EXAMPLES OF COMPACT EINSTEIN KÄHLER MANIFOLDS WITH POSITIVE RICCI TENSOR

Yusuke SAKANE ${ }^{17}$

(Received May 7, 1985)

Let (P, J, g) be a compact Kähler manifold. If (P, J, g) is Einstein Kähler, the first Chern class $c_{1}(P)$ of P is positive, zero or negative. It has been proved by Aubin [1] and Yau [20] that if (P, J) is a compact complex manifold with $c_{1}(P)<0$ there exists a unique Einstein Kähler metric on (P, J), and by Yau [20] that if (P, J) is a compact Kähler manifold with $c_{1}(P)=0$ there exists an Einstein Kähler metric on (P, J). In the case of $c_{1}(P)>0$ it is known that there exist compact Kähler manifolds which do not admit any Einstein Kähler metric (cf. [6], [8], [19]). Up to now known obstructions to the existence of Einstein Kähler metrics on compact Kähler manifolds with positive first Chern class are (1) Matsushima's theorem ([10], [12]), that is, if (P, J, g) is an Einstein Kähler manifold, the Lie algebra of all Killing vector fields on P is a real form of the Lie algebra of all holomorphic vector fields on P and (2) Futaki invariant [6].

The purpose of this note is to give some examples of compact Einstein Kähler manifolds with positive first Chern class which are not homogeneous. We give a necessary and sufficient condition to the existence of Einstein Kähler metrics on $P^{1}(\boldsymbol{C})$-bundles over hermitian symmetric spaces of compact type. In the category of Riemannian manifolds, compact Einstein manifolds of cohomogeneity one have been studied by Bérard Bergery [2]. In our case the $P^{1}(\boldsymbol{C})$-bundle P is of cohomogeneity one with respect to a maximal compact subgroup of the complex Lie group of all holomorphic transformations on P and to prove our Main Theorem we use the similar method used by Berard Bergery in [2]. We also remark that our Corollary 2 (2) to our Main Theorem generalizes the example given in Futaki [6].

The author would like to express his thanks to professors Tadashi Nagano and Norihito Koiso for their useful suggestions given during the preparation of this paper.

1 Main Theorem

Let M be an irreducible hermitian symmetric space of compact type.

[^0]We denote by $H^{1}\left(M, \theta^{*}\right)$ the isomorphism classes of all holomorphic line bundles over M. It is known that $H^{1}\left(M, \theta^{*}\right)$ is isomorphic to the second cohomology group $H^{2}(M, \boldsymbol{Z}) \simeq \boldsymbol{Z}([5])$. Take a generator L of $H^{1}\left(M, \theta^{*}\right)$ which has a positive Chern class $c_{1}(L)>0$. Then the first Chern class $c_{1}(M)$ of M is given by $c_{1}(M)=\kappa c_{1}(L)$ where κ is an integer: $2 \leqq \kappa \leqq \operatorname{dim}_{C} M+1$ (cf. [5]).

Consider a product X of two irreducible hermitian symmetric spaces of compact type M_{1} and M_{2} and a holomorphic vector bundle $p_{1}^{*} L_{1}^{a} \oplus p_{2}^{*} L_{2}^{b}$ over X where $p_{i}: X \rightarrow M_{i}(i=1,2)$ are projections, $L_{i}(i=1,2)$ are the generators of $H^{1}\left(M_{i}, \theta^{*}\right)$ and a, b are positive integers. We denote by P the $P^{1}(\boldsymbol{C})$-bundle $P\left(p_{1}^{*} L_{1}^{a} \oplus p_{2}^{*} L_{2}^{b}\right)$ over X. It is not difficult to see that the first Chern class $c_{1}(P)$ of P is positive if $a<\kappa_{1}$ and $b<\kappa_{2}$ where $\kappa_{i}(i=1,2)$ are positive integers given by $c_{1}\left(M_{i}\right)=\kappa_{i} c_{1}\left(L_{i}\right)$ (cf. [15] proof of theorem (5.56)).

Main Theorem. For irreducible hermitian symmetric spaces of compact type M_{1} of complex m-dimension and M_{2} of complex n-dimension, and positive integers a, b with $a<\kappa_{1}$ and $b<\kappa_{2}$, there exists an Einstein Kähler metric on the compact complex manifold P if and only if

$$
\int_{-1}^{1}\left(\kappa_{1}-a x\right)^{m}\left(\kappa_{2}+b x\right)^{n} x d x=0 .
$$

Corollary 1. For irreducible hermitian symmetric spaces of compact type M $=M_{1}=M_{2}$ and a positive integer $a=b$ with $a<\kappa$, there exists an Einstein Kähler metric on the $P^{1}(C)$-bundle P over $M \times M$.

Corollary 2.

(1) For $M=M_{1}=M_{2}$ and positive integers a, b such that $a, b<\kappa$ and $a \neq b$, the $P^{1}(C)$-bundle P over $M \times M$ has the first positive Chern class but P does not admit any Einstein Kähler metric.
(2) For $M_{1}=P^{1}(\boldsymbol{C}), M_{2} \neq P^{1}(\boldsymbol{C})$ and a positive integer b with $b<\kappa_{2}$, the $P^{1}(\boldsymbol{C})$-bundle P over $P^{1}(\boldsymbol{C}) \times M_{2}$ has the positive first Chern class but P does not admit any Einstein Kähler metric.

2 Orbits on $\boldsymbol{P}^{\mathbf{1}}(\boldsymbol{C})$-bundles over a Kähler \boldsymbol{C}-space

Let X be a Kähler C-space, that is, a simply connected compact complex homogeneous space with a Kähler metric. By a result of H.C. Wang [18], X can be written as $X=G / U$ where G is a simply connected complex semisimple Lie group and U is a parabolic subgroup of G. Let $\rho: U \rightarrow \boldsymbol{C}^{*}$ be a holomorphic representation of U and ξ_{ρ} the homogeneous holomorphic line bundle on X associated to ρ, that is, ξ_{ρ} is obtained from the product $G \times \boldsymbol{C}^{*}$ by identifying $(g u, w)$ with $\left(g, \rho^{-1}(u) w\right)$ where $g \in G, u \in U$ and $w \in C^{*}$. It is known that every holomorphic line bundle on a Kähler C-space X is homogeneous (cf. Ise [7]).

For a holomorphic line bundle ξ on X, we consider a $P^{1}(\boldsymbol{C})$-bundle $P(1 \oplus \xi)$ over X, where 1 denotes the trivial line bundle on X. Then G acts on $P(1 \oplus \xi)$ in the natural way.

Proposition 2.1. If ξ is a non-trivial holomorphic line bundle on X, the $P^{1}(\boldsymbol{C})$-bundle $P=P(1 \oplus \xi)$ is a disjoint union of three G-orbits One of arbits is open in P and it is isomorphic to the principal \boldsymbol{C}^{*}-bundle associated to ξ. The other two orbits are isomorphic to X

Proof The equivalence class of $\left(g,\left(w_{1}, w_{2}\right)\right) \in G \times \boldsymbol{C}^{2}$ is denoted by $[g$, $\left.\left(w_{1}, w_{2}\right)\right] \in 1 \oplus \xi$. Let $p: 1 \oplus \xi-(0$-section $) \rightarrow P$ denote the canonical projection Consider the G-crbit of the point $p[e,(1,1)]$ where e is the identity of G. We shall show that the orbit $G \cdot p[e,(1,1)]$ is isomorphic to the principal \boldsymbol{C}^{*}-bundle associated to the line bundle ξ. Let $\rho: U \rightarrow \boldsymbol{C}^{*}$ denote the holomorphic representation such that $\xi=\xi_{\rho}$. Then the principal \boldsymbol{C}^{*}-bundle associated to ξ is obtained from the product $\boldsymbol{G} \times \boldsymbol{C}^{*}$ by identifying ($g u, w$) with ($\left.g, \rho^{-1}(u) w\right)$ where $g \in G, u \in U$ and $w \in \boldsymbol{C}^{*}$, and the principal \boldsymbol{C}^{*}-bundle is denoted by $G \times{ }_{\rho} \boldsymbol{C}^{*}$. The equivalence class of $(g, w) \in G \times \boldsymbol{C}^{*}$ is denoted by $[g, w] \in$ $G \times{ }_{\rho} \boldsymbol{C}^{*}$. We define a map $\varphi: G \cdot p[e,(1,1)] \rightarrow G \times{ }_{\rho} \boldsymbol{C}^{*}$ by $\varphi(g \phi[e,(1,1)])=[g, 1]$. It is not difficult to see that φ is an injective holomorphic map. Since ρ is not trivial, $\rho: U \rightarrow \boldsymbol{C}^{*}$ is surjective and thus we see that φ is surjective. Moreover for each element $p\left[g,\left(w_{1}, w_{2}\right)\right]\left(w_{1} \neq 0, w_{2} \neq 0\right)$ there is an element $u \in U$ such that $\rho(u)=w_{1}^{-1} w_{2} \in \boldsymbol{C}^{*}$. Thus $p\left[g,\left(w_{1}, w_{2}\right)\right]=p[g u,(1,1)]$. By the same way we see that the orbits $G \cdot \not \cdot[e,(1,0)]$ and $G \cdot p[e,(0,1)]$ are isomorphic to $X=G / U$. Thus the orbit $G \cdot p[e,(1,1)]$ is open in $P(1 \oplus \xi)$.
q.e.d.

For a holomorphic line bundle $\xi=\xi_{\rho}$ on X let \widetilde{U} be the isotropy subgroup of G at $p[e,(1,1)] \in P(1 \oplus \xi)$. Then $\widetilde{U}=\{g \in U \mid \rho(g)=1\}$ and $\operatorname{dim}_{C} \widetilde{U}=\operatorname{dim}_{C} U-1$ if ξ is non-trivial. The natural $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$-action on $1 \oplus \xi$ induces a \boldsymbol{C}^{*} action on $P(1 \oplus \xi)$. Note that $G \times \boldsymbol{C}^{*}$-orbits in $P(1 \oplus \xi)$ coincide with G-orbit and that the \boldsymbol{C}^{*}-action on the orbit $G \cdot p[e,(1,1)]$ corresponds to the right \boldsymbol{C}^{*} $\simeq U / \tilde{U}$-action on the principal fiber bundle G / \widetilde{U} over X.

Let G_{u} denote a maximal compact subgroup of G and $V=G_{u} \cap U$. Then G_{u} / V is diffeomorphic to G / U. Put $\tilde{V}=\{g \in V \mid \rho(g)=1\}$. If $\rho: U \rightarrow \boldsymbol{C}^{*}$ is non-trivial, $\operatorname{dim}_{R} \tilde{V}=\operatorname{dim}_{R} V-1$.

Proposition 2.2. Let $\rho: U \rightarrow \boldsymbol{C}^{*}$ be non-trivial. Then the principal \boldsymbol{C}^{*} bundle $G \times{ }_{\rho} \boldsymbol{C}^{*}$ over X is $G_{u} \times S^{1}$-equivariantly diffeomorphic to $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$where $G_{u} \times S^{1}$ acts on \boldsymbol{R}_{+}trivially.

Proof. For $g \in G$, there exist elements $k \in G_{u}$ and $u \in U$ such that $g=k u$, since $G_{u} / V=G / U$. Since each element of $G \times{ }_{\rho} C^{*}$ may written as $[g, 1] \in$ $G \times{ }_{\rho} \boldsymbol{C}^{*}$, we have $[g, 1]=[k, \rho(u)]$. Let $G_{u} \times{ }_{\rho} \boldsymbol{C}^{*}$ denote the space obtained from
the product $G_{u} \times \boldsymbol{C}^{*}$ by identifying ($\left.k v, w\right)$ with $\left(k, \rho^{-1}(v) w\right)$ where $k \in G_{u}, v \in V$ and $w \in \boldsymbol{C}^{*}$. The equivalence class of $(k, w) \in G_{u} \times \boldsymbol{C}^{*}$ is also denoted by $[k, w]$. Then the map $[g, 1] \mapsto[k, \rho(g)]: G \times{ }_{\rho} \boldsymbol{C}^{*} \rightarrow G_{u} \times{ }_{\rho} \boldsymbol{C}^{*}$ is a $G_{u} \times S^{1}$-equivariantly diffeomorphism. Put $\rho(u)=r e^{i \theta}\left(r \in \boldsymbol{R}_{+}\right)$. Then r is uniquely determined by the class $[g, 1] \in G \times{ }_{\rho} \boldsymbol{C}^{*}$. In fact, if $g=k u=k_{1} u_{1}\left(k, k_{1} \in G_{u}, u, u_{1} \in U\right), k^{-1} k_{1}$ $=u u_{1}^{-1} \in G_{u} \cap U=V$. Since $\rho\left(u u_{1}^{-1}\right) \in S^{1}=\left\{e^{i \theta} \mid \theta \in \boldsymbol{R}\right\}, \rho\left(u_{1}\right)=\rho\left(u_{1} u^{-1}\right) \rho(u)=r e^{i \theta_{1}}$ for some $\theta_{1} \in \boldsymbol{R}$. Define a map $\psi: G_{u} \times{ }_{\rho} \boldsymbol{C}^{*} \rightarrow G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$by $\psi([k, w])=(k v \widetilde{V}, r)$ where $w=r e^{i \theta}$ and $\rho(v)=e^{i \theta}(v \in V)$. Then it is easy to see that ψ is a $G_{u} \times S^{1}$ equivariantly diffeomorphism.
q.e.d.

For a compact complex manifold Y let $\operatorname{Aut}_{0}(Y)$ denote the connected component of the identity of the group of all holomorphic automorphisms of Y.

Proposition 2.3. Let ξ be a non-trivial holomorphic line bundle on a Kähler C-space $X=G / U$. Then the complex Lie group $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ is reductive if and only if $H^{0}(X, \xi)=H^{0}\left(X, \xi^{-1}\right)=(0)$. Moreover in this case the Lie algebra of $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ coincides with the Lie algebra of $\operatorname{Aut}_{0}(X) \times \boldsymbol{C}^{*}$.

Proof. Let $\pi: P(1 \oplus \xi) \rightarrow X$ be the natural projection. By a theorem of Blanchard [4], the projection π induces a Lie group homomorphism, denoted also by π,

$$
\pi: \operatorname{Aut}_{0}(P(1 \oplus \xi)) \rightarrow \operatorname{Aut}_{0}(X)
$$

It is known that the Lie algebra of $\operatorname{Ker} \pi$ is isomorphic to $H^{0}(X, \operatorname{End}(1 \oplus \xi))$ and thus it is isomorphic to

$$
\left.\left\{\left.\left(\begin{array}{cc}
w_{1} & s_{1} \\
s_{2} & w_{2}
\end{array}\right) \right\rvert\, s_{1} \in H^{0}(X, \xi), s_{2} \in H^{0}\left(X, \xi^{-1}\right), w_{1}, w_{2} \in \boldsymbol{C}\right\} \right\rvert\,\left\{\left.\left(\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right) \right\rvert\, w \in \boldsymbol{C}\right\}
$$

(cf. [8]). By a Borel-Weil theorem (cf. for example [7]), for a non-trivial holomorphic line bundle ξ, if $H^{0}(X, \xi) \neq 0, H^{0}\left(X, \xi^{-1}\right)=0$. Thus if one of $H^{0}(X, \xi)$, $H^{0}\left(X, \xi^{-1}\right)$ is non-zero, $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ is not reductive. Conversely, if $H^{0}(X, \xi)$ $=H^{0}\left(X, \xi^{-1}\right)=(0), \operatorname{dim}_{C} \operatorname{Ker} \pi=1$. Note also that $\pi: \operatorname{Aut}_{0}(P(1 \oplus \xi)) \rightarrow \operatorname{Aut}_{0}(X)$ is surjective. The Lie algebra of $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ always contains the Lie algebra of $\operatorname{Aut}_{0}(X) \times \boldsymbol{C}^{*}$. Thus the Lie algebra of $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ coincides with the Lie algebra of $\operatorname{Aut}_{0}(X) \times \boldsymbol{C}^{*}$, which is reductive, since $\operatorname{Aut}_{0}(X)$ is a complex semi-simple Lie group.

Corollary 2.4. Let ξ be a non-trivial holomorphic line bundle on a Kähler C-space. Then $P(1 \oplus \xi)$ is almost homogeneous but not homogeneous.

Proof. By proposition 2.1, $P(1 \oplus \xi)$ is almost homogeneous. If $\mathrm{Aut}_{0}(P(1 \oplus \xi))$ acts transitively on the simply connected compact projective manifold $P(1 \oplus \xi)$,
the Lie group $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ is a semi-simple complex Lie group (cf. Takeuchi
[16] p. 174). Since $\operatorname{Aut}_{0}(P(1 \oplus \xi))$ is not semi-simple by Proposition 2.3, this is a contradiction.
q.e.d.

