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Let (P, ], g) be a compact Kidhler manifold. If (P, ], g) is Einstein Kibhler,
the first Chern class ¢,(P) of P is positive, zero or negative. It has been proved
by Aubin [1] and Yau [20] that if (P, J) is a compact complex manifold with
c(P)<0 there exists a unique Einstein Kahler metric on (P, J), and by Yau
[20] that if (P, J) is a compact Kihler manifold with ¢,(P)=0 there exists an
Einstein Kihler metric on (P, J). In the case of ¢,(P)>0 it is known that
there exist compact Kihler manifolds which do not admit any Einstein Kahler
metric (cf. [6], [8], [19]). Up to now known obstructions to the existence of
Einstein K#hler metrics on compact Kéihler manifolds with positive first Chern
class are (1) Matsushima’s theorem ([10], [12]), that is, if (P, J, g) is an Ein-
stein Kahler manifold, the Lie algebra of all Killing vector fields on P is a real
form of the Lie algebra of all holomorphic vector fields on P and (2) Futaki
invariant [6].

The purpose of this note is to give some examples of compact Einstein
Kihler manifolds with positive first Chern class which are not homogeneous.
We give a necessary and sufficient condition to the existence of Einstein Kahler
metrics on P'(C)-bundles over hermitian symmetric spaces of compact type.
In the category of Riemannian manifolds, compact Einstein manifolds of co-
homogeneity one have been studied by Bérard Bergery [2]. In our case the
PY(C)-bundle P is of cohomogeneity one with respect to a maximal compact
subgroup of the complex Lie group of all holomorphic transformations on P
and to prove our Main Theorem we use the similar method used by Bérard Ber-
gery in [2]. We also remark that our Corollary 2 (2) to our Main Theorem
generalizes the example given in Futaki [6].

The author would like to express his thanks to professors Tadashi Nagano
and Norihito Koiso for their useful suggestions given during the preparation
of this paper.

1 Main Theorem

Let M be an irreducible hermitian symmetric space of compact type.

1) This work was supported by Grant-in-Aid for Scientific Research (No. 59460001), The
Ministry of Education, Science and Culture.
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We denote by H'(M, 6*) the isomorphism classes of all holomorphic line bun-
dles over M. It is known that H'(M, 6*) is isomorphic to the second coho-
mology group H*(M, Z)=Z ([5]). Take a generator L of H'(M, 8*) which
has a positive Chern class ¢;(L)>0. Then the first Chern class ¢,(M) of M
is given by ¢,(M)=rxc,(L) where « is an integer: 2=«=dim¢M—+1 (cf. [5]).

Consider a product X of two irreducible hermitian symmetric spaces of
compact type M; and M, and a holomorphic vector bundle p¥LieD pFL:
over X where p;: X— M, (i=1, 2) are projections, L; (i=1, 2) are the generators
of H'(M;, 6*) and a, b are positive integers. We denote by P the P(C)-bundle
P(p¥LiPp¥Ly) over X. It is not difficult to see that the first Chern class
¢,(P) of P is positive if a<<wx, and b<<x, where «; (=1, 2) are positive integers
given by ¢,(M;)=r«;c,(L;) (cf. [15] proof of theorem (5.56)).

Main Theorem. For irreducible hermitian symmetric spaces of compact
type M, of complex m-dimension and M, of complex n-dimension, and positive
integers a, b with a<<x, and b<<x,, there exists an Einstein Kdhler metric on the
compact complex manifold P if and only if

Sl (#y—ax)"(ry+bx)"xdx = 0 .
-1

Corollary 1. For irreducible hermitian symmetric spaces of compact type M
=M,=M, and a positive integer a=b with a<<«, there exists an Einstein Kdhler
metric on the P(C)-bundle P over M x M.

Corollary 2.

(1) For M=M,=M, and positive integers a, b such that a, b<x and a=b,
the PY(C)-bundle P over M X M has the first positive Chern class but P does not
admit any Einstein Kdhler metric.

(2) For M,=PYC), M,%=PYC) and a positive integer b with b<x,, the
PY(C)-bundle P over P(C)X M, has the positive first Chern class but P does not
admit any Einstein K dhler metric.

2 Orbits on P'(C)-bundles over a Kdhler C-space

Let X be a Kihler C-space, that is, a simply connected compact complex
homogeneous space with a Kihler metric. By a result of H.C. Wang [18],
X can be written as X=G/U where G is a simply connected complex semi-
simple Lie group and U is a parabolic subgroup of G. Let p: U—C* be a
holomorphic representation of U and &, the homogeneous holomorphic line
bundle on X associated to p, that is, &, is obtained from the product GxC*
by identifying (gu, w) with (g, p™'(¥)w) where g€G, €U and weC*. It is
known that every holomorphic line bundle on a Kihler C-space X is homo-
geneous (cf. Ise [7]).
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For a holomorphic line bundle £ on X, we consider a P(C)-bundle P(1DE)
over X, where 1 denotes the trivial line bundle on X. Then G acts on P(1DE&)
in the natural way.

Proposition 2.1. If £ is a non-trivial holomorphic line bundle on X, the
PYC)-bundle P=P(1BE) is a disjoint union of three G-orbits One of crbits is
open in P and it is isomorphic to the principal C*-bundle associated to E. The
other two orbits are isomorphic to X

Proof The equivalence class of (g, (w;, w,))EGXC? is denoted by [g,
(wy, wp)]E1DE. Let p: 1PE—(0-section)— P denote the canonical projection
Consider the G-crbit of the point p[e, (1,1)] where e is the identity of G. We
shall show that the orbit G- ple, (1,1)] is isomorphic to the principal C*-bundle
associated to the line bundle £. Let p: U—C* denote the holomorphic re-
presentation such that £=£, 'Then the principal C*-bundle associated to &
is obtained from the product GxC* by identifying (gu, w) with (g, p~'(u)w)
where g€G, u€U and weC*, and the principal C*-bundle is denoted by
Gx,C*. The equivalence class of (g, w)eGXxC* is denoted by [g, w]E
Gx ,C*. We define amap @: G-ple, (1,1)] = G X ,C* by o(gple, (1,1)])=[g, 1].
It is not difficult to see that ¢ is an injective holomorphic map. Since p is
not trivial, p: U—C¥* is surjective and thus we see that ¢ is surjective. More-
over for each element p[g, (w), w;)] (w,¥0, w,#+0) there is an element u€U
such that p(u)=wi'w,eC*. Thus p[g, (v, w,)]=p[gu, (1,1)]. By the same
way we see that the orbits G- p[e, (1,0)] and G-ple, (0,1)] are isomorphic to
X=G|U. Thus the orbit G- p[e, (1,1)] is open in P(1HE). q.e.d.

For a holomorphic line bundle £=£, on X let U be the isotropy subgroup
of G at ple, (1,1)]€ P(1BE). Then U= {ge U|p(g)=1} and dim¢U=dimcU—1
if £ is non-trivial. The natural C*xC*-action on 1@E induces a C*-
action on P(1pE). Note that G x C*-orbits in P(1HE) coincide with G-orbit
and that the C*-action on the orbit G- ple, (1,1)] corresponds to the right C*
=~=U/{-action on the principal fiber bundle G/ over X.

Let G, denote a maximal compact subgroup of G and V=G,NU. Then
G|V is diffeomorphic to G/U. Put V={g€V |p(g)=1}. If p: U—C* is
non-trivial, dimg V=dimgV —1.

Proposition 2.2. Let p: U—C* be non-trivial. Then the principal C*-
bundle G X ,C* over X is G, X S'-equivariantly diffeomorphic to G,|V X R, where
G, x S" acts on R, trivially.

Proof. For g&G, there exist elements k=G, and u= U such that g=ku,
since G,/V=G/U. Since each element of GX,C* may written as [g, 1]€
G X ,C*, we have [g, 1]=[k, p(u)]. Let G, X ,C* denote the space obtained from
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the product G, X C* by identifying (kv, ) with (k, p~(v)w) where k€G,, vEV
and weC*. The equivalence class of (k, w)=G, X C* is also denoted by [&, »].
Then the map [g, 1] [k, p(g)]: GX,C*— G, X ,C* is a G, X S'-equivariantly
diffeomorphism. Put p(u)=re® (r&R,). Then 7 is uniquely determined by
the class [g, 1]1€Gx,C*. In fact, if g=ku=ku, (k, hEG,, u, u,cU), k7'k,
=uur'€G,NU=V. Since puur')ES'={"|0= R}, p(u,)=p(uu")p(u)=res
for some 6, R. Define a map ¥r: G, X ,C*— G,/ Vx R, by ([k, w])=(kv V,r)
where w=re®® and p(v)=¢" (vEV). Then it is easy to see that ¢r is a G, x S'-
equivariantly diffeomorphism. q.e.d.

