CUTTING AND PASTING OF PAIRS

Dedicated to Professor Itiro Tamura on his 60th birthday

Katsuhiro KOMIYA

(Received April 11, 1985)

Introduction

For integers $m \geq n \geq 0$, an (m, n)-pair (M, N) is a pair of an m-dimensicnal closed smooth manifold M and an n-dimensional closed smooth submanifold N of M. In this paper we will consider for such pairs cutting and pasting equivalence (called briefly SK-equivalence) and controllable cutting and pasting equivalence (called briefly SKK-equivalence).

Karras-Kreck-Neumann-Ossa [1] considered the $S K$-equivalence and $S K K$-equivalence for closed smooth manifolds, and investigated the resulting $S K$-group $S K_{m}$ and $S K K$-group $S K K_{m}$. As a natural extension of this notion we will define such equivalences for pairs and obtain the $S K$-group $S K_{m, n}$ and $S K K$-group $S K K_{m, n}$ of (m, n)-pairs. We will denote by [$\left.M, N\right]^{S K}$ in $S K_{m, n}$ and $[M, N]^{S K K}$ in $S K K_{m, n}$ the class represented by an (m, n)-pair (M, N), respectively.

Note. We caution the reader that Karras-Kreck-Neumann-Ossa [1] uses the symbols $S K^{o}$ and $S K K^{o}$ to denote our $S K$ and $S K K$. Their use of $S K$ and $S K K$ is for the oriented analogue. In the present paper we will only consider the unoriented case. So we drop the symbol " O " from the notation. Manifolds considered are all smooth (of class C^{∞}), and we also omit the term "smooth".

In section 1 we will consider the $S K$-equivalence, and obtain
Theorem 0.1. There is a split short exaci sequence

$$
0 \rightarrow S K_{m} \xrightarrow{i} S K_{m, n} \xrightarrow{j} S K_{n} \rightarrow 0
$$

where the homomorphisms i and j are defined by $i\left([M]^{S K}\right)=[M, \phi]^{S K}$ and $j([M$, $\left.N]^{S K}\right)=[N]^{S K}$, respectively.

Corollary 0.2. The following (i), (ii) and (iii) are equivalent:
(i) $[M, N]^{S K}=\left[M^{\prime}, N^{\prime}\right]^{S K}$ in $S K_{m, n}$,
(ii) $[M]^{S K}=\left[M^{\prime}\right]^{S K}$ in $S K_{m}$, and $[N]^{S K}=\left[N^{\prime}\right]^{S K}$ in $S K_{n}$,
(iii) $\chi(M)=\chi\left(M^{\prime}\right)$ and $\chi(N)=\chi\left(N^{\prime}\right)$, where $\chi($) denotes the Euler characteristic.

In section 2 we will consider the $S K K$-equivalence. In section 3 we will consider relations of the $S K K$-group $S K K_{m, n}$ and the unoriented cobordism group $\mathfrak{\Re}_{m, n}$ of (m, n)-pairs. Denote by $\operatorname{SKK}_{n}(B O(m-n)$) the $S K K-$ group of singular n-dimensional closed manifolds in the classifying space $B O$ $(m-n)$ for $(m-n)$-dimensional vector bundles. We will then obtain

Theorem 0.3. There is a split short exact sequence

$$
0 \rightarrow S K K_{m} \xrightarrow{i} S K K_{m, n} \stackrel{j}{\rightarrow} S K K_{n}(B O(m-n)) \rightarrow 0
$$

Here i is defined by $i\left([M]^{S K K}\right)=[M, \phi]^{S K K} . j$ is defined by $j\left([M, N]^{S K K}\right)=[N$, $\left.\nu_{N}\right]^{S K K}$, where $\nu_{N}: N \rightarrow B O(m-n)$ is a classifying map for the normal bundle of N in M.

Denote by \mathfrak{N}_{m} the unoriented cobordism group of m-dimensional closed manifolds. Denote by $\Re_{n}(B O(m-n))$ the unoriented cobordism group of singular n-dimensional closed manifolds in $B O(m-n)$. Classes in these cobordism groups are denoted by [$]^{\Omega}$.