$3 \boldsymbol{G}_{\boldsymbol{u}} \times \boldsymbol{S}^{\mathbf{1}}$-invariant Kähler metrics on the open orbit

We consider a $G_{u} \times S^{1}$-invariant Kähler metric on the open orbit $G \cdot p[e,(1,1)]$ $\simeq G \times{ }_{\rho} \boldsymbol{C}^{*}$ in $P(1 \oplus \xi)$. Let $\mathrm{g}_{u}, \mathfrak{b}, \tilde{\mathfrak{v}}$ be the Lie algebra of G_{u}, V, \tilde{V} respectively. Since G_{u} is a compact semi-simple Lie group, the Killing form of g_{u} is negative definite. Let \langle,$\rangle denote the \operatorname{Ad}\left(G_{u}\right)$-invariant inner product on \mathfrak{g}_{u} induced from the Killing form and let $\mathfrak{m} \subset g_{u}$ be the orthogonal complement of \mathfrak{b} with respect to the inner product \langle,$\rangle . Then \mathfrak{g}_{u}=\mathfrak{v}+\mathfrak{m}$ and $[\mathfrak{b}, \mathfrak{m}] \subset \mathfrak{m}$. Let $\mathfrak{c}_{\mathfrak{p}}$ be the orthogonal complement of $\tilde{\mathfrak{v}}$ in \mathfrak{v} with respect to the inner product \langle,$\rangle . Then we have$

$$
\begin{equation*}
\left[\mathfrak{c}_{\mathfrak{p}}, \tilde{\mathfrak{b}}\right]=(0) . \tag{3.1}
\end{equation*}
$$

In fact, we can write $\mathfrak{b}=\mathfrak{c}+\mathfrak{b}_{s}$ where \mathfrak{c} is the center of \mathfrak{b} and \mathfrak{b}_{s} is the semisimple part of \mathfrak{b}. Note that $\left\langle\mathfrak{c}, \mathfrak{b}_{s}\right\rangle=(0)$ and $\tilde{\mathfrak{v}} \supset \mathfrak{v}_{s}$. Thus $\mathfrak{c}_{p} \subset \mathfrak{c}$ and hence [$\left.c_{p}, \tilde{\mathfrak{b}}\right]=(0)$. Moreover if the holomorphic representation $\rho: U \rightarrow C^{*}$ corresponds to the weight Λ, then $\sqrt{-1} \Lambda$ generates $\mathfrak{c}_{\mathfrak{p}}$ and thus $\mathfrak{c}_{\mathfrak{p}}$ generates a closed subgroup of G_{u}, that is, a circle group S^{1}.

Put $\mathfrak{p}=\mathfrak{c}_{\mathfrak{p}}+\mathfrak{m}$. Then we have orthogonal decompositions of $\mathfrak{g}_{u}, \mathfrak{p}$ and \mathfrak{b} with respect to \langle,$\rangle :$

$$
\begin{equation*}
\mathfrak{g}_{u}=\tilde{\mathfrak{v}}+\mathfrak{p}, \mathfrak{p}=\mathfrak{c}_{\mathfrak{p}}+\mathfrak{m}, \mathfrak{v}=\tilde{\mathfrak{v}}+\mathfrak{c}_{\mathfrak{p}} \tag{3.2}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\left[\mathfrak{v}, \mathfrak{c}_{\mathfrak{p}}\right]=(0),[\mathfrak{v}, \mathfrak{m}] \subset \mathfrak{m} \tag{3.3}
\end{equation*}
$$

Let \boldsymbol{R}_{+}be the subgroup of \boldsymbol{C}^{*} defined by $\left\{r>0 \mid r e^{i \theta} \in \boldsymbol{C}^{*}\right\}$. Since the open orbit $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}$ in $P(1 \oplus \xi)$ is also a $\boldsymbol{G} \times \boldsymbol{C}^{*}$-orbit in $P(1 \oplus \xi)$ and $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}$ is diffeomorphic to $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$, the Lie subgroup $G_{u} \times \boldsymbol{R}_{+}$of $G \times \boldsymbol{C}^{*}$ also acts on $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}$ transitively. Take a basis $\{\tilde{H}\}$ of the Lie algebra of \boldsymbol{R}_{+}. Then $\mathfrak{g}_{u}+\boldsymbol{R} \tilde{H}=\tilde{\mathfrak{v}}+\mathfrak{p}+\boldsymbol{R} \tilde{H}$ and $\operatorname{Ad}(\tilde{V})(\mathfrak{p}+\boldsymbol{R} \tilde{H}) \subset \mathfrak{p}+\boldsymbol{R} \tilde{H}$. We identify $\mathfrak{p}+\boldsymbol{R} \tilde{H}$ with the tangent space $T_{0}\left(G \times{ }_{\rho} C^{*}\right)$ at the origin $o=[e, 1]$ of $G \times{ }_{\rho} C^{*}$. Since the complex structure J on $G \times{ }_{\rho} \boldsymbol{C}^{*}$ is invariant by the action of $G \times \boldsymbol{C}^{*}$, it induces a linear isomorphism $I: \mathfrak{p}+\boldsymbol{R} \tilde{H} \rightarrow \mathfrak{p}+\boldsymbol{R} \tilde{H}$ which satisfies $I^{2}=-i d$ and $I \circ \operatorname{Ad}(g)=\operatorname{Ad}(g) \circ I$ for every $g \in \tilde{V}$. Note that at the origin o of $G \times{ }_{\rho} C^{*}$ the orbit of the right S^{1}-action coincides with the orbit of the left S^{1}-action defined by $\mathfrak{c}_{\mathfrak{p}}$ and that the complex structure of the fiber \boldsymbol{C}^{*} is induced from the natural complex structure of \boldsymbol{C}. Therefore we have

$$
\begin{equation*}
I \mathfrak{c}_{p}=\boldsymbol{R} \check{H} \tag{3.4}
\end{equation*}
$$

Moreover, since the complex structure on $P(1 \oplus \xi)$ is compatible with the invariant complex structure on $G / U=G_{u} / V$,

$$
\begin{equation*}
I \mathfrak{m}=\mathfrak{m} \tag{3.5}
\end{equation*}
$$

To investigate a $G_{u} \times S^{1}$-invariant hermitian metric on the open orbit $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}$, we consider a $\boldsymbol{G}_{u} \times \boldsymbol{R}_{+}$-invariant hermitian metric on $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}=$ $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$for the moment. Note that there is a natural one-to-one correspondence between $\boldsymbol{G}_{u} \times \boldsymbol{R}_{+}$-invariant hermitian metrics on $\boldsymbol{G}_{u} / \tilde{V} \times \boldsymbol{R}_{+}$and the $\operatorname{Ad}(\tilde{V})$ invariant hermitian inner products on $\mathfrak{p}+\boldsymbol{R} \tilde{H}$ (cf. [11]).

From now on we assume that

$$
\begin{equation*}
[\tilde{\mathfrak{v}}, \mathfrak{m}]=\mathfrak{m} \tag{3.6}
\end{equation*}
$$

Let B be an $\operatorname{Ad}(\tilde{V})$-invariant hermitian inner product on $\mathfrak{p}+\boldsymbol{R} \tilde{F}$. Then B has the following properties:
(a) $B\left(c_{p}, \tilde{H}\right)=(0)$
(b) $\quad B\left(\mathfrak{c}_{\mathfrak{p}}, \mathfrak{m}\right)=(0)$
(c) $B(\tilde{H}, \mathfrak{m})=(0)$.

In fact, (a) follows from (3.4). To see (b), $B\left(\mathfrak{c}_{\mathfrak{p}}, \mathfrak{m}\right)=B\left(\mathfrak{c}_{\mathfrak{p}},[\tilde{\mathfrak{b}}, \mathfrak{m}]\right)=B\left(\left[\tilde{\mathfrak{b}}, \mathfrak{c}_{\mathfrak{p}}\right], \mathfrak{m}\right)$ $=(0)$ by (3.1). Now (c) follows from (b) and (3.5).

We decompose $\tilde{\mathfrak{b}}$-module \mathfrak{m} into irreducible component $\mathfrak{m}_{j} ; \mathfrak{m}=\sum_{j} \mathfrak{m}_{j}$. By (3.6) we have

$$
\begin{equation*}
\left[\tilde{\mathfrak{b}}, \mathfrak{m}_{j}\right]=\mathfrak{m}_{j} \quad \text { for every } j \tag{3.8}
\end{equation*}
$$

From now on we also assume that

$$
\begin{align*}
& {\left[\mathfrak{b}, \mathfrak{m}_{j}\right]=\mathfrak{m}_{j} \quad \text { for every } j} \tag{3.9}\\
& \operatorname{Im}_{j}=\mathfrak{m}_{j} \quad \text { for every } j \text { and } \tag{3.10}
\end{align*}
$$

(3.11) each multiplicity of irreducible components of \mathfrak{m} as $\tilde{\mathfrak{b}}$-module is 1 .

Now the hermitian inner product B can be written uniquely as

$$
\begin{equation*}
B=d\left(\langle,\rangle\left|\mathfrak{c}_{\mathfrak{p}}+\langle I \circ, I \circ\rangle\right|_{R \widetilde{H}}\right)+\left.\sum_{j} c_{j}\langle,\rangle\right|_{\mathfrak{m}_{j}} \tag{3.12}
\end{equation*}
$$

where d, c_{j} are positive real numbers, $\langle\rangle \mid, c_{\mathfrak{p}}$ and $\left.\langle\rangle\right|_{,m_{j}}$ denote the inner products on $\mathfrak{c}_{\mathfrak{p}}$ and \mathfrak{m}_{j} induced from \langle,$\rangle respectively, and \langle I \circ, I \circ\rangle_{R \widetilde{H}}$ denotes the inner product on $\boldsymbol{R} \tilde{H}$ defined by $\langle I X, I Y\rangle$ for $X, Y \in \boldsymbol{R} \tilde{H}$. Note that $\langle,\rangle\left|\mathfrak{c}_{\mathfrak{p}},\langle I \circ, I \circ\rangle\right|_{R \tilde{H}}$ and $\left.\langle\rangle\right|_{,m_{j}}$ are $\operatorname{Ad}(\tilde{V})$-invariant symmetric bilinear form on $\mathfrak{p}+\boldsymbol{R H}$. Let $\beta_{0}, \beta_{1}, \alpha_{j}$ be the $G_{u} \times \boldsymbol{R}_{+}$-invariant symmetric tensors on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$corresponding to $\left.\langle\rangle\right|_{,\mathfrak{p}_{p}},\left.\langle I \circ, I \circ\rangle\right|_{\boldsymbol{R} \tilde{H}},\langle,\rangle_{\mathfrak{m}_{j}}$ respectively. Then the $G_{u} \times \boldsymbol{R}_{+}$-invariant hermitian metric g_{B} corresponding to B is given by

$$
g_{B}=d\left(\beta_{0}+\beta_{1}\right)+\sum_{j} c_{j} \alpha_{j}
$$

Lemma 3.1. The $G_{u} \times \boldsymbol{R}_{+}$-invariant symmetric tensors β_{0}, β_{1} on $G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}$ are invariant by the right S^{1}-action.

Proof. (cf. [9] §2) Let $\tilde{\gamma}$ be c_{p}-valued left invariant 1-form on G_{u}, defined by
$\tilde{\gamma}(Y)=$ the \mathfrak{c}_{p}-component of $Y \in g_{u}$ with respect to the decomposition $\boldsymbol{g}_{u}=\tilde{\mathfrak{v}}+\boldsymbol{c}_{\mathrm{p}}+\mathfrak{m}$.
Then there is a unique G_{u}-invariant connection, called the canonical connection, on the principal S^{1}-bundle G_{u} / \widetilde{V} over G_{u} / V such that the connection form γ is given by $\pi_{1} * \gamma=\tilde{\gamma}$ where $\pi_{1}: G_{u} \rightarrow G_{u} / \tilde{V}$ is the canonical projection. Using the connection form γ, the symmetric tensor β_{0} on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$can be written as $\beta_{0}=\langle\gamma, \gamma\rangle$, that is, $\beta_{0}(X, Y)=\langle\gamma(X), \gamma(Y)\rangle$ for $X, Y \in T_{p}\left(G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}\right), p \in$ $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$. In particular, β_{0} is invariant by the right S^{1}-action. We also have $\beta_{1}=\langle\gamma \circ J, \gamma \circ J\rangle$. Since the right S^{1}-action is holomorphic, β_{1} is also invariant by the right S^{1}-action. q.e.d.

Let $\widetilde{\alpha}_{j}$ denote the G_{u}-invariant symmetric tensor on $X=G_{u} / V$ corresponding to $\operatorname{Ad}(V)$-invariant symmetric bilinear form $<,>\left.\right|_{\mathfrak{m}_{j}}$ on \mathfrak{m}. Let $\pi: G \times{ }_{\rho} C^{*}$ $\rightarrow G_{u} / V$ denote the canonical projection. Then we have $\alpha_{j}=\pi^{*} \widetilde{\alpha}_{j}$. In particular, α_{j} is also invariant by the right S^{1}-action.

We now consider a $G_{u} \times S^{1}$-invariant hermitian metric g on $G \times{ }_{\rho} C^{*} \simeq$ $G_{u} / \tilde{V} \times \boldsymbol{R}_{+} . \quad$ Let \tilde{X} denote the vector field on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$induced by $X \in \mathfrak{g}_{u}$.

Proposition 3.2. $A G_{u} \times S^{1}$-invariant hermitian metric g on $G \times{ }_{p} C^{*}$ can be written as

$$
\begin{equation*}
g=F^{2}\left(\beta_{0}+\beta_{1}\right)+\sum_{j} H_{j}^{2} \alpha_{j} \tag{3.13}
\end{equation*}
$$

where F, H_{j} are $G_{u} \times S^{1}$-invariant positive valued C^{∞} functions on $G \times{ }_{p} C^{*}$.
Proof. We denote by \tilde{o} the origin of G_{u} / \tilde{V} and identify the tangent space $T_{(\tilde{o}, r)}\left(G_{u} / \tilde{V} \times \boldsymbol{R}_{+}\right)$at (\tilde{o}, r) with $\mathfrak{c}_{\mathfrak{p}}+\mathfrak{m}+\boldsymbol{R} \frac{\partial}{\partial r}$. Then

$$
\begin{equation*}
g_{(\tilde{0}, r)}\left(u, \frac{\partial}{\partial r}\right)=0 \quad \text { for } u \in T_{\tilde{o}}\left(G_{u} / \tilde{V}\right) . \tag{3.14}
\end{equation*}
$$

In fact, if $u \in \mathfrak{m}$, then $u=\sum_{i}\left[\tilde{X}_{i}, \tilde{Y}_{i}\right]_{\tilde{o}}$ for some $X_{i} \in \tilde{\mathfrak{v}}, Y_{i} \in \mathfrak{m}$ by our assumption (3.6). Since $\left(\tilde{X}_{i}\right) \tilde{o}=0$ and $\left[\tilde{X}_{j}, \frac{\partial}{\partial r}\right]=0$, we have $g_{(\tilde{\sigma}, r)}\left(u, \frac{\partial}{\partial r}\right)=\sum_{i} g_{(\tilde{\sigma}, r)}$ $\left(\left[\tilde{X}_{i}, \tilde{Y}_{i}\right] \tilde{\sigma}, \frac{\partial}{\partial r}\right)=-\sum_{i} g_{(\tilde{o}, r)}\left(Y_{i},\left[\tilde{X}_{i}, \frac{\partial}{\partial r}\right]_{(\tilde{o}, r)}\right)=0$. Since the orbits of the left

Therefore $g_{(\tilde{\sigma}, r)}\left(u, \frac{\partial}{\partial r}\right)=0$ if $u \in c_{p}$.
Since G_{u} acts on \boldsymbol{R}_{+}trivially, for each point $(p, r) \in G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$

$$
\begin{equation*}
g_{(p, r)}\left(u, \frac{\partial}{\partial r}\right)=0 \quad \text { for } u \in T_{p}\left(G_{u} / \widetilde{V}\right) \tag{3.15}
\end{equation*}
$$

Now it is easy to see that g can be written as

$$
g=F_{0}^{2} \beta_{0}+F_{1}^{2} \beta_{1}+\sum_{j} H_{j}^{2} \alpha_{j}
$$

where F_{0}, F_{1} and H_{j} are positive valued C^{∞}-functions on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$. Since g, β_{0}, β_{1} and α_{j} are $G_{u} \times S^{1}$-invariant, so are F_{0}, F_{1} and H_{j}. Moreover we have $F_{0}=F_{1}$, since $\beta_{1}(X, Y)=\beta_{0}(J X, J Y)$ and g is hermitian.
q.e.d.

Now we consider conditions that a $G_{u} \times S^{1}$-invariant hermitian metric g on $G \times{ }_{p} C^{*}$ of the form (3.13) to be Kabler. For $X \in c_{p}$ let X^{*} denote the vector field on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$induced by the right action of $S^{1}=\{\exp t X \mid t \in \boldsymbol{R}\}$. For a fixed non-zero $X \in \mathfrak{c}_{p}$, define 1 -forms θ_{0} and θ_{1} on $G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}$by

$$
\begin{gather*}
\theta_{0}(A)=\beta_{0}\left(X^{*}, A\right) \tag{3.16}\\
\theta_{1}(A)=-\beta_{1}\left(J X^{*}, A\right) \tag{3.17}
\end{gather*}
$$

where A is a C^{∞}-vector field on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$. Then θ_{0} and θ_{1} are $G_{u} \times S^{1}$ invariant forms.