For a compact complex manifold Y let Auty(Y) denote the connected

component of the identity of the group of all holomorphic automorphisms
of Y.

Proposition 2.3. Let & be a non-trivial holomorphic line bundle on a Kdhler
C-space X=G|U. Then the complex Lie group Aut(P(1PE)) is reductive if
and only if H' (X, £)=H"X, £ ')=(0). Moreover in this case the Lie algebra
of Auty(P(16DE)) coincides with the Lie algebra of Auty(X)x C*.

Proof. Let z: P(1GE) — X be the natural projection. By a theorem
of Blanchard [4], the projection z induces a Lie group homomorphism, de-
noted also by =,

m: Auty(P(1DE)) — Auty(X) .

It is known that the Lie algebra of Ker 7 is isomorphic to H%X, End(1D£))
and thus it is isomorphic to

{(w‘ sl)]sleH"(X, £), s H'(X, £7Y), w, wZEC}/{(:)U i)mec}

S2 W,

(cf. [8]). By a Borel-Weil theorem (cf. for example [7]), for a non-trivial holo-
morphic line bundle &, if HY(X, £)=0, H°(X, £')=0. Thus if one of H(X, §),
H(X, £7") is non-zero, Auty,(P(1BE)) is not reductive. Conversely, if H(X, &)
=H%X, £7)=(0), dim¢ Ker z=1. Note also that z: Aut,(P(1PE&)) — Auty(X)
is surjective. 'The Lie algebra of Auty(P(16p&)) always contains the Lie algebra
of Auty(X)xC*. Thus the Lie algebra of Auty(P(1BE)) coincides with the
Lie algebra of Auty(X)xC*, which is reductive, since Auty(X) is a complex
semi-simple Lie group. q.ed.

Corollary 2.4. Let & be a non-trivial holomorphic line bundle on a Kdhler
C-space. Then P(1DE) is almost homogeneous but not homogeneous.

Proof. By proposition2.1, P(1£)is almost homogeneous. If Auty(P(1D&))
acts transitively on the simply connected compact projective manifold P(1D§),
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the Lie group Auty(P(1BE)) is a semi-simple complex Lie group (cf. Takeuchi
[16] p. 174). Since Aut(P(1DE)) is not semi-simple by Proposition 2.3, this
is a contradiction. q.ed.

3 G,x S'invariant Kihler metrics on the open orbit

We consider a G, X S*-invariant Kihler metric on the open orbit G- ple, (1,1)]
=Gx,C* in P(1PE). Let g,, b, b be the Lie algebra of G,, V, V respec-
tively. Since G, is a compact semi-simple Lie group, the Killing form of
8. is negative definite. Let <{, > denote the Ad(G,)-invariant inner product
on g, induced from the Killing form and let mcg, be the orthogonal com-
plement of ® with respect to the inner product {,>. Then g,=b+m and
b, mlcm. Let ¢, be the orthogonal complement of b in b with respect to
the inner product <, >. Then we have

3.1) [¢» 8] = (0).

In fact, we can write b=c-}+b, where ¢ is the center of b and b, is the semi-
simple part of . Note that {c, »,>=(0) and 9Db,. Thus ¢,Cc and hence
[¢,» D]=(0). Moreover if the holomorphic representation p: U —> C* corre-
sponds to the weight A, then \/—1A generates ¢, and thus c, generates a
closed subgroup of G,, that is, a circle group S*.

Put p=c,+m. Then we have orthogonal decompositions of g,, P and b
with respect to {, >:

(32) 8. = s+p’ b= cp+m) b= 5+cp .
Moreover we have
(3.3) [b, ¢l = 0), [b, m]cm.

Let R, be the subgroup of C* defined by {r>0|re®=C*}. Since the
open orbit GX ,C* in P(1PE) is also a G X C*-orbit in P(1PE) and G X ,C*
is diffeomorphic to G,/Vx R,, the Lie subgroup G,X R, of GxC* also acts
on GX,C* transitively. Take a basis {H} of the Lie algebra of R,. Then
g,+RA=54+p+RH and Ad(V)(p+RH)cp+RH. We identify p+RH
with the tangent space To(G X ,C¥*) at the origin o=[e, 1] of Gx,C*. Since
the complex structure J on GX ,C* is invariant by the action of G X C*, it in-
duces a linear isomorphism I: p-+RH —p-+-RH which satisfies I?=—id and
I°Ad(g)=Ad(g)°I for every g€ V. Note that at the origin o of GX,C* the
orbit of the right S'-action coincides with the orbit of the left S'-action defined
by ¢, and that the complex structure of the fiber C* is induced from the natural
complex structure of C. Therefore we have

(34) Ie,—RH.
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Moreover, since the complex structure on P(1§£) is compatible with the in-
variant complex structure on G/U=G, [V,

(3.5) Im=m.

To investigate a G, X S'-invariant hermitian metric on the open orbit
Gx,C* we consider a G,X R.-invariant hermitian metric on G X ,C*=
G,/ Vx R, for the moment. Note that there is a natural one-to-one correspondence
between G, X R.-invariant hermitian metrics on G,,/Vx R, and the Ad( V)-
invariant hermitian inner products on p-+RH (cf. [11]).

From now on we assume that

(3.6) [6, m]=m.

Let B be an Ad(V)-invariant hermitian inner product on p+RH. Then B
has the following properties:

(3.7) (a) Ble, H)=(0) (b) B(g,m)=(0)
(¢) B(H,m)=(0).

In fact, (a) follows from (3.4). To see (b), B(c,, m)=B(c,, [0, m])=B([b, ¢,], m)
=(0) by (3.1). Now (c) follows from (b) and (3.5).

We decompose b-module m into irreducible component w;; m= 3] m,
By (3.6) we have ’

(3.8) [b, m]=m; foreveryj.

From now on we also assume that

(3.9) [b, m]=m; foreveryj,

(3.10) Im;=m; for every j and

(3.11) each multiplicity of irreducible components of m as D-module is 1.

Now the hermitian inner product B can be written uniquely as
(12 B=d<, leIe, I+ S e, dlm

where d, ¢; are positive real numbers, <, >|¢, and <, >|m; denote the inner
products on ¢, and m; induced from < , > respectively, and <{I°, [°>gy denotes
the inner product on RH defined by <IX, 1Y) for X, YERH. Note that
oy Dleg, {IoyIoy| g and  , D|m; are Ad( V)-invariant symmetric bilinear form
on p+RH. Let B, B, a; be the G,x R,-invariant symmetric tensors on
G,/ VX R, corresponding to < , Dlegs <Io, Iop|gm, < , Dm; respectively. Then
the G, X R -invariant hermitian metric gz corresponding to B is given by
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8= d(ﬁo‘l‘ﬁl)“—; ;.

Lemma 3.1. The G, X R, -invariant symmetric tensors 3, 8, on G,/ VX R,
are invariant by the right S'-action.

Proof. (cf. [9] §2) Let ¥ be ¢,-valued left invariant 1-form on G,, defined
by

7(Y)=the c,-component of Y &g, with respect to the decomposition
g, =b+c,+m.
Then there is a unique G,-invariant connection, called the canonical connection,
on the principal S*-bundle G,/V over G,/V such that the connection form
v is given by = *y=% where n,: G,—G,/ V is the canonical projection. Using
the connection form v, the symmetric tensor S, on G,/ Vx R, can be written as
Bi=Cr, ¥, that is, Bo(X, V)=C(X), W(Y)> for X, YET,G./VXR,),pe
G,/VXR,. In particular, B, is invariant by the right S*-action. We also have
Br=<v°],v°J>. Since the right S'-action is holomorphic, @, is also invariant
by the right S*-action. q.e.d.

Let &; denote the G,-invariant symmetric tensor on X=G,/V correspond-
ing to Ad(V)-invariant symmetric bilinear form { , >|m;on m. Let z: GX ,C*
— G,/V denote the canonical projection. Then we have a;=z%*&;. In
particular, @; is also invariant by the right S'-action.