Corollary 0.4. The following (i) $\sim(\mathrm{iv})$ are equivalent:
(i) $[M, N]^{S K K}=\left[M^{\prime}, N^{\prime}\right]^{S K K}$ in $S K K_{m, n}$,
(ii) $[M]^{S K K}=\left[M^{\prime}\right]^{S K K}$ in $S K K_{m}$, and $\left[N, \nu_{N}\right]^{S K K}=\left[N^{\prime}, \nu_{N^{\prime}}\right]^{S K K}$ in $S K K_{n}$ ($B O(m-n)$),
(iii) $[M]^{\mathfrak{M}}=\left[M^{\prime}\right]^{\mathfrak{M}}$ in $\mathfrak{M}_{m},\left[N, \nu_{N}\right]^{\mathfrak{M}}=\left[N^{\prime}, \nu_{N^{\prime}}\right]^{\mathfrak{R}}$ in $\mathfrak{\Re}_{n}(B O(m-n)), \chi(M)$ $=\chi\left(M^{\prime}\right)$ and $\chi(N)=\chi\left(N^{\prime}\right)$,
(iv) $[M, N]^{\Re}=\left[M^{\prime}, N^{\prime}\right]^{\mathfrak{R}}$ in $\mathfrak{\Re}_{m, n}, \chi(M)=\chi\left(M^{\prime}\right)$ and $\chi(N)=\chi\left(N^{\prime}\right)$.
(S^{m}, S^{n}) denotes the standard pair of m-dimensional and n-dimensional spheres. Let $I_{m, n}$ be the subgroup of $S K K_{m, n}$ generated by [$\left.S^{m}, S^{n}\right]^{S K K}$ and $\left[S^{m}, \phi\right]^{]_{K K}}$. We will then obtain

Theorem 0.5. There is a short exact sequence

$$
0 \rightarrow I_{m, n} \xrightarrow{i} S K K_{m, n} \stackrel{j}{\rightarrow} \mathfrak{N}_{m, n} \rightarrow 0
$$

where i is the canonical inclusion, and j is defined by $j\left([M, N]^{S K K}\right)=[M, N]^{\Re,}$.

1. Cutting and pasting of pairs

Let X be a space. A singular n-dimensional closed manifold in X is an equivalence class (M, f), where M is an n-dimensional closed manifold, $f: M$ $\rightarrow X$ is a map, and (M, f) is equivalent to $\left(M^{\prime}, f^{\prime}\right)$ if there is a diffeomorphism
$\alpha: M \rightarrow M^{\prime}$ such that $f=f^{\prime} \circ \alpha$. Let $\mathscr{M}_{n}(X)$ be the set of singular n-dimensional closed manifolds in X. Let P and Q be n-dimensional compact manifolds, φ and $\psi: \partial P \rightarrow \partial Q$ be diffeomorphisms. Glueing P and Q along the boundary by φ and ψ, we then obtain n-dimensional closed manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$. Give $\mathscr{M}_{n}(X)$ the $S K$-equivalence relation \sim generated by relations of the form

$$
\left(P \cup_{\varphi} Q, f\right) \sim\left(P \cup_{\psi} Q, f^{\prime}\right)
$$

where $f: P \cup_{\varphi} Q \rightarrow X$ and $f^{\prime}: P \cup_{\psi} Q \rightarrow X$ are maps for which there are homotopies $f\left|P \simeq f^{\prime}\right| P$ and $f\left|Q \simeq f^{\prime}\right| Q$. Then the quotient set $\mathscr{M}_{n}(X) / \sim$ becomes a semigroup with disjoint union as its group operation. $S K_{n}(X)$ is the Grothendieck group of the semigroup. If X is one point, we write $S K_{n}$ for $S K_{n}(X)$.

Let $m \geq n \geq 0$ be integers. Let (P, Q) be a pair of an m-dimensional compact manifold P and an n-dimensional compact submanifold Q of P (with ∂Q $=Q \cap \partial P)$. Let (P^{\prime}, Q^{\prime}) be another pair as above, and φ and $\psi: \partial P \rightarrow \partial P^{\prime}$ be diffeomorphisms inducing diffeomorphisms $\varphi \mid \partial Q$ and $\psi \mid \partial Q: \partial Q \rightarrow \partial Q^{\prime}$, respe tively. We then obtain (m, n)-pairs

$$
\begin{aligned}
& (P, Q) \cup_{\varphi}\left(P^{\prime}, Q^{\prime}\right)=\left(P \cup_{\varphi} P^{\prime}, Q \cup_{\varphi \mid \partial Q} Q^{\prime}\right), \quad \text { and } \\
& (P, Q) \cup_{\psi}\left(P^{\prime}, Q^{\prime}\right)=\left(P \cup_{\psi} P^{\prime}, Q \cup_{\psi \mid \partial Q} Q^{\prime}\right)
\end{aligned}
$$

Letting $\mathscr{M}_{m, n}$ be the set of diffeomorphism classes of (m, n) -pairs, we give $\mathscr{M}_{m, n}$ the $S K$-equivalence relation \sim generated by relations of the form

$$
(P, Q) \cup_{\varphi}\left(P^{\prime}, Q^{\prime}\right) \sim(P, Q) \cup_{\psi}\left(P^{\prime}, Q^{\prime}\right)
$$

Then the quotient set $\mathscr{M}_{m, n} / \sim$ becomes a semigroup with respect to disjoint union. $S K_{m, n}$ is the Grothendieck group of the semigroup.

