$
\begin{equation*}
\omega_{n+1}=0 \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
\omega_{n+1, i}=\sum h_{i j} \omega_{j}, h_{i j}=h_{j i} \tag{2.5}\\
d \omega_{i j}=-\sum \omega_{i j} \wedge \omega_{j}, \omega_{i j}+\omega_{j i}=0 \tag{2.6}\\
d \omega_{i j}=-\sum \omega_{i k} \wedge \omega_{j k}+\frac{1}{2} \sum R_{i j k l} \omega_{k} \wedge \omega_{l} . \tag{2.7}
\end{gather*}
$$

The symmetric 2-form

$$
h=\sum h_{i j} \omega_{i} \omega_{j}
$$

and the scalar

$$
H=\frac{1}{3} \sum h_{i i}
$$

are called the second fundamental form and the mean curvature of M respectively. If $H=0$, then M is said to be minimal.

Define $h_{i j k}$ by

$$
\begin{equation*}
\sum h_{i j k} \omega_{k}=d h_{i j}-\sum h_{i m} \omega_{m j}-\sum h_{m j} \omega_{m i} \tag{2.8}
\end{equation*}
$$

Exterior differentiating (2.5) and using structure equations, we obtain

$$
\sum_{k, j} h_{i j k} \omega_{k} \wedge \omega_{j}=0
$$

Thus we have

$$
\begin{equation*}
h_{i j k}=h_{i k j} . \tag{2.9}
\end{equation*}
$$

Similarly define $h_{i j k l}$ by

$$
\begin{equation*}
\sum h_{i j k l} \omega_{l}=d h_{i j k}-\sum h_{i j m} \omega_{m k}-\sum h_{i m k} \omega_{m j}-\sum h_{m j k} \omega_{m i} \tag{2.10}
\end{equation*}
$$

then,

$$
\begin{equation*}
h_{i j k l}-h_{i j l k}=\sum h_{i m} R_{m j k l}+\sum h_{m j} R_{m i k l} . \tag{2.11}
\end{equation*}
$$

If the square S of length of h, i.e., $S=\sum h_{i j}^{2}$, is constant and M is minimal, then the following formulas are well known (see [6]).

For any point $p \in M$, we can choose a frame field e_{1}, \cdots, e_{n} so that $h_{i j}=$ $\lambda_{i} \delta_{i j}$.

$$
\begin{gather*}
\sum h_{i j k}^{2}=S(S-n) \tag{2.12}\\
\sum h_{i j k l}^{2}=S(S-n)(S-2 n-3)+3(A-2 B) \tag{2.13}
\end{gather*}
$$

where $A=\sum h_{i j k}^{2} \lambda_{i}^{2}, B=\sum h_{i j k}^{2} \lambda_{i} \lambda_{j}$.

$$
\begin{equation*}
t_{i j}=h_{i j i j}-h_{j i j i}=\left(\lambda_{i}-\lambda_{j}\right)\left(1+\lambda_{i} \lambda_{j}\right) . \tag{2.14}
\end{equation*}
$$

Let $f_{m}=\sum \lambda_{j}^{m}$. Then we have

$$
\begin{gather*}
\sum t_{i j}^{2}=2\left[n S-2 S^{2}+S f_{4}-f_{3}^{2}\right] \tag{2.15}\\
\Delta f_{3}=3\left[(n-S) f_{3}+2 \sum h_{i j k}^{2} \lambda_{i}\right] \tag{2.16}
\end{gather*}
$$

When $n=3$, we have
Lemma 1 (see [6]). (1) $f_{3}=$ constant if and only if M has constant principal curvature; (2) $-\sqrt{S^{3}} / 6 \leqslant f_{3} \leqslant \sqrt{S^{3}} / 6$ and equality is reached if and only if two of the principal curvature are equal.

Lemma 2 (see [7]). Let M be a complete Riemannian manifold whose Ricci curvature is bounded from below. Let f be a C^{2}-function which is bounded from above on M. Then there exists a sequence $\left\{p_{m}\right\}$ such that

$$
\begin{equation*}
\lim f\left(p_{m}\right)=\sup f, \lim \left\|\nabla f\left(p_{m}\right)\right\|=0, \quad \lim \sup \Delta f\left(p_{m}\right) \leqslant 0 \tag{2.17}
\end{equation*}
$$

3. Proof of Theorem

At first, we show the following two propositions.
Proposition 1. Let M be a complete minimal hypersurface in $S^{4}(1)$ with $S=$ constant. If inf $f_{3} \cdot \sup f_{3}=0$, and $S>3$, then $S \geqslant 6$.