We now consider a G, X S'-invariant hermitian metric g on G X ,C*=
G./VxR,. Let X denote the vector field on G,/ VX R, induced by X €g,.

Proposition 3.2. A G, X S'-invariant hermitian metric g on G X ,C* can be
written as

(3.13) £ = FBotB)+3 Hia,
where F, H; are G,x S'-invariant positive valued C= functions on GX ,C*.

Proof. We denote by 0 the origin of G,/ V and identify the tangent space
T.(G. VX Ry) at (6, 7) with cp+m+Raﬁ. Then
r

(3.14) 2y () 56;) —0  for ueTs(G,|V).

In fact, if uEm, then u=3] [X,, Y;]; for some X;E5, Y;Em by our assump-
. . ' ] i)
tion (3.6). Since (X;);=0 and [X], a—r]zO, we have 8. (W 5).—:2&3.’)

(X, Y, §)=—Z}gw (Y [X, 5a—]<s,,))=0. Since the orbits of the left
i ’ r

and right S'-actions at the point (6, 7)EG,/ VX R, coincide, we have Icp=R82.
r
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Therefore g, (4, §)=0 if uec,.
, r
Since G, acts on R, trivially, for each point (p, r)EG,/ VxR,

(3.15) 2,,2)=0 for ucTyG./V).
nr) " Or

Now it is easy to see that g can be written as
g = FiBo+Fip+3 Hia;
J

where F,, F, and H; are positive valued C*-functions on G,/ VxR,. Since
& Bo B and a; are G, X S*-invariant, so are F,, F; and H;. Moreover we have
Fy=F,, since By(X, Y)=08,(JX, JY) and g is hermitian. g.e.d.

Now we consider conditions that a G, X S'-invariant hermitian metric
g on GX,C* of the form (3.13) to be Kahler. For X&c, let X* denote the
vector field on G,/ VX R, induced by the right action of S'= {exp tX|tER}.
For a fixed non-zero X Ec,, define 1-forms 0, and 6, on G,/ VX R, by

(3.16) 0o(4) = Bo(X*, 4)
(3.17) 0((4) = —B(JX*, 4)
where A is a C=-vector field on G,/VXR,. Then 6, and 6, are G,xS'-

invariant forms.

Lemma 3.3. At the origin o€ G X ,C*, we have

(1) d6,=0
<X, [Y, Z Y, Ze

@ aor,z={ AP dHEem

0 otherwise .

Proof. Since 6, and 6, are G,-invariant, Ly6,—=L30,=0 for YEp. For
Y, Zeb, (d0)) (¥, Z)= Y0,2)— 26, ¥)—0(¥, Z])= 0412, Y)=041Z, Y)),
i=0,1. Thus d0,(Y, Z)=0 and d6\(Y, Z2)=—<X, [Y, Z]>. For Yebp,
0.7, 9y=79,(2)—26,(7)— 0,7, 2 ))=— 20, ?)=—0,02, 7]=o0.
40,7, 2y =10, 2)-20.7)- 0,17 2)——Lom——042, 7)
Therefore d6,(Y, H)=0 for Y Ep. q.e.d.

Let w be the Kihler form on GX,C* of a hermitian metric g, that is,
(4, B)=g(4, JB), and let »; be the 2-form on G,xC* corresponding to the
J-invariant symmetric forms «¢;. 'The Kihler form w on G X ,C* corresponding
to the hermitian metric g of the form (3.13) is given by

2
(3.18) W = E—(‘X-'I’:_}*_)ao/\al—i_zﬂl?w].
0 ’ 4
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Now we define a vector field H on G x ,C* by

(3.19) He 1

2(X%, X*)E X*)I,ZJX* i

Proposition 3.4. Assume that every 2-form w; is d-closed. Then a her-
mitian metric g on GX ,C* of the form (3.13) is Kdhler if and only if

(320) — L <X, [4, IBD+ S d(H?) (H)SA, BYlm; =0

<X, X>"2
where A, BEm, 0 X Ec,.

;rzoof. Since dF = —(JX*)F m 8, d6,—0 and dw,=0, do=
m*,—‘x*)deo/\el—’—-fz d(H?)/\CDJ. For A, CEm, (deo/\gl) (A, C, ]X*)=

—0/([A4, CB(X*, X*). Note also that (d0,A8,) (4, B, C)=(6,:Aw,) (4, B, €)
—0 for 4, B, Cem, [d6,A0) (4, X*, JX*)=(0,Aw)(d, X*, JX*)=0
for Aem, X€c, and (d6,A0) (4, B, X*)=(6:Aw;) (4, B, X*)=0 for 4, B
em, Xe¢,. Thus we have do=0 if and only if, at (3,7)EG, |VXR,,

(321) do(d, C, JX*)=0 for A4, Cemand X<¢,.

Since  do(4, C, JxXH = P[4, C C+ 32 d(H3) (JX*)o( 4, C)

= PR, [ C)—g(X*, X*)* SJd(T) (e, ©)

— —F'aX*, [4, C)~FA(X*, X*)* 33 d(H}) ()4, ©)
we see that (3.21) holds if and only if

FR(X*, [4, CI)[(B(X*, X*)"%)+ 5 d(H}) (H)a ), JC) = 0
for A, Cemand XE&c,. Therefore do=0 if and only if

XX, [4, CJ (X, X))+ S d(H?) () <A, IC]m; = 0

for 4, Cem, X ¢, Since Im;—m;, we get our claim by putting B=IC. q.e.d.

4 Extensive conditions of a G, x S'-invariant metric

Now we consider conditions of a G, X S'-invariant K#hler metric on the
open orbit G X ,C* which can be extended to a Kihler metric on P(1D&). For
a Kihler manifold (Y, J, g) let V denote the Riemannian connection.

Lemma 4.1. For a holomorphic Killing vector field X on Y and a Killing
vector field A on Y such that [A, X]=0, we have g(V;xJX, A)=0.
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Proof. Since 4 is a Killing vector field, 4g(X, X)=2g([4, X], X)=0.
Thus g(V X, X)=% Ag(X, X)=0. Since X is also Killing, g(VxX, 4)+

8(X, V,X)=0. Therefore g(VxX, A)=0. Since g is a Kihler metric and X is
holomorphic, V;x JX=]V ;3 X=]Vx JX=—V,X, and hence we get g(V,x J X, 4)
=0. q.e.d.

Now we consider a G, X S'-invariant Kahler metric ¢ on the open orbit
G X ,C* of the form (3.13). Let H be the vector field on G X ,C* defined by
(3.19).

Lemma 4.2. On the open orbit G X ,C*, we have

4.1) Vel =0.

Proof. By Lemma 4.1, we have g(V,«JX*, A)=0 for a Killing vector
field 4 on G x ,C* where A€g,. Since

1 1
. E— W X¥
g(X*, X*)V]X J +g(X*, X*)llz

and g(JX*, A)=0, we have g(VzH, A)=0. Since g(H, H)=1, g(V4H, H)=0.
Therefore we have V;H=0, q.e.d.

Vil (JX*) (g(X*, X*)"%) JX*

Let p: U—C* be the holomorphic representation corresponding to the
weight A and identify \/—1A with an element of ¢, From now on denote
by X, the element of ¢, defined by A(X;)=+/—1. Then the right S-action
{exp 1X,|t€R} on P(1PE,) corresponds to the natural S'-action on P(1BE,)
induced by the S'-action on each fiber P'(C). We also define a symmetric
tensor B, on G,/ VxR, by Bo=(1/{X,, X,>)B, and a function F on G./VxR.
by F=<{X,, X,>'?F for a C= function F on G,/VXR,. Then F?B,=F?@g,.
Let 7 be the canonical coordinate of R, as before. Thus we have JX§=—r(0/0r)
on G,/VxR,. Thus a G,x Sinvariant hermitian metric ¢ on G,/Vx R,
of the form (3.13) can be written as

4.2) g = (Frydr+F B+ Ha; .

Now we consider a G, X S'-invariant Kidhler metric g, on P(1PE,). We
know that there is a G, X S'-invariant Kihler metric on P(1BE&,), since P(1BE,)
is a Kihler manifold and the compact Lie group G,x S* acts on P(1DE,) as
a holomorphic transformation group. Note that the functions #' and H; can
be regarded as functions on R,, since they are G, X S'-invariant.

