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We have studied left serial rings with (%, 1) or (*,2) in [7] and [8] as a gen-
eralization of Nakayama ring (generalized uniserial ring).

In this note, we shall replace the assumption “left serial” to ‘‘hereditary”,
and give, in Sections 2~5, characterizations of an artinian hereditary ring with
(%, n) in terms of the structure of R; n<3. In Section 6, we shall study another
type of hereditary algebras over an algebraically closed field, i.e., right US-n
hereditary algebras.

1. Hereditary rings

Throughout this paper we assume that a ring R is a left and right artinian
ring with identity. We shall use the notations and terminologies given in [2]~

(8]

First we recall the definition of (¥, 7).

(%,m)  Every maximal submodule of a direct sum of n hollow modules is
also a direct sum of hollow modules [2] and [4]

In this case we may restrict ourselves to a direct sum of hollow modules
of a form eR/K, where e is a primitive idempotent and K is a submodule of
eR [4].

Let R be an artinian hereditary ring. Then R is isomorphic to the ring
of generalized tri-angular matrices over simple rings [1]. We are interested in
a hereditary ring with (,7), and so we may assume that R is basic. Then

A, My e M,
(1) R~
i

where the A; are division rings and the M;; are left A; and right A; modules. It
is clear that M;;=e;Re; (¢;=e;; matrix units).



420 M. HArADA

Lemma 1. Let R be a hereditary ring as above. Then for any t,
>3 PRe; (resp. X3 Pe;R) is an ideal and R[> DRe; (resp. R/Zﬂ @e;R) is also
P>t i<t ist 7

hereditary.

Proof. This is clear from [1], Theorem 1.

Lemma 2. Every non-zero element in Homg(e;R, ¢;R) (1< j) is a monomor-
phism.

Proof. Since ¢;R is indecomposable and f(e;R) is projective for fEHom,
(e;R, e;R), this is clear.

Let R be a ring as (1). We may study hollow modules ¢;R/A by the initial
remark. Put e=e; and H={h|M,,#0}, J={j|M;;=0}, and further put E;=
>l ey Ri=E;RE; and X;= > Pe;RD 3} Pe,R. Since R is hereditary, e,Re;=0
134 T k<i

for k€ H and j J (cf. [1]), and so X; is a two sided ideal in R by Lemma
1 and R, X;=0. If ¢,Re, =0 for pc H, then 0==¢;Re,e,Re,Ce;Re, by [1], and so
geEH. Hence e,R=¢,RE; and

(2) .R,‘ — E,R and R;Xi =0.

It is clear that R=R,@®X; as R-modules and R; is hereditary (cf. [1]).
Hence every R;-submodule in R; is nothing but an R-submodule in R; from
(2). Further let hy<h,<---<h, (h;€H), then we note that e, Re, =0 for all
g. 'Therefore we obtain

Lemma 3. Let R be a hereditary ring as in (1) and let R; be as above.
Then (%,n) holds for any n hollow modules if and only if, for any i, the same holds
on any R;-modules. Further R; satisfies e, Re, =0 for all h,>h,.

Next we shall observe a construction of hereditary (basic) rings. In order
to make the observation clear, we shall first give an example.

Let
Ky, 0 K, Ky 0 Kg 0 Ky
K, 0 K, 0 Kg 0 Ky
K, K, 0 0 0 O
R— K, 0 0 0 O ’
Ky Ky 0 K
0 Kg O K
Kyn Ky
Ky

where K;;=XK is a field.
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We take non-zero entries in ¢,R and put

Kll K13 Kl4 KIG KIB
Ky Ky 0 0

Rl == K“ 0 0
0 Ky Ka
Kg

Since K,, does not appear in R, (since M;,=0), we take

K, Ku Ky Ky

Ky 07 0
Rzz I
0 Ke?Ke

Ky

Since K does not appear in R, and R,, put

Ks Ks Ks
.Rs - 0 Kss KGS
K

Similarly to the above, we put

R — (K77 K78)
0 K

Then
K, 0 0
4,= 10 Kg Kg
0 0 K

is the common components between R; and R,. Similarly we can define

K¢ K,
A= Ap = ( 066 Kes) .
88

A17 = Az7 = A51 = (Ksa) .

We note that the products in R of two components in R; and R; not contained
in A;; are zero. Now R, and R, are of right local type (see §5) and R, and R, are
right serial. Further we know from the above note that R is the subring of
R,®BR,DR;PR; given by identifying elements in the same K;;, namely in 4;;.
If we carefully observe the above constructions, we know that only some right
ideals contained in (1; —e{”)R; are identified, where 1; is the identity of R; and
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ef") is the matrix unit in R;.
We shall study the above fact in general. Let

MM+ M,,
Moeesees M,,

0 ol
M,y

where M;;= A, are division rings. We define R; as before Lemma 3 and
express R; as

4) Ri=| 0™,
M,

where MY is equal to some M,,, in (3) (M{Y?=M;; in (3)) and M{P=0 for all k.

We note first the following fact: Assume M,;#+0 for some a and b. Put
I,={x|M,,#0} and I,={y|M,,#+0}. Since M, R~e,R™ (direct sum of m-
copies of ¢;R),

(5) ILci,.

