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0. Introduction

The theory of symmetric Dirichlet spaces and the probabilistic potential
theory built on Hunt processes were unified by M. Fukushima [8], M.L. Sil-
verstein [17] and others (see References in [8]). In particular, analysis based
on additive functionals (4F’s) and stochastic calculus related to symmetric
Dirichlet spaces were developed by M. Fukushima [8], M. Fukushima and
M. Takeda [9], S. Nakao [15] and M. Takeda [20]. On the other hand, the
theory of non-symmetric Dirichlet spaces was studied by J. Bliedtner [3, 4],
H. Kunita [10] eic.. Furthermore S. Carrillo Menendez [5] constructed the
Hunt process associated with a non-symmetric Dirichlet space. Then many
results in the symmetric case have been extended to the non-symmetric case
by Y. Le Jan [11, 12], M.L. Silverstein [18], S. Carrillo Menendez [6] etc..
The purpose of this paper is to extend those results in [8], [9] and [20] to the
non-symmetric case and thereby enlarge the range of applications of Dirichlet
space theory.

1. Summary of the results

We first give a precise definition of non-symmetric Dirichlet form. Let
X be a locally compact Hausdorff space with countable base and m a non-nega-
tive Radon measure on X such that supp[m]=X. L*X, m) denotes the real
L2-space with inner product

(u, )2 = SX u(x) v(x) m(dx) , u, vel¥X, m).

Let H be a dense linear subspace of L* X, m) which forms a Hilbert space with
a norm || ||z such that for some K>0, ||u||z=K||u||,2 for any uH. More-
over we assume that if uH, then |u|, uA1€H. In this article we consider
a bilinear form a on H X H which satisfies the following conditions;

(a.1) a, is coercive for any @>0, i.e., there exists a constant K,=K,(a)>0
such that a,(u, #) = K;||u||% for every u H,
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(a.2) a is continuous in the following sense; there exists a constant K,>0
such that |a(u, v)| S K,l|u||gl|v]|g for every u, vEH,
(a.3) a(Tyu, u—T,u)=0,
(a4) a(T,u, u—T,u)=0.
Here a,(u, v)=a(u, v)+a(y, v)2, a(u, v)=a(v, ) and Ty u=u*A1 (u*=uV0).
A bilinear form a which fulfills (a.1)~(a.4) is called a Dirichlet form on HX H,
and (a, H) a Dirichlet space on L¥ X, m). Let us note that, under the condi-
tions (a.1) and (a.2), the conditions (a.3) and (a.4) are equivalent to the next
ones respectively (see [10]);
(a.3)" a(u+Tyu, u—T,u)=0
and
(a4)’ a(u+T,u, u—T,u)=0,
In particular, if a is symmetric, (a.3)" reduces to the usual sub-Markov condi-
tion for a symmetric form that a(u, w)=a(T,u, Tyu). Let Cy(X) be the set
of all bounded continuous functions on X with compact support. From now
on we assume that H is regular, i.e., Co(X)NH is dense in H with || ||z and
dense in Cy(X) with uniform norm.

Let us now summarize the results and methods in the present paper.

In Section 2 we give some basic notions and the Beurling-Deny formula
for a; for u, ve Cy(X) N H,

(L1) L a0+ 4w, 9) = N, v)
+% S rrgon B@)—u()) ((x)—2(y)) o(dx, dy)

+% Sx u(x) v(%) X(dx)—l—% Sx () v() X(dx) .

Here N is a local symmetric form on CyX)NH; N(u, v)=0 if v is constant
on a neighbourhood of supp[#] (=support of #). o is a positive Radon measure
on XX X—A (A is diagonal) satisfying

[ uw)o(y) o (v, dy) = —aw o)

for u, & Cy(X) N H such that supp[«] Nsupp[v]=9. X (resp. X) is a positive
Radon measure on X satisfying

[, 46 X(@x) = a(o,0)— [ a(y) (1—o(x) o(dx, dy)
(resp. Sx u(x) X(dx) = a(v, u)— SXXX_A u(x) (1—o(y)) o(dx, dy))

for u, v&Cy(X)NH such that v=1 on a neighbourhood of supp[u] (cf. [4]).
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Moreover, in Corollary 2.16, we show that the representation (1.1) of a can
be extended to u, vEH (cf. [12] and [18]).

Let M=(P,, X,) and M——(ls,, X,) be the Hunt processes associated with
a and 4, respectively (see [5]). Let S be the set of all smooth measures of M
and A} the set of all positive continuous AF’s of M. S. Carrillo Menendez
[6] showed that S and A7 are in one to one correspondence which is charac-
terized by the following relation; for A€ A} and €S,

(12) Byal [, f(X) 4] = | <, B>

for any non-negative Borel functions f and # on X and #>0 (see [8] for the
symmetric case). Let the couple (H, N(y, dx)) be a Levy system of M (see
A. Benveniste and J. Jacod [2]) and » the smooth measure corresponding to
He A}!. In the same way we can consider N, ». In Section 3 we show that
o(dx, dy)=N(y, dx) v(dy), X(dx)==N(y, 8) v(dy) and )A((dy)zlv( ¥, 8) ¥(dy) (see
Theorem 3.8 and Remark 3.9).

In Section 4, for any AF A4, we define

(1.3) e(4) = lim %~ E,,,[S ~at 42 1]

a-roo

if the limit exists. e(A) is called the energy of 4. We define the mutual energy
of AF’s A and B by e(4, B)=1/2(e(A+B)—e(4)—e(B)). Then we show
that (ﬁltt, e) is a real Hilbert space, where M is the set of all martingale AF’s
of finite energy, and that the AF

A = 4(X,)—a(X,) (%@ isa q.c. version of uEH)
has a unique decomposition
(1.4) A — ML NW | (e G, NHed],,

where Jl, is the set of all continuous AF’s of zero energy M. Fukushima [8]
proved the above results in the symmetric case. Moreover we show that

(1.5) e(A™M) = a(u, u)— %@2, >

M. Fukushima [8] defined the energy of AF 4 by
I | .

(1.6) ¢(4) = 1'1‘1‘1)1 55 E, [Af]

In the symmetric case it holds that

(1.7) 1‘1?01 7 (u—pyu, u)2 = a(u, u)
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and hence
(1.8) 2(A™) = a(u, u)—% i, K>

(see Remark 4.6). But, in the non-symmetric case, we do not know the valid-
ity of (1.7), and hence we can not prove (1.8). It is known that M has a
decomposition;

MU — el ](4["] = chﬂ“]—l- J\Zﬂ"]—l— M

c d
where M1 and M™ are the continuous and purely discontinuous part of /"]
j k
respectively, and M and M are defined by

k j d k
M — _@, Mt — AU i

Here, ¢ is the life time of M and for AF A, 2 denotes 4—A? with A? being
the dual predictable projection of A (cf. [7] and [9]). The smooth measure
corresponding to A€ A} is denoted by p,. If A (w0)=A"(0)—AP(0), AD,
AP A} and if p,w, =1, 2, are bounded measures, then the measure u,
corresponding to 4 is given by u,m—p,@. In particular, for M, Me H
(u,o€ H), we use the abbreviations ¢, ,» and fi¢, 5 fOr peyte yto1y and p e Gony,
a=c, d, j, k, respectively. The symbol <M, N> is the quadratic variation of
M, Ne M. In Theorem 4.9 and its collorary, we prove that for u, vEH,

(1.9) Py (@y) = Sx (@ (%) —1()) (9(x)—D()) o (dx, dy),
(1.10) Pocun(dy) = T(y) D(y) X(dy)

and

(L.11) 5 BanlX) = N@wo).

In Section 5 we prove the derivation property of ¢, ,»; for u, v€ H, (=the
set of the essentially bounded functions in H) and we H,

(1.12) At Gun,03(%) = (%) A ,05(®)F (%) dpp (o5(%)  (¥EX).

This formula was already proved by Y. Le Jan [12] (also cf. [8]), but here we
give an alternative proof based on the martingale theory. As an application
of the equality (1.12), we prove a stronger local property (see Corollary 5.10)
of the symmetric form N.

