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Let (P, / , g) be a compact Kahler manifold. If (P, / , g) is Einstein Kahler,
the first Chern class cx(P) of P is positive, zero or negative. It has been proved
by Aubin [1] and Yau [20] that if (P, / ) is a compact complex manifold with
c1(P)<0 there exists a unique Einstein Kahler metric on (P, / ) , and by Yau
[20] that if (P, / ) is a compact Kahler manifold with c1(P)=0 there exists an
Einstein Kahler metric on (P, / ) . In the case of Cj(P)>0 it is known that
there exist compact Kahler manifolds which do not admit any Einstein Kahler
metric (cf. [6], [8], [19]). Up to now known obstructions to the existence of
Einstein Kahler metrics on compact Kahler manifolds with positive first Chern
class are (1) Matsushima's theorem ([10], [12]), that is, if (P, / , g) is an Ein-
stein Kahler manifold, the Lie algebra of all Killing vector fields on P is a real
form of the Lie algebra of all holomorphic vector fields on P and (2) Futaki
invariant [6].

The purpose of this note is to give some examples of compact Einstein
Kahler manifolds with positive first Chern class which are not homogeneous.
We give a necessary and sufficient condition to the existence of Einstein Kahler
metrics on P1(C)-bundles over hermitian symmetric spaces of compact type.
In the category of Riemannian manifolds, compact Einstein manifolds of co-
homogeneity one have been studied by Berard Bergery [2]. In our case the
P1(C)-bundle P is of cohomogeneity one with respect to a maximal compact
subgroup of the complex Lie group of all holomorphic transformations on P
and to prove our Main Theorem we use the similar method used by Berard Ber-
gery in [2]. We also remark that our Corollary 2 (2) to our Main Theorem
generalizes the example given in Futaki [6].

The author would like to express his thanks to professors Tadashi Nagano
and Norihito Koiso for their useful suggestions given during the preparation
of this paper.

1 Main Theorem

Let M be an irreducible hermitian symmetric space of compact type.

1) This work was supported by Grant-in-Aid for Scientific Research (No. 59460001), The
Ministry of Education, Science and Culture.
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We denote by Hι(My θ*) the isomorphism classes of all holomorphic line bun-
dles over M. It is known that Hι{My θ*) is isomorphic to the second coho-
mology group H2(M, Z)—Z ([5]). Take a generator L of H\My θ*) which
has a positive Chern class Cι(L)>0. Then the first Chern class cx(M) of M
is given by cι(M)=κc1(L) where K is an integer: 2^κ^dimcM+ί (cf. [5]).

Consider a product X of two irreducible hermitian symmetric spaces of
compact type Mι and M2 and a holomorphic vector bundle ptLiφptLb

2

over X where p^. X-*Mi ( i=l , 2) are projections, L, ( i = l , 2) are the generators
of Hι{Miy θ*) and α, Z> are positive integers. We denote by P the P1(C)-bundle
P(pfLι®pfLb

2) over X It is not difficult to see that the first Chern class
Cι(P) of P is positive if a<κλ and b<κ2 where κ{ ( ί = l , 2) are positive integers
given by c1(Mi)=κic}(Li) (cf. [15] proof of theorem (5.56)).

Main Theorem. For irreducible hermitian symmetric spaces of compact
type Mi of complex m-dimensίon and M2 of complex n-dimension, and positive
integers ay b with a<κι and b<κ2y there exists an Einstein Kάhler metric on the
compact complex manifold P if and only if

I (κ1—ax)m(κ2-\-bx)nχdx = 0 .
J -l

Corollary 1. For irreducible hermitian symmetric spaces of compact type M
=M1=M2 and a positive integer a=b with a<κy there exists an Einstein Kάhler
metric on the P1(C)-bundle P over Mx M.

Corollary 2.
(1) For M=M1=M2 and positive integers ay b such that a, b<κ and aφb,

the P\C)-bundle P over MxM has the first positive Chern class but P does not
admit any Einstein Kάhler metric.

(2) For M1=P\C)y M2^FP\C) and a positive integer b with b<κ2y the
P1(C)-bundle P over Pι(C) X M2 has the positive first Chern class but P does not
admit any Einstein Kάhler metric.

2 Orbits on P1(C)-bundles over a Kahler C-space

Let X be a Kahler C-space, that is, a simply connected compact complex
homogeneous space with a Kahler metric. By a result of H.C. Wang [18],
X can be written as X=G/U where G is a simply connected complex semi-
simple Lie group and U is a parabolic subgroup of G. Let p: i7-^C* be a
holomorphic representation of U and ξp the homogeneous holomorphic line
bundle on X associated to p, that is, ξp is obtained from the product GxC*
by identifying (guy w) with (g, ρ~ι(u)w) where g^Gy u^U and w^C*. It is
known that every holomorphic line bundle on a Kahler C-space X is homo-
geneous (cf. Ise [7]).
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For a holomorphic line bundle ξ on X> we consider a P^C^-bundle
over X, where 1 denotes the trivial line bundle on X. Then G acts on P(\@ξ)
in the natural way.

Proposition 2.1. If ξ is a non-trivial holomorphic line bundle on X, the
P\C)-bundle P=P(1®£) is a disjoint union of three G-orbits One of orbits is
open in P and it is isomorphic to the principal C*-bundle associated to ξ. The
other two orbits are isomorphic to X

Proof The equivalence class of (g, (wly w2))^GxC2 is denoted by [g,
(wly w2)]^\®ξ. Let p: \®ξ—(O-section)-^P denote the canonical projection
Consider the G-crbit of the point p[e, (1,1)] where e is the identity of G. We
shall show that the orbit G p[e, (1,1)] is isomorphic to the principal C*-bundle
associated to the line bundle ξ. Let p: £/-»C* denote the holomorphic re-
presentation such that ξ=ξP. Then the principal C*-bundle associated to ξ
is obtained from the product GxC* by identifying (gu, w) with (g, p~ι(u)w)
where g^G> u^U and w^C*, and the principal C*-bundle is denoted by
GXpC*. The equivalence class of (g, w)^GxC* is denoted by [g> w]^
GxpC*. We defineamap <p: G-p[e, ( l , l)]-Gx P C* by φ(gp[e, (1,1)]) = fe, 1]
It is not difficult to see that φ is an injective holomorphic map. Since p is
not trivial, p: U^>C* is surjective and thus we see that φ is surjective. More-
over for each element p[g, {wXy zo2)] (z^φO, «?2φ0) there is an element uEίU
such that ρ{u)=wTιv)2^.C*. Thus p[g, (wly w2)]=p[gu> (1,1)]. By the same
way we see that the orbits G p[e, (1,0)] and G p\e, (0,1)] are isomorphic to
X=G/U. Thus the orbit G-p[e, (1,1)] is open in P(l®f). q.e.d.

For a holomorphic line bundle ξ=ξp on X let U be the isotropy subgroup
ofGat/>[>, ( l , l )]eP(l®e). Then U={ge U\p(g) = l} and d im c i7-dim c f /- l
if ξ is non-trivial. The natural C*xC*-action on l φ f induces a C*-
action on P(l©£). Note that GχC*-orbits in P(l®ξ) coincide with G-orbit
and that the C*-action on the orbit G p[e, (1,1)] corresponds to the right C*
— U/ϋ-acύon on the principal fiber bundle G\Ό over X,

Let Gu denote a maximal compact subgroup of G and V=GUΓ\ U. Then
GJV is difFeomorphic to G/U. Put V={g<=V\p(g)=l}. If p: ?7->C* is
non-trivial, dim^F^dim^F— 1.

Proposition 2.2. Let p: U->C* be non-trivial. Then the principal C*-
bundle Gx p C* over X is GUXSι-equivariantly diffeomorphic to GujVχR+ where
Gu X S1 acts on R+ trivially.