Lemma 4.3. For a G,Xx S'-invariant Kdhler metric g, on P(1DE), let
its restriction g, to the open orbit G,| VX R, be of the form (4.2). Then the func-
tion F extends to a C™~function F': [0, co)— R such that F(0)=0, F'(0)>0 and
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F(r) is an odd function at r=0, that is, F(r)=—F(—r), and the functions H;
extend to C= functions H;: [0, o) — R, such that H,(0)>0 and H; are even
Sunctions at r=0.

Proof. Note that the intersection of the open orbit G,/ Vx R, and a fiber
PY(C) is identified with C* and that the right S*-action on G,/ Vx R, induces
a natural S'-action on C*. On the intersection C¥*, the metric g, is given by

(4.3) gorie) = (F(r)[rydr+F(r)d6?
by using polar coordinates (7, §) on C*, and thus it is written as
Surker = (F(r)[r(do+dy?) on C*

by using a canonical coordinate 2=x-++/—1y on C. Therefore a metric
(If’(r)/r)zdrz—l—F(r)ZdG2 extends to a metric on C if and only if F extends to a
C= function F: [0, o) — R such that F(0)=0, /(0)>0 and F is an odd func-
tion at 7=0 (cf. [3] Proposition 4.6). By the same way we see that H; extend
to C= functions H;: [0, co)— R, such that H;0)>0 and H; are even func-
tions at r=0. q.e.d.

We now consider a geodesic ¢(t) of the compact Kihler manifold (P(1DE£), g)
through the origin ¢(%,)=(0, 1)€G,/ Vx R, with ¢(ty)=H.,,, parametrized by
arc length. Since V,H = 0, ¢(¢) is the integral curve of H through (0, 1), that
is,

(4.4) ) =Hep -
Note also that
(4.5) H= ——(l/F(r))jX* (r/F(r)) (ofor) .

We set ¢(t)=(dr/dt) (0/0r). Then c(t) satisfies an ordinary differential equation
(4.6) drldt = r|F(r).

By Lemma 4.3, the function F(r)/r extends to a C= function f(r): [0, co)—> R,

such that f(7) is even at r=0. Thus po(r)———S:f(u)du: [0, 0)— R* is a mono-

tone increasing C= function and is odd at r=0, and we have z=p(r).

Let L, denote the length of the geodesic ¢(t) of P(1B£) between two sin-
gular orbits of G,xS'. By taking the inverse function r=gq,(t) of t=p,(r),
we define C* functions f,, A3: (0, L,)— R, by

{fo(t) = F(g(1))

(4.7) hi(t) = H(qo(2)) -
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By using a similar argument for a neighborhood of ¢(L,), we see that the func-
tions f,, A} extend to C= functions fy, h}: [0, Ly] = R which satisfy fy(0)=fy(Lo)
=0, f5(0)=1=—ft(Ly), ¥ (0)=f & (Lo)=0 for each positive integer k, 13(0)>0,
h}(Lo)>>0 and (k) ®*~ (0)=(h?) ®*~" (L,)=0 for each positive integer k. Therefore
we get the first part of the following theorem.

Theorem 4.4 (cf. [2] Section 4).
(1) Let g be a G,Xx S'invariant Kahler metric on P(1DE). Then the
metric g, is given by
0= dEFY (DBt S (0 e,
on the open orbit G X ,C*, where fy, h} are C* functions on [0, Ly| such that

fo, B} are positive valued on (0, Ly), fo(0) = fo(Lo) = 0,
f50) = 1 = —fi(Lo), f§°(0) = f¥(Lo) = O for each
positive integer k, h}(0)>0, h}(Ly)>0 and (h3) -1 (0)
= (h3) ®*~V (L) = O for each positive integer k .

(4.8)

(2) Conversely let f(s), hi(s) be C* functions on [0, L] which satisfy the prop-
erties (4.8). Then the meiric
g = doH6Y Bt S hi(sVa
is defined on the open orbit G X ,C* and extends to a C* metric on P(1DE).

Proof. We prove the second part. At first we consider the ordinary
differential equation

4.9) drlds = (1/f(s))r .
A solution of (4.9) is given by

r = q(s) = exp_ (1/f(w)du

where s,€(0, L) is the point corresponding to r=1. By our assumption on
f(s) at s=0, f(s)=s(1+s*f,(s)) where f,(s) is a C* function on [0, L) and f**~"(0)
=0 for every positive integer k. Since

ex Ss 1/f(w))du = > ex <—Ss—u&)—du>,
p |, (W)du = £ exp (- LA
the solution r=sg,(s) of the equation (4.9) extends to a C* function on [0, L)
such that ¢,(0)>0 and ¢{**~V(0)=0 for each positive integer k. Note also
that r=sgq,(s) is a monotone increasing function. If we put »,=1-7, the equa-
tion (4.9) is written as
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dn,[ds = —(1-Af(s))r1,

and, from our assumption on f(s) at s=L, we see that the solution 7, of the
equation is of the form

ry = (L—s)gy(s)

where §y(s) is a C* function on (0, L] such that g,(L)>0 and §{/~"(L)=0 for
each positive integer k. Let s=p(r): [0, o0)—[0, L) be the inverse function
of r=¢(s). Then the metric g can be written in the form (4.2). Moreover,
since s=p(r) and t=p,(r) are monotone increasing C*= functions on [0, o),
s is a C= function of ¢ defined on [0, L,) such that s(0)=0, (ds/dt)(0)>0 and
d*1s/dt*(0)=0 for each positive integer k. Similarly we see that s is a C*
function of ¢ on (0, L], and hence s=s(¢): [0, L,]—[0, L] is an onto diffeo-
morpishm which satisfies

ds(dt = f(s)/fo(t)  and
d*s|di*(0) = d¥s[dt*(L,) = 0  for each positive integer k.

Thus hj(s)=~h,(s(¢)) satisfies d*'h;/d*}(0)=d* 'h;/d* " (L,)=0 for each
integer k, and hence it is C* at neighborhoods of singular orbits, since the square
of the distance from a point on a Riemannian manifold is C* at a neighborhood
of the point. Now the metric g can be written as

& = (dsJdfde+(F) ) Fot Bk 32 hi(sYe
— (dsfaey(@e-+H(EP)Burt- S by (s(2)Pe
— (dsfatf(go— 33 W(tfer) + 3 hi(s(t)'et;

Since ds/dt is an even function at =0 and t=0L,, ds/d¢(0)>0 and ds/dt(L,)>0,
we see that g extends to a C* Riemannian metric g on P(1D§). q.e.d.

ReMARK. If the metric g on the open orbit G x ,C* is Kihler, so is the
extended metric g on P(1BE).

5 Computations of Ricci curvature

We now compute the Ricci tensor of a G, X S'-invariant Kidhler metric g
on the open orbit GX,C* in the projective bundle P(1£). We assume that
the metric g is of the form

(5-1) g = d'+g, = dé+f(s)Bot+ S hi(s)e;

To calculate the curvature of the metric g=ds’>+g, on G,/Vx(0, L) we
use the notion of a Riemannian submersion according to Bérard Bergery [2].
Note that the vector field H is given by the vector field 8/0s. Let V be the
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Riemannian connection of g as before and V that of g, in each fiber of the Rie-
mannian submersion G,/ Vx (0, L)— (0, L). We recall that, by definition, Ty Y
is the horizontal part of VY for vertical vector fields X and Y, TxH is the ver-
tical part of VyH and if we put TyH=T;X=0, we cbtain a tensor T of type
(1, 2) on G,/ Vx(0, L). Now the formulas of O’Neill is given by

VXY= 6xY+TxY

' VyX and VyH are vertical
VHH == O

for vertical vector fields X and Y. Note that the tensor 4 of O’Neill [14]
is zero, since the base space (0, L) of the Riemannian submersion is 1-dimen-
sional. Note also that

(5.3) g(TxY,H)= —g(TxH,Y), TxY = Ty X, g(TxH,Y) = g(TyH, X) .

If X and Y are vertical vector fields which commute with H, that is, [X, H]
=[Y, H]=0, we have

(54)  g(TxY,H)= —> Hy(X, V) = —g(T:H, Y).