In the beginning of Section 6 we introduce the notion of general Dirichlet
form due to H. Kunita [10], for the condition (a.l) is too restrictive to give
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interesting examples. This notion is a little more general than the preceding
definition of Dirichlet form in the sense that the coercivity condition (a.l) for
a, is only assumed for a large enough. The basic analyiical results on the
Dirichlet form are known to hold for the general Dirichlet form with minor
modifications ([4], [12]). It is also known that any regular general Dirichlet
space admits an associated Hunt process ([5]). Further the arguments in
the present paper only involve a, for sufficiently large «. Therefore all of
the present assertions for the Dirichlet form persist to hold for the general
Dirichlet form. We will give several examples of general Dirichlet forms
which illustrate the usefulness of the theory of non-symmetric Dirichlet space.
As the first example we exhibit a class of bilinear forms given by
d

(1.13) f@my=ég¢mﬁﬂavw—zgbwﬁ£m+§amm
D D

ihj=1 Ox; Ox; i=1Jp ox;

for u, ve H'(D). Here D is an open set of R?; H*(D) is the Sobolev space of
order 1; the coefficients a;;, b;, 7, j=1, 2, -+, d, and ¢ are bounded measurable
functions on D satisfying certain additional conditions. Moreover we show
that this class contains the form corresponding to the differential operator L,
treated by H. Osada [16], given formally by
L=I435 0
= = (x,- x,) o ,

i

where L° is the generator corresponding to a’
Next, we consider the case with boundary conditions in an orthant. Let
D= {x=(§, x;)€R?: E€R*"!, x,>0}, 0D={x=R’: x,=0} and for u, v H(D),

(1.14) a(s0) = a0 -3 | 88 o, 0) 45 g,
i=1 Jop 0&;

where B;, i=1, 2, -+, d—1, are functions on 0D with bounded derivatives of
first order and satisfying certain additional conditions of the same type as for
b;. 'Then, in Theorem 6.2, we show that a is a general Dirichlet form on D
=DU0D. If the generator corresponding to a’ is the Laplacian, then the
process associated with a given by (1.14) is a Brownian motion with oblique
reflection on D.

Finally we give an example of non-local form which is a slight generaliza-
tion of Example IV. 3.2 in [5].

2. Basic notions and the Beurling-Deny formula

Let X, m and (a, H) be given as in Section 1.
DeFiNiTION 2.1. The generator (L, D(L)) of a is the operator from (L)
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= {uc H; there exists we L (X, m) such that a(u, v)=(—w, v),2 for all vEH}
to L¥ X, m) and defined by

Lu=w  for uc9(L).

We see that (L, 9(L)) is the infinitesimal generator of a strongly continu-
ous contraction semigroup (7');> of operators on L*X, m). This is contained
in the following theorem.

Theorem 2.2 (H. Kunita [10]). For each a>>0, there exists a uniquely de-
termined bounded operator G, from L*(X, m) to H such that
(1) a,(Guu, v)=(u,v)2 (ELXX, m), vEH),
(i) Gu,—Ge+(a—pB) G,Ge=0 for any a, 3>0,
(i) llaGulls=<|dl: WEIX,m),
(iv) ll_f& aGu=uin H as in LA(X, m),
W) (al-L)"=G,
(vi) aG, is sub-Markovian, ie., 0<aGu=1 m-a.e. whenever ucLX, m),
0=u=x1 m-ae..

The family (G,),so is called the resolvent of a. By the same method we
can define the co-resolvent (é‘,)m>o of a such that

4,(G,v, u) = a (u, Guv) = (u,0)2.

RemARKk 2.3. Let

T,u=lime 53 O (G, u, ucLAX, m).

Then (T});>, determines a strongly continuous contraction sub-Markovian
semigroup of a.

DEerFINITION 2.4. Let T' be a non-empty convex closed subset of H. u is
called the a,-projection of we H, written by u=[]f*(w), if 4T and a,(u—w,
v—u)=0 for any v €T (@>0).

DErFINITION 2.5. A positive Radon measure g on X is said to be of finite
energy integral if

[ 1o s el @ecxnm)
for some constant ¢>0.

We denote by S, the family of all positive Radon measures of finite energy
integral. p<S8, if and only if there exists for each >0 a unique function
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U,u€ H such that
8,(Uatty ©) = |_0(x) u(dv) (0EC(X)NH) .-
We call U, an a,-potential. Similarly we can define an a,-potential U,u.

REMARK 2.6. By Stampacchia’s representation theorem (see [3]), there

exist the a,-projection and the a,-potential.
Let A be an open set of X and define a closed convex subset H, of H by

H,= {vEH: v=1 m-a.e. on A} .
If H,= ¢, then there exists uz=I1%(0)EH, and uj is an a,-potential (¢>0).

DeFINITION 2.7. We define the capacity of an open set AC X as the num-
ber

ap (4) { = =
C =
P ajup,uy) if Hy+¢.

u is called the capacitary potential of A. And for any subset ECX we define

cap (£) = {a,(u};, ug) if Hy+ ¢,

where

H,= U H, and uk = TI1#4(0) .
4 is open

Let O(E) be the set of open sets containing E. S. Carrillo Menendez [5]

has proved that if there exists A€O(E) such that H,=+¢, then cap(E):éi(xgl)

cap(A4). Itis also known that if 4 and B are open sets and AC B, then cap(4)
=cap(B) (see [3]). Then it follows that if ECF, then cap(E)=cap(F) and
hence cap(E)= in£ cap(A4).

Hc

4 is open
The co-capacity cip(E) of ECX is defined by using a instead of a.
Set
Sw = {n€8p: p(X) =1, ||Uplla<oo},
and

S = {uESy: u(X) =1, [|[Uplle<oo} .

The following lemma can be proved by the same method as Theorem
3.3.2in [8].
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Lemma 2.8. The following conditions are equivalent for a Borel set AC X
() cap(4)=0,
(i) cip(4)=0,
(i) u(A4)=0 for any pE S,
(iv)  u(4) =0 for any pE Sy,
v) w(A)=0 for any pES4.

Let A be a subset of X. A statement depending on x&X is said to hold
q.e. on A4 if there exists a set NC A of zero capacity such that the statement
is true for every x& X—N. ‘“q.e.” is an abbreviation of ‘“‘quasi-everywhere”.

DEerFINITION 2.9. An extended real valued function f on X is called guasi-
continuous (q.c.) if for any €>0 there exists an open set A such that
(i) cap(4)<ée
(ii) f|x-4 is continuous on X—A4.

ReMARK 2.10. In the same way as in the symmetric case [8] it is shown
that any element of H has a q.c. version.
Let

a™(u, v) = a(u—aGu, v)2
for any >0 and u, ve L X, m).

Lemma 2.11 (H. Kunita [10]). (i) Let ucL*X, m). Then ucH if and
only if sup a™(u, u)<<oo.
a>

(i) For any u, ve H, lim a®™(u, v)=a(u, v).

Let
a(u, v) = —; (a(u, v)+a(w, v)) (u,veEH).

Clearly (a, H) is a symmetric Dirichlet space and it holds that a(u, #)=a(u, u)=
a(u, ). Hence we have the following lemma (see [8]).

Lemma 2.12. (i) If ucH, then Tuc H and a(u, u)=a(Tu, Tu) for any
normal contraction T.
(i) If u, v are bounded functions in H, then uwweH and a(uv, uv)*<||ul|.
a(v, 0)2-+ [[ol| a(u, u)'~.
(i) If ueH and u,=(—n\u)An, then u,cH and u,—>u as n—oo with re-
spect to || || &
(iv) If ucH and u®=u—((—&E)Vu)A\E (6>0), then u®cH and u®—u as
&—0 with respect to || ||u
(v) Let D be an open set. Then Cy(D)NH is dense in H” with || ||z, where



NonN-syMMETRIC DIRICHLET FOrRMS 339

H = {veH: v=0 q.e. on D}.

Lemma 2.13 ([8]). If the resolvent (G,),>o is positive, then there exists a
unique measure o, on X X X such that

(2.1) o Sx G, u(x) v(x) m(dx) = Sxxx u(x) v(y) o4(dx, dy)

for every Borel functions u, ve L*(X, m).

Using Lemma 2.11, we can define a unique Radon measure o on X X X—A
such that o,—>0o vaguely on X X X—A as @—>c0 and

2.2) SXXX_A () o(y) o(dx, dy) = —alu, )

for any u, ve Co(X) N H such that supp[#] Nsupp[v]=¢. By the same method,
we can define the measures &, and & if we replace G, and a by G, and 4 in (2.1)
and (2.2). It is easy to see that o(dx, dy)=4(dy, dx).

Lemma 2.14. (i) For any relatively compact open set DC X, there exists
a unique Radon measure X, on X, supported in D, such that for every ucs Cy(D)

2.3) S (%) Xp(dx) = lim aS () (1— aG, Ip(x)) m(dx) ,
X gl X
and it holds that if D' is a relatively compact open set such that D D', then Xp=

Xp on D.
(i1) There exists a unique Radon measure X on X such that for any ueCy(X),

2.4) Sx u(x) X(d) = lim Sx w(x) Xp(dx) .

Moreover, if u, vEC(X)NH and v=1 on a neighbourhood of supp[u], then the
measure X satisfies the equality

(2.5) SX u(x) X (dx) = a(v, u)—S » u(y) (1—v(x)) o(dx, dy) .