Starting with R, (=R,)), from the initial observation we can construct R;, so
that M{? does not appear on the diagonal of R;,, for all #,,<<i=t%, and so that
each component M, in (3) appears at least once in some R;. Take R; and
R; (t,=1i<j=1t,), and assume that MY} =M, (= M,, in (3)) are common
components between R; and R;. Then M =M} =(M,, in (3)) are also
common ones between R; and R; by the definition of R,, and R,,. We shall
consider those components in (3). It is clear from (5) that

(6) es'R; = e,R = ¢'R; .
Now let
ef"R; = (0++-0 M£P 0--- M 0--MP) = ePR;; M4 +0.
Then e§)R;=e{’R; for all I<t from (5). By A;; we shall denote the right ideal
whose components appear in R; and R;. Let I; and I; be as before (5) where

i=t, and j=1, and put ;NI;={m<w,<--<w}. Then we know from the
argument above that

1) Ax’j = 2 @eﬂk‘R )
(7) 11) Al’ie#R =0 for peEE {”l’ o Tf
and so
iii) the lattice of right R-modules of 4;; is equal to the lattice of right
A;j-modules of 4;;.
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Finally we assume for some b (1<b<#) that (M,, in (3))= M) %0 and (M, in
(3))=M¢) 0. Then beL;NI; and so M¥) C 4;; from (7)-i) and ii). Hence
the product in R of an entry of R; and one of R; is zero if the latter (and hence
two of them) is not contained in 4;;. Thus we can find a set {R;,} of hereditary
rings such that e{*?R; e{’? =0 for all £ and a set {4, ;,/} of right ideals as (7), and
R is the subring of 31 @R, such that the entries in 4;, ;. of R;, are equal to the
entries in 4;, ;, of R;,. Conversely, let {R;}7., be a set of hereditary (basic)
rings and {4;;} a set of right ideals in R; and R; which satisfy (7) where we
replace R with R; and R;. Then we can easily show that the subring of 3} @®R;
whose components in 4;; are identified for all 7, j is a hereditary ring. We shall
call such a ring the patched ring of {R;} with respect to (briefly w.r.t.) {4;;}, (the
name comes from the following examples).

We shall give some examples of the patched ring. In the following exam-
ples, tri-angules and squares mean tri-angular matrices and matrices over a field
K, respectively and straight lines do vector spaces over K.

1 R= 21y Re= and 4,,= <
;J

Then L is the patched ring
of Riand R, w. 7. ¢
2 All )
¢
R,= a Eb 0 R,= N (? and B, = \ 4
i X 1
7
N N
¢
—
Then T T
@ 0 1b
y 0
: 0
@ b . :
! is the patched ring of R,
&7 and R, w.r.t. By,.
e
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We note that R, and R, are left and right serial, but R is not left serial.
R, and R, are of right local type, but R is not and (%, 3) holds (see §§4 and 5).
We shall show in §5 that every hereditary (basic) algebras over an algebraically
closed field with (%, 3) is obtained as the patched ring of R’s and R;’s above.

Thus we obtain

Proposition 1. Let R be a hereditary (basic) ring. Then R is the patched
ring of hereditary rings {R;} such that e{’R;ei’> %0 for all k, where € is the
matrix unit e,, in R;.

RemMaRk 1. Let R be a hereditary ring which is one of R; given in Proposi-
tion 1. Since eRe; =0, ¢;R is monomorphic to ¢,R. Hence, if the structure
of R is known as right R-modules, then we can see those of ¢;R (cf. Theorem
2).

2. Hereditary rings with (x,1)
We shall first give some remarks on (%,1). If R satisfies (,1), for ¢JiDC

e /C=_z”‘, @©4;, with 4; hollow. Since 4; is hollow, 4; ] = 33 @ B;; with B;;

i=

hollow by (*,1). Hence ¢J?)/C=31PA4; /=313 DB;;. By induction

(8) eJi/C is a direct sum of hollow modules.

In general, we assume that a module M is a direct sum of submodules
M;. For submodules N; of M;, we call 33D N; a standard submodule of M

(with respect to the decomposition 33 M;).

Proposition 2. Let N be a finitely generated R-module. Then the following
are equivalent .
1) N is a direct sum of hollow modules.

2) Let P be a projective cover of N (Pi N). Then ker f is a standard
submodule of P with respect to a suitable direct decomposition of indecomposable
modules.

3) Let P’ be projective and f': P'— N an epimorphsim. Then ker f' is a
standard submodule of P’ as 2).

Proof. Every hollow module is of a form eR/A. Hence 1)32) and 3)—
2) are clear.
2)—3) Let

0K —-P —->N-0
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be exact with P’ projective. Since P is a projective cover of N, there exist
&: P—P’and h: P'—>Psuch that hg=1,. Let P=3I@P; and ker f=K=31PK;
by 2), where the P; are indecomposable and K;CP;. It is clear that g(K)®A}(0)
=21Dg(K;)Ph™(0)Cker f' and P'=g(P)Ph™'(0). Hence ker f'=>1Pg(K;)D
1(0)C 3 Dg(P) DI (0)=P.

We shall study, in this section, a hereditary ring with (%, 1) as a right R-
module. Hence we may assume that R is basic. We shall give a characterization
of a hereditary ring with (*, 1).

In the following, «, B, -+ mean indices and |z, &, B, **+, 7| means a natural
number related with the index (7, @, B, +*+, 7). If R is a basic hereditary ring,

J(e:R) = &, ] = N(i, ) ®N(z, B)BNG, 7)D-+,
where N(i, @) ~e; 4R, N(i, B) ~e; g R, -+,
9) J(N(G, a)) = N(i, a, a))BN(E, o, al)P-,
where N(i, @, a)) =~ €); 5,0, R, N(t, @, a])~e); 4 a1 R,

and so on. It is clear that i< |, | < |7, @, ;| <1, a, «;, &¢,] and so on, and

(10) eiRej = Mij ZIZ D N(i; tty 'Y)ej .

i Y=

Theorem 1. Let R be a hereditary (basic) ring and N(i, +++, ) be as in (9).
Then the following conditions are equivalent :

1) (%,1) holds for any hollow right R-module.