By the formulas of O’Neill if X, Y, Z, V are vertical vectors and R is the
curvature tensor of the metric g, on G,/V, we obtain the followings for the
curvature R of g=ds’+g,:

gR(X,V)Z, V) = gR(X, Y)Z, V)—g(TxZ, TyV)+&(TxV, T+ Z)
(5.5) {&R(X,V)ZH) = g(Vy T)x Z, H)—g((VxT)rZ, H)
gRX,H)Y,H)= g(VuT)xY, H)—g(TxH, TyH).

To calculate the Ricci tensor 7 of the metric g=ds*+g,, we take an ortho-
normal basis (X;);,..,-; of the tangent space of an orbit G,/V with respect
to g, and introduce the following notations:

the principal normal vector N = 3] Ty X;,
the norm |[T|| of T, [|T|[? = 33 g(Tx;H, Tx;H) and
§T(X) = =33 (Vx,T)x, X for a vertical vector X .

(Note that all these notations are independent of the choice of the basis.) We
also denote by # the Ricci tensor of the metric g, on each orbit. Then the
Ricci tensor 7 of the metric g is given by the following formulas.

Proposition 5.1 (Bérard Bergery [2]). If X and Y are vertical,
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(5.6) (X, Y)=HX, V)—g(N, TxY)+g(VaT)xY, H)
(5.7) r(X, H) = g(§T(X), H)
(5.8) r(H, H) = Hg(N, H)—||T|P .

Lemma 5.2 (cf. [2] Proposition 3.18). For a G,XS'-invariant Kdhler
metric g on the open orbit GX ,C* of the form (5.1), we have

(5.9) r(X,H)=0  for all vertical vectors X .

Proof. Since the Ricci tensor 7 is invariant by the complex structure [
on GX,C* and by the action of G, XS, we get our claim by the same way
as the proof of Proposition 3.2. q.ed.

Lemma 5.3. If vertical vector fields X, Y commute with H, we have

(510) g(VaT)xY, H) = — H-H-g(X, V)+24(T:H, TyH).

Proof. g(VaT)xY, H) = g(Vu(TxY), H)—g(Tvyx Y, H)—g(Tx(VxY), H)
= Hg(Tx Y, H)—g(Ty(VaX), H)—8(Tx(VxY), H)

— — H-H-gX, V) +g(VaX, TyH)+8(V5Y, TxH) by (53),(54)

— ——%H-H- &(X, V) 1-2g(TxH, TyH), since [X,H] — [V, H] = 0.

q.e.d.

From now on we assume that the Kdhler C-space X is a product of two

irreducible hermitian symmetric spaces of compact type M, and M, and that

the projective bundle P(1PE&) is induced from a vector bundle 1E where

£ is a line bundle given by p¥LT*@p¥L} for some positive integers a and b.

Then our assumptions (3.6), (3.9), (3.10) and (3.11) are satisfied by taking

canonical decompositions of symmetric spaces: (g;),=b;+m; (/=1, 2). Thus

a G, X S'-invariant hermitian metric g on the open orbit G X ,C* is given by the
form

(5.11) & = A Hf(s)Bot+h(s) oty +hy(s) ety

where a; (i=1, 2) are symmetric tensors induced from the invariant metrics
on M; corresponding to the inner product < , >=—XKilling form.

As in section 4 let X,E¢, be the element defined by A(Xy)=+/'—1. Then
Bo(Xo, Xo)=1. We put m=dim¢M, and n=dimcM, Take an orthonormal
basis {B,, ‘**, By, Cy, =+, Cp,} of m=m,+m, with respect to the inner pro-
duct <, > such that B;Em, and C;Em,.

Proposition 5.4. For an orthonormal basis {H, %Xo, iBl, TR —l—Bz,,,,LCI,

Iy B ™ h,
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1 Cz,,}, we have

"
r(H, H) = (]} +2m— hll +2”h22)
r(%Xo, %Xo) <_X°’ ) < mﬁ+2n%)_f7”
() (in 1) G2
() - (e ) ()
2 2 2 2 2 '
r(%XO’ hilB') '(% C‘) (h, ¥ —1 ") - ’(ZIQC" iC’) =°
for i=j and
<21“B" C;) =0 for each (i ).
1 2

Proof. Note that [¥,H]=0for Y. Since g(N,H)=g(Twnx,(1/f) X0, H)
+ 2 &(Tampsi(1/h) By, H)+- Eg(T(l/hz)C,(I/hZ)CJ’ H)= (1/f*)g(T, %o, H)-+(1/K)
3 ¢(T5B;, H)+(1/h3) 33 ¢(Te,Cj, H)= — {(I/fz)Hg(Xo, X)+(1/H)
> Hg(B,, B)+(1/h3) 33 Hg(én Cy =—(f /f)ﬁo(Xo, Xo)—(hijh) 2 (B, B)
~(h2/h2) 2'} a(Ci, €)= —(f'[f)—2m(hi|h)—2n(h3/h,) by (5.4), we have

v, 1) = I o0 o W (0

1 2
Note that, for Yeb, g(TyH, TyH)=>)g(TyH, X,;)* where {X,} is an ortho-
k
normal basis of a tangent space of an orbit G,/ V. Thus g(Tx,H, Tx,H)=(f"),
&(Ts,H, Tg,H)=(h{)? and g(T¢,H, Tc,H)=(h5)’. Therefore HTHZ:;IITX,,HHZ=

(f" [f ¥ +-2m(hi 1)+ 2n(5 By and hence r(HLH)=—(f [f)— 2m(h{! [hy) —2n(h3’ [hy)
by (5.8).

Since g((VaT)w pxo(1f)Xor H) = (1/f*)8((VaT) 2, X0 H)
— (U~ H-H-g(Ro, )+ 20(TxH, Tx D} = (—fF+(FV)If we have,
by (5.6)

r(%Xo, %XO:?(%XO, %Xo)_(f'/f)( ”1+2 Z:) f7

By the same way we get two other formulas for Ricci tensor 7. Since
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Ricci tensor 7 is invariant by the complex structure J and by the action G, X S,
we get last claims by the same way as in proof of Proposition 3.2. q.e.d.

Now to compute Ricci tensor # we recall known facts on a hermitian sym-
metric space M of compact type. We write M=G|K where G is the identity
component of the group of all isometris of M. Let g, ¥ be the Lie algebras
of G, K respectively and let g=f-+n be a canonical decomposition. By
identifying n with the tangent space of G/K at the origin, let I be the complex
structure on 1 induced by the invaiiant complex structure J on M. By extend-
ing I to the complexification n¢ of 1, we have the decomposition n¢=n*+4n",
n*Nn~=(0), n*=n", where the bar denotes complex conjugation with re-
spect to n. It is known that there exists an element Z in the center ¢ of ¥
such that ad(Z)=1. Moreover it is also known that dimc=1 if M is irreduci-
ble. Take a Cartan subalgebra § of g containing Z. Then the centralizer
of Z coincides with . We denote by = the root system of g¢ with respect to
H¢ and g, the eigenspace of the root @. Note that §,=g_, where the bar
denotes complex conjugation with 1espect to g. By setting Z*={aEX|a(Z)
=+/—1}, we have

nt = Egm n = Egu'
acs, 1=

We denote by B, the real subspace /—19 of §¢ and introduce a lexicographical
order in the dual space ) by taking a basis {H,, :--, H;} of %, such that H,=
—+/—1Z. We denote by =¢ the set of positive roots not belonging to Zg.
Then

2 = {aeX|a>0, a(Z) = 0}
and

1= bc+m§+(gu+g—m)

We also identify a linear form AEHF with an element H, €Y, by means of
the Killing form @ on g,

MH) = o(H, H,) for all HeY,.

It is also known that if M is an irreducible hermitian symmetric space there
is a unique simple root «; belonging to =i. We denote by II={a,, **-, a;}
the set of all simple roots and by {A,},en the fundamental weights of g¢ cor-
responding to II. Then =7 is spanned by {a,, -:*, &;} and thus the center ¢
of tis given by v —1RA, .

Let <, > denote the inner product of B, induced from the Killing form
@ on g€ as before. If M is an irreducible hermitian symmetric space, the
element Z €c such that ad(Z)=1 is given by
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2V —1
(5.12) Z= <(;l/’ oS Ao

Lemma 5.5. Put 8,1_? ) a. Then &, belongs to the center of ¢ and
aezn
By aD>=1/4 for ac=;.

Proof. See Murakami [13] Part II Lemma 1.1 and Corollary of Lemma
5.1, or Takeuchi [16].