Lemma 3.3. At the origin $o \in G \times{ }_{\rho} C^{*}$, we have
(1) $d \theta_{1}=0$
(2) $d \theta_{0}(Y, Z)=\left\{\begin{array}{l}-\langle X,[Y, Z]\rangle \quad \text { if } Y, Z \in \mathfrak{m} \\ 0 \quad \text { otherwise } .\end{array}\right.$

Proof. Since θ_{0} and θ_{1} are G_{u}-invariant, $L_{\tilde{Y}} \theta_{0}=L_{\tilde{Y}} \theta_{1}=0$ for $Y \in \mathfrak{p}$. For $Y, Z \in \mathfrak{p},\left(d \theta_{i}\right)(\tilde{Y}, \tilde{Z})=\tilde{Y} \theta_{i}(\tilde{Z})-\tilde{Z} \theta_{i}(\tilde{Y})-\theta_{i}([\tilde{Y}, \tilde{Z}])=-\theta_{i}([\tilde{Z}, \tilde{Y}])=\theta_{i}(\widetilde{Z, Y]})$, $i=0,1$. Thus $d \theta_{1}(Y, Z)=0$ and $d \theta_{0}(Y, Z)=-\langle X,[Y, Z]\rangle$. For $Y \in \mathfrak{p}$, $d \theta_{i}\left(\tilde{Y}, \frac{\partial}{\partial r}\right)=\tilde{Y} \theta_{i}\left(\frac{\partial}{\partial r}\right)-\frac{\partial}{\partial r} \theta_{i}(\tilde{Y})-\theta_{i}\left(\left[\tilde{Y}, \frac{\partial}{\partial r}\right]\right)=-\frac{\partial}{\partial r} \theta_{i}(\tilde{Y})=-\theta_{i}\left(\left[\frac{\partial}{\partial r}, \tilde{Y}\right]\right)=0$. Therefore $d \theta_{i}(Y, \tilde{H})=0$ for $Y \in \mathfrak{p}$. q.e.d.

Let ω be the Kahler form on $G \times{ }_{\rho} \boldsymbol{C}^{*}$ of a hermitian metric g, that is, $\omega(A, B)=g(A, J B)$, and let ω_{j} be the 2-form on $G_{\rho} \times C^{*}$ corresponding to the J-invariant symmetric forms α_{j}. The Kähler form ω on $G \times{ }_{\rho} C^{*}$ corresponding to the hermitian metric g of the form (3.13) is given by

$$
\begin{equation*}
\omega=\frac{F^{2}}{\beta_{0}\left(X^{*}, X^{*}\right)} \theta_{0} \wedge \theta_{1}+\sum_{j} H_{j}^{2} \omega_{j} \tag{3.18}
\end{equation*}
$$

Now we define a vector field H on $G \times{ }_{\rho} C^{*}$ by

$$
\begin{equation*}
H=-\frac{1}{g\left(X^{*}, X^{*}\right)^{1 / 2}} J X^{*} \tag{3.19}
\end{equation*}
$$

Proposition 3.4. Assume that every 2 -form ω_{j} is d-closed. Then a hermitian metric g on $G \times{ }_{\rho} C^{*}$ of the form (3.13) is Kähler if and only if

$$
\begin{equation*}
-\frac{F}{\langle X, X\rangle^{1 / 2}}\langle X,[A, I B]\rangle+\left.\sum_{j} d\left(H_{j}^{2}\right)(H)\langle A, B\rangle\right|_{\mathfrak{m}_{j}}=0 \tag{3.20}
\end{equation*}
$$

where $A, B \in \mathfrak{m}, 0 \neq X \in \mathfrak{c}_{p}$.
Proof. Since $d F=-\left(J X^{*}\right) F \frac{1}{\beta_{0}\left(X^{*}, X^{*}\right)} \theta_{1}, d \theta_{1}=0$ and $d \omega_{j}=0, d \omega=$ $\frac{F^{2}}{\beta_{0}\left(X^{*}, X^{*}\right)} d \theta_{0} \wedge \theta_{1}+\sum_{j} d\left(H_{j}^{2}\right) \wedge \omega_{j}$. For $A, C \in \mathfrak{m},\left(d \theta_{0} \wedge \theta_{1}\right)\left(A, C, J X^{*}\right)=$ $\left.-\theta_{0}(\widetilde{[A, C}]\right) \beta_{0}\left(X^{*}, X^{*}\right) . \quad$ Note also that $\left(d \theta_{0} \wedge \theta_{1}\right)(\widetilde{A}, \widetilde{B}, \widetilde{C})=\left(\theta_{1} \wedge \omega_{j}\right)(\tilde{A}, \widetilde{B}, \widetilde{C})$ $=0$ for $A, B, C \in \mathfrak{m},\left(d \theta_{0} \wedge \theta_{1}\right)\left(A, X^{*}, J X^{*}\right)=\left(\theta_{1} \wedge \omega_{j}\right)\left(\tilde{A}, X^{*}, J X^{*}\right)=0$ for $A \in \mathfrak{m}, X \in c_{p}$ and $\left(d \theta_{0} \wedge \theta_{1}\right)\left(\tilde{A}, \tilde{B}, X^{*}\right)=\left(\theta_{1} \wedge \omega_{j}\right)\left(\tilde{A}, \tilde{B}, X^{*}\right)=0$ for A, B $\in \mathfrak{m}, X \in \mathfrak{c}_{p}$. Thus we have $d \omega=0$ if and only if, at $(\tilde{o}, r) \in G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}$,
(3.21) $d \omega\left(A, \widetilde{C}, J X^{*}\right)=0 \quad$ for $A, C \in \mathfrak{m}$ and $X \in \mathfrak{c}_{\mathfrak{p}}$.

Since $\quad d \omega\left(\tilde{A}, \tilde{C}, J X^{*}\right)=-F^{2} \theta_{0}(\widetilde{[A, C]})+\sum_{j} d\left(H_{j}^{2}\right)\left(J X^{*}\right) \omega_{j}(\tilde{A}, \tilde{C})$

$$
\begin{aligned}
& =-F^{2} \beta_{0}\left(X^{*}, \widetilde{[A, C]}\right)-g\left(X^{*}, X^{*}\right)^{1 / 2} \sum_{j} d\left(H_{j}^{2}\right)(H) \omega_{j}(\widetilde{A, C}) \\
& =-F^{2} \beta_{0}\left(X^{*},[\widetilde{A, C]})-F \beta_{0}\left(X^{*}, X^{*}\right)^{1 / 2} \sum_{j} d\left(H_{j}^{2}\right)(H) \omega_{j}(\widetilde{A}, \widetilde{C})\right.
\end{aligned}
$$

we see that (3.21) holds if and only if

$$
F \beta_{0}\left(X^{*},[\widetilde{A, C]}) /\left(\beta_{0}\left(X^{*}, X^{*}\right)^{1 / 2}\right)+\sum_{j} d\left(H_{j}^{2}\right)(H) \alpha_{j}(A, J \widetilde{C})=0\right.
$$

for $A, C \in \mathfrak{m}$ and $X \in \mathfrak{c}_{p}$. Therefore $d \omega=0$ if and only if

$$
F\langle X,[A, C]\rangle /\left(\langle X, X\rangle^{1 / 2}\right)+\left.\sum_{j} d\left(H_{j}^{2}\right)(H)\langle A, I C\rangle\right|_{\mathfrak{m}_{j}}=0
$$

for $A, C \in \mathfrak{m}, X \in \mathfrak{c}_{p}$. Since $I \mathfrak{m}_{j}=\mathfrak{m}_{j}$, we get our claim by putting $B=I C$. q.e.d.

4 Extensive conditions of a $\boldsymbol{G}_{\boldsymbol{u}} \times \boldsymbol{S}^{1}$-invariant metric

Now we consider conditions of a $G_{u} \times S^{1}$-invariant Kahler metric on the open orbit $G \times{ }_{\rho} C^{*}$ which can be extended to a Kähler metric on $P(1 \oplus \xi)$. For a Kähler manifold (Y, J, g) let ∇ denote the Riemannian connection.

Lemma 4.1. For a holomorphic Killing vector field X on Y and a Killing vector field A on Y such that $[A, X]=0$, we have $g\left(\nabla_{J_{X}} J X, A\right)=0$.

Proof. Since A is a Killing vector field, $\operatorname{Ag}(X, X)=2 g([A, X], X)=0$. Thus $g\left(\nabla_{A} X, X\right)=\frac{1}{2} \operatorname{Ag}(X, X)=0$. Since X is also Killing, $g\left(\nabla_{X} X, A\right)+$ $g\left(X, \nabla_{A} X\right)=0$. Therefore $g\left(\nabla_{X} X, A\right)=0$. Since g is a Kahler metric and X is holomorphic, $\nabla_{J_{X}} J X=J \nabla_{J_{X}} X=J \nabla_{X} J X=-\nabla_{X} X$, and hence we get $g\left(\nabla_{J_{X}} J X, A\right)$ $=0$.
q.e.d.

Now we consider a $G_{u} \times S^{1}$-invariant Kähler metric g on the open orbit $G \times{ }_{\rho} \boldsymbol{C}^{*}$ of the form (3.13). Let H be the vector field on $\boldsymbol{G} \times{ }_{p} \boldsymbol{C}^{*}$ defined by (3.19).

Lemma 4.2. On the open orbit $G \times{ }_{\rho} C^{*}$, we have

$$
\begin{equation*}
\nabla_{H} H=0 . \tag{4.1}
\end{equation*}
$$

Proof. By Lemma 4.1, we have $g\left(\nabla_{J K^{*}} J X^{*}, \tilde{A}\right)=0$ for a Killing vector field A on $G \times{ }_{\rho} C^{*}$ where $A \in \mathfrak{g}_{u}$. Since

$$
\nabla_{H} H=\frac{1}{g\left(X^{*}, X^{*}\right)} \nabla_{J X^{*}} J X^{*}+\frac{1}{g\left(X^{*}, X^{*}\right)^{1 / 2}}\left(J X^{*}\right)\left(g\left(X^{*}, X^{*}\right)^{1 / 2}\right) J X^{*}
$$

and $g\left(J X^{*}, \tilde{A}\right)=0$, we have $g\left(\nabla_{H} H, \tilde{A}\right)=0$. Since $g(H, H)=1, g\left(\nabla_{H} H, H\right)=0$. Therefore we have $\nabla_{H} H=0$, q.e.d.

Let $\rho: U \rightarrow C^{*}$ be the holomorphic representation corresponding to the weight Λ and identify $\sqrt{-1} \Lambda$ with an element of $\mathfrak{c}_{\mathfrak{p}}$. From now on denote by X_{0} the element of \mathfrak{c}_{p} defined by $\Lambda\left(X_{0}\right)=\sqrt{-1}$. Then the right S^{1}-action $\left\{\exp t X_{0} \mid t \in \boldsymbol{R}\right\}$ on $P\left(1 \oplus \xi_{\rho}\right)$ corresponds to the natural S^{1}-action on $P\left(1 \oplus \xi_{\rho}\right)$ induced by the S^{1}-action on each fiber $P^{1}(\boldsymbol{C})$. We also define a symmetric tensor β_{0} on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$by $\tilde{\beta}_{0}=\left(1 /\left\langle X_{0}, X_{0}\right\rangle\right) \beta_{0}$ and a function \widetilde{F} on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$ by $\widetilde{F}=\left\langle X_{0}, X_{0}\right\rangle^{1 / 2} F$ for a C^{∞} function F on $G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}$. Then $\widetilde{F}^{2} \tilde{\beta}_{0}=F^{2} \beta_{0}$. Let r be the canonical coordinate of \boldsymbol{R}_{+}as before. Thus we have $J X_{0}^{*}=-r(\partial / \partial r)$ on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$. Thus a $G_{u} \times S^{1}$-invariant hermitian metric g on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$ of the form (3.13) can be written as

$$
\begin{equation*}
g=(\widetilde{F} / r)^{2} d r^{2}+\widetilde{F}^{2} \widetilde{\beta}_{0}+\sum_{j} H_{j}^{2} \alpha_{j} \tag{4.2}
\end{equation*}
$$

Now we consider a $G_{u} \times S^{1}$-invariant Kähler metric g_{0} on $P\left(1 \oplus \xi_{\rho}\right)$. We know that there is a $G_{u} \times S^{1}$-invariant Kähler metric on $P\left(1 \oplus \xi_{\rho}\right)$, since $P\left(1 \oplus \xi_{\rho}\right)$ is a Kähler manifold and the compact Lie group $G_{u} \times S^{1}$ acts on $P\left(1 \oplus \xi_{\rho}\right)$ as a holomorphic transformation group. Note that the functions \widetilde{F} and H_{j} can be regarded as functions on R_{+}, since they are $G_{u} \times S^{1}$-invariant.

Lemma 4.3. For a $G_{u} \times S^{1}$-invariant Kähler metric g_{0} on $P(1 \oplus \xi)$, let its restriction g_{0} to the open orbit $G_{u} / \widetilde{V} \times \boldsymbol{R}_{+}$be of the form (4.2). Then the function \widetilde{F} extends to a C^{∞}-function $\widetilde{F}:[0, \infty) \rightarrow \boldsymbol{R}$ such that $\widetilde{F}(0)=0, \widetilde{F}^{\prime}(0)>0$ and
$\widetilde{F}(r)$ is an odd function at $r=0$, that is, $\widetilde{F}(r)=-\widetilde{F}(-r)$, and the functions H_{j} extend to C^{∞} functions $H_{j}:[0, \infty) \rightarrow \boldsymbol{R}_{+}$such that $H_{j}(0)>0$ and H_{j} are even functions at $r=0$.

Proof. Note that the intersection of the open orbit $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$and a fiber $P^{1}(\boldsymbol{C})$ is identified with \boldsymbol{C}^{*} and that the right S^{1}-action on $G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$induces a natural S^{1}-action on \boldsymbol{C}^{*}. On the intersection \boldsymbol{C}^{*}, the metric g_{0} is given by

$$
\begin{equation*}
g_{0 \mid P^{1}(C)}=(\widetilde{F}(r) / r)^{2} d r^{2}+\widetilde{F}(r)^{2} d \theta^{2} \tag{4.3}
\end{equation*}
$$

by using polar coordinates (r, θ) on C^{*}, and thus it is written as

$$
g_{0 \mid P^{1}(\boldsymbol{C})}=(\widetilde{F}(r) / r)^{2}\left(d x^{2}+d y^{2}\right) \quad \text { on } \boldsymbol{C}^{*}
$$

by using a canonical coordinate $z=x+\sqrt{-1} y$ on C. Therefore a metric $(\widetilde{F}(r) / r)^{2} d r^{2}+\widetilde{F}(r)^{2} d \theta^{2}$ extends to a metric on C if and only if \widetilde{F} extends to a C^{∞} function $\widetilde{F}:[0, \infty) \rightarrow \boldsymbol{R}$ such that $\widetilde{F}(0)=0, \widetilde{F}^{\prime}(0)>0$ and \widetilde{F} is an odd function at $r=0$ (cf. [3] Proposition 4.6). By the same way we see that H_{j} extend to C^{∞} functions $H_{j}:[0, \infty) \rightarrow \boldsymbol{R}_{+}$such that $H_{j}(0)>0$ and H_{j} are even functions at $r=0$.
q.e.d.

We now consider a geodesic $c(t)$ of the compact Kahhler manifold $\left(P(1 \oplus \xi), g_{0}\right)$ through the origin $c\left(t_{0}\right)=(\tilde{o}, 1) \in G_{u} / \tilde{V} \times \boldsymbol{R}_{+}$with $\dot{c}\left(t_{0}\right)=H_{c\left(t_{0}\right)}$, parametrized by arc length. Since $\nabla_{H} H=0, c(t)$ is the integral curve of H through ($\tilde{0}, 1$), that is,

$$
\begin{equation*}
\dot{c}(t)=H_{c(t)} . \tag{4.4}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
H=-(1 / \widetilde{F}(r)) J X_{0}^{*}=(r / \widetilde{F}(r))(\partial / \partial r) \tag{4.5}
\end{equation*}
$$

We set $\dot{c}(t)=(d r / d t)(\partial / \partial r)$. Then $c(t)$ satisfies an ordinary differential equation

$$
\begin{equation*}
d r / d t=r \mid \widetilde{F}(r) \tag{4.6}
\end{equation*}
$$

By Lemma 4.3, the function $\tilde{F}(r) / r$ extends to a C^{∞} function $\tilde{f}(r):[0, \infty) \rightarrow \boldsymbol{R}_{+}$ such that $\tilde{f}(r)$ is even at $r=0$. Thus $p_{0}(r)=\int_{0}^{r} \tilde{f}(u) d u:[0, \infty) \rightarrow \boldsymbol{R}^{\infty}$ is a monotone increasing C^{∞} function and is odd at $r=0$, and we have $t=p_{0}(r)$.