XxX

Proof. Let uCy(X)NH and v=1 on a neighbourhood of supp[u].
Then, by Lemma 2.13, we have

(26) a®wo) = | u(3) (1—o(x) oulds, dy)
+an u(x) (1—aG, Ip(x)) m(dx)

which implies that the measure a(l—aG, I5(x)) m(dx) is uniformly bounded
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on D. Hence there exists a subsequence {a,} of {a} and a positive Radon
measure Xp on D such that

a,(1—a, G, Ip)m— X, vaguelyonDas a,— .

Thus we have
[, 1) Xold) = lim [a (0, —{ ~ u(y) (1—0(®)) o, (35, )]

—a@,u)—|  uy) (o) ol dy).

This show that X, is uniquely determined independently of the choice of {a,}
and satisfies the equality (2.3). Let D’ be a relatively compact open set such
that DCD’. Then it is clear that X,=X, on D. It is easy to see that (ii)
follows from (i). 'The proof is complete.

By the same method, we can define ¥, and X if we replace G, by G, in
the above lemma. Then X satisfies for the above u and v,

(2.7) SX u(x) X (dx) = a(u, 7))—5“1{_A u(x) (1—v(y)) o (dx, dy) .

Theorem 2.15 (Beurling-Deny formula). The regular Dirichlet form a
on L X, m) can be represented for u, v Cy(X) N H as follows;

2.8) Law ot aw o) =N o)
+% SXXX_A (u(%)—u(y)) (v(¥)—2(y)) o (dx, dy)

+% Sx () o) X(dx)—|—% SX () o(x) X(d¥) .

Here N is a symmetric form with domain Co(X)NH and satisfies the following
condition;
(2.9) N(u, v)=0 for u, v Cy(X) N H such that v is constant on a neighbourhood

of supp[u]. o is a positive Radon measure on X X X— A given by (2.2). X (resp.
X) is a positive Radon measure on X given by (2.5) (resp. (2.7)).

Proof. Since (a, H) is a regular symmetric Dirichlet space on LA X, m),
we get for u, vECy(X) N H,
(2.10) a(u, v) = N(u, v)
1

T SXXH (u(x)—1(y)) (v(x)—2(y)) a(dx, dy)
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+{ ) o) @),

where N is a symmetric form satisfying (2.9), & is 2 symmetric positive Radon

measure on X X X—A such that
(2.11) [ ww)o()ods, dy) = —a(w, )
XXX-A

for any u, ve C(X) N H with disjoint supports, and X is a positive Radon meas-
ure on X such that

@10 [ a6 R =8 o)~ | (@) —u) @&—o(y) olds, dy)

for any u, v&Cy(X)N H such that v=1 on a neighbourhood of supp[#]. But

by the definition of o and &, we can see that 6——:%(0‘—[—6'). And (2.12) implies
that

| u %@ =50 o—{  uo)@o)—ow) o a)

— a0} | u(y)(1—o() olds, dy)
+odn o) () (1—0(9) é(dx, &)
- % {. u(x)a‘c(dx)Jr% [ a9

Hence X=~;—(X+ X). Now let N=N, then N satisfies the condition (2.9) and

(2.13) % a(x, v)+% A(, v) = a(u, v)
= N(u, v)

+ SXXX—A (u(x)—u(y)) (‘I)(x)——'v(y)) o(dx, dy)

1
4
“% SM-A (u(%)—u()) (o(*)—2(y)) 6(dx, dy)
g 10 00 X § ) o) ).

Since the second and third terms of the right hand side of (2.13) are the same,
(2.13) implies (2.8). 'The proof is complete.

Let D be any relatively compact open subset of X. For non-negative
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u=Cy(X)NH with supp[u]CX—D, we define the positive measures o, &,
and &, on X by

aud) = L) |_uw) o, dy),

budy) = In(y) | _u(x) 6(d, dy)

and
5.(dy) = () | _u(x) o(d, dy)

We use the notation HP={veH: v=0 q.e. on D°}. Since &, E S, with respect

to the restriction aP=a| z2, g» and &=%(o-—l—6‘), so do o, and &,. The equality

(2.10) implies that for any ve Cy(X) N H,
S o (%) R(dx) <i(o, v).
X

This implies that I,-X&S, and hence I-X, Ig+XES, for any compact set
KcX. Thus, using the same method as Lemma 4.5.4 in [8], we have the
following corollary.

Corollary 2.16. The representation (2.8) of Dirichlet form a extends to
u, vEH,;

1

(2.14) %a(u, 0)+L 4(u, v) = N(x, v)

2
+%‘ SXXX—A (ﬁ(x)—ﬁ(y)) (0(‘”)—@(3;)) o (dx, dy)
7 ], #0920 X+ [ 26a) 00) ),

where % and D denote q.e. versions and N is a symmetric form on H X H satisfying,
for u, ve H with compact support, N(u, v)=0 if v is constant on a neighbourhood of
supplu].

3. Jumping and killing measures

Let M=(Q, P,, §, X,) and M=(Q, 15,, é, X,) be the Hunt processes
associated with a and a, respectively, which were constructed by S. Carrillo
Menendez [5]. We denote by S the family of all smooth measures (see [8]).
It is known that xS if and only if there exists a nest {F,} of u such that
Ir, nES, for each n (see [8]; Theorem 3.2.3) and that a set NCX is ex-
ceptional if and only if cap(V)=0 ([11]).



NonN-sYyMMETRIC DIRICHLET FORMS 343

The transition function and resolvent of M is denoted by (p,);>o and (R,)e>0
respectively. Then for any ue L* X, m), pu and R,u are q.c. versions of T,u
and G,u (f, a>0) respectively (see [5]). The restriction M” of M by an open
set D is the Hunt process associated with (a?, H?), where H’={ucH: u=0
g.e. on D} and a?=a| zo,52. Let (R2),>, be the resolvent of MP. We define

H¥(x, E) = E,[exp (—aoy Ix(X,,)] (a>0, x€X, EE8(X)),

where M=D° and o, =inf {>0: X,eM}. Then we have the following rela-
tions;

(.1) HY—HY = (B—a)R2HY
and
(3.2) R,= R2+HY¥R,

Similarly we can define the kernels R,, R?, p, and HY related to M.

Lemma 3.1. There exists a unique positive Radon measure k on X charg-
ing no exceptional set such that for any us Cy(X)U H,,

(3.3) <@, ky = lim an u(x) (1—aR, 1(x)) m(dx)
—tim L | u(x) (1—p, 1)) m(a»),

where H, is a set of all elements of H with compact support in X and @ is any q.c.
version of u.

Similarly £ is given by replacing R, and p; for R, and p, in (3.3).

Proof. Let D, D, and D, be relatively compact open subsets of X such
that DcD, and D,CD, If ueCy(X)NHP: and vECy(X) N HP, then

a0 = ) @(y)—o(®) ouds, )
+“SD1 w(w) v(x) (1— R, Ip,(x)) m(dx) .
Fix v satisfying v=1 on D;. Then
a0, = | u(y) (1—o() o.(ds, dy)
+af u) (1—aR, In() mds)

This implies that the family of maps
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(3.4) F2:uw an u(x) (1—aR, In(x)) m(dx)

is equicontinuous on H”1, In fact, for any ue Cy(X) N H"1,

(3.5) [Fiw)|=Fa(lul)=a®(v, |ul)
=C{a(v, v)+(v, v),2}"2 a,(|u|, |u|)** by Lemma 3.1 of [10]
=Ca,(u, u)* by Lemma 2.11,

with some constants C; and C. It is trivial that {F2} is equicontinuous on
Co(D). Let

F(u) = aSX u(x) (1—aR, 1(x)) m(dx)

Then, since F,(#)<F2(u) for any positive Borel function », {F,} is equicon-
tinuous both on H” and on Cy(D). Consider the case that u=Rg f, 8>0, f&
CyD). Then, by (3.2), we have

(36  Fuw=al REf()(1—aR? 1(x)—aHR, 1(x)) m(dx)
= a_f(x) (RE 1()—aRERZ 1(x)) m(dx)
—a?(_f(x) RRHYR, 1(x) m(d)
Using the resolvent equation and (3.1), the right hand side of (3.6) is equal to
af f(x) (R2 1(x)— BRERZ 1(w) m(d)—a?| f(x) REHER, 1(x) m(d)
and this converges to
[ £(x) 1= 8RS 1) m(dx)— | _f(x) H¥ 1(w) m(d)

as ¢—>oco. Since the range of R?, 8>0, is dense in H? and {F,} is equicon-
tinuous on HP?, F,(u) converges to some limit as a¢— oo for any uHP. By the
regularity of (a?, H®), H? N CyD) is dense in Cy(D). Again by the equicon-
tinuity of {F,} on Cy(D), F,(u) converges as a—>oo for any ucCy(D). Since
D is arbitrary, there exists a unique positive Radon measure & such that for
any € Cy(X), <u, k>='1”i+12 F,(u). And for each D,

[<u, k> = |lim Fo(u)| =C a,(u, )" (ueC(D)NH?).