Proof. For g^G, there exist elements k^Gu and u^ U such that g=ku>
since GujV=GIU. Since each element of GxpC* may written as [g, l ] e
GXpC*, we have [g> l] = [k, ρ(u)]. Let GUXPC* denote the space obtained from
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the product GuxC* by identifying (kv, w) with (k> p~1(v)zo) where
and W^LC*. The equivalence class of (k, zu)^GuxC* is also denoted by [k> zv].
Then the map [g, 1]H->[£, ρ(g)]: GxpC*->GuXPC* is a GuXS^equivariantly
diffeomorphism. Put ρ(u)=reiθ (r^R+). Then r is uniquely deteimined by
the class [g, 1 ] G G X P C * . In fact, if g=ku=k1u1 (k, k^Gu) u, u^U), k~%
=uuT1^GuΠU=V. Since P(uuT1)^S1={eiB\θGR}9 P ( « 1 ) = P ( M 1 M " 1 ) P M = ^ I

for some Θ^R. Define a map ψ : Gu X pC*-> GM/ F x R+ by ψ (Γ*> w])=(fa> ί>)
where w=reiθ and p(v)=eiθ (v^V). Then it is easy to see that ψ is a GJ.XAS1-

equivariantly diffeomorphism. q.e.d.

For a compact complex manifold F let Auro(Y) denote the connected
component of the identity of the group of all holomorphic automorphisms
of Y.

Proposition 2.3. Let ξ be a non-trivial holomorphic line bundle on a Kdhler
C-space X=G/U. Then the complex Lie group Auto(P(l©£)) is reductive if
and only if H°(X, ξ)=H°(X, ξ~1)=(0). Moreover in this case the Lie algebra
o/Aut0(P(lθ?)) coincides with the Lie algebra of Auto(X)xC*.

Proof. Let π: P(lξBξ)-*X be the natural projection. By a theorem
of Blanchard [4], the projection π induces a Lie group homomorphism, de-
noted also by π,

7r:Auto(P(lθ?))->Auto(X).

It is known that the Lie algebra of Ker7r is isomorphic to H°(X, End(10?))
and thus it is isomorphic to

ξ), S2ZΞH°(X, Γ 1 ) , tou 2

(cf. [8]). By a Borel-Weil theorem (cf. for example [7]), for a non-trivial holo-
morphic line bundle ξf if H°(X, £)Φ0, H°{X, Γ 1 ) = 0 . Thus if one of H°(X, ξ),
H°(Xy ξ'1) is non-zero, Auto(P(lθf)) is not reductive. Conversely, if H\Xy ξ)
=H°(X, Γ 1 )=(0), dimc Ker π=l. Note also that π: Auto(P(lθ?)) -> Auto(Z)
is surjective. The Lie algebra of Auto(P(lφ^)) always contains the Lie algebra
of Auto(X)xC*. Thus the Lie algebra of Auto(P(lθf)) coincides with the
Lie algebra of Auto(X)χC*, which is reductive, since Auto(X) is a complex
semi-simple Lie group. q.e.d.

Corollary 2.4. Let ξ be a non-trivial holomorphic line bundle on a Kdhler
C-space. Then P(10?) is almost homogeneous but not homogeneous.

Proof. By proposition 2.1, P(l θ f ) is almost homogeneous. If Auto(P(l ®ξ))
acts transitively on the simply connected compact protective manifold
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the Lie group Auto(P(lφf)) is a semi-simple complex Lie group (cf. Takeuchi
[16] p. 174). Since Auτo(P(lφ£)) is not semi-simple by Proposition 2.3, this

is a contradiction. q.e.d.

3 Gu x ^-invariant Kahler metrics on the open orbit

We consider aGκX ^-invariant Kahler metric on the open orbit G p[ey (1,1)]
^GxpC* in P(10f). Let Quy t>, S be the Lie algebra of Guy Vy V respec-
tively. Since Gu is a compact semi-simple Lie group, the Killing form of
Qu is negative definite. Let < , > denote the Ad(G«)-invariant inner product
on Qu induced from the Killing form and let tncgM be the orthogonal com-
plement of b with respect to the inner product < , >. Then 8«=b+πt and
[b, tnjcπt. Let Cp be the orthogonal complement of δ in b with respect to
the inner product < , >. Then we have

(3.1) [Cp,δ] = (O)

In fact, we can write b = c + b s where c is the center of b and bs is the semi-
simple part of t>. Note that <c, bs> = (0) and ΰ^>Όs. Thus CpCC and hence
[Cp, ΰ] = (0). Moreover if the hclomorphic representation p: ί7->C* corre-
sponds to the weight Λ, then y/— 1Λ generates Cp and thus cp generates a
closed subgroup of G?M, that is, a circle group S1.

Put !p=Cp+m. Then we have orthogonal decompositions of Quy p and t>
with respect to < , >:

(3.2) g,

Moreover we have

(3.3) g

Let R+ be the subgroup of C* defined by {r>0 |r£ t d eC*}. Since the
open orbit G x P C * in P(10f) is also a GxC*-orbit in P(10f) and G x P C *
is diffeomorphic to GuIVxR+y the Lie subgroup GuxR+ of GxC* also acts
on GXpC* transitively. Take a basis {i?} of the Lie algebra of R+. Then
g a + Λ / ^ S + p + Λ / ? and Ad(F) (p+RB)(Zp+Rff. We identify tJ+Λi?
with the tangent space TQ(GxpC*) at the origin o=[e, 1] of GxpC*. Since
the complex structure / on GxpC* is invariant by the action of GxC*y it in-
duces a linear isomorphism /: p-\-Rff-+p-\-RΪI which satisfies P=—id and
/oAd(£)=Ad(£)°/ for every g^ V. Note that at the origin o of GxpC* the
orbit of the right S^-action coincides with the orbit of the left ^-action defined
by Cp and that the complex structure of the fiber C* is induced from the natural
complex structure of C. Therefore we have

(3.4)
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Moreover, since the complex structure on P ( l θ £ ) is compatible with the in-

variant complex structure on GIU=GJV,

(3.5) Im = m.

To investigate a Gu X ^-invariant hermitian metric on the open orbit

GXpC*, we consider a Gu X R+-invariant hermitian metric on GxpC*=

GJ Vx R+ for the moment. Note that there is a natural one-to-one correspondence

between Gu X 2?+-invariant hermitian metrics on GJΫXR+ and the Ad(F)-

invariant hermitian inner products on p+RB (cf. [11]).

From now on we assume that

(3.6) [δ, m] = m .

Let B be an Ad( F)-invariant hermitian inner product on p-\-RB. Then B

has the following properties:

(3.7) (a) B(^ B) = (0) (b)

(c)

In fact, (a) follows from (3.4). To see (b), B(cpy m)=B(Cp, [S, m])=B([6, c j , m)

=(0) by (3.1). Now (c) follows from (b) and (3.5).

We decompose δ-module tn into irreducible component my; m = Σ ^ ;

By (3.6) we have

(3.8) [6, my] = xxij for every j.

From now on we also assume that

(3.9) [t>, my] = my for every j,

(3.10) Ixxij = xtij for every j and

(3.11) each multiplicity of irreducible components of m as 6-module is 1.

Now the hermitian inner product B can be written uniquely as

(3.12) S = d(< , >|

where dy Cj are positive real numbers, < , > | Cp and < , > | m, denote the inner

products on cp and m^ induced from < , > respectively, and </°, I^RH denotes

the inner product on RB defined by <JX, JY> for X, YeJί i? . Note that

^ , M^p, </°,/°> |Λ^ and < , > I my are Ad( F)-invariant symmetric bilinear form

on p-\-RB. Let βOy βly a}- be the Gu X J?+-invariant symmetric tensors on

GJ Vx R+ corresponding to < , >|cp, </°, /°>IΛ2Γ, < , >my respectively. Then

the Gu X R+-invariant hermitian metric gB corresponding to B is given by
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L e m m a 3.1. The Gu X R+-invariant symmetric tensors βOy β1 on GJ Vx R+
are invariant by the right ̂ -action.