Proof. Because of $\inf f_{3} \cdot \sup f_{3}=0$, we have $\inf f_{3}=0$ or $\sup f_{3}=0$. If $\inf f_{3}=\sup f_{3}=0$, namely, f_{3} vanishes identically, then it follows from Lemma 1 (1) that M has constant principal curvature. Thus Proposition 1 is true. (cf. [6: Corollary 1])

Next we will only consider the case $f_{3} \neq$ constant. Without loss of generality, we can suppose sup $f_{3}=0$. According to the Gauss' equation and the assumption that S is constnat, we see that the Ricci curvature of M is bounded
from below. Hence we can apply Lemma 2 to f_{3} and we have a sequence $\left\{p_{m}\right\}$ in M such that

$$
\begin{align*}
\lim _{m \rightarrow \infty} f_{3}\left(p_{m}\right)= & \sup f_{3}=0, \quad \lim _{m \rightarrow \infty}\left\|\nabla f_{3}\left(p_{m}\right)\right\|=0 . \tag{3.1}\\
& \lim _{m \rightarrow \infty} \sup \Delta f_{3}\left(p_{m}\right) \leqslant 0 \tag{3.2}
\end{align*}
$$

Since $\lambda_{i}, h_{i j k}$ and $h_{i j k l}$ are bounded because of (2.12) and (2.13), we may assume that

$$
\begin{gather*}
\lim _{m \rightarrow \infty} \lambda_{i}\left(p_{m}\right)=\lambda_{i}^{\circ} \tag{3.3}\\
\lim _{m \rightarrow \infty} h_{i j k}\left(p_{m}\right)=h_{i j k}^{\circ} \tag{3.4}\\
\lim _{m \rightarrow \infty} h_{i j k l}\left(p_{m}\right)=h_{i j k l}^{\circ} \tag{3.5}
\end{gather*}
$$

by taking a subsequence of $\left\{p_{m}\right\}$ if necessary. Hence

$$
\begin{align*}
& \lambda_{1}^{\circ}+\lambda_{2}^{\circ}+\lambda_{3}^{\circ}=0, \\
& \lambda_{1}^{\circ 2}+\lambda_{2}^{\circ 2}+\lambda_{3}^{\circ 2}=S, \tag{3,6}\\
& \lambda_{1}^{\circ 3}+\lambda_{2}^{\circ}+\lambda_{3}^{\circ 3}=0,
\end{align*}
$$

that is,

$$
\begin{equation*}
\lambda_{1}^{\circ}=-\sqrt{S} / 2, \lambda_{2}^{\circ}=0 \quad \text { and } \quad \lambda_{3}^{\circ}=\sqrt{S} / 2 \tag{3.7}
\end{equation*}
$$

Here we assume $\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3}$.
By differentiating $\sum h_{i i}=0$ and $\sum h_{i j}^{2}=S=$ constant, we obtain

$$
\begin{gather*}
\sum h_{i i k}=0 \tag{3.8}\\
\sum h_{i i k} \lambda_{i}=0 \tag{3.9}
\end{gather*}
$$

(3.3) and (3.4) imply

$$
\begin{gather*}
\sum h_{i i k}^{\circ}=0 \tag{3.10}\\
\sum h_{i i k}^{\circ} \lambda_{i}^{\circ}=0 \tag{3.11}
\end{gather*}
$$

According to (3.1), we have $\lim _{m \rightarrow \infty}\left\|\nabla f_{3}\right\|\left(p_{m}\right)=0$. Since

$$
\left\|\nabla f_{3}\right\|=\left[\sum_{k}\left(\sum_{i} h_{i i k} \lambda_{i}^{2}\right)^{2}\right]^{1 / 2}
$$

we obtain

$$
\lim _{m \rightarrow \infty}\left\|\nabla f_{3}\right\|\left(p_{m}\right)=\lim _{m \rightarrow \infty}\left[\sum_{k}\left(\sum_{i} h_{i i k} \lambda_{i}^{2}\right)^{2}\right]^{1 / 1}\left(p_{m}\right)=0
$$