This shows that & charges no set of zero capaicty in D and <{#, k>=Ilim F,(u)
@->o0

for any u HP. Since D is arbitrary, k charges no exceptional set and <#, kD=
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E_’m F,(u) for any ucH, Hence the measure k satisfies the first equality of

(3.3). The second equality of (3.3) holds by Karamata’s theorem (see D.V.
Widder [22]; Theorem 5.4.3). The proof is complete.

ReMARK 3.2. In the proof of the above lemma, we have seen that the
family of maps F2 in (3.4) is equicontinuous both on H? and Cy(D). Hence,
by Lemma 2.14 and the argument similar to that for the family {F,}, it follows
that

(7)) <@, % =lim aSX u(%) (1—aR, In(x)) m(dx) for any ucH?.

Lemma 3.3 (cf. [8]; Lemma 4.5.2). The measure k in Lemma 3.1 satisfies
the following conditions;
(i) For any ucH,

(3.8) <, ky = lim ocSX u(x)? (1— R, 1(x)) m(dsx)

—tim - { (e (1—p, 1() m(ds),

(ii) For any f, he B*(X) (=the set of all positive Borel functions) and t>0,
:
(3.9) Byl [(Xs): 1=t = | < B> a5,

(ili) E,[e”*f(X,.)] is a g.c. version of U,(fk) for a>0, feC7(X).

Proof. Since al@, is sub-Markovian, it holds that
(3.10) as u(xy (1—aR, 1(x) m(dx)§2a§ w(z) (u(x)— aR,, u(x)) m(dx)
X X

for all uc H (see the proof of Proposition 1.3.3 in [12]). By Lemma 2.11 and
Lemma 3.1, we have
<, ky=<2a(u,u) forany ucCy(X)NH.
By Fatou’s lemma, we have
(3.11) <@, k><2a(u, u) for any ucH.

From Lemma 3.1 and (3.11), the statements (i), (ii) and (iii) follow by the same
way as Lemma 4.5.2 in [8]. 'The proof is complete.

ReEMARK 3.4. The statement (3.9) is equivalent to the following;

(3.12) Eynle f(X:2)] = <fk, R, f, hE B*(X), a>0.
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We can give a direct proof of (3.12). In fact, let D be any relatively compact
open set of X and feCg(X) and supp [f]cD. Then fRAcH? (heCi(X))
and it holds that

{fhy Ry = <k, fRIY
= lim BSX fR (11— B8R, 1) dm

— lim B]_AR.[f(1— R, L] dm.
But we have

BRI f(1—AR, )] (x) = BE| e f(X,) Ex,[e ] dt]
— BE[ e f(X) "¢ ]
and this converges to E,[e”* f(X;.)] as B—>co.
Theorem 3.5. k=X and h=%X.

Proof. By the definition of X and k, it is clear that A<X. Hence we
prove that k=X. Take D and D, as in the proof of Lemma 3.1. For any
f€C§(X) N H such that supp [ f]CD and any ke C§(X),

<fx, RERY = <X, fR2E>=<{Xp,, fROE)
— lim ocsx FRPh(1—aR, I,,) dm by (3.7)

@->oo

— lim agx hR2[f(1—aR, I,,)] dm

<lim an hR2[ f(1—aR? I,)] dm

= Eh-m[e_(gml’)f(X(cAvp)—)]

where T,=0x_p. The last equality follows from the same calculus as Remark
3.4. Letting D 1 X, we have

f% RIYSEpale™ f(Xe )] = <fo, R .
This shows that X<k. Similarly we can see X=F. The proof is complete.

In the present paper, the definitions of additive functionals and related
concepts (continuous, square integrable etc.) are taken in the sense of Fukushima
[8]; Chap. 5. Let A; be the set of all positive continuous AF’s. Hence-
forth we use the notations;
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Usf@) = Ef{ e f(X)da) and (fd),={ f(X) a4,

for A= A} and feB*(X). The set of all smooth measures on X is denoted by
S. The following theorem is proved in [6].

Theorem 3.6. For pn=S and A< A}, the following conditions are equi-
valent to each other

(1) Uiafis a q.c. version of U,(fu) for any feB*(X) such that fucsS,.

(i) (k U%f),=<fu, R, a>0, f, he B*(X).

(i) Epn( fA),]:S: fy B> ds, 10, f, he BH(X).

(iv) llg_} Y a(h, U f)=<fu, k) for any y-co-excessive function h and f= B*(X).

v) 1’1:? —i—E,,.,,,[( fA)J=<fw, k> for any 7v-co-excessive function h and fE B*(X).

Moreover, S and A; are in one to one correspondence which is characterized by
one of above statements.

Let DCX be an open set, A7 (D) the set of all positive continuous AF’s
of MP and SP? the set of all smooth measures related to a®’. Theorem 3.6 holds
on D, ie., 8” and A?(D) correspond to each other in a unique manner. For
As Al let AP=A,, € A}D).

Lemma 3.7. If u is the smooth measure corresponding to A, then u|p is
the measure corresponding to AP,

Proof. In the same way as in the proof of Lemma 5.1.5 in [8], we can
show that Theorem 3.6 (iv) is valid on D, and this completes the proof.

By A. Benveniste and J. Jacod [2], there exists a couple (H, N(y, dx)),
so called Levy system of M, of H= A} and a kernel N such that

E, [o:?';,f(X" X, ) Iix,+x, 3] = E,[S: dH,SXU " N(X,, dy) f(X., »)]

for any x X and any positive Borel function f on (X U {8})x (X U {8}) (8 is an
extra point).
Now we give the main theorem of this section.

Theorem 3.8. Let v be the smooth measure corresponding to He A}.
Then we have
(1) o(dx, dy)=N(y, dx) v(dy) on X X X—A,
(i) X(dy)=M(y, ) v(dy) on X.

Proof. (i) Let u, v€C(X)NH and DCX a relatively compact open
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set satisfying supp[v]cDcD and supplu]cM (M=D"). We already re-

marked that the measure o-,‘(dy)=ID(y)S u(x) o(dx, dy) is of finite energy in-
tegral with respect to a?. 'Then x

al(aRl u+HY u—u, v)
= a(u, v)2+al(HY u—u, v)
= a(u, v)2t+a(HY u—u,v) (= HYu—ucsHP)
= a(u, v)2—a,u, v) (v a(HYu v)=0 (see[l1]))

= —a(w,9) = | uw) 2(3) o(dx, dy) = { w(y) ()
= <°-a) 7)> = ag(Ug(O',‘), 7)) )
and hence, for x€D,

U2(c,) (x) = aRZ u(x)+HY u(x)—u(x)
= HYu(x) (- supp[u]cM)
= E.[exp(—aoy) U(Xoy)]
— B3 esp(—as) X))

= B[ exp(—as) Nu(X,) dH]
where
Nu(y) = Sx u(x) N(y, dx) .

Hence o, is the smooth measure corresponding to ((Nu) H)?. On the other
hand, by Lemma 3.7, ((INu) v) | is also the measure corresponding to ((/Nu) H)P.
Therefore o,=((Nu) v)|p. Thus

Sxm u(x) v(y) o(dx, dy) = Sx %) ou(y)
= ) 20) NG, d) ()

and this implies that o(dx, dy)=N(y, dx) v(dy).

Now we prove (ii). For any feCg(X), we have, by Lemma 3.3 and
Theorem 3.6,

[, < 8,15 ds = B[ £(Xe-) cca]
== m[S:f(Xs) N(Xs’ 8) st]
— S:<fN(., 8) v, p, 1> ds
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which implies that N(-, 8) v=k=X. The proof is complete.
In this section, we have proved that
a(dx, dy) = N(y, dx) v(dy) on XX X—A
and
X(dy) = k(dy) = My, 8) v(dy) on X
which are called the jumping and killing measure of M respectively.

Remark 3.9. Let (Iq, N( ¥, dx)) be a Lévy system of the Hunt process M

and » the smooth measure corresponding to He A;.
Then it holds that

&(dx, dy) = N(y, dx) d(dy) on XxX—A
and

X(dy) = k(dy) = N(y, 8) ?(dy) on X.

4. The energy of AF’s and a decomposition of AF’s of finite energy

In this section, using the notion of the energy of AF’s, we give a decom-
position of AF’s generated by functions in H.