2) The following conditions are satisfied.

1) Leti<k=|i, a|<j=|i, Bl(a=*RB), i.e., e;] contains two direct summands
isomorphic to e,R and e;R, respectively. If N(i, a, +, ) and N(i, B, -+, %) with
lZ, a, =+, vl=13, B, =, ¥'|=h appear in (9), i.e., for some h, simultaneously
e,Re,+=0 and e;jRe, =0, then ;R is uniserial, and hence [M;,: A]<1 for ¢>j.
Further if we denote exactly N(i, a, -++, v) as N(i, &, oy, +++, ay="), there exists a
(unique) s such that |1, a, a,, «++, a,| =J.

i) If M;,=xA, (g>]), there exists an isomorphism o of A, onto A; such that
x8=a(8)x for all & in A,.

3) For any submodule A in e; J* for any k, there exists a direct decomposition
e, J*=>®P, such that A=>DA,; A,CP, and P, is indecomposable, i.e., A is
a standard submodule of e; J* with respect to the decomposition ) DP,.

4) For any submodule A in e; ], there exists a direct decomposition e; [ = Z“, @

NG, a) such that A=>3PA,; A,CN(, a) and N(i, a) ~N(i, a), ie., A is a
standard submodule of e; J with respect to the decomposition 33 N, a)’,

Proof. 1)—>2) Assume (%, 1) and i=1 from Lemma 1. Puti=|1, a|
and 7,=|1,8|. Assume N(1,a, -, 7) and N(1, 8, -+, ¥') appear in (9) for
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k=|1,a, -, 9|=I1,8,+,9|. Then M;=#0, M;,=+0 and M, +0. First
we shall show ¢;,R is monomorphic to ¢; R and [M;,;: Aj]=1. If we can show
that ¢; R contains a non-zero element y in M, ;, €;,R—yRCe; R (¢;,—>y) is a
monomorphism from Lemma 2. Hence we may assume A,,;=-+-=A,=0 from
Lemma 1. We shall identify N(1, et) with ¢; R (resp. N(1, B) with ¢;,R). From
the above assumption let M;, = il @ 4;; the A; are simple R-modules and

[4;: A)]=1. Since ¢, RDM,;DN(1, a, -++, 7) =0, there exists a natural homo-
morphism

fi Mizk/g@Aj”A1_> ik

From the assumption (%, 1), f is extendible to an element 4’ in HomR(e,-zR/Z;EB
>
Aj;, e; R) by [6], Theorem 4 (note that Homg(e; R, €;,R/> @ A;)=0 by Lemma
>
2 in case of #;=1, and j >2 and that we identify ¢; R and ¢;,R with N(1, @) and
N(1, B), respectively). Consider a homomorphism

/

h
h: e,-zR - eizR/ 2 @AJ - eilR .
iz2

Since £5=0 is a monomorphism by Lemma 2, M;,,=A4,. Therefore

(11) é;,R is monomorphic to ¢; R and [M;,;: A;] =1, provided M;,,=+0.

We shall show similarly to (11) that ¢;,R is uniserial. Put ¢;,=e and ¢J'~ Ev &%)
j=1

espR for some ¢, since R is hereditary. Let B be a simple submodule of e,¢)R.
Then we obtain a monomorphism of (B® 3] Pe;pR)/ > Dey;yR~B to ¢;R
j>2 i>2

(see (11)). From the argument before (11), > Pey;pR=0, and so eJt ~e;R
i>

and ef*/eJ**! is simple. Therefore eR is uniserial. Next assume M;,,=xA, and
we show ii). Hence we may assume A;,;=+-=A,=0 from Lemma 1. For any
8 in A, define an endomorphism ¢ of M;,, by setting p(x8')=x88". We may
regard @ as an isomorphism of M, onto N(1, @, -+, ¥) (|1, @, -, ¥|=k).
Further, for an extension g (in Homyg(eR, ¢; R) C Homg(eR, ¢R)) of ¢ by [6],
Theorem 4, g(eRe)Ce,Re;,= M,;,,=1DN(1, a, -+, €)¢;,. Noting the structure
(9) and g(M;,»)=@(M;,)=N(1, a, -+ ,7¥), we obtain

(12) some N(1, @, +++, &) contains N(1, &, -+, ¥) and N(1, e, -+-, &')~eR .

Therefore ¢ is extendible to an element in Homg(eR, eR)=A,, (take the projec-
tion to N(1, e, -+, &), which implies that there exists 8* in A;, such that
S*x=ux8. Itis clear that the mapping: §—>0¢(8)=38* is a monomorphism. We
shall show that ¢ is an isomorphism. Let 8§** be an element in A;,. Since
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M, y=xAyis a left A;,-module, §**x=x8" for some §” in A,. Hence §**=g(3").
The last part of i) is clear from (12) and its argument.
2)—>1) Assume that i) and ii) are satisfied. We shall show that the condition

ii) of [6], Theorem 4 is fulfiled, and so we may study a case e=e, by Lemma 1.
Let