Proof, (cf. [9] §2) Let γ be Cp-valued left invariant 1-form on Guy defined
by

7(F)=the Cp-component of Y^QU with respect to the decomposition

Then there is a unique Gu-invariant connection, called the canonical connection,
on the principal ί^-bundle GJV over Gu/V such that the connection form
γ is given by π1*

rγ=γ where πx\ GU-*GJV is the canonical projection. Using
the connection form γ, the symmetric tensor β0 on GJVxR+ can be written as
£o=<%7>, that is, £ 0 ( * , y ) = < 7 ( * ) , 7 ( y ) > for X, Y(ΞTp(GJΫxR+)yptΞ
Gu/VxR+. In particular, β0 is invariant by the right ^-action. We also have
βi=ζ.Ύ°J, Ύ°jy> Since the right ^-action is holomorphic, β1 is also invariant
by the right ^-action. q.e.d.

Let άj denote the GM-invariant symmetric tensor on X=GU/V correspond-
ing to Ad(F)-invariant symmetric bilinear form < , >| my on m. Let π: GxpC*
—* GJV denote the canonical projection. Then we have aj = π'¥δίj. In
particular, α ; is also invariant by the right ^-action.

We now consider a Gu X ̂ -invariant hermitian metric g on
GJ VxR+. Let X denote the vector field on GJ VxR+ induced

Proposition 3.2. A GUX Sι-invariant hermitian metric g on Gx PC* can be
written as

(3.13) ί = m
j

where F> Hj are Gu X S^-invariant positive valued C°° functions on GxpC*.

Proof. We denote by δ the origin of GJ V and identify the tangent space

T(oAGul Vx Λ+) at (δ, r) with c p + m + i ? — . Then
dr

(3.14) g(g>r) (u, A ) = 0 for u<ΞT~0{GulΫ).

In fact, if went, then w = Σ [J?,, Ϋfe for some ^ , e δ , y , e m by our assump-

tion (3.6). Since (*,);=() and [XJt£]=0, we have g ^ (β, | - ) = Έg(~r)

{[Xι,Ϋ,]7,£-)=-'Σg(gΛY{,\Xi,£-te.τ>)=0. Since the orbits of the left
or * ' or ^ r\

and right ^-actions at the point (o, r)^Gu/ΫχR+ coincide, we have Ic^—R—.
dr
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Therefore g ^ (u, A ) = 0 if « e v

Since Gu acts on R+ trivially, for each point (p, r) G GJ Vx R+

(3.15) g(pr) (u, | - ) = 0 for «eΓ,(G a

Now it is easy to see that g can be written as

g β β ι ! ,

where FOy Fx and Hj are positive valued C°°-functions on GujVχR+. Since
g> βo> β\ and CLj are Gu X ̂ -invariant, so are FOy F1 and Hj. Moreover we have
^ 0 = ^ , since βx{X, Y)=βo(JX, JY) and g is hermitian. q.e.d.

Now we consider conditions that a Gu X ̂ -invariant hermitian metric
g on GXpC* of the form (3.13) to be Kahler. For X^Cp let X* denote the
vector field on GuIVxR+ induced by the right action of S*= {exp tX\t^R}.
For a fixed non-zero X^c^ define 1-forms θ0 and θλ on Gu/VxR+ by

(3.16) 0,(4) = £, (** , A)

(3.17) «92μ) - -β1{JX*, A)

where 4̂ is a C°°-vector field on GJΫXR+. Then 0O and θλ are GuxSι-
invariant forms.

Lemma 3.3. At the origin oe.GxfC*, we have

(1) dθf=

-<X, [Y, Z]> if Y,

otherwise.

v / *

(2) <*<?„( y , z ) = { ~

Proof. Since θ0 and θx are Gu-invariant, Lγθo=Lγθ1=O for Y^p. For

F,Zep, (dθi)(ZZ)=Ϋθi(Z)-Zθi(Ϋ)-θi([ΫyZ])=-θi([Zy Ϋ])=θi{(z7Y}\

ί = 0 , l . Thus rf^(y, Z) = 0 and rfβo(F, Z)= -<X, [F, Z]>. For

Therefore ^ , ( 7 , i?)=0 for y e j ) . q.e.d.

Let ω be the Kahler form on GxPC* of a hermitian metric gy that is,
ω(A,B)=g(AyJB), and let ω ; be the 2-form on GpxC* corresponding to the
/-invariant symmetric forms a}. The Kahler form ω on GxpC* corresponding
to the hermitian metric £ of the form (3.13) is given by
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Now we define a vector field H on GxpC* by

Proposition 3.4. Assume that every 2-form ω ; is d-closed. Then a her-
mitίan metric g on GxpC* of the form (3.13) is Kάhler if and only if

(3.20) -—*-—<#, [A, IB]>+Σd(H2) (H)<A, B>\«, = 0

where A, Bern,

Proof. Since dF=-{JX*)F \ θlt dθι = 0 and <*<»,•= 0, dω =
p2 β°(X ' •* ) •

±——dθliΛθι+Σid(H))Λωj. For A, Cent, (^0Λ^) (Λ C,JX*) =

X Note also that {dθ0ΛθJ {A, S, C)=(θ1AωJ) (A, B, C)
= 0 for A, B, Cent, (dθoΛθJiA, X*, /X*) = (0xΛω;)(,ϊ, X*, JX*) = O
for i e m , XeΞCp and (dθϋ/\θλ)(A, B, JΓ*)=(51Λω/)(-ίί, 5, X*)=0 for Λ β
ent, XeCp. Thus we have ίίω=0 if and only if, at (δ,r)eGuIΫχR+,

(3.21) dω(A, C, JX*) = 0 for A, Cent and

Since ί/«(iϊ, C, JX*) = -F2Θ0({A~C])+ Σd{Hf)(JX*)ωj(A, C)

= -F2β0(X*, [A7c])-g(X*, X*)1/2i:d(H2)(H)mj(A, C)

= -F*βa{X*, ζCc])-Fβo(X*, X*)W Σ d{H]) (H)ωj(A, C),
j

we see that (3.21) holds if and only if

Fβo(X*, [27c])l(βo(X*, X*)^)+Σ d(Hj) (H)aj(A, JC) = O
3

for A, Cem and X^c$. Therefore dω=0 if and only if

F<X, [A, c]>ι«x, xyη+ Σ d(Hj)(H) <A, icy\mj = o

for i,CGm,ZGCp. Since 7m; =my, we get our claim by putting B=IC. q.e.d.

4 Extensive conditions of a Gu x SMnvariant metric

Now we consider conditions of a Gu X ̂ -invariant Kahler metric on the
open orbit GxpC* which can be extended to a Kahler metric on P(10?). For
a Kahler manifold (Y, J, g) let V denote the Riemannian connection.

Lemma 4.1. For a holomorphίc Killing vector field X on Y and a Killing
vector field A on Y such that [A, X | = 0 , we have g(VJxJX, A)=0.
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Proof. Since A is a Killing vector field, Ag{Xy X) = 2g([A, X\ X) = Q.

Thus g(VAX, X)=—Ag(X, X) = 0. Since X is also Killing, g(VxX, A)+

g(X,VAX)=0. Therefore g(VxX, A)=0. Since g is a Kahler metric and X is

holomorphic, VJxJX=JVJxX=jVxJX=-VxX, and hence we get g(V/xJX,A)

=0. q.e.d.

Now we consider a Gu X ̂ -invariant Kahler metric £ on the open orbit

GXpC* of the form (3.13). Let H be the vector field on GxpC* defined by

(3.19).

Lemma 4.2. On the open orbit GxpC*, we have

(4.1) VBH=0.

Proof. By Lemma 4.1, we have g(Vjκ*JX*, Λ)=0 for a Killing vector

field A on GxpC* where A<=QU. Since

h 6 x*y")JX*
and £(/*», <4)-0, we have g(V,H, Λ)=0. Sinces(ίf, H)=l, s (V λ , f ί , H)=0.