DrerFINITION 4.1. For any A€ A (=the set of all AF’s) we define
. aZ )
1) e(4) = lim 2" E,,,[g e A% d1]
ar 0
whenever the finite limit exists., e(A) is called the energy of 4. And we define
the mutual energy of AF’s 4 and B by e(4, B):% [e(A+B)—e(A)—e(B)].
ReMARK 4.2. M. Fukushima [8] defined the energy of AF A4 by
I | .
4.2) e(A) = 1‘131 g3 E,[A47].

If &(A4) exists, then e(A4) is well defined and e(4)=ée(A4).

For any A€ A, the smooth measure corresponding to 4 is denoted by
4. We consider the families

M= {MecA: forqe =x€X, E[Mi]<oco and E,[M,] =0 (>0)}

and
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= {MeM: e(M)<oo} .
For any M Ej'l it holds that

(4.3) e(M) = &M) = sup - Em[M = ”‘(M)(X)

(see [8]). Here the symbol <M is the quadratic variation of M Ej'l (see [7]).

Lemma 4.3. Let AEA+ Then
i) <, Usifo= <f;LA, w v for a>0, vCS, andeB"”(X)
(ii) E,,[A,]Se‘lIUl V|| p4(X) for t>0 and zzES(,o

Proof. (i) For any feB*(X) such that fu,ES,, it holds that
v, U f>=<v, Uy fus)> by Theorem 3.6

= aa( Ua(fII'A)’ lA]u v)
= <fll'A, U, v

Let fe B¥(X) and f,=1I (fAn), n=1, 2, ---, where {F,} is a nest of p,. Then
v, Usf> =lim <o, Usf,
= lim<f, pay Uuwd
= fpa Usv).
(i) E[A]se' <o, B e dAD
=¢'<v, Uy 1D

= &' {iny, Ul v by (l)
= ¢! ||U, v||epa(X) .

Using (4.3) and Lemma 4.3 (ii) instead of (5.2.17) in [8], the following
theorem can be proved in the same way as Theorem 5.2.1 in [8].

o
Theorem 4.4. M is a real Hilbert space with inner product e. Moreover,

for any e-Cauchy sequence M" Ejlorl there exist a unique M ejol't and a subsequence
n, such that hm e(M"—M)=0 and for qe. x€X, P,(lim M3=M, uniformly

[ 5and
on any finite mterval of t)=1.
Let

Jl,.={Ne€A: N is continuous and for q.e. X,
E [N, ]<oo (t>0) and e(IN)=0}.

We define
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(4.4) AN = 4(X,)—a(X,) (¢>0)
where # is a q.c. version of uc H.
Lemma 4.5. A™ s of finite energy and for u, veE H

4.5) e(AM, At = ~%zi(u, v)—i—% a(u, v)——% am, X .

Proof. By the definition of e,
e(Ar)
—lim & o E,,[S'” (X)) — A( X)) di

= hm——g (Ry w(x)*—2u(x) R, u(x)+ #(x)?) m(dx)

a-»o

= llf.} o [Sx (Ry u(x)z—— p. u(x)?) m(dx)—l—ZSx (% u(x)?—u(x) R, u(x)) m(dx)]

II

g u(x)’ (1R, 1(x)) m(dv)+lim cr(u—tRy i, )2

l
S a@(x)? k(dx)+a(u, u) by Lemma 2.12 and Lemma 3.3

l

N]H Ni»—* N]H

s a(x) %(dx)+a(u, u) by Theorem 3.5.

The equality (4.5) follows from the definition of the mutual energy. The
proof is complete.

REMARK 4.6. Similarly, by the definition of &, we have
4.6)  (AM) = 11m ~ =, u)Lz—l lim 1 S (%) (1—p, 1(x)) m(dx) .
X

In the symmetric case, it holds that

4.7) ltl{l;l — (u—py u, u)2=a(u, u)
and hence
(4.8) #(AM) = a(u, u)—% SX (%) R(dx) .

But, in the non-symmetric case, we do not know the validity of (4.7), and hence
we can not prove (4.8).
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Lemma 4.7 (cf. [8]; Lemma 5.1.1). For any u€H, vES, 0<T<<x
and >0, it holds that

CeT

4.9) P,,(os<L‘1£T |#(X) | >6)< - a,(U, v, U, v)"? a\(u, u)?

for some constant C>0.

Proof. Let E={xeX: |#(x)|>&}. Then the left hand side of (4.9) is
dominated by

4100 e ped) (2= Elem)
= a(p, Uy)
<C, e ap, p)*a (U, v, U,v)”? by (a.1) and (a.2)

= C,¢" a\(uz, uk)'? a(Up, Up)2,

since p is a q.c. version of the capacitary potential ux of E. By the definition
of E and u}, we have

a(ub, b7 a(lul, [ul) < C a0,

and this completes the proof of Lemma 4.7.

For the AF A™ generated by & H, we have the following theorem (see
[8]; Theorem 5.2.2 for the symmetric case).

Theorem 4.8. For any uc H, A™ admits a unique decomposition;
(4.11) AW = Yt N, e H, N T,
Moreover, it holds that for u, ve H,
(4.12) oM™, }1) = % a(u, 'u)—}—% 4y, v)———% <av, %>

Proof. The uniqueness is trivial. The equality (4.12) follows from
(4.11) and Lemma 4.5. We show the existence of such M™! and N™. First
we consider the case of u=R,f, feCg(X). Then Lu=u—f. Let

N1 — S' Lu(X,) ds
0

and

t
M = AE“I—SO Lu(X,) ds.
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Then q.e. x€X,
E[MP) = py u(w)—u(x)— | pu—r)ds =0.
Since
(MBS 36( X, -+ 35X+ 3(NBIY2,
we have, for all £>0,
E[(M¥)<oo forany »ESy.
By Lemma 2.8, for all £>0,
E[(M¥)]<oco qe. x€X.
Since M is a martingale, it holds that
qge. xEX, E[(M¥)?]<co forall ¢>0.

Thus ME“]E.ﬂl?i. Let Lu=g. Then

EANY) = 28 2(X,) | 2(X.) dods]
=2([7 (5.1, ap, )2 was
=2 (1 2 [ pg o) as
<llglfsa-2.

This implies that e(N1))=0 and hence N™¥JeJl,. Next, for any uH, there
exists #,=R, f, (f,€Cy(X)), which converges to « in || ||z as n—>c0. By the
uniqueness of the decomposition (4.11) for u,’s, we have

(MU — Ty — o ML=+
= a(un_"um’ un—um)_—;_ <(un_um)z’ *>

ga(u,,—u,,., Uy—Uy,)
— 0 as n, m—oo

Hence {M™#1} is a Cauchy sequence in (j/l, e). Then, by Theorem 4.4, there

exist a unique M™e& M and a subsequence #; such that
o
MU — M in (H, e) as n—>o0

and q.e. x€X,
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(4.13) P, (lim M= M%1 uniformly on any finite interval of #)=1.
ilk—>°°

Let Nt“1=A— M4, By virtue of Lemma 4.7 and the definition of A, the
statement (4.13) for A™ holds. Hence the statement (4.13) for NT*1 holds.
This implies that NI is a continuous AF. It is clear that q.e. x€X, E,[|Nt|]
< oo for all £>0. Now we prove that ¢(NI*1)=0. Since

NT#1 — A[“-“n]_(M[“]-M"n])+N[”n] ,

77 s o

< 3e( AL~ ) 3e( M1 — MT*¥1) | 3(NT“A)

—0 as n—>o0, by the same calculus as above. Thus e(Nt1)=0. The proof
is complete.

Next we give a decomposition of Ml (v H). Let
M, = {MeM: P(M(w) is continuous in ) =1 q.e. x€X}
and
My= {MEM: {M,Ly=0 forany L& M} .

P.A. Meyer [7] showed that the martingale AF M™ has the following decom-
position;

c d ¢ d
(4.14) M = ML M, Mie H,, MHe H,

where

d /\
(4.15) MY = 33 AMY Iiami+0)(= > ((X)—a(X,-) Itx,+x,3)
t 0 st

0<s<

c d
and MMI=M*1—M™, Here AMY=MY1—M" and the right hand side of
(4.15) is defined by the following way. Consider the sequence T, n=1, 2, -+,
of the stopping times defined by

Tt = inf {s: - <|2(X)—#(X,)| S0},
T#,, = inf {s>T*: %< |a(X)—a(X,.)| §ﬁ}, n—1,2,
Let

Ak — g (ﬁ(XTg)'—ﬁ(XTﬁ—)) I(T,":St) .