aJ=N(1,a)® N({, B) D -

and C,DD, (resp. C,DD,) submodules in N(1, a)~e¢;R (resp. N(1, B8) ~e¢;,R,
1,<1,) such that C,/D, is simple and f~*: C,/D,~C,/D,. We shall show that f is
extendible to an element in Homg(N(1, 8)/D,, N(1, @)/D,). First we note for
any R-module E in ¢,R,
(13) E = E(Eej) = Ek @®Fe; and Ee;CM,;.
Since C,/D,~C,/D,, N(1, a, -++,7v) and N(1, B, :++, ¥’) appear in &R for some
1, e, , v|=11,8, -+, ¥"| =h from (13). Hence N(1, B) (=~e¢;,R) is uniserial
by i) and C,=M,,,®M,,;, ®---DM,,,,0D,=M,,, D---DM,,, from (13), where
h<h<---<h,, We may identify N(1, o) with e;R. Let M;,,=xA, and take a
representative f(x) of f(x+D,) in M;, from (13); f(x)=>1x,; 0%x,EN(1, a, -+,
v,) from (10) (|1, &, -*+, ¥,| =Hh). Since x,%0, N(1, ¢, «++, v,)CN(1, @, +++, §,)
(I%, ey ==+, 8,1 =1,) from i), and N(1, &, +++, 8,)F=N(1, &, +++, &) if p=p’, since
e;,R is uniserial. Put N=3 @ N(l, a, -+, §,)CN(1, @), Ci=C,NN and
i=D,NN, f(x) being in C{ and f(x)& D,, C,=Ci{+D,, and so C,/D,~
Ci/(CiND)=Ci/Di. On the other hand, x,==x,e, for all p. Hence the
mapping: x,—>x, is extendible to an element g, in Homg(N(1, &, -+, 8,), N(1, ,
s, 8,) (=~ 4;,) from i) and ii). Then N=N(1, a, -+, §,) (qu)@EEB
N1, e, -+, 8,) and flx)EN(1, a, -+, 8)) (g‘.zgq) (=N%*), where T(u) means the

graph of a module T with respect to a homomorphism u. Further C,/D,~
(CINN#*)/(DiNN*) as above. Now C{CN*C N*(~e¢;,,R)CNCN(1, @) and
INN*=]J(C{NN*)~D, Hence we obtain the natural homomorphism

N(1, 8)/D, > N*(D{n N*) — N(1, a)/(Di N\ N*) —
(x+Dy) = f(x)+(D1NN*) - f(x)+(D{ N N*) —
N(, )/D,
(f(x)+Dy)

where u is an extension of f given by i) and ii),

which is an extension of f.
4)—1) This is clear from the definition of (%, 1).
3)—>4) This is trivial.
1)—3) This is clear from (8) and Proposition 2.
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RemaRk 2. We shall study the situation of 2)—ii) of Theorem 1. Let
&R and ¢;R be as in i). Assume
ej,R = (0--A; 0 Mj;,0---M; ;, 0---M; ;, 0),  (j=j, and M, +0).
Then

ej,R = (0wseer 0 Aj, 0weee M;,;, M;,j, 0)
” s (0eee oo 0 Mj,j, 0-ee- M; j, i 0)
;R = (0-een Oevonennen 0 eeveeeeennn 0eee Az 0),

since ¢; R is uniserial. Further Mj; =mj;A;. In order to simplify the
notations, we express j; by 7. Then M;;#0 for :<j. Every element in
Endg(M,,R/M,,,R) is extendible to an element in Endg(e,R/M,,,,R) by the proof
after (12). Further, since (0-::0 Mj,-+-M,;)=~(0:+-My,---M,;) for all [ and s,
every element in Endg (M R/M,,,,R)=A, is extendible to an element in
Endg(e;R/M;,.R)=A,. Hence there exists an isomorphism @/;: A,— A, (since
M, ,=mj,A,, i is an epimorphism) such that

(15) misx = @is(x)mjis , where x&A, and M;,;=m] A,

from the proof of Theorem 1. We fix generators m; ;., of M, ., for all ¢ and
Piiv1: Aip—>A; related with the fixed m; 4, in (15). Then m; ;. m;y; ;ipee
Mk k1= Miiver 18 2 generator of My and @ iien1 =0 11" Pih,ithtr’
A;rp—>4; is an isomorphism and satisfies (15) (cf [1], Lemma 13). Hence we
may assume
Aj, Ajwer A
(16) (el'1+"'+eft)R(ei1+°"+eh) ~ All ‘e EAJ
0 L

1

1

..A,-l
Next assume that ¢;R is uniserial only as in (14). Then by the similar

argument as above, we obtain
Aj, Ajyee A,
NN,

2 .
0

t

(16) (ej,+ - +e;)R(ej,+ - +ej) ~
Aj,
and the @;;: A;—A; (i<j) are monomorphisms (cf. [1], Lemma 13). By Ty(A;))
and Ty(Aj,, Aj, -+, A;,) we denote the above rings (16) and (16’), respectively.
3. Hereditary rings with (x, 2)

We shall give a characterization of hereditary rings with (x,2).
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Theorem 2. Let R be a hereditary (basic) ring. Then (*,2) holds for any
two hollow right R-modules if and only if, for each e; (=e;;),

e ] =;,=Ei®‘4"’ where the A, are uniserial modules, which satisfy the following

conditions:

i) If AyaAy for k*=k’', any sub-factor modules of A, are not isomorphic to
ones of Ay.

i) If Ay=Ay, (~e;R) (k*Fk') and M;,=xA, (j<p), there exists an isomor-
phism &: A,—A; as in 2)-ii) of Theorem 1.