Therefore we have Vjy/ί=0, q.e.d.

Let p: Ϊ7-»C* be the holomorphic representation corresponding to the

weight Λ and identify \J—1Λ with an element of Cp. From now on denote

by Xo the element of cp defined by A(X0)=χ/— 1. Then the right ^-action

{exp tX0\t&R} on P(10f p) corresponds to the natural S^action on P(10f p)

induced by the iS^-action on each fiber Pι(C). We also define a symmetric

tensor β0 on Gu\ VxR+ by $0=(lfcX0, X0»β0 and a function F on GujVxR+

by F = < Z 0 , X0>
1/2^ for a C°° function F on Gu/VxR+. Then F2β0=F2β0.

Let r be the canonical coordinate of i£+ as before. Thus we have JXf=—r(d/dr)

on GujVxR+. Thus a GMX^-invariant hermitian metric g on Gu/VxR+

of the form (3.13) can be written as

(4.2) g = (!»**»+£*&+Σ Hfa .
y

Now we consider a GM X AS învariant Kahler metric £0 on P ( 1 0 | p ) . We

know that there is a GM X ̂ -invariant Kahlei metric on P(l©gp), since P(10£P)

is a Kahler manifold and the compact Lie group GuXS1 acts on P(l©£ p) as

a holomorphic transformation group. Note that the functions F and Hj can

be regarded as functions on R+, since they are Gu X ^-invariant.

Lemma 4.3. For a GuxSι-invariant Kahler metric g0 on P(10£), let

its restriction g0 to the open orbit Gu/VxR+ be of the form (4.2). Then the func-

tion F extends to a C°°-function F: [0, oo)->iJ such that F(0)=0, F'(0)>0 and
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F(r) is an odd function at r=0, that is, F(r)=—F(—r), and the functions Hj

extend to C°° functions Hji [0, °o)->/2+ such that Hj(0)>0 and Hj are even

functions at r = 0 .

Proof. Note that the intersection of the open orbit Gu\ Vx R+ and a fiber

P\C) is identified with C* and that the right ^-action on Gu/VxR+ induces

a natural ^-action on C*. On the intersection C*, the metric g0 is given by

(4.3)

by using polar coordinates (r> θ) on C*, and thus it is written as

goirHc) = {F{r)lr)\d^+dy2) on C*

by using a canonical coordinate z = x + \J — \y on C. Therefore a metric

(F^/rfd^+F^fdθ2 extends to a metric on C if and only if F extends to a

C~ function F: [0, oo)-+R such that F(0)=0, Ff(0)>0 and F is an odd func-

tion at r = 0 (cf. [3] Proposition 4.6). By the same way we see that Hj extend

to C°° functions Hji [0, oo)->i?+ such that Hj(0)>0 and Hj are even func-

tions at r=0, q.e.d.

We now consider a geodesic c(i) of the compact Kahler manifold (P(l 0|τ), ̂ o)

through the origin c(to)=(d, l)^Gu/VxR+ with c\to)=Hc(to)y parametrized by

arc length. Since VHH = 0, c(t) is the integral curve of H through (δ, 1), that

is,

(4.4) c\t) = HcU) .

Note also that

(4.5) H = -{ψ{r))JXt = (rjF(r)) (9/3r).

We set c\i)=(drjdt) (9/9r). Then c(t) satisfies an ordinary differential equation

(4.6) drjdt = r/F(r).

By Lemma 4.3, the function F(r)lr extends to a C°° function /(r): [0, oo)->/2+

such that f(r) is even at r = 0 . Thus pQ(r)=\ f(u)du: [0, oo)->i2°° is a mono-
Jo

tone increasing C°° function and is odd at r=0, and we have t=pQ(r).

Let Lo denote the length of the geodesic c(t) of P ( l φ f ) between two sin-

gular orbits of GuxS\ By taking the inverse function r=qo(t) of t=po(r)y

we define C°° functions/0, h): (0, L0)->R+ by

( 4 7 )
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By using a similar argument for a neighborhood of c(LQ), we see that the func-
tions /0, h) extend to C°° functions f0> h)\ [0, L0]-^R which satisfy fQ(0)=f0(L0)
=0,/δ(0)=l = -fo(Lo)J(o2k\O)=f(o2j)(Lo)=O for each positive integer k, *S(0)>0,
h%L0)>Q and (A?) ̂ " ^ (0)=(A5) (2*~1} (L0)=0 for each positive integer k. Therefore
we get the first part of the following theorem.

Theorem 4.4 (cf. [2] Section 4).
(1) Let gQ be a GuxSλ-invariant Kahler metric on P ( l θ £ ) . Then the

metric g0 is given by

on the open orbit GxpC*, where /0, h) are C°° functions on [0, Lo] such that

7o, h°j are positive valued on (0, A>),/o(O) =fo(LQ) = 0,

^ ' j ] positive integer k, h%0)>0, h°j(L0)>0 and (A?) *"-*> (0)

= 0/or each positive integer k .

(2) Conversely let /(ί), λ ; (s) ό^ C°° functions on [0, L] wMcΛ satisfy the prop-

erties (4.8). Tλtf/z ίfo meiric

is defined on the open orbit GxpC* and extends to a C°° metric on P(10f) .

Proof. We prove the second part. At first we consider the ordinary
differential equation

(4.9)

A solution of (4.9) is given by

where so^(O, L) is the point corresponding to r=\. By our assumption on
f(s) at s=0J(s)=s(l+s2f1(s)) where f^s) is a C°° function on [0, L) and f[2k'ι)(0)
=0 for every positive integer k. Since

exp Γ {\lf{u))du = -L exp ( - f »/ff

the solution r=ίgr

1(ί) of the equation (4.9) extends to a C°° function on [0, L)
such that <7i(0)>0 and g(

1

2*""1)(0)=0 for each positive integer k. Note also
that r=sqx(s) is a monotone increasing function. If we put rι=l-r> the equa-
tion (4.9) is written as
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and, from our assumption on f(s) at s=L, we see that the solution rx of the
equation is of the form

rx =

where qx(s) is a C°° function on (0, L] such that &(L)>0 and §(

1

2y-1)(L)=0 for
each positive integer k. Let s=p(r): [0, oo)-»[0, L) be the inverse function
of r=q(s). Then the metric g can be written in the form (4.2). Moreover,
since s=p(r) and t=po(r) are monotone increasing C°° functions on [0, oo),
s is a C" function of ί defined on [0, Lo) such that *(0)=0, (ds/dt)(0)>0 and
d2k~1sldt2k~\0)=0 for each positive integer &. Similarly we see that ί is a C°°
function of t on (0, Lo], and hence s=s(t): [0, L0]->[0, L] is an onto diffeo-
morpishm which satisfies

dsldt=f(s)lfo(t) and

= d2ksldΐ\LQ) = 0 for each positive integer &.

Thus hj(s) = hj(s(ή) satisfies d2k-%ld?k-χ0) = d2k-%ld?k-ι(LQ)==0 for each
integer &, and hence it is C°° at neighborhoods of singular orbits, since the square
of the distance from a point on a Riemannian manifold is C°° at a neighborhood
of the point. Now the metric g can be written as

g =

= (dsldtγ(df+fo(t)2)βo+Σl hji

Since <fo/ώ is an even function at t=0 and t=L0, dsjdt(0)>0 and dsldt(L0)>0,
we see that £ extends to a C°° Riemannian metric g on P(l®£). q.e.d.