Thus, by (3.3), (3.4) and the above fact, we get

$$
\begin{equation*}
\sum h_{i i k}^{\circ} \lambda_{i}^{0^{2}}=0, \text { for any } k \tag{3.12}
\end{equation*}
$$

Because λ_{i} are distinct, (3.10), (3.13) and (3.12) yield

$$
\begin{equation*}
h_{i i k}^{\circ}=0, \quad \text { for any } i \text { and } k . \tag{3.13}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
3(A-2 B)= & \sum h_{i j k}^{2}\left[\lambda_{i}^{2}+\lambda_{j}^{2}+\lambda_{k}^{2}-2 \lambda_{i} \lambda_{j}-2 \lambda_{i} \lambda_{k}-2 \lambda_{j} \lambda_{k}\right] \\
= & \sum_{\substack{i \neq j \neq k \\
i=k}} h_{i j k}^{2}\left[2\left(\lambda_{i}^{2}+\lambda_{j}^{2}+\lambda_{k}^{2}\right)-\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right)^{2}\right] \\
& +3 \sum_{i \neq k} h_{i i k}^{2}\left(\lambda_{k}^{2}-4 \lambda_{i} \lambda_{k}\right)-3 \sum h_{i i i}^{2} \lambda_{i}^{2} .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \lim _{m \rightarrow \infty} 3(A-2 B)\left(p_{m}\right) \tag{3.14}\\
& =\sum_{\substack{i \neq j \neq k \\
i \neq k}} h_{i j k}^{\circ}{ }^{2}\left[2\left(\lambda_{i}^{\circ}+\lambda_{j}^{\circ}+\lambda_{k}^{\circ}\right)-\left(\lambda_{i}^{\circ}+\lambda_{j}^{\circ}+\lambda_{k}^{\circ}\right)^{2}\right] \\
& \quad+3 \sum_{i \neq k} h_{i i k}^{\circ}\left(\lambda_{k}^{2}-4 \lambda_{i}^{0} \lambda_{k}^{\dot{k}}\right)-3 \sum h_{i i i}^{\circ} \lambda_{i}^{\cdot 2} \\
& =2 S \sum_{i j k}^{\circ} \quad(\text { by }(3.13) \text { and (3.6)) } \\
& =2 S^{2}(S-3) \quad(b y(2.12)) ; \\
& \sum h_{i j k l}^{2} \geqslant 3 \sum_{i \neq j} h_{i j i j}^{2}+\sum_{i} h_{i i i i}^{2} \tag{3.15}\\
& \quad \geqslant 3 \sum_{i \neq j}\left(h_{i j i j}-t_{i j} / 2\right)^{2}+\frac{3}{4} \sum t_{i j}^{2},
\end{align*}
$$

where $t_{i j}=h_{i j i j}-h_{j i j i}=\left(\lambda_{i}-\lambda_{j}\right)\left(1+\lambda_{i} \lambda_{j}\right) . \quad$ From (3.2) and (3.5), we get

$$
\begin{equation*}
\sum h_{i j k l}^{\circ 2} \geqslant 3 \sum_{i \neq j}\left(h_{i j i j}^{\circ}-t_{i j}^{\circ} / 2\right)^{2}+\frac{3}{4} \sum t_{i j}^{\circ}, \tag{3.16}
\end{equation*}
$$

where $t_{i j}^{0}=h_{i j i j}^{0}-h_{j i j i}^{\circ}=\left(\lambda_{i}^{0}-\lambda_{j}^{j}\right)\left(1+\lambda_{i}^{0} \lambda_{j}^{0}\right)$. (3.7) implies

$$
\begin{equation*}
\sum t_{i j}^{02}=S^{2}-4 S^{3}+6 S \tag{3.17}
\end{equation*}
$$