Proof. Assume that (%,2) holds. Then the A4; are uniserial by [§], Pro-

poistion 7.  As in the proof of Theorem 1, we consider a case =1 from Lemma
1. Let

e] =Ny @ Ny @ -+--- GBJVUI

N, DN, D - N,

(17) DN, ®N,, D D N,,
@Nq1®qu$ """ @th,,)

where N;~N;=e¢; R for all j, s and N;AxN;, if j & j" and 4, <i,<--- <7, .

Assume that NV, contains a non-zero sub-factor module isomorphic to one of N,,.
Then N, is monomorphic (via g) to Ny, by (13) and Theorem 1. It is clear
that N,(g)D N, D -* BNy, (= NyP - B N,,) is a direct summand of ¢,].
Hence from the assumptions (17) above and [8], Proposition 12, there exists j
in e, Je, (=0) such that (e4j)(Ny @+ D Ny, ) =Ny(g) D Np, B+ DN,,,. Hence
g must be zero. ii) is clear from Theorem 1, since (*,1) holds. Conversely,
we assume i) and ii). Then (¥, 1) holds by Theorem 1. We shall quote here
the similar argument given in [8], Proposition 8. Let e be a primitive idempo-
tent and let eR/E,PeR/E, be a direct sum of two hollow modules. We may
consider only a maximal submodule M’ (DE,@E,) in F=eR@PeR (see [8],
Proposition 8). There exists a unit x in eRe such that F=eR(f)PeRDM' =
eR(f)DPe], where f(r)=xr for r€eR. We shall define g’: eR(f)—>¢eR by setting
g'(r+xr)=—xr. Then E\PE,=E\(f)(g)DPE, Let ¢:F—eR(f)PeR|E, be
the natural epimorphism. Then M=M'|(E,®E,)= (eR(f)DPe]J|E.)/(E\(f) (g'))-
If we identify eR(f) with eR, M = (eRPeJ|E,)/p(E\(g)), where g=—f. First
we consider the structure of @(E,(g)). If eR/E, is simple, either M'/(E,BE,)D
eR|E, or M'|(E,®E,)PeR/E,=F|(E,DE,). Hence M'|/(E;DE,)is a direct sum
of hollow modules, since (*,1) holds. Therefore we may assume E,SeJ. Let

ef]= i @A;; the A; are hollow. From i) of the theorem, we can express the
index set I={1, :++, m} as the disjoint union /=1, UL, U-+- UI, such that

A~d; ifi jel, and AAA; ficl, jel, and tt' .
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We put F;= E DA, then eJ= Z @F;, (cf. (17)). Since these F; have the parti-
cular property above, E = z‘, GBC,, C;,CF;, E,= Z @G;; G;CF; and g(C;)

F;|G;, where g is induced from g. Hence
(18) M~ (R JIE) T ® Cia).

Next we consider Cy(g). Assume that 4, has the structure given in ii) of the
theorem. Now A, has the structure of e; R in (16), and so every element in the
endomorphism ring of sub-factor module T/L of 4, is extendible to an element
in End(4,/L). Further T,/L,~ T{/L{ for sub-factor modules T,/L,, T1/L] if
and only if 7'=T1 (and L,=L{). From this remark and the following fact:
since Cy(g)CeJDF,/G,, for any submodule L in e JPF,, (eR]JPF,)/L~eR|/ XD
F,/G1, where G/ is a (standard) submodule of F;, and X{ is a submodule of
eJ (cf. [8], Proposition 8), we can find an isomorphism:

(19) (eRDeJ/E,)/C\(8) ~eRIXI D F\/GI D 31 © Fi/G,
and 33 @ Ci(8)/Ci(8)CeR|X: & 33 @ F/Gy,
(see the proof of Theorem 5 below and [8], Proposition 8).

Finally assume F,=4,, i.e, I, is a singlton. Then C,/X;~ g(C,), where
X,=27Y(0)NC,. Since gis an isomorphism of 4; to F; and A4, is uniserial,
g(X))=G,. Hence we have the same situation as above (take g7'). According-
ly we finally obtain from (19)

M~ eR[Z X! ® X @ FilGi: Fi~F,,
which is a direct sum of hollow modules by Theorem 1.

Let R be a hereditary ring with (%,2). We shall assume e,R=(A,M,M,;--
M,,) and M,;=0 for all j from Lemma 3. ¢, J=(0M,,---M,,)= ﬁ@F; as in

the proof of Theorem 2. Following {F;}{., we divide the index set {2, 3, -+, n}
into g-parts /=L UI,U---UI, such that Fie; +0cj&l;, Then I;NI;=¢ if
i%j by i) of Theorem 2. Put |F;/F;]J|=p;. If p,=1, F,; is uniserial, and so
Fy=my; A;, ®my;,A;,D - Dmy; A, where the 7 runs through over I; and A, CA;
C -+ CA,, are division rings (see (16)). If p;>2, Fy=(my;A;) "D (my;,A;, )
@D D(my;,A;) 7P, where (my; A; FP) means a direct sum of p copies of my; A; .
Since e,Re; %0 and R is hereditary, ¢;R is monomorphic to ¢,R by Lemma 2. On
the other hand, the image of ¢;R is a submodule of F; for some j by i) of Theorem
2. Hence R~myjlAj,@myj, Aj,, D ©mjl; or ~myA; Omyj, Aj,
@D- Dmy;Aj, (1<i=j;) from Lemma 2. Therefore R is determined by {F;},
provided e,Re;#0 for all 7. Since R is hereditary and I;NIj=¢ (i%j), M,,=0
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if lel, and mel; (i=)).
Next let R, be a hereditary ring as in (1) and assume Ry~ 3} S; as rings.
Then after renumbering {e;=e;;}, we may assume

Sy
R, =
.S‘

By E; we denote the identity element in S;. On the other hand, for any here-
ditary ring R as in (1)

R=¢R®DR; as R-modules,

where Ri=(1—e,)R(1—e,) and ¢,R is a two-sided ideal of R by Lemma 1.
If Ri~31DS; as above, e, J=>1PeRE;. Put A;=e¢RE;, and A4; is a right
ideal in ¢R. We use those notations in the following theorem. Thus we
obtain

Theorem 3. Let R be a (basic) hereditary ring such that eRe; =0 for all
j- Then the following conditions are equivalent:

1)  (x,2) holds for any two hollow modules.