REMARK. If the metric g on the open orbit GxpC* is Kahler, so is the
extended metric £ on

5 Computations of Ricci curvature

We now compute the Ricci tensor of a Gu X ̂ -invariant Kahler metric g
on the open orbit GxpC* in the protective bundle P ( l φ ? ) . We assume that
the metric g is of the form

(5.1) g = ds>+gs =

To calculate the curvature of the metric g=ds2-{-gs on Gμ/Fx(0, L) we
use the notion of a Riemannian submersion according to Bόrard Bergery [2].
Note that the vector field H is given by the vector field djds. Let V be the
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Riemannian connection of g as before and V that of gs in each fiber of the Rie-
mannian submersion Gκ/Fx(0, L)->(0, L). We recall that, by definition, TXY
is the horizontal part of V* Y for vertical vector fields X and Y, TXH is the ver-
tical part of VXH and if we put THH=THX=0, we obtain a tensor T of type
(1, 2) on Gu\ ΫX (0, L). Now the formulas of O'Neill is given by

(5.2)

VXY = VXY+TXY

VXH=TXH

VHX and VXH are vertical

for vertical vector fields X and Y. Note that the tensor A of O'Neill [14]
is zero, since the base space (0, L) of the Riemannian submersion is 1-dimen-
sional. Note also that

(5.3) g(TxY,H) = -g(TxH, Y),TXY= TYX, g(TxH, Y) = g(TγH,X).

If X and Y are vertical vector fields which commute with H, that is, [X, H]
= [Y,H]=0, we have

(5.4) g(TxY, H) = -^Hg{X, Y) = -g(TxH, Y).

By the formulas of O'Neill if X, F, Z, V are vertical vectors and K is the
curvature tensor of the metric gs on Guj V> we obtain the followings for the
curvature R of g=ds?-\-gs:

(g(R(X, Y)Z, V)=g{k{X, Y)Z, V)-g(TxZ, TYV)+g(TxV, TYZ)

(5.5) g(R(X, Y)Z,H)=g{{VγT)xZ, H)-g((VxT)yZ, H)

[g(R(X,H)Y,H) = g((VHT)xY, H)-g(TxH, TYH).

To calculate the Ricci tensor r of the metric g=ds2-{-gs, we take an ortho-
normal basis (Xi)i=ι,...tn-i of the tangent space of an orbit GJ V with respect
to£ s and introduce the following notations:

the principal normal vector N = Σ TXiX{,

the norm | |Γ | | of Γ, \\T\\2 = ψg(TXiH, TXiH) and

§T(X)= —Ti(VXiT)XiX for a vertical vector X.

(Note that all these notations are independent of the choice of the basis.) We
also denote by f the Ricci tensor of the metric gs on each orbit. Then the
Ricci tensor r of the metric g is given by the following formulas.

Proposition 5.1 (Bόrard Bergery [2]). If X and Y are vertical.
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(5.6) r(Xy Y) = fi(Xy Y)-g(N> TxY)+g{(VHT)xYy H)

(5.7) r(XyH)=gφT{X)yH)

(5.8) r(Hy H) = Hg(Ny H)-\\T\\2.

Lemma 5.2 (cf. [2] Proposition 3.18). For a GUXSι-invariant Kάhler
metric g on the open orbit GxμC* of the form (5.1), we have

(5.9) r(Xy H) = 0 for all vertical vectors X.

Proof. Since the Ricci tensor r is invariant by the complex structure J
on GxpC* and by the action of GuxS1

y we get our claim by the same way
as the proof of Proposition 3.2. q.e.d.

Lemma 5.3. If vertical vector fields Xy Y commute with H, we have

(5.10) g{{VHT)xY, H) = - i - HΉ'g{X, Y)+2g(TxH, TYH).

Proof. g{VHT)xY, H) = g(VH(TxY), H)-g{TVjlXY, H)-g{Tx{VHY), H)

= Hg(TxY, H)~g(Tγ(VHX), H)-g(Tx(VHY), H)

= -±H.H-g(X,Y)+g(VBX,TYH)+g(VHY,TxH) by (5.3), (5.4)

= -±-H-H-g(X,Y)+2g(TxH,TYH), since [X,H] = [Y,H] = 0 .

q.e.d.

From now on we assume that the Kahler C-space X is a product of two
irreducible hermitian symmetric spaces of compact type Mi and M2 and that
the projective bundle P ( l φ f ) is induced from a vector bundle \®ξ where
ξ is a line bundle given by pfLτa®ptLb

2 for some positive integers a and b.
Then our assumptions (3.6), (3.9), (3.10) and (3.11) are satisfied by taking
canonical decompositions of symmetric spaces: (Qi)u=bi-{-mi (i=l, 2). Thus
a GUX^-invariant hermitian metricg on the open orbit GxpC* is given by the
form

(5.11) g = ώf+fisγβi+h^Y^+UsycCz

where o^ (/=1, 2) are symmetric tensors induced from the invariant metrics
on Mi corresponding to the inner product < , y=— Killing form.

As in section 4 let X0^Cp be the element defined by Λ(-X"o)=%/—1 Then
βo(Xo, X0)=l. We put m=diπιcM1 and n=dimcM2. Take an orthonormal
basis {Bly •••, B2m> Clr •••, C2n} of m = m 1 + m 2 with respect to the inner pro-
duct < , > such that Bj^m1 and

Proposition 5.4. For an orthonormal basis \H, —XOy — B l y •••, —B2my—-Cly
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•••, -τ-C2n\, we have
h2 )

\X*B) = r(\xQ±c) = r(fs<f f J8y) = r(f C * C,) = 0
/

for iφj and

Proof. Note that [F,ίΓ|=0 for Yep. Sinceg(N,H)=g(Tm)Xo(llf)XΰyH)

Έg(Tωh)Bi(ίlh1)Bi, H)+ Σg(TωH)Cj(ίlh)Cj, H) =

Σ ^ ( Λ ) + ( / ) Σ
Σ ^ ( 5 , , 5,)+ίl/Ai) Σ Hg(Cit C,)} = -(f'lf)βo(Xo, ^-(Aί/AO Σ αχ(5(, fi,)

— (h2Jh2) Σ oί2(Ci9 Ct) = —(f'lf)—2tn(hίlh1)—2n(h2lh2) by (5.4), we have

HslN, H) _ _ M < _ 2 n « M _ 2 , M Ϊ .

Note that, for Y(Ξp,g(TrH, TγH)=-Σg(TyH,Xk)
2 where {X*} is an ortho-

normal basis of a tangent space of an orbit GJΫ. Thusg(TXoH, TXoH)=(f')2,

g(TB.H, TB.H)=(h[)2 and g(TCiH, Tc,H)={hί)2. Therefore H ϊ Ί I ^ Σ I I ^ f f l l ^

(f'lf)2+2m(hίlh1)
2+2n(h'2lh2)

2 and hence r(H,H)=-{f"lf)-2m(h'1'lh1)-2n(h'2'lfh)
by (5.8).

Since g((VHT)ω/)Xo(llf)Xo, H) = (llf)g((VHT)x<)X0, H)

= (VPH-~H H'g(Xo,Xo)+2g(Tx<)H,TXoH)}=(-rf+(fΎ)lf, we have,

by (5.6)

jX» JXO) = f( i l 0 ) ^ 0 )-(/ '

By the same way we get two other formulas for Ricci tensor r. Since
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Ricci tensor r is invariant by the complex structure J and by the action Gu X S1

i

we get last claims by the same way as in proof of Proposition 3.2. q.e.d.