It is also known that if M is irreducible there is a canonical isomorphism
ZA, —H*(M, Z) and the first Chern class ¢,(M) of M corresponds to xA,,
where « is an integer given by

228y, ap
5.13 =220 7
( ) lay, ay
Therefore we have

(5.14) Z =2V —1kA,,

Now we choose E, g, for « €3 with the following properties:

[Em E—u} = —a, ¢(Em E—-u) = '—1: Ea = E—w .

Put B, —T (E,+E_,) for acZ}. Then B,en, IB,= \\//_1 (E,—E_,) and
{B,, IB,|a =%} is an orthonormal basis of nt with respect to the inne1 product
<, > induced from the Killing form. Note that [B,, IB,]=v/—1a for a X},

(5.15) {[Buw IB,), V=IA,>=1/2¢  for a€3;
by (5.14) and a(Z)=v/—1

Now consider a product X of two irreducible hermitian symmetric spaces
of compact type M, and M, and a projective bundle P(1@p¥Li*® p¥L3)
where L; and L, are generators of the group of all hclomorphic line bundles
H\M,, 6*) and H\(M,, 6*) respectively and a, b are positive integers. Let
A® and A® be the fundamental weights corresponding to L, and L, respectively.
Then the weight A corresponding to the holomorphic line bundle p¥L7*® p¥L}
over X=M, X M, is given by A=—aA®+bA®.

Now we take an orthonormal basis of m such that {B,, :--, B,, IB,, ‘-,
IB,} is a basis of m; and {C,, -++, C,, IC,, :-+, IC,} is a basis of m, which satisfy
(5.15). Let «; be the positive integers corresponding to the first Chern class
¢(M;) of M; as before.

Lemma 5.6.
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1) (5.16) {(\/—_1A, [B;, IB)> = —af2k, for eachi .
' V=IA [Cy, IC) = bj2k,  for each i
(2) A G,x S'invariant hermitian metric g on the open orbit GX,C* of
the form (5.11) is Kdhler if and only if
{(a/Z:c,)f—{—Zh,h{ =0.
(—b/21,)f+2hks = O .
Proof. At first (5.16) follows from (5.15). Since M, and M, are her-

mitian symmetric spaces of compact type, the assumption of Proposition 3.4
is satisfied. 'The condition (3.20) can be written as

— (K Xy Xo+CX, XY <X, [4, 1B+ (d(k)]ds) <A, Bom, = 0

for 4, Bem, 0+X&c, Since X Ec, is given by A(Xp)=v—1, X;=v/ —1
AKA, A and thus X,=<X,, X;> /—TA. Now by taking an orthonormal basis
of m as before, we see that the condition (3.20) is equivalent to (5.17). q.e.d.

(5.17)

Now we compute Ricci tensor # of a metric g,=f(s)*Bo+M(s)’a,+hy(s)ct,
on G,/V. Let g,=b+p be the decomposition as before. Then
p = cmy4m,, [m;, m]Ch4c, (1= 1, 2)
and [c,, mJCm, (i=1,2). We denote by R the curvature tensor of (G,/V, g,).
Note also that the metric g, corresponds to an inner product
(518) < ’ >s = (f(s)2/<X0) X0>)< ) >cp+h.l(s)2< ) >Im1+h2($)2< ’ >Im2

on p.
Lemma 5.7. For X, Y &P, we have

(519) <R(X, V)Y, X>, = —(34)<IX, Y1, [X, Y], —<[[X, YT, Y], XD
—(1/2)<Y, [X, [X, Y]}}>o—(1/2) <X, [V, [V, X],]2A<U(X, Y), UX, V),
+U(X, X), U(Y, )

where Z, Z,, denote b-component, p-component of Z &g, respectively, and U:
PXp—P is a symmetric bilinear form defined by

CUX, Y), Z>, = %«[z, Xy, Y0412, Y] XOD)
for X, Y, Zep.

Proof. See [17] Lemma 7.1.

1p Llig,

1 1
" h

Proposition 5.8. For an orthonormal basis {l Xo, p By, «,
1
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o, hlllB,,,, hiz C, -, i C,, LICI, e hLIC,,} of b, we have

I,
620 H{1x %) =am( ) Feran(5) fe

7y (1 1B, IIB) }1&_<2x1>2{:
1

(5.21) ;\( y B,)
C,)-i‘( Ic,,lzc) E/E%E)%

+

?
622 #(; Cosy

fori=1, o, m, j=1, - n

Proof. For simplicity we put B}=B;, Bl,,=IB; for i=1, .-, m and

C}=Cj, C}4,=IC| for j=1, +--, n. Note that [X,, Y]=—(a/2x;) {Xy, X>IY

for Yem, and [X,, Y]=(b/2k;)<{X,, X»>IY for YEm, By straightforward
computations, we have

_3 <[%X,,, hllB;l, [%X %B:] b= —2 171—(— Xy XD)
“? <E , [%Xo [%Xo hllB'] l>, = %(2% <X
~ 5 B[ x] [o= () xo,
a

<U(f Xw;: Bf), (}Xo,h B’)>s__i_f1 (_2_1 2{h1<Xm X°>_{,—j}z

» X)

and

<U(on,} )UIB:,h1 {)5= 0. Note also that

[Xo, B/]=0. Thus by Lemma 5.6, we get

<& ( f Koy, hy ~ ,>hl1B f F= <2:>2if22

By the same way we get

Wzl LG

Since 9(%Xo,f ) 2<k( X, hlB’)hlB{,fX0>

+3 <R( Lx,Lc)lc, } X, we get (5.20).
2 2

Note that [B,’, Bj]p=0’ [IB,', IBJ]pZO and [B,', IBJ]p=[B,, IBJ]Cp=8U_—aXO)

1
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and [c,, mJCm, (i=1, 2). By straightforward computations, we have

<1é(}l1_B,.,lIB )h BLB>, — —i(_“_>2ﬁ~ izl7<[[B" 1B}, IB], B>

Iy I #\2,) 1
and
R( Ly, Lry) Ly, LBy, = — LB, B, B, B!
K(Lpi Lo La Loy, — — L, ) 2 o
otherwise.

We note that if R, is the curvature tensor of the hermitian symmetric
space M, with the metric induced from the Killing form then

(Ry(B!, B})B}, B> = —[[B!, B]), B}'), BI>.

Moreover it is known that the Ricci tensor 7, of a hermitian symmetric space
M, is given by

(X, Y) = %(X, Y> for X,Yem,
(see [11] Proposition 9.7). Obviously we have

<1Q(hl B, h_zc')}ic;, hl—xBf~>s —0  for each (i, j) .

Therefore we get

9(lB:, —B’) <k(_B:, ; ,,)lXo, 1ps

hy " h fh
+3<R( 81, -B;)LB;, LBp)
ji=1 h hl hl hl
( )2f2
T 2\2k/ mt 2k
By the same way we also get (5.22). q.e.d.

By Proposition 5.4, Lemma 5.6 and Proposition 5.8, we get following
theorem.

Theorem 5.9. Let X be a product of two irreducible hermitian symmetric
spaces of compact type M, and M, and let P(1BE,) be a projective bundle on X
such that &,=p¥Li°Q p¥L} where a, b are positive integers. Then a G,XS'-
invariant hermitian metric g on the open orbit G X ,C* of the form (5.11) is Einstein
Kahler if and only if f, hy and h, satisfy the following ordinary differential equa-
tions:
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1) 2 f42mhi=0

21,
2) —_”. f+ 20t =0

3) (f”+2m +zn”2)_x

(5.23) f/{ ! & n & 2 12 b\ 2
w =L (thl+2nh2>+2m<le> 1 <272>Z;T;=7”
& L mn() -2 () - () =
0 ) b ()

for some constant 7>>0.

6 A proof of Main Theorem

At first we shall solve the system of ordinary differential equations (5.23).
We consider a solution such that f, A, and 4, are positive valued functions on
an open interval. By (5.23) (2) we see that £3>0. From (5.23) (1) and (2)
we have

6.1 oWk kL ks
6.1) f A h. h;
and
LM (Y (e L
(6 2) f hl hl (hl hl 2/C1 4'h§
. ﬂbé:i’+<ﬁ)z=i+(i)zﬁ
f h, hy hy hy 2k, 4h; '

Thus under the equations (5.23) (1) and (2), the equations (5.23) (3) and (4)

are identical.