2) Rle,R is a direct sum of right serial rings S;; 1) S;=T(Aj, Aj,, >+, Aj,)
or 2) T,(Aj) and A;=(Aj,, Aj,, -+, A;) in Case 1), A;=(AP?, -+, AP?) is a left
A (=e,Re))- and right A;-modules in Case 2), where ACAj C -+ CA;, are division
rings.

3) R ds isomorphic to

(20) s, 0

w}lere Sk=Trk(Ak19 Akz’ orey Ak’k) or Trh(Ak)'

Theorem 3'. Let R be a (basic) hereditary ring. Then (%,2) holds if and
only if R is a patched ring of hereditary rings given in (20).

Lemma 4. Let R be a hereditary and connected (basic) ring. 1) If R is a
left serial ring, then e,Re;==0 for all j>1. 2) Conversely, if e;Re; =0 for all j,
and [M;;: Aj1<1, [M;;: A;1<1 for all i and j, then R is left serial.

Proof. 1) Let ¢R=eAPM,,P:-DM,. We divide the index set
{2, 3, ++-, n} into two sets I, J such that M;;=0 provided i €l and M,;=0 pro-
vided jeJ. Take M,; and consider M. If M;=0 for j€J, RM;; DM,
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since M;;=0. Hence M;;=0 for all i€ J by assumption. Hence R=(e;,RD
»Ez @e,R)D( »E @ewR) as rings from (2). Therefore /=¢ by assumption.
€ er

2) Assume Oz=e,Re;=Am,;=m,;A; for all j. Since R is hereditary, ¢, J=
>1PA4;; the A; are hollow and no sub-factor modules of A; are isomorphic to
any ones of A; (i) from (13) and the assumption [M;: A;]<1. Similarly
J(A4)=> D A4;; and soon (cf. [7]). Hence any indecomposable (projective)
module in e] is equal to some 4, ;,.;,. Let M;=m;Ay=Am; and M=m; A=
Ajmj, (1<<j) for a fixed . Then mye;R and e je;R have a common sub-factor
module in ¢,R. Hence ¢;R is monomorphic to ¢,R from the initial remark, and
so e;Re;=0, which implies Rm;, C Rmj,. Therefore R is left serial.

Theorem 4. Let R be a connected (basic) hereditary ring. Then R is a
left serial ring with (%,2) as right R-modules if and only if R is isomorphic to

T, (A)
where A;C A are division rings.

Proof. Assume that R is a left serial ring with (¥,2) as right R-modules.
Then R is isomorphic to the ring in (20) by Theorem 3 and Lemma 4. Since
R is left serail, the 4; in (20) are isomorphic to A as left A-modules and Ay, =
Ap="+-=A4,,, in (20). If we take a generator of 4;, we know A;CA. The
converse is clear from the structure of the diagram.

4. Hereditary rings with (%, 3)

We have already obtained a characterization of artinian rings with (x,3)
and |ef/eJ?| <2 in [5]. As is seen in [5], Theorem 1, the structure of such
artinian rings is a little complicated. However if R is a hereditary ring with
le;; J]ei: J*| <2, we obtain the following theorem.

We quote here a particular property of a vector space (cf. [2] and [7]).

(#,m) Let A, and A, be division rings and V a left A,, right A,-space. For
any two right A,-subspaces V,, V, with |V,|=|V,|=m, there exists x in A, such
that xV,=V,.

Theorem 5. Let R be a hereditary (basic) ring with |eJ[e]*| <2 for each
e=e;. Then (x,3) holds for any three hollow modules if and only if eJ=A, DA,
such that

1) The A; are as in Theorem 2, and further if A;~A4,, 2) [A: A(4,)]=2 and



GENERALIZATIONS OF NAKAYAMA Ring VII 433

3) eJle]*? satisfies (§,1) as a left A-module and right A'-module, where A,~e;R,
A=eRe, AN'=ejRe;, and A(4))={x| €A, x4,C4;}.

Proof. Assume e¢J=A,PB, as in the theorem. If A,7&B,, A(C)=A for
every submodule C in e] by i) of Theorem 2. Assume 4,~B, (~¢;R). Then
A4, and B, have the structure of eR as in (16). For any C, there exists sub-
modules C;DD, in 4, and C,DD, in B, such that f: C,/D,~C,/D, and C={x+
D\+f(x)+D,|x=C;}. From (16), f is extendible to an element g: 4,/D,—B,/D,.
Since (#, 1) is satisfied for eJ/eJ*=u,A;Pv,A;, there exist & in A and zin A; such
that u,+g(u)=au,z+w, weeJ?. However, since u,, v, are in e/ —eJ? and u,e;=
w, vy=0¢;, w=0. Hence C=C\(f)+D,®D,= a(C,®D,), (note that D,~ D,
and a(D,PD,)=D,@D, and that 4, is uniserial). It is clear that A(4,)CA(C,
@D,)=A(a"'C)=a'A(C)a and so [A: A(C)]<2. Thus the conditions in [5],
Theorem 1 are fulfiled, and hence (%, 3) holds by [5]. Theorem 2. Conversely,
assume (%, 3) holds. Then 1) and 2) are clear from Theorem 2 and [5], Theorem
1. We shall show 3). We may assume from Lemma 1 and [2], Lemma 1 that