Now to compute Ricci tensor £ we recall known facts on a hermitian sym-
metric space M of compact type. We write M=G/K where G is the identity
component of the group of all isometris of M. Let g, ϊ be the Lie algebras
of G, K respectively and let 8 — ϊ + π be a canonical decomposition. By
identifying n with the tangent space of GjK at the origin, let / be the complex
structure on π induced by the invariant complex structure J on M. By extend-
ing / to the complexification n c of π, we have the decomposition π c = π + + π " " ,
rt+Ππ~—(0), π + =π~, where the bar denotes complex conjugation with re-
spect to π. It is known that there exists an element Z in the center c of ϊ
such that ad(Z)=I. Moreover it is also known that dimc=l if M is irreduci-
ble. Take a Cart an subalgebra § of g containing Z. Then the centralizer
of Z coincides with ϊ. We denote by Σ the root system of Qc with respect to
§ c and QΛ the eigenspace of the root a. Note that 3* = 9-* where the bar
denotes complex conjugation with iespect to g. By setting 2 + =
= \/—1}, we have

π+ - Σ g*, rr = Σ 8, .
Λ 2 2

We denote by §0 the real subspace \/—1§ of §c and introduce a lexicographical
order in the dual space Ij? by taking a basis {Hl9 •••, Hi) of §0

 s u c h that Hx=
— \J—\Z. We denote by Σo the set of positive roots not belonging to Σ j".
Then

Σ? = { α e Σ | α > 0 , a(Z) = 0}

and

We also identify a linear form λeήίf with an element ί/"λeί)0 by means of
the Killing form φ on Qc>

X(H) = φ(H,Hλ) for all H^o.

It is also known that if M is an irreducible hermitian symmetric space there
is a unique simple root aλ belonging to Σ£. We denote by H = \a1) •••, a}
the set of all simple roots and by {ΛΛ}ΛeΠ the fundamental weights of Qc cor-
responding to Π. Then Σo" is spanned by {a2, •••, oίι\ and thus the center c
of I is given by χ/—lRAΛi.

Let < , y denote the inner product of ϊfo induced from the Killing form
φ on Qc as before. If M is an irreducible hermitian symmetric space, the
element Z e e such that ad(Z)=/ is given by
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Lemma 5.5. Put δ n = — Σ <*• 7%ra δπ belongs to the center of lc and

<δ n ,α>=l/4 forced.

Proof. See Murakami [13] Part II Lemma 1.1 and Corollary of Lemma

5.1, or Takeuchi [16].

It is also known that if M is irreducible there is a canonical isomorphism

ZKΛi-^H\M, Z) and the first Chern class c^M) of M corresponds to κAΛl

where K is an integer given by

(5.13) K = 2 < 2 δ n» α i >

Therefore we have

(5.14) Z

Now we choose EΛ^QΛ for α G Σ with the following properties:

[£., E-m) = -a, ψ(EΛy E_Λ) = - 1 , EΛ = E_Λ .

Put BΛ=-~= (EΛ+E_Λ) for α ^ Σ ί . Then B Λ 6n, IBΛ=^-=Ξ±(EΛ-E_Λ) and

ί} is an orthonormal basis of rt with respect to the inner product

< , > induced from the Killing form. Note that [BΛ,IBΛ\ = \J^:Λa for

(5.15) <[£„ IBJ, x / ^ Λ ^ ) = 1/2* for

by (5.14) and α ^ - V ^ .

Now consider a product X of two irreducible hermitian symmetric spaces

of compact type Mι and M2 and a protective bundle P(l ®p*L7a ®p*Lb

2)

where Lx and L2

 a r e generators of the group of all hclomorphic line bundles

H\Mϊy θ*) and Hι(M2, θ*) respectively and a, b are positive integers. Let

Λ(1) and Λ(2) be the fundamental weights corresponding to Lx and L2 respectively.

Then the weight Λ corresponding to the holomorphic line bundle pfLTa®pfLb

2

over X=M1xM2 is given by Λ=—αΛ ( 1 )+6Λ ( 2 ).

Now we take an orthonormal basis of m such that {Bu •••, Bmy IBU •••,

IBm} is a basis of m1 and {Cly •••, CM, /C^ •••, /Cn} is a basis of m2 which satisfy

(5.15). Let Ki be the positive integers corresponding to the first Chern class

cx(Mi) of M{ as before.

Lemma 5.6.
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ftt (5 16) ί<v / I ΓlA,[Λ ί l/B<]>=-α/2i e i for each i.

(2) A GUXS1"invariant hermitίan metric g on the open orbit Gx?C* of
the form (5.11) is Kahler if and only if

iβ^f+lhM = 0.

-bl2κ2)f+2h2h'2 = 0.

Proof. At first (5.16) follows from (5.15). Since Mx and M2 are her-
mitian symmetric spaces of compact type, the assumption of Proposition 3.4
is satisfied. The condition (3.20) can be written as

~(f(s)l<X0, Xo>1/2 θ : , Xy/2)<X, [A, IB]>+±(d(h>)lds)<A, B>,«, = 0

for A, jBem, OφXetp. Since Jf0GCp is given by Λ(X 0)=v / Z ΓT, XO=V:=:Ϊ
Λ/<Λ, Λ> and thus X0=(X0,X0> y/^ΛA. Now by taking an orthonormal basis
of m as before, we see that the condition (3.20) is equivalent to (5.17). q.e.d.

Now we compute Ricci tensor £ of a metric gs=f(s)2β0+hι(s)2a1

Jrh2(s)2(X2
on GufΫ. Let 9M=δ+t> be the decomposition as before. Then

p = c^+mH-ma, [mt , mJcS+Cp (f = 1, 2)

and [Cp, m j c m ; ( i = l , 2). We denote by $ the curvature tensor of (GJ
Note also that the metric gs corresponds to an inner product

(5.18) < , X = (f(s)2l<Xo, Xo»< , \+fh(s)K , >|m1+A2(ί)2< , >|m2

Lemma 5.7. .For

(5.19) < t o Y) Y, Xys = -(3/4) <[X, Y]v, [X, Y]p>, -<[[X, Y]S, F ] ,

-( l/2)<y, [X, [X, y y p X - ( l / 2 ) < Z , [F, [F,X]p]9>s+<U(X, Y), U(X, Y)>,

+<U(X,X),U(Y,Y)>S

where Zg, Zp denote to-component, p-component of Z G 8 a respectively, and U:
pχp-+p is a symmetric bilinear form defined by

Proof. See [17] Lemma 7.1.

Proposition 5.8. For an orthonormal basis \ — Xo, — B u •••, — B m y —
1/ Ax Λi hx
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. 1 ffi., J-C b " , f Cm \-ICx, ...,f ICm) of p, we have
h x h2 h2 h2 h2 )

fori=l, •••, m,j=l, ~,n.

Proof. For simplicity we put B'i=Biy BUm=IBi for i = l , ••-, m and
C; = C y , CUn=ICj fory=l, —, n. Note that [Xo, Y]--(W2^i)<^o, ^ o > / ^
for FGttt! and [^0, Y]=(δ/2/c2)<Xo, X o >^^ for Y(Ξm2. By straightforward
computations, we have

-4-<τ * Γf B ί T f « τ x l 1 >• =2 / L/̂  L/̂  / Ĵ Jp 2 ΛΪ M*!

and

< ί / ( - l o , - 4 [/—£<,—5<)χ = 0. Note also that
\ / f ' Ax hi '

[XQy B$]=0. Thus by Lemma 5.6, we get

4 X2Λ:!/ Ai

By the same way we get

\ / A2 /A2 / 4 \2/f2/ A2

Since *(±rX0,±-X0) = Σ < ^ ( ^ X 0 , f 5<)f JS^^^oX
^ / / / ί = 1 ^ / Ai /Ai /

(^X0, f Cί)f CJ, 4-^oX, we get (5.20).
v A2 /A2 /

Note that [S,,By]p=0, [ZB f,IBy]p=0 and [fi ί,/By]p=[B ί,/By]cp=δ< y=^= ^



COMPACT EINSTEIN KAHLER MANIFOLDS 605

and [Cp, mjcntf ( i = l , 2). By straightforward computations, we have

({B'%'B')ί,K,B > - -¥,-tJf¥,-¥ίίB' m- m Bι>

and

^(i5ί,lJB})-iBί,lJB}>. = -^-<[[*ί, Bft, B'j\, £ί>
/^ I HI nι h\

otherwise.

We note that if Rx is the curvature tensor of the hermitian symmetric
space Mx with the metric induced from the Killing form then

Moreover it is known that the Ricci tensor fx of a hermitian symmetric space
Mi is given by

rλ{X, Y) = i-<Z, Y> for X, Yem,

(see [11] Proposition 9.7). Obviously we have

<&(j-B'h f CjUcj, f B{>. = 0 for each (ί, j).