From (5.23) (1) and (2) we also get

(6.3) aryhsh,+brshihy, = 0,
and we introduce a constant §>0 by

(6.4) 8% = an,hz+brehi .

Now we introduce a new variable y=y(h,) by

(6.5) =\ y(hy) .
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Then we have

d’h 1 dy &hy _ 1 d% dh
6.6 22 - 7 d “ it wit2
(6.0 ¢ 2dh, a2 dk ds
By (6.1), (6.3) and (5.23) (2), the equation (5.23) (6) is written as
—2 2 (2 ) om@e Ly 15
(2n+2) + b/c,hz( )+2h2
Thus by (6.5) and (6.6) we get

dy <n—|—1 ar, h 1
6.7 8% %2 )y = 3\
©7 a T " hf>y A
Similarly, by (6.2), the equation (5.23) (5) is written as
hi’ h hik; 1
6.8 —2=L—(2m+-2 —2n =N
©8) p et )( ) i, 2K
From (6.3), (6.4), (6.5) and (6.6) we obtain
hi ar,\* h
- ()
() (h, by 1t
and
(6.10) ' _ _1acgh dy ax, &

b 2 bk, B dhy, (br)? Rt
Therefore the equation (6.8) is written as

1 ax, h bi, h? 1 bx; 1
6.11 2(”+ _2_2) _be By 1 ke 1
(6.11) —I— ™ e

ar, by 2 ary by
From the equations (6.7), (6.11) and (6.4), we obtain a relation
(6.12) ary,+br, = 208%.
Now by (5.23) (2) and (6.6), we have

l/ 177 3 1 d 1 dz
6.13 - : &y 1dy
(6.13) F T T 2 a2

Thus the equation (5.23) (3) is written as

2n+3 2max2h2) dy _4mar,®

d’y (
6.14 +
( ) hy b i /1 dh, (b/cl)zh"'

dh}

Now it is easy to see that the equation (6.14) is obtained from the equation
(6.7) by differentiation and (6.4). Hence we get the following lemma.
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Lemma 6.1. The system of differential equations (5.23) is equivalent to
the following system of equations:

a b
@ riopm —0 — 2 r_
2, f+2hh =0, 2, f+2hh =0

(6.15) =y, 2Mangi+-biehd) = arp-t-br,
dy n+1 ax h) 1
2 e, 1 5,
an ( e e 1) T 2 Mo

Now we consider the first order linear differential equation (6.7). Since
an integral factor u is given by

(6.16) p = (8 —awh3)" = B3 D (brei)"

a solution y of the equation (6.16) is given by

1 " m
6.17) 5= m{ghg (bl (1-2xh§)dhz+C}
where C is a constant and ax,hi+brhi=8%

Now we recall the following theorem on a compact Einstein K#hler mani-

fold.

Theorem 6.2 (Matsushima [12]). Let (P, J, g) be a compact Einstein
Kdhler manifold with positive Ricci tensor. Then the Lie algebra t(P, g) of all
Killing vector fields on P is a real form of the Lie algebra §(P, J) of all holomorphic
vector fields on P.

Let P(1BE,) be the projective bundle on X as in Theorem 5.9 and assume
that g is an Einstein Kidhler metric on P(1&,). Then we assume that g is
invariant by the maximal compact Lie group G,xS' by Theorem 6.2, and
hence g is of the form (5.11) on the open orbit Gx ,C¥*, and f, h, h, satisfy the
equations (5.23) and conditions of Theorem 4.4 at the boundaries 0 and L.
By (5.23) (1) and (2), we obtain

220 = 0,

K

(6.18) ‘b

——f'+2mht - 2(hs) = 0
21,

Since f/(0)=1, f'(L)=—1, hi(0)=h{(L)=h50)=hi(L)=0, we have

L1 21,(0)h3’(0) = 0, —-—+2hy(L)hi'(L) = 0,
(6.19) 2k, 2k,
— b om0y (0) = 0, 2+ 2m(Lym/(L) = 0.
2k, 2k,
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By (6.7) and (6.8) we have
(6.20) —4hY’(0)h,(0) = 21h3(0)—1, —4h% (L)hy(L) = 22h3(L)—1
for i=1, 2. Thus by (6.19) and (6.20), we get

{ AK(0) = 1+4(afry), 2MB(L) = 1—(afxy),

(6.21) 2AR3(0) = 1—(b/ry), 2Ah5(L) = 14-(b/x,) .

In particular, we obtain conditions a<<#, and b< #,, which are known as the
conditions for the first Chern class of P(1D£,) being positive. Now, since

¥(h(0))=(h(0))*=0, y(h,) is given by

_ 1 ko 2n+1 2
(6.22) y(hZ)_thg(”+1)(bx1hf)mjhz<o> (beih3)"(1—20H3) .

Since y(hy(L))=0, we have

1 ko(L) J2n+1 2 -
YLD = 53w Ty (b (D)) Shzo (k"1 =AYl = 0.

Hence, if g is an Einstein Kahler metric on P(1BE&,), we have

(6.23) B3 (brey3)™(1— 20K dhy = O

$V<1+<b/~z))/2a
VA= (652

where 2M\(ar,h3+brhi)=aw,+br,. Now we put u=2Ak3—1. Then (6.23)

can be written as
b/x
g b/z (u‘*‘l)”(b/ﬂl—alczu)mudu = 0 )
—blxg

since 2)\(ar;h3—+brehy)=ar,+bre,.
Thus by setting x=/(x,/b)u, we see that (6.23) is given by

sl (1tg+-b)" sy —ax)™xdx — 0 .
-1

Conversely, assume that (6.23) is satisfied. We define y(k;) on a neighbor-
hood of [\/(1—(b/x,))[2N, \/(1+(b/x,))/20] by

1 h nt m
) = G i g O (2N

For simplicity, we put A°=+/(1—(b/x,))/2N, B'=+/(1-+(b/x,))/2\. Then
y(H°)=y(k")=0 and y(h,)>0 for A°<h,<<h'. Note also that dy/dh,(h°)>0 and
dy|dhy(h")>0. Define a function #(k,) on (K°, k') by

(6.24) F(hy) = S"vw \/yl(h,)

2 .
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Since h,=H’, k' are simple roots of y(hz)-—:O,hlirhrol HUA) andhlirkrll_ E(h;) exist. We
put 2] + 2—)

%, =h21_i)%1+f(h,) and 7 =h21i1:}_f(h2) .
We also define a function #(/,) on [#°, A'] by
t(hy) = E(hy)—1,, t(h*) = 0 and (') = #,—7,

and we put L=t#(h'). Then t(h): [F°, h']— [0, L] is a monotone increasing
continuous function which is C* on (#°, h').

Now let Z,(#) be the inverse function of #(h,). Then dhy/dt=+/y(h;) on (O,
L). We claim that A,(f) can be extended to a C> function hy(f): [0, L]— R,
such that AZ*~D(0)=hF*"D(L)=0 for each positive integer k. For a suffi-
cient small €>0, we extend /() to a function 7,(¢): (—&, L+€)— R, by hy(t)
=hy(—1t) for —6<t<0 and Ay(t+L)=h(L—t) for 0<t<€ Then we see
that 7,(¢): (—&, L+E&)— R is continuous and is a C* function except t=0 and

t=L. Since dh/dt=~/y(h) on (0, L), dh/dt=—~/y(h) on (—&, 0) and
lim%=0, we see that dh,/dt(0) exists and dh,/dt(0)=0. Similarly we have

t->0

dhy/dt(L)=0. Thus we see that k,(2): (—¢&, L+&) — R, is a function of class
C'. By dh,/dt=+/y(h;) on (0, L), we have

dhy _ 1 dy
i =7 g ® on (L)

By dhyjdt=—~/y(h,) on (—¢, 0), we also have

&y _ 1 dy _
=g (@) on(=80).