Let L_{0} denote the length of the geodesic $c(t)$ of $P(1 \oplus \xi)$ between two singular orbits of $G_{u} \times S^{1}$. By taking the inverse function $r=q_{0}(t)$ of $t=p_{0}(r)$, we define C^{∞} functions $f_{0}, h_{j}^{0}:\left(0, L_{0}\right) \rightarrow \boldsymbol{R}_{+}$by

$$
\left\{\begin{array}{l}
f_{0}(t)=\widetilde{F}\left(q_{0}(t)\right) \tag{4.7}\\
h_{j}^{0}(t)=H_{j}\left(q_{0}(t)\right) .
\end{array}\right.
$$

By using a similar argument for a neighborhood of $c\left(L_{0}\right)$, we see that the functions f_{0}, h_{j}^{0} extend to C^{∞} functions $f_{0}, h_{j}^{0}:\left[0, L_{0}\right] \rightarrow \boldsymbol{R}$ which satisfy $f_{0}(0)=f_{0}\left(L_{0}\right)$ $=0, f_{0}^{\prime}(0)=1=-f_{0}^{\prime}\left(L_{0}\right), f_{0}^{(2 k)}(0)=f_{0}^{(2 j)}\left(L_{0}\right)=0$ for each positive integer $k, h_{j}^{0}(0)>0$, $h_{j}^{0}\left(L_{0}\right)>0$ and $\left(h_{j}^{0}\right)^{(2 k-1)}(0)=\left(h_{j}^{0}\right)^{(2 k-1)}\left(L_{0}\right)=0$ for each positive integer k. Therefore we get the first part of the following theorem.

Theorem 4.4 (cf. [2] Section 4).
(1) Let g_{0} be a $G_{u} \times S^{1}$-invariant Kähler metric on $P(1 \oplus \xi)$. Then the metric g_{0} is given by

$$
g_{0}=d t^{2}+f_{0}^{2}(t) \beta_{0}+\sum_{j} h_{j}^{0}(t)^{2} \alpha_{j}
$$

on the open orbit $G \times{ }_{\rho} C^{*}$, where f_{0}, h_{j}^{0} are C^{∞} functions on [$0, L_{0}$] such that

$$
\left\{\begin{array}{l}
f_{0}, h_{j}^{0} \text { are positive valued on }\left(0, L_{0}\right), f_{0}(0)=f_{0}\left(L_{0}\right)=0, \tag{4.8}\\
f_{0}^{\prime}(0)=1=-f_{0}^{\prime}\left(L_{0}\right), f_{0}^{(2 k)}(0)=f_{0}^{(2 k)}\left(L_{0}\right)=0 \text { for each } \\
\text { positive integer } k, h_{j}^{0}(0)>0, h_{j}^{0}\left(L_{0}\right)>0 \text { and }\left(h_{j}^{0}\right)^{(2 k-1)}(0) \\
=\left(h_{j}^{0}\right)^{(2 k-1)}\left(L_{0}\right)=0 \text { for each positive integer } k
\end{array}\right.
$$

(2) Conversely let $f(s), h_{j}(s)$ be C^{∞} functions on $[0, L]$ which satisfy the properties (4.8). Then the meiric

$$
g=d s^{2}+f(s)^{2} \beta_{0}+\sum_{j} h_{j}(s)^{2} \alpha_{j}
$$

is defined on the open orbit $G \times{ }_{p} C^{*}$ and extends to a C^{∞} metric on $P(1 \oplus \xi)$.
Proof. We prove the second part. At first we consider the ordinary differential equation

$$
\begin{equation*}
d r / d s=(1 / f(s)) r \tag{4.9}
\end{equation*}
$$

A solution of (4.9) is given by

$$
r=q(s)=\exp \int_{s_{0}}^{s}(1 / f(u)) d u
$$

where $s_{0} \in(0, L)$ is the point corresponding to $r=1$. By our assumption on $f(s)$ at $s=0, f(s)=s\left(1+s^{2} f_{1}(s)\right)$ where $f_{1}(s)$ is a C^{∞} function on $[0, L)$ and $f_{1}^{(2 k-1)}(0)$ $=0$ for every positive integer k. Since

$$
\exp \int_{s_{0}}^{s}(1 / f(u)) d u=\frac{s}{s_{0}} \exp \left(-\int_{s_{0}}^{s} \frac{u f_{1}(u)}{1+u^{2} f_{1}(u)} d u\right)
$$

the solution $r=s q_{1}(s)$ of the equation (4.9) extends to a C^{∞} function on $[0, L)$ such that $q_{1}(0)>0$ and $q_{1}^{(2 k-1)}(0)=0$ for each positive integer k. Note also that $r=s q_{1}(s)$ is a monotone increasing function. If we put $r_{1}=1-r$, the equation (4.9) is written as

$$
d r_{1} / d s=-(1-f(s)) r_{1}
$$

and, from our assumption on $f(s)$ at $s=L$, we see that the solution r_{1} of the equation is of the form

$$
r_{1}=(L-s) \widetilde{q}_{1}(s)
$$

where $\tilde{q}_{1}(s)$ is a C^{∞} function on $(0, L]$ such that $\tilde{q}_{1}(L)>0$ and $\tilde{q}_{1}^{(2 j-1)}(L)=0$ for each positive integer k. Let $s=p(r):[0, \infty) \rightarrow[0, L)$ be the inverse function of $r=q(s)$. Then the metric g can be written in the form (4.2). Moreover, since $s=p(r)$ and $t=p_{0}(r)$ are monotone increasing C^{∞} functions on [$0, \infty$), s is a C^{∞} function of t defined on $\left[0, L_{0}\right)$ such that $s(0)=0,(d s / d t)(0)>0$ and $d^{2 k-1} s / d t^{2 k-1}(0)=0$ for each positive integer k. Similarly we see that s is a C^{∞} function of t on $\left(0, L_{0}\right]$, and hence $s=s(t):\left[0, L_{0}\right] \rightarrow[0, L]$ is an onto diffeomorpishm which satisfies

$$
\begin{aligned}
& d s / d t=f(s) / f_{0}(t) \quad \text { and } \\
& d^{2 k} s / d t^{2 k}(0)=d^{2 k} s / d t^{2 k}\left(L_{0}\right)=0 \quad \text { for each positive integer } k .
\end{aligned}
$$

Thus $h_{j}(s)=h_{j}(s(t))$ satisfies $d^{2 k-1} h_{j} / d t^{2 k-1}(0)=d^{2 k-1} h_{j} / d t^{2 k-1}\left(L_{0}\right)=0$ for each integer k, and hence it is C^{∞} at neighborhoods of singular orbits, since the square of the distance from a point on a Riemannian manifold is C^{∞} at a neighborhood of the point. Now the metric g can be written as

$$
\begin{aligned}
g & =(d s / d t)^{2} d t^{2}+\left(f(s) / f_{0}(t)\right)^{2} f_{0}(t)^{2} \tilde{\beta}_{0}+\sum_{j} h_{j}(s)^{2} \alpha_{j} \\
& =(d s / d t)^{2}\left(d t^{2}+f_{0}(t)^{2}\right) \tilde{\beta}_{0}+\sum_{j} h_{j}(s(t))^{2} \alpha_{j} \\
& =(d s / d t)^{2}\left(g_{0}-\sum_{j} h_{j}^{0}(t)^{2} \alpha_{j}\right)+\sum_{j} h_{j}(s(t))^{2} \alpha_{j} .
\end{aligned}
$$

Since $d s / d t$ is an even function at $t=0$ and $t=L_{0}, d s / d t(0)>0$ and $d s / d t\left(L_{0}\right)>0$, we see that g extends to a C^{∞} Riemannian metric g on $P(1 \oplus \xi)$. q.e.d.

Remark. If the metric \boldsymbol{g} on the open orbit $\boldsymbol{G} \times{ }_{\rho} \boldsymbol{C}^{*}$ is Kähler, so is the extended metric g on $P(1 \oplus \xi)$.

5 Computations of Ricci curvature

We now compute the Ricci tensor of a $G_{u} \times S^{1}$-invariant Kähler metric g on the open orbit $G \times{ }_{\rho} C^{*}$ in the projective bundle $P(1 \oplus \xi)$. We assume that the metric g is of the form

$$
\begin{equation*}
g=d s^{2}+g_{s}=d s^{2}+f(s)^{2} \tilde{\beta}_{0}+\sum_{j} h_{j}(s)^{2} \alpha_{j} \tag{5.1}
\end{equation*}
$$

To calculate the curvature of the metric $g=d s^{2}+g_{s}$ on $G_{u} / \tilde{V} \times(0, L)$ we use the notion of a Riemannian submersion according to Bérard Bergery [2]. Note that the vector field H is given by the vector field $\partial / \partial s$. Let ∇ be the

Riemannian connection of g as before and $\hat{\nabla}$ that of g_{s} in each fiber of the Riemannian submersion $G_{u} / \tilde{V} \times(0, L) \rightarrow(0, L)$. We recall that, by definition, $T_{X} Y$ is the horizontal part of $\nabla_{X} Y$ for vertical vector fields X and $Y, T_{X} H$ is the vertical part of $\nabla_{X} H$ and if we put $T_{H} H=T_{H} X=0$, we cbtain a tensor T of type $(1,2)$ on $G_{u} / \tilde{V} \times(0, L)$. Now the formulas of O'Neill is given by

$$
\left\{\begin{array}{l}
\nabla_{X} Y=\hat{\nabla}_{X} Y+T_{X} Y \\
\nabla_{X} H=T_{X} H \\
\nabla_{H} X \text { and } \nabla_{X} H \quad \text { are vertical } \\
\nabla_{H} H=0
\end{array}\right.
$$

for vertical vector fields X and Y. Note that the tensor A of O'Neill [14] is zero, since the base space ($0, L$) of the Riemannian submersion is 1-dimensional. Note also that

$$
\begin{equation*}
g\left(T_{X} Y, H\right)=-g\left(T_{X} H, Y\right), T_{X} Y=T_{Y} X, g\left(T_{X} H, Y\right)=g\left(T_{Y} H, X\right) \tag{5.3}
\end{equation*}
$$

If X and Y are vertical vector fields which commute with H, that is, $[X, H]$ $=[Y, H]=0$, we have

$$
\begin{equation*}
g\left(T_{X} Y, H\right)=-\frac{1}{2} H g(X, Y)=-g\left(T_{X} H, Y\right) \tag{5.4}
\end{equation*}
$$

By the formulas of O'Neill if X, Y, Z, V are vertical vectors and \hat{R} is the curvature tensor of the metric g_{s} on G_{u} / \widetilde{V}, we obtain the followings for the curvature R of $g=d s^{2}+g_{s}$:

$$
\left\{\begin{array}{l}
g(R(X, Y) Z, V)=g(\hat{R}(X, Y) Z, V)-g\left(T_{X} Z, T_{Y} V\right)+g\left(T_{X} V, T_{Y} Z\right) \tag{5.5}\\
g(R(X, Y) Z, H)=g\left(\left(\nabla_{Y} T\right)_{X} Z, H\right)-g\left(\left(\nabla_{X} T\right)_{Y} Z, H\right) \\
g(R(X, H) Y, H)=g\left(\left(\nabla_{H} T\right)_{X} Y, H\right)-g\left(T_{X} H, T_{Y} H\right)
\end{array}\right.
$$

To calculate the Ricci tensor r of the metric $g=d s^{2}+g_{s}$, we take an orthonormal basis $\left(X_{i}\right)_{i=1, \cdots, n-1}$ of the tangent space of an orbit G_{u} / \tilde{V} with respect to g_{s} and introduce the following notations:

$$
\begin{aligned}
& \text { the principal normal vector } N=\sum_{i} T_{X_{i}} X_{i} \\
& \text { the norm }\|T\| \text { of } T,\|T\|^{2}=\sum_{i} g\left(T_{X_{i}} H, T_{X_{i}} H\right) \text { and } \\
& \delta T(X)=-\sum_{i}\left(\nabla_{X_{i}} T\right)_{X_{i}} X \quad \text { for a vertical vector } X
\end{aligned}
$$

(Note that all these notations are independent of the choice of the basis.) We also denote by \hat{r} the Ricci tensor of the metric g_{s} on each orbit. Then the Ricci tensor r of the metric g is given by the following formulas.

Proposition 5.1 (Bérard Bergery [2]). If X and Y are vertical,

$$
\begin{gather*}
r(X, Y)=\hat{r}(X, Y)-g\left(N, T_{X} Y\right)+g\left(\left(\nabla_{H} T\right)_{X} Y, H\right) \tag{5.6}\\
r(X, H)=g(\hat{\delta} T(X), H) \tag{5.7}\\
r(H, H)=H g(N, H)-\|T\|^{2} . \tag{5.8}
\end{gather*}
$$

Lemma 5.2 (cf. [2] Proposition 3.18). For a $G_{u} \times S^{1}$-invariant Kähler metric g on the open orbit $G \times{ }_{p} C^{*}$ of the form (5.1), we have

$$
\begin{equation*}
r(X, H)=0 \quad \text { for all vertical vectors } X \tag{5.9}
\end{equation*}
$$

Proof. Since the Ricci tensor r is invariant by the complex structure J on $G \times{ }_{\rho} C^{*}$ and by the action of $G_{u} \times S^{1}$, we get our claim by the same way as the proof of Proposition 3.2.

Lemma 5.3. If vertical vector fields X, Y commute with H, we have

$$
\begin{equation*}
g\left(\left(\nabla_{H} T\right)_{X} Y, H\right)=-\frac{1}{2} H \cdot H \cdot g(X, Y)+2 g\left(T_{X} H, T_{Y} H\right) \tag{5.10}
\end{equation*}
$$

Proof. $\left.g\left(\nabla_{H} T\right)_{X} Y, H\right)=g\left(\nabla_{H}\left(T_{X} Y\right), H\right)-g\left(T_{\nabla_{H} X} Y, H\right)-g\left(T_{X}\left(\nabla_{H} Y\right), H\right)$

$$
=H g\left(T_{X} Y, H\right)-g\left(T_{Y}\left(\nabla_{H} X\right), H\right)-g\left(T_{X}\left(\nabla_{H} Y\right), H\right)
$$

$$
=-\frac{1}{2} H \cdot H \cdot g(X, Y)+g\left(\nabla_{H} X, T_{Y} H\right)+g\left(\nabla_{H} Y, T_{X} H\right) \text { by (5.3), (5.4) }
$$

$$
=-\frac{1}{2} H \cdot H \cdot g(X, Y)+2 g\left(T_{X} H, T_{Y} H\right), \text { since }[X, H]=[Y, H]=0
$$

From now on we assume that the Kahler C-space X is a product of two irreducible hermitian symmetric spaces of compact type M_{1} and M_{2} and that the projective bundle $P(1 \oplus \xi)$ is induced from a vector bundle $1 \oplus \xi$ where ξ is a line bundle given by $p_{1}^{*} L_{1}^{-a} \otimes p_{2}^{*} L_{2}^{b}$ for some positive integers a and b. Then our assumptions (3.6), (3.9), (3.10) and (3.11) are satisfied by taking canonical decompositions of symmetric spaces: $\left(\mathfrak{g}_{i}\right)_{u}=\mathfrak{b}_{i}+\mathfrak{m}_{i}(i=1,2)$. Thus a $G_{u} \times S^{1}$-invariant hermitian metric g on the open orbit $G \times{ }_{p} C^{*}$ is given by the form

$$
\begin{equation*}
g=d s^{2}+f(s)^{2} \tilde{\beta}_{0}+h_{1}(s)^{2} \alpha_{1}+h_{2}(s)^{2} \alpha_{2} \tag{5.11}
\end{equation*}
$$

where $\alpha_{i}(i=1,2)$ are symmetric tensors induced from the invariant metrics on M_{i} corresponding to the inner product $\langle\rangle=$,- Killing form.

As in section 4 let $X_{0} \in c_{p}$ be the element defined by $\Lambda\left(X_{0}\right)=\sqrt{-1}$. Then $\widetilde{\beta}_{0}\left(X_{0}, X_{0}\right)=1$. We put $m=\operatorname{dim}_{\boldsymbol{C}} M_{1}$ and $n=\operatorname{dim}_{\boldsymbol{C}} M_{2}$. Take an orthonormal basis $\left\{B_{1}, \cdots, B_{2 m}, C_{1}, \cdots, C_{2 n}\right\}$ of $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}$ with respect to the inner product \langle,$\rangle such that B_{j} \in \mathfrak{m}_{1}$ and $C_{j} \in \mathfrak{m}_{2}$.