Therefore we get

¥ (fBί, f B{) = <Λ(fBί, ±Xo)±rXo, fBί>

+ Σ

hi 2h\ '

By the same way we also get (5.22). q.e.d.

By Proposition 5.4, Lemma 5.6 and Proposition 5.8, we get following
theorem.

Theorem 5.9. Let X be a product of two irreducible hermitian symmetric
spaces of compact type Mx and M2 and let P(\ξ&ξ?) be a projectiυe bundle on X
such that ξP=p*Lϊa(g)p*Lb2 where a> b are positive integers. Then a GuY,Sι-
invariant hermitian metric g on the open orbit G x p C * of the form (5.11) is Einstein
Kahler if and only if f, hx and hz satisfy the following ordinary differential equa-
tions:
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(5.23)

(1) -£-f+2hM =

(2) -
2κ2

/ K
ψ) = λ
h2/

-f-- L (2mK+2nm
2κJ 4Λί 2ιc

-f-f
/ constant λ > 0 .

6 A proof of Main Theorem

At first we shall solve the system of ordinary differential equations (5.23).

We consider a solution such that /, hx and h2 are positive valued functions on

an open interval. By (5.23) (2) we see that h'2>0. From (5.23) (1) and (2)

we have

(6.1)
' / hi A,

and

(6.2)
f hx hλ \h

f h2 h2

)
2tcJ 4-ht

Thus under the equations (5.23) (1) and (2), the equations (5.23) (3) and (4)

are identical.

From (5.23) (1) and (2) we also get

(6.3) afCzhfa+btCihίhi = 0 ,

and we introduce a constant δ > 0 by

(6.4) δ2 - atcjil+bfcjil .

Now we introduce a new variable y=y(h2) by

(6.5) hi 3 ^ y
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Then we have

_±dy d d% _ 1 d2y dh2

~ 2~dT dέ~~2W~d7

By (6.1), (6.3) and (5.23) (2), the equation (5.23) (6) is written as

f(2n+2) (ψt+lm^
n2 \A2/ b/Ci hi

Thus by (6.5) and (6.6) we get

_2 f-(2n+2) (ψt+lm^ * (hίf+^ = λ .
n \ A / b/C hi 2hί

(6.7) - ^ + 2 (fl+^- m
κ J dh \ h

+ 2 ( m y

dh2 \ h2 bκx h\r 2h2

Similarly, by (6.2), the equation (5.23) (5) is written as

( 6.8) -2^—(2
h xh2 2h\

From (6.3), (6.4), (6.5) and (6.6) we obtain

(6.9) (KV =(*«)* K
1 ^ \hj \bκj h\

and

Therefore the equation (6.8) is written as

hi' _ 1 aκ2 h2 dy __ aκ2 δ2

h 2 bκx h\dh2

(6.11) +2 ( m )y λ

dh2 \ h2 bicγ h\J aκ2 h2 2 aκ2 h2

From the equations (6.7), (6.11) and (6.4), we obtain a relation

(6.12) aκ2+bκx = 2 λ δ 2 .

Now by (5.23) (2) and (6.6), we have

(613) = 3 + +
f h2 h'2 2 h2 dh2 2 dhl

Thus the equation (5.23) (3) is written as

> 14Λ ^y _i_(2n+3 _2maκ2h2\ dy _4mafc2S
2 _ _2\

( ' } M \ h2 bκxh\ )~dh2 (btcrfhί y ~

Now it is easy to see that the equation (6.14) is obtained from the equation

(6.7) by differentiation and (6.4). Hence we get the following lemma.
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Lemma 6.1. The system of differential equations (5.23) is equivalent to
the following system of equations:

(6.15)

-f-f+ZhM = 0, -
2

2K2

= 0

i = Vy(h2), 2\(atc2hl+bfc1h
2

1) = aκ2+bfcx

2h2

Now we consider the first order linear differential equation (6.7). Since
an integral factor μ is given by

(6.16) μ = hψi+ι\V-aκ2hl)m = fti(β+1)(KΛΪΓ ,

a solution 3; of the equation (6.16) is given by

( 6 1 7 ) y

where C is a constant and aκ2hl-\-bκιh\=h2.
Now we recall the following theorem on a compact Einstein Kahler mani-

fold.

Theorem 6.2 (Matsushima [12]). Let (P, J, g) be a compact Einstein
Kahler manifold with positive Ricci tensor. Then the Lie algebra f (P, g) of all

Killing vector fields on P is a real form of the Lie algebra g(P, J) of all holomorphic

vector fields on P.

Let P(l®?p) be the projective bundle on X as in Theorem 5.9 and assume
that g is an Einstein Kahler metric on P ( l φ f p ) . Then we assume that g is
invariant by the maximal compact Lie group GuxSι by Theorem 6.2, and
hence g is of the form (5.11) on the open orbit GxpC*y and/, hh h2 satisfy the
equations (5.23) and conditions of Theorem 4.4 at the boundaries 0 and L.
By (5.23) (1) and (2), we obtain

(6.18)

Zκ2

Since/'(O)=1,/'(L)=-1, Aί(O)=A{(L)=Aί(O)=Aί(L)=O, we have

~+2h1(0)hV(0) = 0, -~+2h1(L)h['(L) = 0,

(6.19)
-Λ-+2h2(0)h'2'(0) = 0, -^-+2K{LW{L) = 0 .

z/c2 2κ2
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By (6.7) and (6.8) we have

(6.20) -4A{/(0)A,(0) = 2λAf(0)-l, -W(L)h£L) = 2λA?(L)-l

for i=ί, 2. Thus by (6.19) and (6.20), we get

n f 2λAΪ(0) = l+(α/«0, 2XM(L) = l-(Φi),
{ ' ' 1 2λA|(0) = l-(*/"»)» 2\hϊ(L) =

In particular, we obtain conditions a<.κλ and b<κz, which are known as the
conditions for the first Chern class of P(l(Bξ9) being positive. Now, since

(^(0))2=0, y{h) is given by

( 6 2 2 )

Since jy(A2(L))=0, we have

Hence, if g is an Einstein Kahler metric on P(10£p), we have

(6.23) ^__l_hln^(bκ1h
2

1)
m(l-2Xh2)dh2==0

where 2X(afc2h
2+bκ1h

2i)=afc2+bfc1. Now we put u=2Xh2—1. Then (6.23)
can be written as

= 0 ,

since 2X{aκ2h
22-\-bκιh\)=aκ2-{-bκ;ι.

Thus by setting x=(tc2lb)u, we see that (6.23) is given by

Γ (κ2+bx)\κx—ax)mxdx = 0 .

Conversely, assume that (6.23) is satisfied. We define y ^ ) on a neighbor-
hood of [\/(l--(δ/tf2))/2λ, \/(l+(ft/^))/2λ] by

For simplicity, we put A°= \/(l—(ί/«2))/2λ, A1=\/(l+(6//eϊ))/2λ. Then
-);(A

o)=:y(/?1)=O and j(^ 2 )>0 for Λ°<Aa<A1. Note also that dyldh2{hQ)>0 and
dyldhi{hι)>Q. Define a function ?(λ2) on (A0, A1) by
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Since h2=ho

y h1 are simple roots of y(h2)=09 lim tiΊt^j and lim t(h^\ exist. We
put 2 2

t0 = lim ϊ(h2) and ?x = lim t(h2).

We also define a function ί(A2) on [A0, A1] by

*(A2) = l(hύ-h Ψ) = 0 and t(hι) = t.-to

and we put L=t(h1). Then £(A2): [A0, A1] -> [0, L] is a monotone increasing
continuous function which is C°° on (A0, hι).