Thus we see that lim d?h,/d#® exists and
t->0

&h, 1 dy 0 1(1 o)
———O:—_..—h _ — ———-——_h .
a0 Zdhz() 2 \gp M

Similarly we see that lirrLl d?h,|dP* exists and

@yl dy g _1(1
dtz(L)_Zdhz(h)_z(Zh‘ M‘)'

Therefore hy(t): (—&, L+&)— R, is of class C?. Now we put ¢(k2)=%gdly—.
12
Then @(h,) is a C= function on a neighborhood of [#°, A'] and

(6.25) ‘%‘; — p(hy(t)) on (0, L).
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Lemma 6.3. On (0, L), we have, for each positive integer k,

dhglwl _ dz&—l¢ <d_hz)zk-1
dt2k+1 dhglnl dt

k-1
+,~2=1 q’%flﬂj)-l(?’

dhzk d2k—2 d 2k-2
©2) G = s (_hz)

d d#-*igp\ ( dh 2(k—j) -2
o2 420 ) (5)
+E 2W=i=2\P> g i) \ gy

(6.26)

de .. d”""¢) (é&)’“"”“
“dhy,’ O dr3i\ dt

1-1-7
where ®)_i_ 2,(<p, dp .4 i

1-1-j
an,’ dhl—m) are polynomials of @, 4%, .., 4" 'P
2

an,’ " dhi- =2

Proof. By routine computations using induction.
In particular, we see that

dh2k+1 . dh§k+ 1

1}1‘9 diZk+! = l,l_fILl A+ =0,

. a3yt d

i gor = q)“( . dZ #, - dh" l(ho))
. dhzk

lim e = q)“( (hl) (hl) dh” e l))

and hence #y(t): (—&, L+&)— R, is a C* function such that AZ*~D(0)=h{*"
(L)=0 for each positive integer k. We define a function f by
f = (4weo|b)hsh;
and a function #,>0 by
2N\(arhs+-brki) = ary+be, .

Then f is a C~ function on [0, L] such that f(0)=f(L)=0, f'(0)=—f'(L)=1
and f®(0)=f®(L)=0 for each positive integer k, and f, hy, h, satisfy the
equation (5.23). Therefore a metric g=dt*++f(t)}Bo+m(t)’ar+M(t)a, is an

Einstein Kihler metric on P(1E&,) by Theorem 4.4 and Theorem 5.9. This
proves our Main Theorem.

1
Proof of Corollary 1. Since s (r—ax)"(k+ax)"xdx=0, we see that
-1

there exists an Einstein Kihler metric on P by our Main Theorem.
Proof of Corollary 2 (1). By our Main Theorem it is enough to see that

1
S (e-bx)"(k—av)"xdx£0  for azb.
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We may assume that 6>a.
[ (et e—anmude = | (+(b—a)x—aba?)"xdx
m (1 . .
- 8_1(7) (1 — abo?)™~3((b—a)x) xdx

o N ) [ e R

=1

Il
[\

1
) SO(Zk"il) (1 — aba) "+ — gy -1y >0 | qed.
Proof of Corollary 2 (2). Since #,=2 and a=1, we have to show that
(6.28) Sl (2—x) (rp+bx)"xdx£0  for n=2.
-1
Put y=#«,+bx. Then the integral (6.28) is given by
K2+b 1 ”
[ @t—y) (=l dy
k2—b b
Now we have
x2+b "
629) [ @b+i—3) (y—ry'dy
— l — n+1 2 2b 1 3
(1) (142) (103) [(r,—b)"* (2654 (2n+4)2b1e,+(n+1) (3n+8)b%)
— (g +0)"*(2(re5+-2bk,) — b (n*+-5n+-4))] .

Case 1. b=2.
Since b<w,=<n-+1,
V(P +-5n+4)—2(r3-+2b,) 2 b¥(n*+-5n+4)—2(n+-1) (n+1+42b)
= (b®—2)n*+(56°—2b—2)n+(46*—4b—2)>0 if 6=2.

Thus the integration (6.29) is positive.

Case 2. b=1.

We use a classification of irreducible hermitian symmetric spaces. It is
also known that the integer « of an irreducible hermitian symmetric space
of compact type M is given as follows (cf. [5]):

I M= U(p+9)/(U(p)x U(g)) k= p+q dimeM = pgq
II M = SO(2¢)/U(q) (¢=5) k= 2g—2 dimeM = g(g—1)/2
III M = Sp(g)|Ulg) (¢=3) k=g+1 dimeM = g(g+1)/2

IV M = SO(g+2)/(SO2)x SO()) (q=3) k =q  dimcM =g
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V' M = E¢/(Spin(10)x T") £=12  dimeM = 16
VI M = E,|(Esx T =18  dimeM =27.

Now, since b=1, (6.29) is given by
ky+1 "
©30) [ @+e—) -y
— 1 _—1\»+1 2
= ) ) ) [(rea—1)"*(234-2(2n+4) ;4 (n+-1) (3n+-8))
— (1) (2(154-21,) — (n*+-5n+-4))] .
Case 2.1.
If M=U(p+9)/(U(p)x U(g)) and p, g22,
n'+5n+4—2(ki+21) = (pg)*+5pg+4—2(p+qf*—4(p+9)
= (p*—2) (¢ —2)+pq—4p—492 2(p*—2)+q(p—4)—4p .
If p=4, 2(p*—2)+q(p—4)—4p22(p*—2)+2(p—4)—4p
— 2(p—3) (p+2)20.
We may also assume that p=g. If p=3=¢=2,
WP +-5n+4—2(r5+21) = 7(*—2)+3¢g—12—4q = 7¢"—q—26>0 .
Note that if p=¢=2 then M is a quadric Q*(C).
Case 2.2.
If M=S80(29)/U(q) (g=5),
n-+Sn+4—2(r3+21) = (g(g—1)/2)*+5(q(g—1)/2)+4
—2(29—2)*—4(29—2) .
Since n=q(q—1)/2, n*+5n+4—2(x5+21,)=n*—11n+4>0 if ¢=6, that is, n=>15.
For ¢=>5, we have n=10 and thus (6.30) becomes

1
13x12x11

(7(2°+11 X 38)— 9 x 6) =0

Case 2.3.
If M=Spl@)/Ug) (@=3),
ni4-5n+-4—2(k5+2k,) = (9(q+1)/2°+59(q+1)/2+4—2((g+1)°+2(¢+1))

Put p(x)=(x(x+1)/2)*+5x(x+1)/2+4—2((x+1)*+2(x+1)).
Then p(3)=22 and p'(x)>0 for x>3 and hence n®+45n-+4—2(x5+21,)>0 for
g=3.

Case 2.4.

If M=Eg/(Spin(10)x T?), x,=12 and n=16, thus
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1P-5n1-6—2(13+-215) = 4>0.
Case 2.5.
If M=E;/(Esx T"), x,=18 and n=27, thus
15149 2(13+205) = 35X 3P 44>0.
Therefore the integral (6.30) is positive for the cases above.
Now we consider the cases M=P"(C) and M=0Q"(C).

Case 2.6.
If M=P'(C), y=n+-1, and thus (6.30) is given by
1 n+1 o wil
(n+3) (n+2) (”-}—1){” 9(n+1) (n+2)—(n+2)"**(n+1) (n+2)}

We define a function p(y) (y=2) by
— (2%1Y
(6.31) p(¥) = (y_l) -

Then it is not difficult to see that p(y) is a monotone decreasing func-
tion. Therefore we see that the integral (6.30) is positive for n=2.

Case 2.7.
1f M=Q"(C) (n=3), x,=n and thus (6.30) is given by

(n—1)"*Y(n?—n—4) {9n’+19n+8_<n+1)"+1}
(n+3) (n+2) (n+1) \ n*—n—4 n—1 '

2 ”n
We claim that on 2+19n-4#-8_<n+i) +1>0 for n=3. Since the function p(y)
n—n— n—

defined by (6.31) is monotone decreasing, it is enough to show that

(97°+19n+-8) (”_1)>8 for n=3.
(PP—n—4) (n+1)

But this is obvious, since

(9n*+19n+8) (n—1)—8(n+1) (*—n—4) = n’+10n’+29n+24>0 .

Thus the integral (6.30) is positive for n=3. q.ed.

Finally we give an example of Einstein Kihler manifold which is not of
the type in Corollary 1 of Main Theorem.
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ExampLE 6.4. Let M, be the complex Grassmann manifold G;,(C) of

2-planes in C® and M, the complex projective space P¥C). Note that in this
case #,=6 and x,=9. Consider the P(C)-bundle P(pF¥Li® p¥L3) over M, x M,.
Then the integral in Main Theorem is given by

511(6—2x)8(9—|—3x)3xdx —0.

Thus P(p¥LiD p¥L3) has an Einstein Kihler metric.
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