Proposition 5.4. For an orthonormal basis $\left\{H, \frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{1}, \cdots, \frac{1}{h_{1}} B_{2 m}, \frac{1}{h_{2}} C_{1}\right.$,
$\left.\cdots, \frac{1}{h_{2}} C_{2 n}\right\}$, we have

$$
\begin{aligned}
& r(H, H)=-\left(\frac{f^{\prime \prime}}{f}+2 m \frac{h_{1}^{\prime \prime}}{h_{1}}+2 n \frac{h_{2}^{\prime \prime}}{h_{2}}\right) \\
& r\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)=\hat{r}\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)-\frac{f^{\prime}}{f}\left(2 m \frac{h_{1}^{\prime}}{h_{1}}+2 n \frac{h_{2}^{\prime}}{h_{2}}\right)-\frac{f^{\prime \prime}}{f} \\
& r\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{1}} B_{i}\right)=\hat{r}\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{1}} B_{i}\right)-\frac{f^{\prime} h_{1}^{\prime}}{f h_{1}}-\frac{h_{1}^{\prime \prime}}{h_{1}}-(2 m-1)\left(\frac{h_{1}^{\prime}}{h_{1}}\right)^{2}-2 n \frac{h_{1}^{\prime} h_{2}^{\prime}}{h_{1} h_{2}} \\
& r\left(\frac{1}{h_{2}} C_{i}, \frac{1}{h_{2}} C_{i}\right)=\hat{r}\left(\frac{1}{h_{2}} C_{i}, \frac{1}{h_{2}} C_{i}\right)-\frac{f^{\prime} h_{2}^{\prime}}{f h_{2}}-\frac{h_{2}^{\prime \prime}}{h_{2}}-(2 n-1)\left(\frac{h_{2}^{\prime}}{h_{2}}\right)^{2}-2 m \frac{h_{1}^{\prime} h_{2}^{\prime}}{h_{1} h_{2}} \\
& r\left(\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}\right)=r\left(\frac{1}{f} X_{0}, \frac{1}{h_{2}} C_{i}\right)=r\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{1}} B_{j}\right)=r\left(\frac{1}{h_{2}} C_{i}, \frac{1}{h_{2}} C_{j}\right)=0
\end{aligned}
$$

for $i \neq j$ and

$$
r\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{2}} C_{j}\right)=0 \quad \text { for each }(i, j)
$$

Proof. Note that $[\widetilde{Y}, H]=0$ for $Y \in \mathfrak{p}$. Since $g(N, H)=g\left(T_{(1 / f) X_{0}}(1 / f) X_{0}, H\right)$ $+\sum_{i} g\left(T_{\left(1 / h_{1}\right) B_{i}}\left(1 / h_{1}\right) B_{i}, H\right)+\sum_{j} g\left(T_{\left(1 / h_{2}\right) c_{j}}\left(1 / h_{2}\right) C_{j}, H\right)=\left(1 / f^{2}\right) g\left(T_{\tilde{X}_{0}} \tilde{X}_{0}, H\right)+\left(1 / h_{1}^{2}\right)$ $\sum_{i} g\left(T_{\widetilde{B}_{i}} \tilde{B}_{i}, H\right)+\left(1 / h_{2}^{2}\right) \sum_{j} g\left(T_{\tilde{c}_{j}} \tilde{C}_{j}, H\right)=-\frac{1}{2}\left\{\left(1 / f^{2}\right) H g\left(\tilde{X}_{0}, \widetilde{X}_{0}\right)+\left(1 / h_{1}^{2}\right)\right.$ $\left.\sum_{i} H g\left(\tilde{B}_{i}, \tilde{B}_{i}\right)+\left(1 / h_{2}^{2}\right) \sum_{i} H g\left(\tilde{C}_{i}, \tilde{C}_{i}\right)\right\}=-\left(f^{\prime} \mid f\right) \tilde{\beta}_{0}\left(\tilde{X}_{0}, \tilde{X}_{0}\right)-\left(h_{1}^{\prime} / h_{1}\right) \sum_{i} \alpha_{1}\left(\widetilde{B}_{i}, \widetilde{B}_{i}\right)$ $-\left(h_{2}^{\prime} / h_{2}\right) \sum_{i} \alpha_{2}\left(\tilde{C}_{i}, \tilde{C}_{i}\right)=-\left(f^{\prime} / f\right)-2 m\left(h_{1}^{\prime} / h_{1}\right)-2 n\left(h_{2}^{\prime} / h_{2}\right) \quad$ by (5.4), we have

$$
H g(N, H)=-\frac{f^{\prime \prime} f-\left(f^{\prime}\right)^{2}}{f^{2}}-2 m \frac{h_{1}^{\prime \prime} h_{1}-\left(h_{1}^{\prime}\right)^{2}}{h_{1}^{2}}-2 n \frac{h_{2}^{\prime \prime} h_{2}-\left(h_{2}^{\prime}\right)^{2}}{h_{2}^{2}}
$$

Note that, for $Y \in \mathfrak{p}, g\left(T_{Y} H, T_{Y} H\right)=\sum_{k} g\left(T_{Y} H, X_{k}\right)^{2}$ where $\left\{X_{k}\right\}$ is an orthonormal basis of a tangent space of an orbit G_{u} / \tilde{V}. Thus $g\left(T_{X_{0}} H, T_{X_{0}} H\right)=\left(f^{\prime}\right)^{2}$, $g\left(T_{B_{i}} H, T_{B_{i}} H\right)=\left(h_{1}^{\prime}\right)^{2}$ and $g\left(T_{C_{i}} H, T_{C_{i}} H\right)=\left(h_{2}^{\prime}\right)^{2}$. Therefore $\|T\|^{2}=\sum_{k}\left\|T_{X_{k}} H\right\|^{2}=$ $\left(f^{\prime} \mid f\right)^{2}+2 m\left(h_{1}^{\prime} \mid h_{1}\right)^{2}+2 n\left(h_{2}^{\prime} \mid h_{2}\right)^{2}$ and hence $r(H, H)=-\left(f^{\prime \prime} \mid f\right)-2 m\left(h_{1}^{\prime \prime} \mid h_{1}\right)-2 n\left(h_{2}^{\prime \prime} \mid h_{2}\right)$ by (5.8).

Since $g\left(\left(\nabla_{H} T\right)_{(1 / f) X_{0}}(1 / f) X_{0}, H\right)=\left(1 / f^{2}\right) g\left(\left(\nabla_{H} T\right)_{X_{0}} X_{0}, H\right)$
$=\left(1 / f^{2}\right)\left\{-\frac{1}{2} H \cdot H \cdot g\left(\tilde{X}_{0}, \tilde{X}_{0}\right)+2 g\left(T_{\tilde{x}_{0}} H, T_{\tilde{x}_{0}} H\right)\right\}=\left(-f^{\prime \prime} f+\left(f^{\prime}\right)^{2}\right) / f^{2}$, we have, by (5.6)

$$
r\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)=\hat{r}\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)-\left(f^{\prime} \mid f\right)\left(2 m \frac{h_{1}^{\prime}}{h_{1}}+2 n \frac{h_{2}^{\prime}}{h_{2}}\right)-\frac{f^{\prime \prime}}{f}
$$

By the same way we get two other formulas for Ricci tensor r. Since

Ricci tensor r is invariant by the complex structure J and by the action $G_{u} \times S^{1}$, we get last claims by the same way as in proof of Proposition 3.2. q.e.d.

Now to compute Ricci tensor \hat{r} we recall known facts on a hermitian symmetric space M of compact type. We write $M=G / K$ where G is the identity component of the group of all isometris of M. Let \mathfrak{g}, be the Lie algebras of G, K respectively and let $\mathfrak{g}=\mathfrak{f}+\mathfrak{n}$ be a canonical decomposition. By identifying \mathfrak{n} with the tangent space of G / K at the origin, let I be the complex structure on \mathfrak{n} induced by the invariant complex structure J on M. By extending I to the complexification $\mathfrak{n}^{\boldsymbol{c}}$ of \mathfrak{n}, we have the decomposition $\mathfrak{n}^{\boldsymbol{c}}=\mathfrak{n}^{+}+\mathfrak{n}^{-}$, $\mathfrak{n}^{+} \cap \mathfrak{n}^{-}=(0), \overline{\mathfrak{n}}^{+}=\mathfrak{n}^{-}$, where the bar denotes complex conjugation with respect to \mathfrak{n}. It is known that there exists an element Z in the center \mathfrak{c} of such that $\operatorname{ad}(Z)=I$. Moreover it is also known that $\operatorname{dim} \mathrm{c}=1$ if M is irreducible. Take a Cartan subalgebra \mathfrak{h} of g containing Z. Then the centralizer of Z coincides with \mathfrak{f}. We denote by Σ the root system of g^{C} with respect to \mathfrak{h}^{C} and \mathfrak{g}_{α} the eigenspace of the root α. Note that $\overline{\mathfrak{g}}_{\alpha}=\mathfrak{g}_{-\alpha}$ where the bar denotes complex conjugation with respect to g . By setting $\Sigma^{+}=\{\alpha \in \Sigma \mid \alpha(Z)$ $=\sqrt{-1}\}$, we have

$$
\mathfrak{n}^{+}=\sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}, \mathfrak{n}^{-}=\sum_{\alpha \in \mathbf{\Sigma}} \mathfrak{g}_{\alpha}
$$

We denote by \mathfrak{G}_{0} the real subspace $\sqrt{-1 \mathfrak{G}}$ of $\mathfrak{G}^{\boldsymbol{c}}$ and introduce a lexicographical order in the dual space \mathfrak{G}_{0}^{*} by taking a basis $\left\{H_{1}, \cdots, H_{l}\right\}$ of \mathfrak{G}_{0} such that $H_{1}=$ $-\sqrt{-1} Z$. We denote by Σ_{0}^{+}the set of positive roots not belonging to Σ_{n}^{+}. Then

$$
\Sigma_{0}^{+}=\{\alpha \in \Sigma \mid \alpha>0, \alpha(Z)=0\}
$$

and

$$
\mathfrak{f}^{C}=\mathfrak{G}^{c}+\sum_{\infty \in \Sigma_{0}^{+}}\left(\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\infty}\right)
$$

We also identify a linear form $\lambda \in \mathfrak{F}_{0}^{*}$ with an element $H_{\lambda} \in \mathfrak{h}_{0}$ by means of the Killing form φ on g^{C},

$$
\lambda(H)=\varphi\left(H, H_{\lambda}\right) \quad \text { for all } H \in \mathfrak{h}_{0}
$$

It is also known that if M is an irreducible hermitian symmetric space there is a unique simple root α_{1} belonging to Σ_{n}^{+}. We denote by $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ the set of all simple roots and by $\left\{\Lambda_{\alpha}\right\}_{\alpha \in I I}$ the fundamental weights of g^{c} corresponding to Π. Then Σ_{0}^{+}is spanned by $\left\{\alpha_{2}, \cdots, \alpha_{l}\right\}$ and thus the center c of \mathfrak{f} is given by $\sqrt{-1} \boldsymbol{R} \Lambda_{\alpha_{1}}$.

Let \langle,$\rangle denote the inner product of \mathfrak{G}_{0}$ induced from the Killing form φ on $\mathrm{g}^{\boldsymbol{c}}$ as before. If M is an irreducible hermitian symmetric space, the element $Z \in \mathfrak{c}$ such that $\operatorname{ad}(Z)=I$ is given by

$$
\begin{equation*}
Z=\frac{2 \sqrt{-1}}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle} \Lambda_{\alpha_{1}} \tag{5.12}
\end{equation*}
$$

Lemma 5.5. Put $\delta_{\mathrm{n}}=\frac{1}{2} \sum_{a \in \Sigma_{n}^{+}} \alpha$. Then δ_{n} belongs to the center of \mathfrak{t}^{c} and $\left\langle\delta_{n}, \alpha\right\rangle=1 / 4 \quad$ for $\alpha \in \Sigma_{\mathrm{n}}^{+}$.

Proof. See Murakami [13] Part II Lemma 1.1 and Corollary of Lemma 5.1, or Takeuchi [16].

It is also known that if M is irreducible there is a canonical isomorphism $\boldsymbol{Z} \Lambda_{\alpha_{1}} \rightarrow H^{2}(M, \boldsymbol{Z})$ and the first Chern class $c_{1}(M)$ of M corresponds to $\kappa \Lambda_{\alpha_{1}}$ where κ is an integer given by

$$
\begin{equation*}
\kappa=\frac{2\left\langle 2 \delta_{n}, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle} \tag{5.13}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
Z=2 \sqrt{-1} \kappa \Lambda_{\alpha_{1}} \tag{5.14}
\end{equation*}
$$

Now we choose $E_{\alpha} \in \mathrm{g}_{\alpha}$ for $\alpha \in \Sigma$ with the following properties:

$$
\left[E_{\alpha}, E_{-\alpha}\right]=-\alpha, \varphi\left(E_{\alpha}, E_{-\alpha}\right)=-1, \bar{E}_{\alpha}=E_{-\alpha}
$$

Put $B_{\alpha}=\frac{1}{\sqrt{2}}\left(E_{\alpha}+E_{-\alpha}\right)$ for $\alpha \in \Sigma_{\mathfrak{n}}^{+}$. Then $B_{\alpha} \in \mathfrak{n}, I B_{\alpha}=\frac{\sqrt{-1}}{\sqrt{2}}\left(E_{\alpha}-E_{-\alpha}\right)$ and $\left\{B_{\alpha}, I B_{\alpha} \mid \alpha \in \Sigma_{n}^{+}\right\}$is an orthonormal basis of \mathfrak{n} with respect to the inner product \langle,$\rangle induced from the Killing form. Note that \left[B_{\alpha}, I B_{\alpha}\right]=\sqrt{-1} \alpha$ for $\alpha \in \Sigma_{n}^{+}$,

$$
\begin{equation*}
\left\langle\left[B_{\alpha}, I B_{\alpha}\right], \sqrt{-1} \Lambda_{\alpha_{1}}\right\rangle=1 / 2 \kappa \quad \text { for } \alpha \in \Sigma_{\mathfrak{n}}^{+} \tag{5.15}
\end{equation*}
$$

by (5.14) and $\alpha(Z)=\sqrt{-1}$.
Now consider a product X of two irreducible hermitian symmetric spaces of compact type M_{1} and M_{2} and a projective bundle $P\left(1 \oplus p_{1}^{*} L_{1}^{-a} \otimes p_{2}^{*} L_{2}^{b}\right)$ where L_{1} and L_{2} are generators of the group of all hclomorphic line bundles $H^{1}\left(M_{1}, \theta^{*}\right)$ and $H^{1}\left(M_{2}, \theta^{*}\right)$ respectively and a, b are positive integers. Let $\Lambda^{(1)}$ and $\Lambda^{(2)}$ be the fundamental weights corresponding to L_{1} and L_{2} respectively. Then the weight Λ corresponding to the holomorphic line bundle $p_{1}^{*} L_{1}^{-a} \otimes p_{2}^{*} L_{2}^{b}$ over $X=M_{1} \times M_{2}$ is given by $\Lambda=-a \Lambda^{(1)}+b \Lambda^{(2)}$.

Now we take an orthonormal basis of \mathfrak{m} such that $\left\{B_{1}, \cdots, B_{m}, I B_{1}, \cdots\right.$, $\left.I B_{m}\right\}$ is a basis of \mathfrak{m}_{1} and $\left\{C_{1}, \cdots, C_{n}, I C_{1}, \cdots, I C_{n}\right\}$ is a basis of m_{2} which satisfy (5.15). Let κ_{i} be the positive integers corresponding to the first Chern class $c_{1}\left(M_{i}\right)$ of M_{i} as before.

Lemma 5.6.

$$
\begin{cases}\left\langle\sqrt{-1} \Lambda,\left[B_{i}, I B_{i}\right]\right\rangle=-a / 2 \kappa_{1} & \text { for each } i \tag{1}\\ \left\langle\sqrt{-1} \Lambda,\left[C_{i}, I C_{i}\right]\right\rangle=b / 2 \kappa_{2} & \text { for each } i .\end{cases}
$$

(2) $A G_{u} \times S^{1}$-invariant hermitian metric g on the open orbit $G \times{ }_{\rho} C^{*}$ of the form (5.11) is Kähler if and only if

$$
\left\{\begin{array}{l}
\left(a / 2 \kappa_{1}\right) f+2 h_{1} h_{1}^{\prime}=0 \tag{5.17}\\
\left(-b / 2 \kappa_{2}\right) f+2 h_{2} h_{2}^{\prime}=0
\end{array}\right.
$$

Proof. At first (5.16) follows from (5.15). Since M_{1} and M_{2} are hermitian symmetric spaces of compact type, the assumption of Proposition 3.4 is satisfied. The condition (3.20) can be written as

$$
-\left(f(s) \mid\left\langle X_{0}, X_{0}\right\rangle^{1 / 2} \cdot\langle X, X\rangle^{1 / 2}\right)\langle X,[A, I B]\rangle+\sum_{j=1}^{2}\left(d\left(h_{j}^{2}\right) / d s\right)\langle A, B\rangle_{\mid \mathfrak{m}_{j}}=0
$$

for $A, B \in \mathfrak{m}, 0 \neq X \in \mathfrak{c}_{p}$. Since $X_{0} \in \mathfrak{c}_{p}$ is given by $\Lambda\left(X_{0}\right)=\sqrt{-1}, X_{0}=\sqrt{-1}$ $\Lambda /\langle\Lambda, \Lambda\rangle$ and thus $X_{0}=\left\langle X_{0}, X_{0}\right\rangle \sqrt{-1} \Lambda$. Now by taking an orthonormal basis of \mathfrak{m} as before, we see that the condition (3.20) is equivalent to (5.17). q.e.d.

Now we compute Ricci tensor \hat{r} of a metric $g_{s}=f(s)^{2} \beta_{0}+h_{1}(s)^{2} \alpha_{1}+h_{2}(s)^{2} \alpha_{2}$ on G_{u} / \hat{V}. Let $\mathfrak{g}_{u}=\tilde{\mathfrak{v}}+\mathfrak{p}$ be the decomposition as before. Then

$$
\mathfrak{p}=\mathfrak{c}_{\mathfrak{p}}+\mathfrak{m}_{1}+\mathfrak{m}_{2},\left[\mathfrak{m}_{i}, \mathfrak{m}_{i}\right] \subset \tilde{\mathfrak{w}}+\mathfrak{c}_{\mathfrak{p}}(i=1,2)
$$

and $\left[\mathfrak{c}_{\mathfrak{p}}, \mathfrak{m}_{i}\right] \subset \mathfrak{m}_{i}(i=1,2)$. We denote by \hat{R} the curvature tensor of $\left(G_{u} / \widetilde{V}, g_{s}\right)$. Note also that the metric g_{s} corresponds to an inner product

$$
\begin{equation*}
\langle,\rangle_{s}=\left(f(s)^{2} /\left\langle X_{0}, X_{0}\right\rangle\right)\langle,\rangle_{\mathfrak{c}_{\mathfrak{p}}}+\left.h_{1}(s)^{2}\langle,\rangle\right|_{m_{1}}+\left.h_{2}(s)^{2}\langle,\rangle\right|_{m_{2}} \tag{5.18}
\end{equation*}
$$ on \mathfrak{p}.