Now let /^(ί) be the inverse function of ί(/^). Then dh2ldt=\/y(h2) on (0,
L). We claim that h2(t) can be extended to a C°° function h2{t)\ [0, L]->J?+

such that A(22*-1)(0)=M2*"1)(L)=0 for each positive integer k. For a suffi-
cient small £>0, we extend Λ2(£) to a function /^(ί): (—£, !/+£)->R+ by /^(ί)
=h2(-t) for - £ < α < 0 and h2(t+L)=h2(L~t) for 0 < ί < £ . Then we see
that A2(0: (—£> L+£)->i? is continuous and is a C°° function except t=0 and

*=L. Since dh2ldt=y/y(h2) on (0, L), dh2/dt=-Vy(h2) on (-£, 0) and

lim—2=0, we see that dlbjdtiϋ) exists and dt^/dt(0)=0. Similarly we have
*•"> dt

dh2ldt(L)=0. Thus we see that h2(t): (—£, L+S)-+R+ is a function of class

C1. By dh2/dt=\/y(h2) on (0, L), we have

on(0 L)

By dh2ldt= — y/y(h2) on (—£, 0), we also have

Thus we see that lim dϊtyd? exists and

Similarly we see that lim d^ldt2 exists and

(L) = J-
V ; 2 (A) = x

2 dh^ } 2\2hι

Therefore h2(t): (—£,L+£)->R+ is of class C2. Now we put φ(k2)=—-^-.
2 dh
2 dh2

Then φ{h^) is a C°° function on a neighborhood of [A0, h1] and

(6.25) ^ = φ{h2{t)) on(0,L).
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L e m m a 6.3. On (0, L), we have, for each positive integer ky

d?» * dhl*-2 \dt)

V n (

dh2 dhl 2 V \ dt

i ^ι I dφ dl-l~jcp\ , . Ί , dω
where ΦΊ-^Λφ,-^, •••, -ZTJZS)

 are polynomials of <p,-^>
\ dh2 dhι

2

 3I dh2

Proof. By routine computations using induction.
In particular, we see that

and hence A2(ί): (—5, L+6)-^Λ + is a C°° function such that
(L)=0 for each positive integer k. We define a function/ by

and a function hλ>0 by

2X(aκ2hl+bκ1h
2i) = aic^b^ .

T h e n / is a C" function on [0, L] such that f(0)=f(L)=0y f(0)=-f'(L)=l
and / ( 2* )(0)=/ ( 2 Λ )(L)=0 for each positive integer &, and /, Ax, A2 satisfy the
equation (5.23). Therefore a metric g=dt2+f(tfβ0+hι(t)2aι+h2(t)a2 is an
Einstein Kahler metric on P( lφf p ) by Theorem 4.4 and Theorem 5.9. This
proves our Main Theorem.

S i

(K—ax)tn(κ-\-ax)mxdx=Oi we see that
- 1

there exists an Einstein Kahler metric on P by our Main Theorem.

Proof of Corollary 2 (1). By our Main Theorem it is enough to see that

Γ (κ+bx)m(fc-ax)mxdx^=0 for
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We may assume that b>a.

Γ {κ+bx)m(κ—axfxdx = Γ (^+{b—a)x—άbof)mxdx
J — 1 κ J — 1

? ) (κt-abxt)m-i{{b-a)x)ixdx

= Σ j

= 2 Σ $^2*-l) {^-abxe)'-Ά+\b-af'-1xΆdx>0 . q.e.d.

Proof of Corollary 2 (2). Since Kχ=2 and a=\, we have to show that

(6.28) Γ (2-x) (Ki+bxYxdxΦO f o r « ^ 2 .
J — 1

Put y=κ2+bx. Then the integral (6.28) is given by

Now we have

(6.29) \'i+\2b+κ2-y) {y-K
Jκ2-b

Casel.

Since i <

b2(nt+5n+4)-2(4+2bκ2)^b\ήι+5n+Λ)-2(n+ί)(n+ί+2b)

= (6 2-2)n 2+(5i 2-2A-2)M+(46 2-4ό-2)>0 if 6^2 .

Thus the integration (6.29) is positive.

Case 2. 4 = 1 .

We use a classification of irreducible hermitian symmetric spaces. It is
also known that the integer K of an irreducible hermitian symmetric space
of compact type M is given as follows (cf. [5]):

I M = U(p+q)l( U(p) X U(q)) K=p+q dimcM = pq

II M = SO(2q)/U(q) (q^5) K = 2q-2 dim cM = ?(?-l)/2

ΠlM=Sp(q)lU(q) (q^3) K = q+ί dim cM =

IV M = SO(q+2)l(SO(2)X SO(q)) (q^3) K = q dimcM ==
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V M = E6l(Sρin(\0) x f ) κ = 12 dίm cM = 16

VI M = E7l(E6x T1) K = 18 dim cM = 27 .

Now, since b=ί, (6.29) is given by

(6.30)

- ( " 2 + l)"

Case 2.1.

If M=U(p+q)l(U(p)x U(q)) and

n2+5n+4-2(κl+2κ2) =

If

We may also assume that p^q. If />=

n2+5tt+4—2(4+2ιe2) = 7(g 2 -2)+3?-12-4i = 7q*-q-26>0

Note that if p—q—2 then M is a quadric

Case 2.2.

If M=SO(2q)IU(q)(q^5),

-2(2?-2)2-4(2ί-2).

Since n=q(q-1)/2, W 2 + 5 M + 4 - 2 ( Λ 1 + 2 Λ : 2 ) = « 2 - 11«+4>0 if q^ 6, that is, w^ 15.
For ^ = 5 , we have n=10 and thus (6.30) becomes

Case 2.3.

If M=Sp(q)IU(q) ( ? ^3) ,

Then p(3)=22 and p'(x)>0 for x>3 and hence W 2 + 5 M + 4 — 2 ( Λ | + 2 / C 2 ) > 0 for
3.

Case 2.4.

If M=J?6/(Spin(10)x Γ1), «2=12 and M = 1 6 , thus
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n2-\-5n-\-6—2(κl-\-2/c2) = 4 > 0 .

Case 2.5.

If M=E7/(E6χ T% Λ 2 = 1 8 and 71=27, thus

n2+Sn+9-2{κ\+2κ2) = 3 2 +5x3 3 +4>0.

Therefore the integral (6.30) is positive for the cases above.

Now we consider the cases M=P"(C) and M=Qn(C).

Case 2.6.

If M=Pn(C), #C 2 =Λ+1, and thus (6.30) is given by

I { w -9,

(n+3)(n+2)(n+iy

(9n

n+3
We define a function/>(y) ( j ^

Then it is not difficult to see that p(y) is a monotone decreasing func-
tion. Therefore we see that the integral (6.30) is positive for n^2.

Case 2.7.

If M=Q\C) ( Λ ^ 3 ) , *2=W and thus (6.30) is given by

(n-iγ+\n2-n-4) f9n2+l9n+8 (n+l\n+ι)

We claim that 9 * 2 + 1 9 " + 8 - / g + l V + 1 > 0 for w^3. Since the function
n2—n—4 \n—\l

defined by (6.31) is monotone decreasing, it is enough to show that

(9n*+l9n+S)(n-l)>8 foτ n^3 m

(n2-n-4) (n+ί) "

But this is obvious, since

(9n2+19n+S) (n-ί)-8(n+ί) {n2-n-\) = w3+10n2+29w+24>0 .

Thus the integral (6.30) is positive for w^3. q.e.d.

Finally we give an example of Einstein Kahler manifold which is not of
the type in Corollary 1 of Main Theorem.
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EXAMPLE 6.4. Let Mλ be the complex Grassmann manifold G6t2(C) of

2-planes in C6 and M2 the complex projective space P\C). Note that in this

case ^=6 and tc2=9. Consider the P^CJ-bundle P(pfLlφpfLl) over M1xM2.

Then the integral in Main Theorem is given by

{6-2x)\9+3x)*xdx = 0 .

Thus P(pfLi®pfLl) has an Einstein Kahler metric.
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