Ay =++=A,=0. Then 2) of [2], Theorem 1 is nothing but (§, 1).
As in Lemma 3, if ¢,Re;=0 for all j, R in Theorem 5 is isomorphic to
A A A, e A, A, gereeeeeeees A, ..
T, (A, Aye4,) 0
0 0 TdAr b)) 1
where ACA,C++CA, and ACA,,,C+-CA,,,, or
A AP APwereren AP
(0 T,(A) )
where A{? is a left A and right A, space satisfying (#,1) and [A: A(A,, «++, A))

]=2.

In the former ring, eJ=A,PA, and A,”44,. Hence (*,7n) holds for all
n by [5], Theorem 3. We do not know this fact for the latter ring.

5. Hereditary algebras

In this section we consider particular algebras over a field K such that
(21) e;Re;le; Je; = ¢, K ([2], Condition II”).

(e.g. an algebraically closed field.)

Under the assumption (21), every A; in (1) is equal to K. In this case,
if eR is uniserial, [eRe’: K]<1 (cf. (14)). Hence

(22) Endg (4/4") ~ K ~ Endy (eR|A’)
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for any submodules AD A’ in eR. Accordingly, from the proof of Theorem 2
(cf. [8], Theorem 2) we obtain

Theorem 6. Let R be a hereditary K-algebra satisfying (21). Then the
following conditions are equivalent :

1) (x,2) holds for any two hollow modules.

2) Every factor module of eR@e]™ is a direct sum of hollow modules for
each primitive idempotent e and any integer m. (It is sufficient in case m=1.)

If every finitely generated R-module is a direct sum of hollow modules, R
is called a ring of right local type [10]. It is clear from the definition that
(*,7) holds for a ring of right local type. By T,(A) we denoted the ring of
upper tri-angular matrices over a division ring A (see (14)).

Theorem 7. Let R be a hereditary (basic) K-algebra satisfying (21). Then
the following are equivalent :
1) (x,3) holds for any three hollow modules, and e\Re;==0 for all j, (and
hence (x,n) holds for all n).
2) R s isomorphic to (T, (K) K K--K
(O T, (K )) .
3) R s of right local type and connected.

Proof. 1)—2). Since |eJ/eJ?| <2 from [4], Theorem 3, we obtain it from
the remark after (21) and the last part in §4.

2)—3). It is clear that the ring in 2) is connected and of right local type
from Lemma 4 and [10] (see [9]).

3)—1). (%,3) holds for any three hollow modules. Since R is left serial
by [10], and connected, M;;=40 by Lemma 4.

Theorem 8. Let R be a hereditary algebra as above. Then the following
conditions are equivalent:

1) (%, 3) holds for any three hollow right R-modules.

2) eJ=A,PA,, where the A; are uniserial, and any non-trivial sub-factor
modules of 4, are not isomorphic to ones of A,. In this case (*,7) holds for
all .

3) Let {N;}'.. be any set of submodules in eR. Then every factor module
of SXYDNC? is a direct sum of hollow modules.

4) Every factor modules of eR™®e] ™ is a direct sum of hollow modules for
any integers n and m. (It is sufficient in case n=2 and m=1).

Proof. 1)<2) This is clear from Theorem 5 and [2], Theorem 2’.

1)—3). Let e=e¢; and let R; and X; be as before Lemma 3. Then R; is
of a right local type by Theorem 7. Since R, X;=0 and R/X;=R;, every sub-
module in eR is an R;-module. Hence every factor module of 33PN is also
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an R;-module. Therefore it is a direct sum of R;-hollow (and hence R-
hollow) modules.

3)—>4). Thisis clear. (We can show directly 1)—>4) in the similar manner
to [8], Theorem 2, cf. the proof of Theorem 2.)

3)—1). Let D= ‘i:‘i @eR|E; and M a maximal 3submodule in D. Then
D’'=eR® contains the submodule M’ such that M'D .=21 @E; and M'| > DE;=
M. Since D’ has the lifting property of simple modules modulo the radical, D’
has a decomposition iEiI®Fi such that F;~eR and M'=F,BF,® J(F;). Hence

M is a factor module of eR®@eJ. Therefore M is a diect sum of hollow mo-
dules from 3).

Theorem 9. Let R be as in Theorem 8. Then (x,3) holds for amy three
hollow modules if and only if R is the patched ring of serial rings T,(K) and rings
of right local type (T(K) K K--K

( 0 Ty, (K) ) .

Proof. This is clear from Proposition 1 and Theorem 7.

6. US-n algebras

We have studied special types of hereditary algebrasin §5. We shall show,
in this section, that they are related with US-z algebras defined in [4].
As another generalization of right serial ring (cf. (*,7)), we considered

(%*,n) Every maximal submodule in a direct sum D of n hollow modules
contains a non-zero direct summand of D [4].

It is clear that if D/J(D) is not homogeneous, D satisfies (*,7). Hence
we may restrict ourselves to hollow modules of a form eR/E, where e is a primitive
idempotent and E is a submodule of eR. If (*#,7) holds for any direct sum of
7 hollow modules, we call R a right US-n ring [4]. We showed in [4] that R
is right US-1 (resp. US-2) if and only if R is semisimple (resp. right uniserial).
On the other hand,

Proposition 3 ([6], Proposition 8). Let R be a right artinian ring. Then R
is a right US-m ring for some m if and only if the number of isomorphism classes of
hollow modules eR|A is finite and [A: A(A)]<co.