Accordingly,

$$
\begin{align*}
& S(S-3)(S-9)+2 S^{2}(S-3) \tag{3.18}\\
& \quad \geqslant 3 \sum_{i \neq j}\left(h_{i j i j}^{\circ}-t_{i j}^{\circ} / 2\right)^{2}+\frac{3}{4}\left(S^{3}-4 S^{2}+6 S\right) .
\end{align*}
$$

$$
\begin{align*}
& \sum_{i \neq j}\left(h_{i j i j}^{\circ}-t_{i j}^{\circ} / 2\right)^{2} \tag{3.19}\\
& \quad \geqslant 2\left[\left(h_{122}^{\circ}-t_{12}^{\circ} / 2\right)^{2}+\left(h_{2333}^{\circ}-t_{23}^{\circ} / 2\right)^{2}\right] \\
& \quad=\left[h_{1212}^{\circ}+h_{323}^{\circ}-\frac{1}{2}\left(t_{2}^{\circ}-t_{3}^{\circ}\right)\right]^{2}+\left[h_{1212}^{\circ}-h_{2323}^{\circ}-\frac{1}{2}\left(t_{12}^{\circ}-t_{23}^{\circ}\right)\right]^{2} \\
& \quad \geqslant\left[h_{1212}^{\circ}+h_{2323}^{\circ}\right]^{2},
\end{align*}
$$

here we make use of $t_{12}^{\circ}=t_{23}^{\circ}=-\sqrt{S} / 2$. Differentiating $\sum h_{i j}^{2}=S$, we obtain

$$
\sum_{i, j} h_{i j l l} h_{i j}+\sum_{i, j} h_{i j l}^{2}=0, \quad \text { for } \quad l=1,2,3
$$

which implies

$$
\sum_{i} h_{i i l l} \lambda_{i}+\sum_{i, j} h_{i j l}^{2}=0, \quad \text { for } \quad l=1,2,3
$$

Hence

$$
\begin{equation*}
\sum h_{i i l l}^{\circ} \lambda_{i}^{\circ}+\sum h_{i j l}^{\circ}=0, \quad \text { for } \quad l=1,2,3 . \tag{3.20}
\end{equation*}
$$

We substitute (3.7) into (3.20). Then

$$
\sqrt{S} / 2\left[h_{l l l l}^{\circ}-h_{33 l l}^{\circ}\right]=\sum_{i, j} h_{i j l}^{\circ}, \quad \text { for } \quad l=1,2,3
$$

In particular, we have

$$
\sqrt{S} / 2\left[h_{1122}^{\circ}-h_{3322}^{\circ}\right]=\Sigma h_{i j 2}^{\circ} .
$$

Hence

$$
\begin{align*}
h_{1212}^{\circ}-h_{2323}^{\circ} & =h_{1122}^{\circ}-h_{2233}^{\circ} \tag{3.21}\\
& =h_{1122}^{\circ}-h_{3322}^{\circ}-t_{23}^{\circ}=\sqrt{2} / S\left[\sum h_{i j 2}^{\circ}+S / 2\right] \\
& =\sqrt{2} / S\left[-\frac{1}{3} S(S-3)+S / 2\right]
\end{align*}
$$

since we use $\sum h_{i j 2}^{\circ}=2 h_{123}^{\circ}=\frac{1}{3} S(S-3)$ by (3.13).
By means of (3.18), (3.19) and (3.21), we get

$$
3 S(S-3)^{2} \geqslant \frac{6}{S}\left[\frac{1}{3} S(S-3)+\frac{S}{2}\right]^{2}+\frac{3}{4} S\left(S^{2}-4 S+6\right)
$$

Namely,

$$
S(S-6)(19 S-42) \geqslant 0
$$

It is clear that if $S>3$, then $S \geqslant 6$. We complete the proof of Proposition 1.
Proposition 2. Let M be a complete minimal hypersurface in $S^{4}(1)$ with $S=$ constant. If $\inf f_{3} \cdot \sup f_{3} \neq 0$ and $S>3$, then $S \geqslant 6$.

Proof. If $f_{3}=$ constant, then it follows from Lemma 1 (1) that M has constant principal curvature. Thus Proposition 2 is valid obviously (cf. [6: Corollary 1]). If $f_{3} \neq$ constant, then we can prove that there exists a point $p \in M$ such that $f_{3}(p)=0$ because of $\inf f_{3} \cdot \sup f_{3} \neq 0$.
(1) If inf $f_{3} \cdot \sup f_{3}<0$, then, from the continuation of f_{3}, we have that there exists a point $p \in M$ such that $f_{3}(p)=0$.
(2) If $\inf f_{3} \cdot \sup f_{3}>0$, then $\inf f_{3}$ and $\sup f_{3}$ have the same sign, we shall prove that this does not occur. In fact, without loss of generality, we can assume sup $f_{3}<0$. Lemma 1 (2) yields