Lemma 5.7. For $X, Y \in \mathfrak{p}$, we have
(5.19) $\langle\hat{R}(X, Y) Y, X\rangle_{s}=-(3 / 4)\left\langle[X, Y]_{\mathfrak{p}},[X, Y]_{\mathfrak{p}}\right\rangle,-\left\langle\left[[X, Y]_{\mathfrak{V}}, Y\right], X\right\rangle_{s}$ $-(1 / 2)\left\langle Y,\left[X,[X, Y]_{p}\right]_{p}\right\rangle_{s}-(1 / 2)\left\langle X,\left[Y,[Y, X]_{p}\right]_{\mathfrak{p}}\right\rangle_{s}+\langle U(X, Y), U(X, Y)\rangle_{s}$ $+\langle U(X, X), U(Y, Y)\rangle_{s}$
where $Z_{\tilde{\mathfrak{b}}}, Z_{\mathfrak{p}}$ denote $\tilde{\mathfrak{b}}$-component, \mathfrak{p}-component of $Z \in \mathfrak{g}_{u}$ respectively, and U : $\mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{p}$ is a symmetric bilinear form defined by

$$
\left.\left.\langle U(X, Y), Z\rangle_{s}=\frac{1}{2}\left\{\left\langle[Z, X]_{\mathfrak{p}}, Y\right\rangle_{s}+[Z, Y]_{\mathfrak{p}}, X\right\rangle\right\rangle_{s}\right\}
$$

for $X, Y, Z \in \mathfrak{p}$.
Proof. See [17] Lemma 7.1.
Proposition 5.8. For an orthonormal basis $\left\{\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{1}, \cdots, \frac{1}{h_{1}} B_{m}, \frac{1}{h_{1}} I B_{1}\right.$,
$\left.\cdots, \frac{1}{h_{1}} I B_{m}, \frac{1}{h_{2}} C_{1}, \cdots, \frac{1}{h_{2}} C_{n}, \frac{1}{h_{2}} I C_{1}, \cdots, \frac{1}{h_{2}} I C_{n}\right\}$ of \mathfrak{p}, we have

$$
\begin{equation*}
\hat{r}\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)=2 m\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{4 h_{1}^{4}}+2 n\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{4 h_{2}^{4}} \tag{5.20}
\end{equation*}
$$

(5.21) $\hat{r}\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{1}} B_{i}\right)=\hat{r}\left(\frac{1}{h_{1}} I B_{i}, \frac{1}{h_{1}} I B_{i}\right)=\frac{1}{2 h_{1}^{2}}-\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{2 h_{1}^{4}}$

$$
\begin{equation*}
\hat{r}\left(\frac{1}{h_{2}} C_{j}, \frac{1}{h_{2}} C_{j}\right)=\hat{r}\left(\frac{1}{h_{2}} I C_{j}, \frac{1}{h_{2}} I C_{j}\right)=\frac{1}{2 h_{2}^{2}}-\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{2 h_{2}^{4}} \tag{5.22}
\end{equation*}
$$

for $i=1, \cdots, m, j=1, \cdots, n$.
Proof. For simplicity we put $B_{i}^{\prime}=B_{i}, B_{i+m}^{\prime}=I B_{i}$ for $i=1, \cdots, m$ and $C_{j}^{\prime}=C_{j}, C_{j+n}^{\prime}=I C_{j}$ for $j=1, \cdots, n$. Note that $\left[X_{0}, Y\right]=-\left(a / 2 \kappa_{1}\right)\left\langle X_{0}, X_{0}\right\rangle I Y$ for $Y \in \mathfrak{m}_{1}$ and $\left[X_{0}, Y\right]=\left(b / 2 \kappa_{2}\right)\left\langle X_{0}, X_{0}\right\rangle I Y$ for $Y \in \mathfrak{m}_{2}$. By straightforward computations, we have

$$
\begin{aligned}
& -\frac{3}{4}\left\langle\left[\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right]_{\mathfrak{p}}^{\prime},\left[\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right]_{\mathfrak{p}}\right\rangle_{s}=-\frac{3}{4} \frac{1}{f^{2}}\left(\frac{a}{2 \kappa_{1}}\left\langle X_{0}, X_{0}\right\rangle\right)^{2}, \\
& -\frac{1}{2}\left\langle\frac{1}{h_{1}} B^{\prime},\left[\frac{1}{f} X_{0},\left[\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right]_{\mathfrak{p}}\right]_{\mathfrak{p}}\right\rangle_{s}=\frac{1}{2} \frac{1}{f^{2}}\left(\frac{a}{2 \kappa_{1}}\left\langle X_{0}, X_{0}\right\rangle\right)^{2}, \\
& -\frac{1}{2}\left\langle\frac{1}{f} X_{0},\left[\frac{1}{h_{1}} B_{i}^{\prime},\left[\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{f} X_{0}\right]_{\mathfrak{p}}\right]_{\mathfrak{p}}\right\rangle_{s}=\frac{1}{2} \frac{1}{h_{1}^{2}}\left(\frac{a}{2 \kappa_{1}}\right)^{2}\left\langle X_{0}, X_{0}\right\rangle, \\
& \left\langle U\left(\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right), U\left(\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right)\right\rangle_{s}=\frac{1}{4} \frac{1}{f^{2} h_{1}^{2}}\left(\frac{a}{2 \kappa_{1}}\right)^{2}\left\{h_{1}\left\langle X_{0}, X_{0}\right\rangle-\frac{f^{2}}{h_{1}}\right\}^{2}
\end{aligned}
$$

and

$$
\left.\left\langle U\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right), U \frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{1}} B_{i}^{\prime}\right)\right\rangle_{s}=0 . \quad \text { Note also that }
$$

$\left[X_{0}, B_{i}^{\prime}\right]=0$. Thus by Lemma 5.6, we get

$$
\left\langle\hat{R}\left(\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right) \frac{1}{h_{1}} B_{1}^{\prime}, \frac{1}{f} X_{0}\right\rangle_{s}=\frac{1}{4}\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{h_{1}^{4}} .
$$

By the same way we get

$$
\left\langle\hat{R}\left(\frac{1}{f} X_{0}, \frac{1}{h_{2}} C_{j}^{\prime}\right) \frac{1}{h_{2}} C_{j}^{\prime}, \frac{1}{f} X_{0}\right\rangle_{s}=\frac{1}{4}\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{h_{2}^{4}} .
$$

Since $\hat{r}\left(\frac{1}{f} X_{0}, \frac{1}{f} X_{0}\right)=\sum_{i=1}^{2 m}\left\langle\hat{R}\left(\frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right) \frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{f} X_{0}\right\rangle_{s}$
$+\sum_{j=1}^{2 n}\left\langle\hat{R}\left(\frac{1}{f} X_{0}, \frac{1}{h_{2}} C_{j}^{\prime}\right) \frac{1}{h_{2}} C_{j}^{\prime}, \frac{1}{f} X_{0}\right\rangle_{s}$, we get (5.20).
Note that $\left[B_{i}, B_{j}\right]_{\mathfrak{p}}=0,\left[I B_{i}, I B_{j}\right]_{\mathfrak{p}}=0$ and $\left[B_{i}, I B_{j}\right]_{\mathfrak{p}}=\left[B_{i}, I B_{j}\right]_{c_{p}}=\delta_{i j} \frac{-a}{2 \kappa_{1}} X_{0}$,
and $\left[\mathfrak{c}_{\mathfrak{p}}, \mathfrak{m}_{i}\right] \subset \mathfrak{m}_{i}(i=1,2)$. By straightforward computations, we have

$$
\left\langle\hat{R}\left(\frac{1}{h_{1}} B_{i}, \frac{1}{h_{1}} I B_{i}\right) \frac{1}{h_{1}} I B_{i} \frac{1}{h_{1}} B_{i}\right\rangle_{s}=-\frac{3}{4}\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{h_{1}^{4}}-\frac{1}{h_{1}^{2}}\left\langle\left[\left[B_{i}, I B_{i}\right], I B_{i}\right], B_{i}\right\rangle
$$

and

$$
\left\langle\hat{R}\left(\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{1}} B_{j}^{\prime}\right) \frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{1}} B_{j}^{\prime}\right\rangle_{s}=-\frac{1}{h_{1}^{2}}\left\langle\left[\left[B_{i}^{\prime}, B_{j}^{\prime}\right], B_{j}^{\prime}\right], B_{i}^{\prime}\right\rangle
$$

otherwise.
We note that if \bar{R}_{1} is the curvature tensor of the hermitian symmetric space M_{1} with the metric induced from the Killing form then

$$
\left\langle\bar{R}_{1}\left(B_{i}^{\prime}, B_{j}^{\prime}\right) B_{j}^{\prime}, B_{i}^{\prime}\right\rangle=-\left\langle\left[\left[B_{i}^{\prime}, B_{j}^{\prime}\right], B_{j}^{\prime \prime}\right], B_{i}^{\prime}\right\rangle .
$$

Moreover it is known that the Ricci tensor \vec{r}_{1} of a hermitian symmetric space M_{1} is given by

$$
\vec{r}_{1}(X, Y)=\frac{1}{2}\langle X, Y\rangle \quad \text { for } X, Y \in \mathfrak{m}_{1}
$$

(see [11] Proposition 9.7). Obviously we have

$$
\left\langle\hat{R}\left(\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{2}} C_{j}^{\prime}\right) \frac{1}{h_{2}} C_{j}^{\prime}, \frac{1}{h_{1}} B_{i}^{\prime}\right\rangle_{s}=0 \quad \text { for each }(i, j) .
$$

Therefore we get

$$
\begin{aligned}
& \quad \hat{r}\left(\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{1}} B_{i}^{\prime}\right)=\left\langle\hat{R}\left(\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{f} X_{0}\right) \frac{1}{f} X_{0}, \frac{1}{h_{1}} B_{i}^{\prime}\right\rangle \\
& \quad+\sum_{j=1}^{2 m}\left\langle\hat{R}\left(\frac{1}{h_{1}} B_{i}^{\prime}, \frac{1}{h_{1}} B_{j}^{\prime}\right) \frac{1}{h_{1}} B_{j}^{\prime}, \frac{1}{h_{1}} B_{i}^{\prime}\right\rangle \\
& = \\
& -\frac{1}{2}\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{h_{1}^{4}}+\frac{1}{2 h_{1}^{2}} .
\end{aligned}
$$

By the same way we also get (5.22).
q.e.d.

By Proposition 5.4, Lemma 5.6 and Proposition 5.8, we get following theorem.

Theorem 5.9. Let X be a product of two irreducible hermitian symmetric spaces of compact type M_{1} and M_{2} and let $P\left(1 \oplus \xi_{\rho}\right)$ be a projective bundle on X such that $\xi_{p}=p_{1}^{*} L_{1}^{-a} \otimes p_{2}^{*} L_{2}^{b}$ where a, b are positive integers. Then a $G_{u} \times S^{1}-$ invariant hermitian metric g on the open orbit $G \times{ }_{\rho} C^{*}$ of the form (5.11) is Einstein Kähler if and only if f, h_{1} and h_{2} satisfy the following ordinary differential equations:

$$
\left\{\begin{array}{l}
\text { (1) } \frac{a}{2 \kappa_{1}} f+2 h_{1} h_{1}^{\prime}=0 \\
\text { (2) }-\frac{b}{2 \kappa_{2}} f+2 h_{2} h_{2}^{\prime}=0 \\
\text { (3) }-\left(\frac{f^{\prime \prime}}{f}+2 m \frac{h_{1}^{\prime \prime}}{h_{1}}+2 n \frac{h_{2}^{\prime \prime}}{h_{2}}\right)=\lambda \tag{5.23}\\
\text { (4) }-\frac{f^{\prime \prime}}{f}-\frac{f^{\prime}}{f}\left(2 m \frac{h_{1}^{\prime}}{h_{1}}+2 n \frac{h_{2}^{\prime}}{h_{2}}\right)+2 m\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{4 h_{1}^{4}}+2 n\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{4 h_{2}^{4}}=\lambda \\
\text { (5) }-\frac{h_{1}^{\prime \prime}}{h_{1}}-\frac{f^{\prime} h_{1}^{\prime}}{f h_{1}}-(2 m-1)\left(\frac{h_{1}^{\prime}}{h_{1}}\right)^{2}-2 n\left(\frac{h_{1}^{\prime} h_{2}^{\prime}}{h_{1} h_{2}}\right)+\frac{1}{2 h_{1}^{2}}-\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{2 h_{1}^{4}}=\lambda \\
\text { (6) }-\frac{h_{2}^{\prime \prime}}{h_{2}}-\frac{f^{\prime} h_{2}^{\prime}}{f h_{2}}-(2 n-1)\left(\frac{h_{2}^{\prime}}{h_{2}}\right)^{2}-2 m\left(\frac{h_{1}^{\prime} h_{2}^{\prime}}{h_{1} h_{2}}\right)+\frac{1}{2 h_{2}^{2}}-\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{2 h_{2}^{4}}=\lambda
\end{array}\right.
$$

for some constant $\lambda>0$.

6 A proof of Main Theorem

At first we shall solve the system of ordinary differential equations (5.23). We consider a solution such that f, h_{1} and h_{2} are positive valued functions on an open interval. By (5.23) (2) we see that $h_{2}^{\prime}>0$. From (5.23) (1) and (2) we have

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{h_{1}^{\prime \prime}}{h_{1}^{\prime}}+\frac{h_{1}^{\prime}}{h_{1}}=\frac{h_{2}^{\prime \prime}}{h_{2}^{\prime}}+\frac{h_{2}^{\prime}}{h_{2}} \tag{6.1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\frac{f^{\prime}}{f} \frac{h_{1}^{\prime}}{h_{1}}=\frac{h_{1}^{\prime \prime}}{h_{1}}+\left(\frac{h_{1}^{\prime}}{h_{1}}\right)^{2}=\frac{h_{1}^{\prime \prime}}{h_{1}}+\left(\frac{a}{2 \kappa_{1}}\right)^{2} \frac{f^{2}}{4 h_{1}^{4}} \tag{6.2}\\
\frac{f^{\prime}}{f} \frac{h_{2}^{\prime}}{h_{2}}=\frac{h_{2}^{\prime \prime}}{h_{2}}+\left(\frac{h_{2}^{\prime}}{h_{2}}\right)^{2}=\frac{h_{2}^{\prime \prime}}{h_{2}}+\left(\frac{b}{2 \kappa_{2}}\right)^{2} \frac{f^{2}}{4 h_{2}^{4}}
\end{array}\right.
$$

Thus under the equations (5.23) (1) and (2), the equations (5.23) (3) and (4) are identical.