Since
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E[ 3 |@(Xp)—#(Xp ) | Issp] <o gee. X,
there exists a dual predictable projection (A4*)? of A* Let ;4-2=A"—(A”)’.
Then »Z:E At is a Cauchy sequence with respect to the family {», ,: %, (M)=E,
[M?] for q.e. x€X and all £>0} of the semi-norms in . Then we define
the right hand side of (4.15) as lim Zﬂ} na

7> g=1

d
Moreover M™ can be decomposed in the following way;

(4.16) MM — i M ’
where

(+17) Hie — 55 (@)X, L
and

k Pro
M = —i(X¢-) Tiesn -

Here the right hand side of (4.17) is defined by the same method as the defini-
c
tion of M1,

Recall that yu, denotes the smooth measure corresponding to A= A}, If
Afw)=AP(0)—AP(w), AP, AP €A} and if pyw, i=1, 2, are bounded
measures, then the measure corresponding to A4 is defined by u,= 00— p .

o
In particular, for M™), Mtle Y (u, vEH), we use the abbreviations pu,s,
o a
Buds Buy AN gy 05, =0, d, ], k, for pytay, patary, peat ytory and p it jriony,
a=c, d,j, k.

Theorem 4.9. For u, ve H,

(4.19) (@) = | (@) —(3) (0()—2()) o(ds, &)
and
(4.20) urs(dy) = A(3) 9(9) X(dy) .

Proof. By Theorem 3.6, for any f&e B*(X)
i . j i
(421) [ 70 icuuntdy) = lim - BB, B0,

— lim - EL[(/([e, J1e),)
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where [M1, M7, — < S1 AMD AMY). Hence the right hand side of (4.21)
f
is equal to <

lim - E,[ 2 f(X -) (@(X)—a(X,.)) (3(X)—0(X,-)) Lix 5x,0]

tyo ¢ 0<s<

= tim T B[ aH{ (X)) (@(x)— (X)) (9()— (X)) N(X,, d)]

tyo0 ¢t
= <_fC) @@—a(-)) (0 —2(-) N, dw) », 1>

by Theorem 3.6 (v). 'This and Theorem 3.8 (i) imply (4.91). (4.20) can be
proved by the same calculus as above. The proof is complete.

REMARK 4.10.  SInce oqq sy foca s+ tocus (4, 0 H), it follows that
422 pand)=[ | (@—a5) (0=)—0(3)) Ny, d¥) dy)
Corollary 4.11. % ;1,<,,,,,>(X)=N(u, v) (u, vEH).
Proof. By (4.12) and Theorem 4.9, we have for any u, ve H,
l a(i, v)—}—% A, 0) = o(M™, Mf”l)+% S (%) 0(x) ()

w0+ #(x) 0(x) X(dx) by (43)

l

_1,
2
EENING o NELEANG o WIR BNG '
2 Lu,v 2 %,0. 2 UR)
+%L (%) D(x) X(d¥)

c

pan @+ (@) —1(9) (0x)—0(9)) o(d, dy)

1
2
2, 70 9 @)+ ) 0x) ()

Comparing this with (2.14), we get the desired equality. The proof is com-
plete.

5. Derivation property of ;e<,,> and its applications

Lemma 5.1. For f, uc H, (=the set of bounded functions of H),

(5.1) [ 73) duco = 28, 4)—a2, 1)
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Proof. It is sufficient to show that (5.1) holds for all feH;. By Theo-
rem 3.6 (ii), we have

(f, Uty 1)2 = <paesy Ruf -

Since there exists a subsequence, also written by «, such that R, f converges
to f q.e. as ¢—>o0,

52) Cscon F> = lim a(f, Ut 1)s2
— lim aE,.,,,[S“ e AMMY]
o> 0

— lim aE,.,[e"* My,

]
=0
tlim &?E,., [S“ e~ TS, df]
@->oo 0
— lim oﬁEf.,,,[g‘=° (M2 df]
a->o 0
since E,[<M"3>,]=E,,[(M¥1)*] <ct for some constant ¢c=0. Since

lim oezz«:,.m[g°° (N — 0,
>0 0
the right hand side of (5.2) is equal to

lim azEf.,,,[S: e (a (X)) —A(X,)) di]
— 2a(, uf)—alid, f)
by the same calculus as the proof of Lemma 4.5. The proof is complete.

Using the fact p¢, y=1/2(p¢u+0p— B¢w>— 1¢p), Lemma 5.1 implies the fol-
lowing corollary.

Corollary 5.2. For f, u, ve H,,

[, Fdhens =t o) +a(e, fy—a(w, 1) .

Lemma 5.3. Let u,&H converge to ucH with || ||,2 as n—>oco and let
a(u,, u,) be uniformly bounded. Then
(1) a(u,—u, v) =0 as n—oo for all ve H.
(2) a(v, u,—u)— 0 as n—>oco for all veH.

Proof. We only prove (1); The proof of (2) is similar. In the case v=
R.f (feL¥X, m)), we have
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a(u,—t, R f) = (u—u, f)2—(,—u, Rif);2—> 0 as n—>o0.

For general v H and any £>0, there exists & Range(R,) such that |[[v—w||g
<€&. Then

lim sup |a(%,—u, v)| <lim sup |a(u,—u, v—w)|+lim sup |a (u,—u, w)| =C-€.
nre n>oo n>o

The proof is complete.
Theorem 5.4 (derivation property of ;:<u>). It holds that
(53) d;&@,,'w) =1 d/i(v.w>—|—i7 d;l.<,,_w> fOT u, v, weH,.

Proof. This can be proved by the same method as Y. Le Jan [17] (also
cf. [8], [9]), but we give an alternative proof based on the martingale theory.
It is sufficient to show that for u, vE H,,

(54') dl"(uz,v) = 20 d/"<u.u> .

Let a, be a sequence such that u,=a,R, u converges to @ q.e. as @,—>c. By
Theorem 4.8 and its proof, we have the expressions;

Un(X) (X)) = MPA-4+- N,
ul(X,)—ul(X,) = M+ N,
where M1 M["'Z']EJI?t and NTU#1 N[“'%]E?Z,. Moreover N1“*1 is of bounded

variation. By Ito’s formula,

t
(X)) —ui(X,) = zs (X, ) dM@I+ A,
0
where A is an AF of bounded variation. It then follows that

(55) OB, M- (N, BT, = 2 ,(X,) <0, B0,
0

We now prove that

(5.6) (N, M7 — 0 Pae.,

which implies that N, ]lcd'["1>=0 P.-ae., q.e. x. To see this it suffices to
show that

(5.7) <N[“?']> =0 P,a.e.
Write N for NT“3, Since
E,[KN>]=Ilim X " E(NGioyzt—Niupr)? qee. x

ko0 0<i<2
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and since
oy En N s —Nu) = 35 EolEx,y 0[N 21
=2'E[Nip] s
we have
E,,,[(N),]glir?+ inf 2*E, [N 4] .
Hence

S” e B KN dtSlim inf 2kEm[S°° etNY s dt]
0 > 0
— lim inf (2k)2E,,,[S°° NI d] =0,
k->oo 1]
which proves (5.7). By (5.5), (5.6) and Theorem 3.6, we have

(58) d/‘(uﬁ,v) = zun dﬂ‘(u,,,v) .
Now we prove that for fe Cy(X) N H,

(59) hms fd:u'(u,z,,v> = S fdll'(uz,vD .
n>o J X X
In fact, for feC(X)NH,
|S f d#<u?,,v>—5 fapaznl
X X

<|a(ul—? fo)|+ |a(v, fui—fi?)| + |a(ul v—u?v, f)|

by Corollary 5.2, and the right hand side converges to 0 as n—>oco by virtue of
Lemma 5.3. Thus we have

(5.10) lim S fapazey = S fapazsy .
X X

n-roo

On the other hand, by Remark 4.10,

G11) | Fanagn={_ f0) @&r—uP 06 —2() o(dx b)

+{ () (3 2(9) X(dy)

Here

J(3) (a(2)—m,(3)’) (0(%)—8(y)) o(dx, &)

SXXX—A
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f(9) @) —a(yy’) (8(x)—0(y)) o(dx, dy)

SXXX—A

=I+1I,
where

T={_ f(5) (0®)+H0,00)) [a()— () ()~ ()]
X (8(x)— 3(y)) o(dx, dy)
and
M= f5) @)+ ()—a)—a()) @=)—a(y)
X (8(x)— () o(dx, dy)

Firstly we have

T S2WfllellallL| | (@) (5)— @10 (9)) o, dy)P”

XXX

<[[_ (@@—2()) o(dx, dy)}”

=2l fllolleellc a(u—u,, u—u,)* a(v, v)"*?

— 0 as n—>o0.