$$
\begin{equation*}
\lim _{m \rightarrow \infty} f_{3}\left(p_{m}\right)=\sup f_{3}, \quad \lim _{m \rightarrow \infty}\left\|\nabla f_{3}\left(p_{m}\right)\right\|=0 \tag{3.23}
\end{equation*}
$$

$$
\begin{equation*}
-\sqrt{S^{2}} / 6<\sup f_{3}<0 \tag{3.22}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \Delta f_{3}\left(p_{m}\right) \leqslant 0 \tag{3.24}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lambda_{i}\left(p_{m}\right)=\lambda_{i}^{\circ} \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} h_{i j k}\left(p_{m}\right)=h_{i j k}^{\circ} \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}^{\circ}+\lambda_{2}^{\circ}+\lambda_{3}^{\circ}=0 \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}^{\circ 2}+\lambda_{2}^{\circ 2}+\lambda_{3}^{\circ 2}=S \tag{3.28}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}^{\circ}+\lambda_{2}^{\circ}+\lambda_{3}^{\circ}{ }^{\circ}=\sup f_{3} \tag{3.29}
\end{equation*}
$$

(3.22), (3.27), (3.28) and (3.29) imply that $\lambda_{1}^{\circ}, \lambda_{2}^{\circ}$ and λ_{3}° are distinct. By the same proof as in Proposition 1, we can obtain

$$
\begin{equation*}
h_{i i k}^{\circ}=0, \quad \text { for any } i \text { and } k \tag{3.30}
\end{equation*}
$$

On the other hand, from

$$
\Delta f_{3}=3\left[(3-S) f_{3}+2 \sum h_{i j k}^{2} \lambda_{i}\right]
$$

(3.23), (3.24), (3.25) and (3.26) yield

$$
\begin{align*}
& 3\left[(3-S) \sup f_{3}+2 \sum h_{i j k}^{\circ 2} \lambda_{i}^{\circ}\right] \leqslant 0 \tag{3.31}\\
& 3 \sum h_{i j k}^{\circ 2} \lambda_{i}^{\circ} \\
& =\sum_{i j k}^{h_{i j k}^{\circ}}\left(\lambda_{i}^{\circ}+\lambda_{j}^{\circ}+\lambda_{k}^{\circ}\right) \\
& =\sum_{\substack{\neq j \neq k \\
i \neq k}} h_{i j k}^{\circ 2}\left(\lambda_{i}^{\circ}+\lambda_{j}^{\circ}+\lambda_{k}^{\circ}\right) \quad(\text { by }(3.13)) \\
& \quad=0 \quad\left(\text { by } \lambda_{1}^{\circ}+\lambda_{3}^{\circ}+\lambda_{2}^{\circ}=0\right)
\end{align*}
$$

Hence

$$
(3-S) \sup f_{3} \leqslant 0
$$

Because of $S>3$ and $\sup f_{3}<0$, we know that this is impossible. Hence there exists a point $p \in M$ such that $f_{3}(p)=0$.

Next by the same proof as in [6], we know that Proposition 2 is valid.
Proof of Theorem. From Propositions 1 and 2, Theorem is obvious.

References

[1] E. Cartan: Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques, Math. Z., 45 (1939), 335-367.
[2] Q.M. Cheng: A characterization of complete Riemannian manifold minimally immersed in a unit sphere, to appear in Nagoya Math. J..
[3] S.S. Chern, M. do Carmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, In functional analysis and related fields, Springer Verlag, Berlin, 1970, 59-75.
[4] W.Y. Hsiang: Remarks on closed minimal submanifolds in the standard Riemannian m-sphere, J. Diff. Geom., 1 (1967), 257-267.
[5] W.Y. Hsiang and H.B. Lawson: Minimal submanifolds of low cohomogeneity, J. Diff. Geom., 5 (1971), 1-38.
[6] C.K. Peng and C.L. Terng: Minimal hypersurfaces of spheres with constant scalar curvature, Seminar on minimal submanifolds, 1983, Princeton Univ. Press, 177-198.
[7] S.T. Yau: Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math., 28 (1975), 201-228.

Department of Mathematics Northeast University of Technology
Shenyang
China