From (5.23) (1) and (2) we also get

$$
\begin{equation*}
a \kappa_{2} h_{2}^{\prime} h_{2}+b \kappa_{1} h_{1}^{\prime} h_{1}=0 \tag{6.3}
\end{equation*}
$$

and we introduce a constant $\delta>0$ by

$$
\begin{equation*}
\delta^{2}=a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2} \tag{6.4}
\end{equation*}
$$

Now we introduce a new variable $y=y\left(h_{2}\right)$ by

$$
\begin{equation*}
h_{2}^{\prime}=\sqrt{y\left(h_{2}\right)} . \tag{6.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{d^{2} h_{2}}{d s^{2}}=\frac{1}{2} \frac{d y}{d h_{2}} \text { and } \frac{d^{3} h_{2}}{d s^{3}}=\frac{1}{2} \frac{d^{2} y}{d h_{2}^{2}} \frac{d h_{2}}{d s} . \tag{6.6}
\end{equation*}
$$

By (6.1), (6.3) and (5.23) (2), the equation (5.23) (6) is written as

$$
-2 \frac{h_{2}^{\prime \prime}}{h_{2}}-(2 n+2)\left(\frac{h_{2}^{\prime}}{h_{2}}\right)^{2}+2 m \frac{a \kappa_{2}}{b \kappa_{1}} \frac{1}{h_{1}^{2}}\left(h_{2}^{\prime}\right)^{2}+\frac{1}{2 h_{2}^{2}}=\lambda .
$$

Thus by (6.5) and (6.6) we get

$$
\begin{equation*}
\frac{d y}{d h_{2}}+2\left(\frac{n+1}{h_{2}}-m \frac{a \kappa_{2}}{b \kappa_{1}} \frac{h_{2}}{h_{1}^{2}}\right) y=\frac{1}{2 h_{2}}-\lambda h_{2} . \tag{6.7}
\end{equation*}
$$

Similarly, by (6.2), the equation (5.23) (5) is written as

$$
\begin{equation*}
-2 \frac{h_{1}^{\prime \prime}}{h_{1}}-(2 m+2)\left(\frac{h_{1}^{\prime}}{h_{1}}\right)^{2}-2 n \frac{h_{1}^{\prime} h_{2}^{\prime}}{h_{1} h_{2}}+\frac{1}{2 h_{1}^{2}}=\lambda . \tag{6.8}
\end{equation*}
$$

From (6.3), (6.4), (6.5) and (6.6) we obtain

$$
\begin{equation*}
\left(\frac{h_{1}^{\prime}}{h_{1}}\right)^{2}=\left(\frac{a \kappa_{2}}{b \kappa_{1}}\right)^{2} \frac{h_{2}^{2}}{h_{1}^{4}} y \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h_{1}^{\prime \prime}}{h_{1}}=-\frac{1}{2} \frac{a \kappa_{2}}{b \kappa_{1}} \frac{h_{2}}{h_{1}^{2}} \frac{d y}{d h_{2}}-\frac{a \kappa_{2}}{\left(b \kappa_{1}\right)^{2}} \frac{\delta^{2}}{h_{1}^{4}} y . \tag{6.10}
\end{equation*}
$$

Therefore the equation (6.8) is written as

$$
\begin{equation*}
\frac{d y}{d h_{2}}+2\left(\frac{n+1}{h_{2}}-m \frac{a \kappa_{2}}{b \kappa_{1}} \frac{h_{2}}{h_{1}^{2}}\right) y=\frac{b \kappa_{1}}{a \kappa_{2}} \frac{h_{1}^{2}}{h_{2}} \lambda-\frac{1}{2} \frac{b \kappa_{1}}{a \kappa_{2}} \frac{1}{h_{2}} . \tag{6.11}
\end{equation*}
$$

From the equations (6.7), (6.11) and (6.4), we obtain a relation

$$
\begin{equation*}
a \kappa_{2}+b \kappa_{1}=2 \lambda \delta^{2} . \tag{6.12}
\end{equation*}
$$

Now by (5.23) (2) and (6.6), we have

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f}=3 \frac{h_{2}^{\prime \prime}}{h_{2}}+\frac{h_{2}^{\prime \prime \prime}}{h_{2}^{\prime}}=\frac{3}{2} \frac{1}{h_{2}} \frac{d y}{d h_{2}}+\frac{1}{2} \frac{d^{2} y}{d h_{2}^{2}} . \tag{6.13}
\end{equation*}
$$

Thus the equation (5.23) (3) is written as

$$
\begin{equation*}
\frac{d^{2} y}{d h_{2}^{2}}+\left(\frac{2 n+3}{h_{2}}-\frac{2 m a \kappa_{2} h_{2}}{b \kappa_{1} h_{1}^{2}}\right) \frac{d y}{d h_{2}}-\frac{4 m a \kappa_{2} \delta^{2}}{\left(b \kappa_{1}\right)^{2} h_{1}^{4}} y=-2 \lambda \tag{6.14}
\end{equation*}
$$

Now it is easy to see that the equation (6.14) is obtained from the equation (6.7) by differentiation and (6.4). Hence we get the following lemma.

Lemma 6.1. The system of differential equations (5.23) is equivalent to the following system of equations:

$$
\left\{\begin{array}{l}
\frac{a}{2 \kappa_{1}} f+2 h_{1} h_{1}^{\prime}=0,-\frac{b}{2 \kappa_{2}} f+2 h_{2} h_{2}^{\prime}=0 \tag{6.15}\\
h_{2}^{\prime}=\sqrt{y\left(h_{2}\right)}, \quad 2 \lambda\left(a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2}\right)=a \kappa_{2}+b \kappa_{1} \\
\frac{d y}{d h_{2}}+2\left(\frac{n+1}{h_{2}}-m \frac{a \kappa_{2}}{b \kappa_{1}} \frac{h_{2}}{h_{1}^{2}}\right) y=\frac{1}{2 h_{2}}-\lambda h_{2} .
\end{array}\right.
$$

Now we consider the first order linear differential equation (6.7). Since an integral factor μ is given by

$$
\begin{equation*}
\mu=h_{2}^{2(n+1)}\left(\delta^{2}-a \kappa_{2} h_{2}^{2}\right)^{m}=h_{2}^{2(n+1)}\left(b \kappa_{1} h_{1}^{2}\right)^{m} \tag{6.16}
\end{equation*}
$$

a solution y of the equation (6.16) is given by

$$
\begin{equation*}
y=\frac{1}{2 h_{2}^{2(n+1)}\left(b \kappa_{1} h_{1}^{2}\right)^{m}}\left\{\int h_{2}^{2 n+1}\left(b \kappa_{1} h_{1}^{2}\right)^{m}\left(1-2 \lambda h_{2}^{2}\right) d h_{2}+C\right\} \tag{6.17}
\end{equation*}
$$

where C is a constant and $a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2}=\delta^{2}$.
Now we recall the following theorem on a compact Einstein Kähler manifold.

Theorem 6.2 (Matsushima [12]). Let (P, J, g) be a compact Einstein Kähler manifold with positive Ricci tensor. Then the Lie algebra $\mathfrak{f}(P, g)$ of all Killing vector fields on P is a real form of the Lie algebra $\mathfrak{g}(P, J)$ of all holomorphic vector fields on P.

Let $P\left(1 \oplus \xi_{\rho}\right)$ be the projective bundle on X as in Theorem 5.9 and assume that g is an Einstein Kähler metric on $P\left(1 \oplus \xi_{\rho}\right)$. Then we assume that g is invariant by the maximal compact Lie group $G_{u} \times S^{1}$ by Theorem 6.2, and hence g is of the form (5.11) on the open orbit $G \times{ }_{p} \boldsymbol{C}^{*}$, and f, h_{1}, h_{2} satisfy the equations (5.23) and conditions of Theorem 4.4 at the boundaries 0 and L. By (5.23) (1) and (2), we obtain

$$
\left\{\begin{array}{l}
\frac{a}{2 \kappa_{1}} f^{\prime}+2 h_{1} h_{1}^{\prime \prime}+2\left(h_{1}^{\prime}\right)^{2}=0 \tag{6.18}\\
-\frac{b}{2 \kappa_{2}} f^{\prime}+2 h_{2} h_{2}^{\prime \prime}+2\left(h_{2}^{\prime}\right)^{2}=0
\end{array}\right.
$$

Since $f^{\prime}(0)=1, f^{\prime}(L)=-1, h_{1}^{\prime}(0)=h_{\tau}^{\prime}(L)=h_{2}^{\prime}(0)=h_{2}^{\prime}(L)=0$, we have

$$
\left\{\begin{array}{l}
\frac{a}{2 \kappa_{1}}+2 h_{1}(0) h_{1}^{\prime \prime}(0)=0,-\frac{a}{2 \kappa_{1}}+2 h_{1}(L) h_{1}^{\prime \prime}(L)=0 \tag{6.19}\\
-\frac{b}{2 \kappa_{2}}+2 h_{2}(0) h_{2}^{\prime \prime}(0)=0, \frac{b}{2 \kappa_{2}}+2 h_{2}(L) h_{2}^{\prime \prime}(L)=0
\end{array}\right.
$$

By (6.7) and (6.8) we have
(6.20) $-4 h_{i}^{\prime \prime}(0) h_{i}(0)=2 \lambda h_{i}^{2}(0)-1,-4 h_{i}^{\prime \prime}(L) h_{i}(L)=2 \lambda h_{i}^{2}(L)-1$
for $i=1,2$. Thus by (6.19) and (6.20), we get

$$
\left\{\begin{array}{l}
2 \lambda h_{1}^{2}(0)=1+\left(a / \kappa_{1}\right), 2 \lambda h_{1}^{2}(L)=1-\left(a / \kappa_{1}\right) \tag{6.21}\\
2 \lambda h_{2}^{2}(0)=1-\left(b / \kappa_{2}\right), 2 \lambda h_{2}^{2}(L)=1+\left(b / \kappa_{2}\right)
\end{array}\right.
$$

In particular, we obtain conditions $a<\kappa_{1}$ and $b<\kappa_{2}$, which are known as the conditions for the first Chern class of $P\left(1 \oplus \xi_{\rho}\right)$ being positive. Now, since $y\left(h_{2}(0)\right)=\left(h_{2}^{\prime}(0)\right)^{2}=0, y\left(h_{2}\right)$ is given by

$$
\begin{equation*}
y\left(h_{2}\right)=\frac{1}{2 h_{2}^{2(n+1)}\left(b \kappa_{1} h_{1}^{2}\right)^{m}} \int_{h_{2}(0)}^{h_{2}} h_{2}^{2 n+1}\left(b \kappa_{1} h_{1}^{2}\right)^{m}\left(1-2 \lambda h_{2}^{2}\right) d h_{2} \tag{6.22}
\end{equation*}
$$

Since $y\left(h_{2}(L)\right)=0$, we have

$$
y\left(h_{2}(L)\right)=\frac{1}{2 h_{2}^{2(n+1)}(L)\left(b \kappa_{1} h_{1}^{2}(L)\right)^{m}} \int_{h_{2}(0)}^{h_{2}(L)} h_{2}^{2 n+1}\left(b \kappa_{1} h_{1}^{2}\right)^{m}\left(1-2 \lambda h_{2}^{2}\right) d h_{2}=0 .
$$

Hence, if g is an Einstein Kähler metric on $P\left(1 \oplus \xi_{\rho}\right)$, we have

$$
\begin{equation*}
\int_{V \overline{\left(1-\left(b / \kappa_{2}\right)\right) / 2 \lambda}}^{V \frac{1}{\left(1+\left(b / \kappa_{2}\right)\right) / 2 \lambda}} h_{2}^{2 n+1}\left(b \kappa_{1} h_{1}^{2}\right)^{m}\left(1-2 \lambda h^{2}\right) d h_{2}=0 \tag{6.23}
\end{equation*}
$$

where $2 \lambda\left(a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2}\right)=a \kappa_{2}+b \kappa_{1}$. Now we put $u=2 \lambda h_{2}^{2}-1$. Then (6.23) can be written as

$$
\int_{-b / \kappa_{2}}^{b / \kappa_{2}}(u+1)^{n}\left(b \kappa_{1}-a \kappa_{2} u\right)^{m} u d u=0
$$

since $2 \lambda\left(a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2}\right)=a \kappa_{2}+b \kappa_{1}$.
Thus by setting $x=\left(\kappa_{2} / b\right) u$, we see that (6.23) is given by

$$
\int_{-1}^{1}\left(\kappa_{2}+b x\right)^{n}\left(\kappa_{1}-a x\right)^{m} x d x=0 .
$$

Conversely, assume that (6.23) is satisfied. We define $y\left(h_{2}\right)$ on a neighborhood of $\left[\sqrt{\left(1-\left(b / \kappa_{2}\right)\right) / 2 \lambda}, \sqrt{\left.\left(1+\left(b / \kappa_{2}\right)\right) / 2 \lambda\right]}\right.$ by

$$
y\left(h_{2}\right)=\frac{1}{2 h_{2}^{2(n+1)}\left(b \kappa_{1} h_{1}^{2}\right)^{m}} \int_{\sqrt{\left(1-\left(b / \kappa_{2}\right)\right) / 2 \lambda}}^{h_{2}} h_{2}^{2 n+1}\left(b \kappa_{1} h_{1}^{2}\right)^{m}\left(1-2 \lambda h_{2}^{2}\right) d h_{2} .
$$

For simplicity, we put $h^{0}=\sqrt{\left(1-\left(b / \kappa_{2}\right)\right) / 2 \lambda}, \quad h^{1}=\sqrt{\left(1+\left(b / \kappa_{2}\right)\right) / 2 \lambda}$. Then $y\left(h^{0}\right)=y\left(h^{1}\right)=0$ and $y\left(h_{2}\right)>0$ for $h^{0}<h_{2}<h^{1}$. Note also that $d y / d h_{2}\left(h^{0}\right)>0$ and $d y / d h_{2}\left(h^{1}\right)>0$. Define a function $\tilde{t}\left(h_{2}\right)$ on $\left(h^{0}, h^{1}\right)$ by

$$
\begin{equation*}
\tilde{t}\left(h_{2}\right)=1 \int_{\sqrt{1 / 2 \lambda}}^{h_{2}} \frac{1}{\sqrt{y\left(h_{2}\right)}} d h_{2} \tag{6.24}
\end{equation*}
$$

Since $h_{2}=h^{0}, h^{1}$ are simple roots of $y\left(h_{2}\right)=0, \lim _{h_{2} \rightarrow h^{0}+} \tilde{t}\left(h_{2}\right)$ and $\lim _{h_{2} \rightarrow h^{1}-} \tilde{t}\left(h_{2}\right)$ exist. We put

$$
\tilde{t}_{0}=\lim _{h_{2} \rightarrow h^{+}} \tilde{t}\left(h_{2}\right) \quad \text { and } \quad \tilde{t}_{1}=\lim _{h_{2} \rightarrow h^{h^{-}}} \tilde{t}\left(h_{2}\right) .
$$

We also define a function $t\left(h_{2}\right)$ on $\left[h^{0}, h^{1}\right]$ by

$$
t\left(h_{2}\right)=\tilde{t}\left(h_{2}\right)-\tilde{t}_{0}, t\left(h^{0}\right)=0 \text { and } t\left(h^{1}\right)=\tilde{t}_{1}-\tilde{t}_{0}
$$

and we put $L=t\left(h^{1}\right)$. Then $t\left(h_{2}\right):\left[h^{0}, h^{1}\right] \rightarrow[0, L]$ is a monotone increasing continuous function which is C^{∞} on (h^{0}, h^{1}).

Now let $h_{2}(t)$ be the inverse function of $t\left(h_{2}\right)$. Then $d h_{2} / d t=\sqrt{y\left(h_{2}\right)}$ on $(0$, $L)$. We claim that $h_{2}(t)$ can be extended to a C^{∞} function $h_{2}(t):[0, L] \rightarrow \boldsymbol{R}_{+}$ such that $h_{2}^{(2 k-1)}(0)=h_{2}^{(2 k-1)}(L)=0$ for each positive integer k. For a sufficient small $\varepsilon>0$, we extend $h_{2}(t)$ to a function $h_{2}(t):(-\varepsilon, L+\varepsilon) \rightarrow \boldsymbol{R}_{+}$by $h_{2}(t)$ $=h_{2}(-t)$ for $-\varepsilon<t<0$ and $h_{2}(t+L)=h_{2}(L-t)$ for $0<t<\varepsilon$. Then we see that $h_{2}(t):(-\varepsilon, L+\varepsilon) \rightarrow \boldsymbol{R}$ is continuous and is a C^{∞} function except $t=0$ and $t=L$. Since $d h_{2} / d t=\sqrt{y\left(h_{2}\right)}$ on $(0, L), d h_{2} / d t=-\sqrt{y\left(h_{2}\right)}$ on $(-\varepsilon, 0)$ and $\lim _{t \rightarrow 0} \frac{d h_{2}}{d t}=0$, we see that $d h_{2} / d t(0)$ exists and $d h_{2} / d t(0)=0$. Similarly we have $d h_{2} / d t(L)=0$. Thus we see that $h_{2}(t):(-\varepsilon, L+\varepsilon) \rightarrow \boldsymbol{R}_{+}$is a function of class C^{1}. By $d h_{2} / d t=\sqrt{y\left(h_{2}\right)}$ on $(0, L)$, we have

$$
\frac{d^{2} h_{2}}{d t^{2}}=\frac{1}{2} \frac{d y}{d h_{2}}\left(h_{2}(t)\right) \quad \text { on }(0, L)
$$

By $d h_{2} / d t=-\sqrt{y\left(h_{2}\right)}$ on $(-\varepsilon, 0)$, we also have

$$
\frac{d^{2} h_{2}}{d t^{2}}=\frac{1}{2} \frac{d y}{d h_{2}}\left(h_{2}(t)\right) \quad \text { on }(-\varepsilon, 0)
$$

Thus we see that $\lim _{t \rightarrow 0} d^{2} h_{2} / d t^{2}$ exists and

$$
\frac{d^{2} h_{2}}{d t^{2}}(0)=\frac{1}{2} \frac{d y}{d h_{2}}\left(h^{0}\right)=\frac{1}{2}\left(\frac{1}{2 h^{0}}-\lambda h^{0}\right) .
$$

Similarly we see that $\lim _{t \rightarrow L} d^{2} h_{2} / d t^{2}$ exists and

$$
\frac{d^{2} h_{2}}{d t^{2}}(L)=\frac{1}{2} \frac{d y}{d h_{2}}\left(h^{1}\right)=\frac{1}{2}\left(\frac{1}{2 h^{1}}-\lambda h^{1}\right) .
$$

Therefore $h_{2}(t):(-\varepsilon, L+\varepsilon) \rightarrow \boldsymbol{R}_{+}$is of class C^{2}. Now we put $\varphi\left(h_{2}\right)=\frac{1}{2} \frac{d y}{d h_{2}}$. Then $\varphi\left(h_{2}\right)$ is a C^{∞} function on a neighborhood of $\left[h^{0}, h^{1}\right]$ and

$$
\begin{equation*}
\frac{d^{2} h_{2}}{d t^{2}}=\varphi\left(h_{2}(t)\right) \quad \text { on }(0, L) \tag{6.25}
\end{equation*}
$$