Secondly, since
LXX_A | #(x)—d(y) | | 9(x)—D(y) | o(dx, dy)<oo,

the measure wp(dx, dy)=|d@(x)—d(y)||9(x)—(y)|o(dx, dy) on XXX—A is
bounded. Let N be a properly exceptional set such that u,(x)—%(x) as n—oc0
for all x&X—N. Then, since o(dz, dy)=N(y, dx) u(dy)zN(x, dy) 9(dx)=
&(dy, dx), we have p(X X N)=pu(Nx X)=0. Hence

(wn(x)—1,(y)—d(x)—#(y)) = 0 as n—>o0 py-a.e.

This implies that |II|—0 as n—>oco. Using the same method, the second
term of the right hand side of (5.11) converges to

[,/ () ¥ 2(3) X(ay)

as n—>oo., Thus

612 tim (| fduan = ) @01 (o) a(5))o(ds, dy)

XXxX-A

+{ £ a5Y 2(3) X(dy)
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d
= S fdlf'<u2,v> .
X
Then (5.9) holds by (5.10) and (5.12). From the fact that
(5.13) | 20> 1,05 | () S =X (X,

it is easy to show that
. c - c
lim g fuﬁ dl"’(“,..v) = j fu d/-‘(u.v) .
n>o Jx X

Combining this with (5.8) and (5.9), we have (5.4). The proof is complete.

Corollary 5.5. Let v, weH and v=r=constant m-a.e. on an open set
DcX. Then

c
”’(v,w) = O on D *

Proof. LetveH, Then for any ueCy(X)NH such that

r d;b<u.w> = d;:<,u,,,,> by Theorem 5.4,
= d.t:<w,w>
¢ ¢

= D dpcu,wyt% Qo0

=7 d;b<u,w>+u d;l‘<a,w> on D.
Hence

u d,t;<,,,w> =0on D.
Since « is arbitrary, we have

;1‘<v,w) =0on D.

Let veH and v,=((—n)Vv)An. Then since v,&H, and it converges to v
with || [|g, it follows by (5.13) that

;"<v,,.w> — /fb(,,,‘,) vaguely as n—>oo,
which completes the proof.

RemaRrk 5.6. Let u,, u,=H satisfy that u,—u,—=r=constant m-a.e. on an

c ¢
open set DCX. Then, by Corollary 5.5, Ip pr¢y—uy=0. Since I piyy-uy 18
the smooth measure corresponding to <MM~*2h), € A7(D) (M=D"), we have

(5.14) My — M = M = 0 for all t<oy_p.

DEerFINITION 5.7. For AF A4, we define the support of 4 by
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supp[4] = {x€X—N: P,(R=0)= 1},
where N is the exceptional set of 4 and R=inf {¢: 4,4=0}.
Theorem 5.8. It holds that for uc H,
supp[Mt1] Csupp[u] .. ,

where supp[u]={xEX: for some neighbourhood U of x, u is constant m-a.e. on
Uy-.

Proof. Let {O,}7.: be a sequence of open sets of X satisfying the follow-
ing conditions;
i) pgo O,=X—supp[u],

(ii) u=r,=constant m-a.e. on O,.
By Remark 5.6, we have

¢ ¢
M[,"] = MEo] (t<0'x._ot) )

(4
where 0 is the zero valued function. It is trivial that M§1=0 for any t<<ox_o,.
Hence

Opc(supp[]lcl[“]])‘ qg.e. foranyp.
Since p is arbitrary, this completes the proof.
Theorem 5.9. It holds that for u, veEH
supp[<M, MU1y] Csuppfu] Nsupp[e] g.c. .
Proof. Since
|<BE, VT, | < (<MP 2 (KM )2
we have
supp[CA1¥1, MUT)] Csupp[<ML] N supp[<MED]
= supp[M™1] N supp[11]
Csupp[«] Nsupp[?],
by Lemma 5.8. The proof is complete.

Corollary 5.10 (stronger local property of the form N). The symmetric
form N satisfies the following condition;

N(u, v) =0 for all u, vEH such that supp[u] Nsupp[v] = ¢ .
Proof. Since supp[«] Nsupp[v]=¢, by Theorem 5.9, it holds that supp
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[(]lcﬁ"], AZII”1>]=¢. Hence there exists a properly exceptional set NN such
that supp[<MT, zfﬂvl>]cN Let R(o)=inf {t (M, BJT%(w)=0}. Then
,(R(co)>0)—-l and P,[(M[“] .M["]>R_—O] 1. This implies that E [(JlZT“]
MT"]>,] 0 for all >0 and all x&X—N (see P.A. Meyer [13]), 1e <M["1

MT"]>,—0 for all t>0. Hence N(u, 7))~l B, ,,>(X)—e(<M [« M["]>) 0.
The proof is complete.

6. Examples

As was stated in Section 1, we extend slightly the notion of Dirichlet form
according to H. Kunita [10]. A form a is said to be a general Dirichlet form
if it satisfies (a.2), (a.3), (a.4) and the following, weaker than (a.l), condition;
(a.1)" There exists a constant o,=0 such that a, is coercive for any a>a,.
All the results in the first half of Section 2 concerning the Dirichlet form a
hold for the general Dirichlet form a if @>a,, a,, ¥4 and U,u there are replaced
by a>aq, a1, #40™ and U, 4, p([4], [12]). It is easy to see that the Beurling-
Deny formula (2.8) also holds for the general Dirichlet form. Since any regular
general Dirichlet space also admits an associated Hunt process (see [7]) and
our arguments in preceding sections only involve a, for a large enough, all
of the previous assertions for the Dirichlet form persist to hold for the general
Dirichlet form. In this section we will give several examples of regular general
Dirichlet spaces.

[I]. Let D be a relatively compact open subset of R? and H*(D) the Sobo-
lev space of order 1, i.e.,

H(D) = e IAD): O o 1xD), 1<i<d},
X

where the derivatives Ou are taken in the sense of Schwartz distributions. We

X;
also consider the space Hy(D) the closure of C§(D) in HYD). Let dx be the
Lebesgue measure on D and L*<=L*D, dx). We define the norm on HY(D)
by

lhellzr = llull2+lell2 - for usHYD),

where

hedlir = (B3 2% ¢ .
Consider the following formal generator

&9 ou &, Ou
6.1 Lou— _<_ b oy
(6.1) U ;,,2=1 ™ a’ax;)+§ ox, cu
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where a;j, b;, 1, j=1, 2, -+, d, and ¢ are bounded measurable functions on D.
The bilinear form a° corresponding to L° is given by

d d
(6.2) a’(u, v) = 323 S a;; ou % 4 P S biv Ou dx—l—s cuvdx
i,j=1J4 D ax,' ax'j i=1JD 8x,- D

for u, veH' (D). It is clear that a’ satisfies the condition (a.2). Moreover
we assume that L° is uniformly elliptic, i.e., there exists a constant »>>0 such
that

d
(6.3) > a(x)yiy;zvlyl?  for all xeD

,7=1

((a;;) is not necessarily symmetric). Then a’ satisfies the condition (a.l)’.
In fact, for any >0,

64 a’(u, u)+o(u, u).2
2 v|lul|i2—/ d 1Bl log ]| 26| 24 (e — el o) el | 22

Since
(v @Bl 25 2 -+ (v @ DBl
the right hand side of (6.4) is not smaller than
(65) 2 lhudlie(@—llello—— (/@ 1817 ool
Choose dg=2+—L- (/& [Bll-}+llcll. Then
a'(u, )+, W27 (et llullie) = 7 lulfe

for any a>a,, and hence aj§ is coercive for any a>ca, Now we assume that

(6.6) =0,

Since

6.7) a%(T, 1, u— Ty ) = S _ dlu—1)dx20,
u=1

a’ satisfies the condition (a.3). Now we assume that
d
(6.8) c+ 31 (8:)5=0 (in the sense of distributions).

Then
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d —_—
a'u—Tyu, Tyw) = — 31 S“gl b 6(’5 ) dx—l—sugl c(u—1) dx,

! i

i.e., a® satisfies the condition (a.4). If D=R¢ then H(D) is regular.
Summarizing above we have the following theorem.

Theorem 6.1. Let a° be the bilinear form given by (6.2). If the condi-
tions (6.3), (6.6) and (6.8) are satisfied, then (a°, H' (D)) and (a°, Hy(D)) are
general Dirichlet spaces on LA(D, dx). Moreover the latter one is regular.

ReMARK ([19]). Let
L>4+L" = {b: b = b'+¥, b'eL~, ¥*<L"} .