If R is an algebra of finite dimension over a field K, [A: A(4)]<eo. Hence
from Proposition 3, we know that an algebra of finite representation type is a
US-n algebra for some n. Further we note that if K is a finite field, R is a
finite ring. 'Then, since there are only finite non-isomorphic hollow modules,
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R is a US-n algebra. Hence we may assume that K is an infinite field.

From now on we assume that R is a K-algebra satisfying (21). Let e be a
primitive idempotent in R. Let {4,, 4,, -+, A;} be a set of submodules in eR
such that 4;*~A4; for any pair ¢ and j, where 4;~A4; means that there exists a
unit element x in eRe such that x4;C A4; or xA;DA;. Let m(e) be the maximal
number ¢ among the above sets.

Proposition 4. Let R be an algebra over K satisfying (21). Then R is a
right US-m if and only if m=max{m(e)} +1<co.

Proof. This is clear from [3], Corollaries 1 and 2 of Theorem 2.

Theorem 10. Let R be as above. We assume further J*=0. Then R is a
right US-m algebra if and only if e] is square-free for each primitive idempotent e.

Proof. Assume that R is right US-m. Since J?=0, e¢J=31P A4; the 4,
are simple, i.e. 4;~¢K, (R is basic). If A;,~A;, (a;+ak)K ~A; and
(a;+-ajk)K ~ (a;4a;k')K for any k=+k’ in K, where 4;=a,K ([6], Lemma
15). Then R is not right US-m for any m. Hence eJ is square-free. Con-
versely if e] is square-free, every submodule in ¢ is a sum of some A;. Hence
the number of hollow modules is finite, and so R is right US-m for some m from
Proposition 4.

Corollary. Let R be as above. If R is right US-m, e]'le]*" is square-
free for all 1.

Proof. It is clear that if R is right US-m, so is R/J* for any t (cf. [4],
Lemma 1). If J**'=0, ¢J" is semisimple and hence we can employ the same
argument given above. Therefore we obtain the corollary by induction on 7
and the initial remark.

It is clear that the converse is not true provided J*=0.

Finally we study the ring of generalized tri-angular matrices over division
rings A; as (1). If R is a (basic) hereditary ring (more generally if gl dim R/J?
<o), R has the structure of (1) [1].

Theorem 11. Let R be a (basic) algebra satisfying (21). Assume gl dim
R[J?< oo. Then R is a US-m algebra for some m if and only if [e;Re;:
K1<1 for all 4, .

Proof. Assume that R is a US-m algebra for some m. We may assume
that Ay =--=A,=0 in (1) by [4], Lemma 1. Let M;,=xKDx,KD:--.
Then [M;;: K]<1 as the proof of Theorem 10. Conversely, if [M;: K]<1,
¢;R contains only finitely many right ideals. Hence R is a US-m algebra for
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some m.

7. Examples

We shall give several examples of hereditary algebras with (%, n).
Let K C L be fields.
1. (K L\ . . . . ,

0 K) 183 hereditary ring with (%, 2) land hence (*,1). (If L=*K,
(*, 3) does not hold from Theorem 8.)

2. K (K\ (K\ (K
() (5) (<)

0K 0 0

0 0 K K

00 0 K

is a hereditary ring with (%, 1) but not (%,2). In this ring, eJ is a direct sum
of uniserial modules (cf. [8], Theorem 3).

3. (KLL
( 8 L 0] isa hereditary ring satisfying (%, ) for all » by Theorem 8
0L
4. K K (K\ (K K\
0
Kl \K/ \k/
0 K (K\ (K\ (K
()] 5)
: K/ \0/ \O
00 K K K
00 0 K K
00 O 0 K

satisfies all conditions in Theorem 1 except the last one of 1).

5. Let R be an algebra satisfying (21), and gl dim R/J*<co. Then if R is
right US-n, R is left US-m from Theorem 10 for some m. However n¥m

in general. For example R= (K 0 K ) . Then R is right US-2 and left US-3.
K K
K

If R does not satisfy (21), then the above fact is not true. Let LDK be fields

with [L: K]=5 (not small) and R:<K L). Then R is right US-2 but not
0L
left US-n for any 7.

6. Let K be a field. We can give the complete list of connected algebras
given in Theorem 11, provided that R is hereditary and |R/J | is enough small.
For instance, let |R/J|=6. We shall give some samples of them.
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US-8 (and (x, 2))

US-11 (and (%, 2))

MooooN
Moooi
Moo
Mo
NN

“\J
8 MoookX
© Moool
B Mo
Mo
MM
SE
RS
.hma\KOOKOK
5 Moo
L Mook
)
Mok
NN
S

US-4 (and (x, 3))

US-5 (and (%, 2))

Mo oMidid
Moo
Moo
NN N

Mo oMM
Moo
Moo

MO
N N

US-2 (and (*, 3))

US-3 (and (, 3))

SIVIVIVIVI
SIVIvIIY
MM
M
STV
M

~—————

RS2

Mo MMM
N oMK
MO NN
NN
NN
N

~—————

S

US-1 (and (*, 3))
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where e=e,.

(1]
[2]
(3]
[4]
(5]
(6]
7
(8]
9l

[10]

We do not have US-9 and US-10 algebras under the assumption |R/J|=6.
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