Lemma 6.3. On $(0, L)$, we have, for each positive integer k,

$$
\begin{align*}
\frac{d h_{2}^{2 k+1}}{d t^{2 k+1}}= & \frac{d^{2 k-1} \varphi}{d h_{2}^{2 k+1}}\left(\frac{d h_{2}}{d t}\right)^{2 k-1} \tag{6.26}\\
& +\sum_{j=1}^{k-1} \Phi_{2(k-j)-1}^{2 k+1}\left(\varphi, \frac{d \varphi}{d h_{2}}, \cdots, \frac{d^{2 k-1-j} \varphi}{d h_{2}^{2 k-1-j}}\right)\left(\frac{d h_{2}}{d t}\right)^{2(k-j)-1} \\
\frac{d h_{2}^{2 k}}{d t^{2 k}}= & \frac{d^{2 k-2} \varphi}{d h_{2}^{2 k-2}}\left(\frac{d h_{2}}{d t}\right)^{2 k-2} \tag{6.27}\\
& +\sum_{j=1}^{k-1} \Phi_{2(k-j)-2}^{2 k}\left(\varphi, \frac{d \varphi}{d h_{2}}, \cdots, \frac{d^{2 k-2-j} \varphi}{d h_{2}^{2 k-2-j}}\right)\left(\frac{d h_{2}}{d t}\right)^{2(k-j)-2}
\end{align*}
$$

where $\Phi_{l-1-2 j}^{l}\left(\varphi, \frac{d \varphi}{d h_{2}}, \cdots, \frac{d^{l-1-j} \varphi}{d h_{2}^{l-1-j}}\right)$ are polynomials of $\varphi, \frac{d \varphi}{d h_{2}}, \cdots, \frac{d^{l-1-j} \varphi}{d h_{2}^{l-1-j}}$.
Proof. By routine computations using induction.
In particular, we see that

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{d h_{2}^{2 k+1}}{d t^{2 k+1}}=\lim _{t \rightarrow L} \frac{d h_{2}^{2 k+1}}{d t^{2 k+1}}=0, \\
& \lim _{t \rightarrow 0} \frac{d h_{2}^{2 k}}{d t^{2 k}}=\Phi_{0}^{2 k}\left(\varphi\left(h^{0}\right), \frac{d \varphi}{d h_{2}}\left(h^{0}\right), \cdots, \frac{d^{k-1} \varphi}{d h_{2}^{k-1}}\left(h^{0}\right)\right) \\
& \lim _{t \rightarrow L} \frac{d h_{2}^{2 k}}{d t^{2 k}}=\Phi_{0}^{2 k}\left(\varphi\left(h^{1}\right), \frac{d \varphi}{d h_{2}}\left(h^{1}\right), \cdots, \frac{d^{k-1} \varphi}{d h_{2}^{k-1}}\left(h^{1}\right)\right),
\end{aligned}
$$

and hence $h_{2}(t):(-\varepsilon, L+\varepsilon) \rightarrow \boldsymbol{R}_{+}$is a C^{∞} function such that $h_{2}^{(2 k-1)}(0)=h_{2}^{(2 k-1)}$ $(L)=0$ for each positive integer k. We define a function f by

$$
f=\left(4 \kappa_{2} / b\right) h_{2} h_{2}^{\prime}
$$

and a function $h_{1}>0$ by

$$
2 \lambda\left(a \kappa_{2} h_{2}^{2}+b \kappa_{1} h_{1}^{2}\right)=a \kappa_{2}+b \kappa_{1} .
$$

Then f is a C^{∞} function on $[0, L]$ such that $f(0)=f(L)=0, f^{\prime}(0)=-f^{\prime}(L)=1$ and $f^{(2 k)}(0)=f^{(2 k)}(L)=0$ for each positive integer k, and f, h_{1}, h_{2} satisfy the equation (5.23). Therefore a metric $g=d t^{2}+f(t)^{2} \tilde{\beta}_{0}+h_{1}(t)^{2} \alpha_{1}+h_{2}(t) \alpha_{2}$ is an Einstein Kähler metric on $P\left(1 \oplus \xi_{\rho}\right)$ by Theorem 4.4 and Theorem 5.9. This proves our Main Theorem.

Proof of Corollary 1. Since $\int_{-1}^{1}(\kappa-a x)^{m}(\kappa+a x)^{m} x d x=0$, we see that there exists an Einstein Kähler metric on P by our Main Theorem.

Proof of Corollary 2 (1). By our Main Theorem it is enough to see that

$$
\int_{-1}^{1}(\kappa+b x)^{m}(\kappa-a x)^{m} x d x \neq 0 \quad \text { for } a \neq b .
$$

We may assume that $b>a$.

$$
\begin{aligned}
& \int_{-1}^{1}(\kappa+b x)^{m}(\kappa-a x)^{m} x d x=\int_{-1}^{1}\left(\kappa^{2}+(b-a) x-a b x^{2}\right)^{m} x d x \\
= & \sum_{j=a}^{m} \int_{-1}^{1}\binom{m}{j}\left(\kappa^{2}-a b x^{2}\right)^{m-j}((b-a) x)^{j} x d x \\
= & \sum_{k \geq 1} \int_{-1}^{1}\binom{m}{2 k-1}\left(\kappa^{2}-a b x^{2}\right)^{m-2 k+1}(b-a)^{2 k-1} x^{2 k} d x \\
= & 2 \sum_{k \geq 1} \int_{0}^{1}\binom{m}{2 k-1}\left(\kappa^{2}-a b x^{2}\right)^{m-2 k+1}(b-a)^{2 k-1} x^{2 k} d x>0 .
\end{aligned}
$$

Proof of Corollary 2 (2). Since $\kappa_{1}=2$ and $a=1$, we have to show that

$$
\begin{equation*}
\int_{-1}^{1}(2-x)\left(\kappa_{2}+b x\right)^{n} x d x \neq 0 \quad \text { for } n \geqq 2 \tag{6.28}
\end{equation*}
$$

Put $y=\kappa_{2}+b x$. Then the integral (6.28) is given by

$$
\int_{\kappa_{2}-b}^{\kappa_{2}+b} \frac{1}{b^{3}}\left(2 b+\kappa_{2}-y\right)\left(y-\kappa_{2}\right) y^{n} d y
$$

Now we have

$$
\begin{align*}
& \int_{\kappa_{2}-b}^{\kappa_{2}+b}\left(2 b+\kappa_{2}-y\right)\left(y-\kappa_{2}\right) y^{n} d y \tag{6.29}\\
= & \frac{1}{(n+1)(n+2)(n+3)}\left[\left(\kappa_{2}-b\right)^{n+1}\left(2 \kappa_{2}^{2}+(2 n+4) 2 b \kappa_{2}+(n+1)(3 n+8) b^{2}\right)\right. \\
& \left.-\left(\kappa_{2}+b\right)^{n+1}\left(2\left(\kappa_{2}^{2}+2 b \kappa_{2}\right)-b^{2}\left(n^{2}+5 n+4\right)\right)\right] .
\end{align*}
$$

Case 1. $b \geqq 2$.
Since $b<\kappa_{2} \leqq n+1$,

$$
\begin{aligned}
& b^{2}\left(n^{2}+5 n+4\right)-2\left(\kappa_{2}^{2}+2 b \kappa_{2}\right) \geqq b^{2}\left(n^{2}+5 n+4\right)-2(n+1)(n+1+2 b) \\
= & \left(b^{2}-2\right) n^{2}+\left(5 b^{2}-2 b-2\right) n+\left(4 b^{2}-4 b-2\right)>0 \quad \text { if } b \geqq 2 .
\end{aligned}
$$

Thus the integration (6.29) is positive.
Case 2. $b=1$.
We use a classification of irreducible hermitian symmetric spaces. It is also known that the integer κ of an irreducible hermitian symmetric space of compact type M is given as follows (cf. [5]):

$$
\begin{aligned}
& \text { I } M=U(p+q) /(U(p) \times U(q)) \\
& \text { II } M=S O(2 q) / U(q)(q \geqq 5) \\
& \kappa=p+q \quad \operatorname{dim}_{C} M=p q \\
& \text { III } M=S p(q) / U(q) \quad(q \geqq 3) \\
& \kappa=2 q-2 \quad \operatorname{dim}_{C} M=q(q-1) / 2 \\
& \text { IV } M=S O(q+2) /(S O(2) \times S O(q))(q \geqq 3) \kappa=q \quad \operatorname{dim}_{C} M=q
\end{aligned}
$$

V $M=E_{6} /\left(\operatorname{Spin}(10) \times T^{1}\right)$
$\kappa=12 \quad \operatorname{dim}_{\boldsymbol{C}} M=16$
VI $M=E_{7} /\left(E_{6} \times T^{1}\right)$
$\kappa=18 \quad \operatorname{dim}_{C} M=27$.

Now, since $b=1,(6.29)$ is given by

$$
\begin{align*}
& \int_{\kappa_{2}-1}^{\kappa_{2}+1}\left(2+\kappa_{2}-y\right)\left(y-\kappa_{2}\right) y^{n} d y \tag{6.30}\\
= & \frac{1}{(n+3)(n+2)(n+1)}\left[\left(\kappa_{2}-1\right)^{n+1}\left(2 \kappa_{2}^{2}+2(2 n+4) \kappa_{2}+(n+1)(3 n+8)\right)\right. \\
& \left.-\left(\kappa_{2}+1\right)^{n+1}\left(2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)-\left(n^{2}+5 n+4\right)\right)\right] .
\end{align*}
$$

Case 2.1.

$$
\text { If } \begin{aligned}
& M=U(p+q) /(U(p) \times U(q)) \text { and } p, q \geqq 2, \\
& n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=(p q)^{2}+5 p q+4-2(p+q)^{2}-4(p+q) \\
= & \left(p^{2}-2\right)\left(q^{2}-2\right)+p q-4 p-4 q \geqq 2\left(p^{2}-2\right)+q(p-4)-4 p .
\end{aligned}
$$

$$
\text { If } p \geqq 4,2\left(p^{2}-2\right)+q(p-4)-4 p \geqq 2\left(p^{2}-2\right)+2(p-4)-4 p
$$

$$
=2(p-3)(p+2) \geqq 0
$$

We may also assume that $p \geqq q$. If $p=3 \geqq q \geqq 2$,

$$
n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=7\left(q^{2}-2\right)+3 q-12-4 q=7 q^{2}-q-26>0
$$

Note that if $p=q=2$ then M is a quadric $Q^{4}(\boldsymbol{C})$.
Case 2.2.

$$
\text { If } \begin{aligned}
& M=S O(2 q) / U(q)(q \geqq 5), \\
& n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=(q(q-1) / 2)^{2}+5(q(q-1) / 2)+4 \\
& -2(2 q-2)^{2}-4(2 q-2) .
\end{aligned}
$$

Since $n=q(q-1) / 2, n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=n^{2}-11 n+4>0$ if $q \geqq 6$, that is, $n \geqq 15$.
For $q=5$, we have $n=10$ and thus (6.30) becomes

$$
\frac{1}{13 \times 12 \times 11}\left(7^{11}\left(2^{9}+11 \times 38\right)-9^{11} \times 6\right) \neq 0
$$

Case 2.3.

$$
\begin{aligned}
& \text { If } \quad M=S p(q) / U(q) \quad(q \geqq 3) \text {, } \\
& n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=(q(q+1) / 2)^{2}+5 q(q+1) / 2+4-2\left((q+1)^{2}+2(q+1)\right)
\end{aligned}
$$

Put $p(x)=(x(x+1) / 2)^{2}+5 x(x+1) / 2+4-2\left((x+1)^{2}+2(x+1)\right)$.
Then $p(3)=22$ and $p^{\prime}(x)>0$ for $x>3$ and hence $n^{2}+5 n+4-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)>0$ for $q \geqq 3$.

Case 2.4.

If $M=E_{6} /\left(\operatorname{Spin}(10) \times T^{1}\right), \kappa_{2}=12$ and $n=16$, thus

$$
n^{2}+5 n+6-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=4>0
$$

Case 2.5.
If $M=E_{7} /\left(E_{6} \times T^{1}\right), \kappa_{2}=18$ and $n=27$, thus

$$
n^{2}+5 n+9-2\left(\kappa_{2}^{2}+2 \kappa_{2}\right)=3^{2}+5 \times 3^{3}+4>0 .
$$

Therefore the integral (6.30) is positive for the cases above.
Now we consider the cases $M=P^{n}(\boldsymbol{C})$ and $M=Q^{n}(\boldsymbol{C})$.

Case 2.6.

If $M=P^{n}(C), \kappa_{2}=n+1$, and thus (6.30) is given by

$$
\begin{aligned}
& \frac{1}{(n+3)(n+2)(n+1)}\left\{n^{n+1} 9(n+1)(n+2)-(n+2)^{n+1}(n+1)(n+2)\right\} \\
= & \frac{1}{n+3}\left(9 n^{n+1}-(n+2)^{n+1}\right)=\frac{\mathbf{n}^{n+1}}{n+3}\left(9-\left(\frac{n+2}{n}\right)^{n+1}\right)
\end{aligned}
$$

We define a function $p(y)(y \geqq 2)$ by

$$
\begin{equation*}
p(y)=\left(\frac{y+1}{y-1}\right)^{y} . \tag{6.31}
\end{equation*}
$$

Then it is not difficult to see that $p(y)$ is a monotone decreasing function. Therefore we see that the integral (6.30) is positive for $n \geqq 2$.

Case 2.7.
If $M=Q^{n}(C)(n \geqq 3), \kappa_{2}=n$ and thus (6.30) is given by

$$
\frac{(n-1)^{n+1}\left(n^{2}-n-4\right)}{(n+3)(n+2)(n+1)}\left\{\frac{9 n^{2}+19 n+8}{n^{2}-n-4}-\left(\frac{n+1}{n-1}\right)^{n+1}\right\}
$$

We claim that $\frac{9 n^{2}+19 n+8}{n^{2}-n-4}-\left(\frac{n+1}{n-1}\right)^{n+1}>0$ for $n \geqq 3$. Since the function $p(y)$ defined by (6.31) is monotone decreasing, it is enough to show that

$$
\frac{\left(9 n^{2}+19 n+8\right)(n-1)}{\left(n^{2}-n-4\right)(n+1)}>8 \quad \text { for } n \geqq 3
$$

But this is obvious, since

$$
\left(9 n^{2}+19 n+8\right)(n-1)-8(n+1)\left(n^{2}-n-4\right)=n^{3}+10 n^{2}+29 n+24>0
$$

Thus the integral (6.30) is positive for $n \geqq 3$.
q.e.d.

Finally we give an example of Einstein Kähler manifold which is not of the type in Corollary 1 of Main Theorem.

Example 6.4. Let M_{1} be the complex Grassmann manifold $G_{6,2}(\boldsymbol{C})$ of 2-planes in \boldsymbol{C}^{6} and M_{2} the complex projective space $P^{8}(\boldsymbol{C})$. Note that in this case $\kappa_{1}=6$ and $\kappa_{2}=9$. Consider the $P^{1}(\boldsymbol{C})$-bundle $P\left(p_{1}^{*} L_{1}^{2} \oplus p_{2}^{*} L_{2}^{3}\right)$ over $M_{1} \times M_{2}$. Then the integral in Main Theorem is given by

$$
\int_{-1}^{1}(6-2 x)^{8}(9+3 x)^{8} x d x=0 .
$$

Thus $P\left(p_{1}^{*} L_{1}^{2} \oplus p_{2}^{*} L_{2}^{3}\right)$ has an Einstein Kahler metric.

References

[1] T. Aubin: Equations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris 283 (1976), 119-121.
[2] L. Bérard Bergery: Sur de nouvelles variétés riemanniennes d'Einstein, Publ. de l'Inst. E. Cartan, No. 6, 1982.
[3] A. Besse: Manifolds all of whose geodesics are closed, Springer, Berlin-Heidel-berg-New York, 1978.
[4] M.A. Blanchard: Sur les variétés analytique complexes, Ann. Sci. Ecole Norm. Sup. 73 (1956), 157-202.
[5] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[6] A. Futaki: An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437-443.
[7] M. Ise: Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1962), 217-252.
[8] K. Ishikawa and Y. Sakane: On complex projective bundles over a Kähler Cspace, Osaka J. Math. 16 (1979), 121-132.
[9] G. Jensen: Einstein metrics on principal fiber bundles, J. Differential Geom. 8 (1973), 599-614.
[10] S. Kobayashi: Transformation groups in differential geometry, Springer, Berlin-Heidelberg-New York, 1972.
[11] S. Kobayashi and K. Nomizu: Foundation of differential geometry, vol. II, Interscience, New York, 1969.
[12] Y. Matsushima: Sur la structure du groupe d'homéomorphisms analytiques d'une certaine variété kaehlérienne, Nagoya Math. J. 11 (1957), 145-150.
[13] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture notes, Chicago Univ., 1966.
[14] B. O'Neill: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[15] B. Shiffman and A.J. Sommese: Vanishing theorems on complex manifolds, Progress in Mathematics, 56, Birkhäuser Boston, 1985.
[16] M. Takeuchi: Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. 4 (1978), 171-219.
[17] N.R. Wallach: Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 96 (1972), 277-295.
[18] H.C. Wang: Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.
[19] S.T. Yau: On the curvature of compact Hermitian manifolds, Invent. Math. 25 (1974), 213-239.
[20] -: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (1978), 339-411.

Department of Mathematics Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

[^0]: 1) This work was supported by Grant-in-Aid for Scientific Research (No. 59460001), The Ministry of Education, Science and Culture.