Theorem 6.1 still holds if the boundedness assumption for b; and ¢ is replaced
by the weaker condition that ;& L~} L?, i=1, 2, -+, d and c&€ L~} L%~

Let D=R? and consider the following differential operator given formally
by

d
(6.9) L= I 3 8(x—x;) 0.
i%i Ox;
Then (6.9) can be rewritten as
i 9 Qi
(6.10) L= L4 3> — H(x;—%)—,
ii=1 0x; 0x;

where H(y)=1/2(I(,50—I(y<n). Now we have for any u, v C§(R%),

0 0 0

(o, Hls) G0 )i = —(Hls—) 57 )
ou 0

—(H(xj—x,-) o, 8_.:,-)L2 >

and the first term of the right hand side is antisymmetric in 7, j because H(y)

=—H(—y). Hence the bilinear form a corresponding to L is given by, for
u, vE HY(RY),

Guavd

6x,~ ax,- ’

(6.11) a(u, v) = a'(u, '”)J“.-.él Skd H(x,—x;)

and accordingly

_ <3 . Ou v , & . ou
6.12)  a(, v) = 3 SR a, %% % g, ESRdb,va—de—l—SRdcuvdx,

i
L=t IRt Ox; Ox; i=1

where @;;=a;;+H(x;—x;), 1, j=1, 2, -+, d. 'These @, i, j=1, 2, -+, d, are
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bounded measurable functions on R? satisfying the condition (6.3). There-
fore, by Theorem 6.1, the bilinear form a given by (6.11) is a general Dirichlet
form which is regular and consequently generates a diffusion process on R?¢ by
virtue of S. Carrillo Menendez [5]. The present argument can be applied to
the form corresponding to formal generator

0
L= LO A x' A
+’§1 ax ’ 6x,~
if the condition

d 62u
"1'2=1 Y ax,' axj

=0 (usCs(D))

holds. Under a more general condition that

u
d;; =0,
,215 ’ax ox;

H. Osada [16] has given a specific construction of the diffusion by means of
the associated transition density function.

[IT]. Next we consider the case with boundary conditions.
Let D={x=(§, x;)€R*: E€R*, x,€R' and x,>0}, 0D={x=R?: x,=0}
and D=DU®D, and we consider the formal generator L° with the following
boundary condition
d -1
(6.13) Sa, %+ S 2 o,
S =T bay
where B;, i=1, 2, ---, d—1 are bounded measurable functions on 8D with bound-

ed derivatives of first order. Then the bilinear form corresponding to L°
with boundary condition (6.13) is given by, for », v& H(D),

61 a@wo)=aw -5 | @00 E .

The term Sw Bi(&)v(&, 0) %d& in (6.14) makes sense by the following

argument. Let ¢ be a trace operator of 9D (see S. Mizohara [14]). Then
for ueHY (D), u(g, 0)=vyu(&)eH"¥(0D, d§), where H"¥9D, d&)={f< L¥dD):

(14 |2|)*2 f(z) L¥(8D), f(2) is the Fourier transform of f(£)}, and Gu(L;, 0)_

6')'61;(5) €H™4@D, dg), where H™ V48D, d§) is the dual space of H'%@D, d§).

o 0) 4 £ is understood as the pairing {——2> - ou(, 0)

E, ag' ’ IBI(E)

Then | 81()0(€, 0)
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o(£, 0)) of ngiéo_) and ,(£) v(E, 0)c HY(oD, dE).

Theorem 6.2. Let a° be the form given in Theorem 6.1 and (3; satisfy the
condition stated after (6.13), Moreover we assume that

d—
(6.15) 21 (Bi)e; =0  (in the sense of distributions).

Then the bilinear form a given by (6.14) is a regular general Dirichlet form on D.

Proof. For any u& Cy(D), by integration by parts, we have

2f,, e u(e, 0) 250 ag = OBLE) yig, opa.

9D

Thus
61 15, a@uE 02480 g <cliug, 0l

for some constant C;>>0. By Theorem 3.16 in [14], it holds that for any €>0,
(&, 0)l|Z2p = &lltellZ2mr+C (&)l 220y
where C(€) is a constant depending on £>0. Hence for any =0,

a(u, u)+o(u, )2 = (v—C1 &) |lu,lZ20y—/d [1Blee] el 21l 2
+(a—llelle—Cy C(€)) llullz2
which implies that a, is coercive on Cg(D) for o large enough. Similarly a
satisfies (a.2) for any %, v€C5(D). Since Cg7(D) is dense in HYD) with re-
spect to || ||z, a satisfies the conditions (a.1)’ and (a.2) for u, ve H'(D). Since
a(T,u, u— T, u)=a%T,u, u—T, u), a satisfies (a.3). It holds that

d—1

a(u— Ty, Tyw) = a%e—Ty, Ty~ 33 | i) XHED=A dezo,

by Theorem 6.1 and the condition (6.15). This completes the proof.

Now we give an alternative proof of (a.1)’ and (a.2) for the form a of Theo-
rem 6.2, following the idea of S. Agmon [1]. By integration by parts, we have

[,, 80 245D uig, 0)a

=, 52 (86 ) ) ae | ey o) T a

% 0x, 0x;
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= [, 66 %0 20 g D (6e) o(x) G

_ ou(x) 9v(x) A ou(x) 8v(x)
= KDﬁ.-@)—axi B0 vt [, (e Tk T an

], o (080 Tt oy

Hence the bilinear form a given by (6.14) is represented by

a
a(u, v) =i§1 Snd” gu 665 dx— > S b, 6“ S cuvdx
where
a;4(x) = a;(x)—Bi(E), 1 = 1,2, ., d-1,
ddi(x) = adi(x)‘f‘ﬁi(f)a i=1,2,.,d-1,
@;;j(x) = a;;(x), otherwise
and

(%) = by(x) i=1,2,--~,d—1,
by(x) = ba(x)+ Z‘- (&) -

The coefficients &@;, b;, i, j=1, 2, +++, d, are bounded measurable and &; satisfy
the condition (6.3). Thus, by the proof of Theorem 6.1, the bilinear form a
given by (6.14) satisfies (a.1)’ and (a.2).

ReMARk. Let L= 2 —. Then the process X=(X*, X? -, X9) as-

i=1 x’
sociated with the general Dirichlet form a given by (6.14) is expressed by

Xi=wtBit | BR)dg,i=1,2 , d—1,
Xi= xd—[—B‘f—f—d)t

where x'=Xj§, =1, 2, -+, d, B=(B', B? -+, B is d-dimensional Brownian
motion, X,=(X,, X?) and ¢, is the local time of B¢ (see M. Tsuchiya [21]).

[III]. Finally we consider an example with non-local form which is a
slight generalization of Example IV. 3.2 in [5]. Let H=H'(R’) and a;;, 1, j=
1, 2, -+, d, be as in [I]. Let ¢ be a positive measurable function on R?Xx R?
such that

Skded gb(x’ y)2 dydx< )
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and we define the functions ¢, and ¢, on R? by
a@={o@wnNdy ad ox)={ 60.0ad.

Assume that ¢; and ¢, are bounded. Let ¢ be some bounded measurable func-
tion satisfying c¢=¢,VV¢,. Consider the operator

617) L) =33, 2 (o, D)1 [ s, ) u(r) dy—o() )

i,j=1 6xj 6x,~

Then the associated bilinear form a is defined by

u, V) = S a;;i(x u() Bo(x) *
(6.18)  a(wv) =33 SRa (%) ox;  ox 4

{9l ) ) o) dydt- | ola) ) o) i

Then it is easy to see that the form a satisfies (a.1)’ and (a.2). Furthermore,
a has another expressions;

(6.19) a(t, ) = é S () 8;‘(”) av(of) g

x;  0x;
+SRJXRd u(y) (v(y)—v(x)) p(x, y) dxdy
+ s R4 u(x) ‘U(x) (C(x)—cz(x)) dx
and

(6.20) a(v,u) = 1 S a3;(x) O0(®) Q) g
hi=1 Jgd ox;  0x;

+$ g ) (0(0)—2(9)) b, y) dyda
] o) 60) e~ e
By (6.20), we have
(621)  a(fum u—Tiu) = S(:eRd ¢ u(e) <o) x R4 —u(x) Ty u(y) ¢(, y) dydx
S(xezed  ospegs PO A=T1u(y)) ¢(x, y) dydx
S (rer? : u(x)>1) (u(x)—1) (c(%)—ex(x)) dx .

Since 0= T u(y)=1 for all y&R? and ¢=¢, and ¢ is positive on R?X R?, (6.21)
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implies that a(7T)u#, u—T,%)=0. By the same method, (6.19) implies that
a(u—Tyu, T,u)=0. Hence a given by (6.18) is a general Dirichlet form on
HXH. Moreover, the equalities (6.19) and (6.20) show that the measure
o(dx, dy)=¢(x, y) dxdy is the jumping measure of a and X(dx)=(c(x)—cy(x)) dx
(resp. X(dx)=(c(x)—cy(x)) dx) is the killing measure of a (resp. 4). And

3 1 ou 0v
Nt o) =33, 5 (rtan) 3 52 ds
is a symmetric form satisfying the stronger local property.
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