Theorem 1.1. There is a split short exact sequence

$$
0 \rightarrow S K_{m} \xrightarrow{i} S K_{m, n} \xrightarrow{j} S K_{n} \rightarrow 0
$$

where the homomorphisms i and j are defined by $i\left([M]^{S K}\right)=[M, \phi]^{S_{K}}$ and $j\left([M, N]^{S K}\right)$ $=[N]^{s_{K}}$, respectively.

Proof. It is clear that i is monic, j is epic and $j \circ i=0$. Letting $k: S K_{m, n}$ $\rightarrow S K_{m}$ be the homomorphism defined by $k\left([M, N]^{S K}\right)=[M]^{S K}$, we easily see that $k \circ i=$ identity. Thus k gives the splitting of the sequence. It only remains to show that $\operatorname{Ker} j \subset \operatorname{Im} i$. This is proved as in Kosniowski [2; §2.6]. Every element of $S K_{m, n}$ is of the form $\left[M_{1}, N_{1}\right]^{S K}-\left[M_{2}, N_{2}\right]^{]^{K}}$. If $\left[M_{1}, N_{1}\right]^{S K}$ $-\left[M_{2}, N_{2}\right]^{S K} \in \operatorname{Ker} j$, then $\left[N_{1}\right]^{S K}=\left[N_{2}\right]^{S K}$ in $S K_{n}$. For $i=1,2$ let $\nu\left(N_{i}\right)$ be the normal bundle of N_{i} in M_{i}, and $\nu_{N_{i}}: N_{i} \rightarrow B O(m-n)$ its classifying map. The augmentation homomorphism $\varepsilon: S K_{n}(B O(m-n)) \rightarrow S K_{n}$ is an isomorphism (see Karras-Kreck-Neumann-Ossa [1; Theorem 2.11] or Kosniowski
[2; Theorem 3.5.1]). This implies that $\left[N_{1}, \nu_{N_{1}}\right]^{S K}=\left[N_{2}, \nu_{N_{2}}\right]^{S K}$ in $S K_{n}(B O$ $(m-n)$), and further that

$$
\left[R P\left(\nu\left(N_{1}\right) \oplus R\right), N_{1}\right]^{S K}=\left[R P\left(\nu\left(N_{2}\right) \oplus R\right), N_{2}\right]^{S K}
$$

in $S K_{m, n}$. Here $R P()$ denotes the associated real projective space bundle, R is the trivial line bundle over N_{i}, and the submanifold $R P(R)$ of $R P\left(\nu\left(N_{i}\right)\right.$ $\oplus R$) is identified with N_{i}. Let T_{i} be a closed tubular neighborhood of N_{i} in M_{i}. Then we easily see that

$$
\left(M_{i}, N_{i}\right)=\left(M_{i}-\stackrel{\circ}{T}_{i}, \phi\right) \cup\left(T_{i}, N_{i}\right),
$$

where $\stackrel{\circ}{T}_{i}$ denotes the interior of T_{i}. Letting T_{i}^{\prime} be a closed tubular neighborhood of N_{i} in $R P\left(\nu\left(N_{i}\right) \oplus R\right)$, we see that T_{i} is diffeomorphic to T_{i}^{\prime}. Let

$$
\begin{aligned}
& K_{i}=\left(R P\left(\nu\left(N_{i}\right) \oplus R\right)-\stackrel{\circ}{T}_{i}^{\prime}\right) \cup\left(M_{i}-\stackrel{\circ}{T}_{i}\right), \quad \text { and } \\
& K_{i}^{\prime}=\left(M_{i}-\stackrel{\circ}{T}_{i}\right) \cup\left(M_{i}-\stackrel{\circ}{T}_{i}\right) .
\end{aligned}
$$

It then follows that

$$
\left[M_{i}, N_{i}\right]^{S K}+\left[K_{i}, \phi\right]^{s_{K}}=\left[R P\left(\nu\left(N_{i}\right) \oplus R\right), N_{i}\right]^{S K}+\left[K_{i}^{\prime}, \phi\right]^{S_{K}}
$$

in $S K_{m, n}$. Since

$$
\left[R P\left(\nu\left(N_{1}\right) \oplus R\right), N_{1}\right]^{S_{K}}=\left[R P\left(\nu\left(N_{2}\right) \oplus R\right), N_{2}\right]^{S_{K}},
$$

then

$$
\left[M_{1}, N_{1}\right]^{S K}-\left[M_{2}, N_{2}\right]^{S K}=\left[K_{1}^{\prime}, \phi\right]^{S K}-\left[K_{1}, \phi\right]^{S K}-\left[K_{2}^{\prime}, \phi\right]^{S K}+\left[K_{2}, \phi\right]^{S K}
$$

This shows that $\left[M_{1}, N_{1}\right]^{S K}-\left[M_{2}, N_{2}\right]^{S K} \in \operatorname{Im} i$. q.e.d.

From Theorem 1.1 and Karras-Kreck-Neumann-Ossa [1; Theorem 1.3a] or Kosniowski [2; Theorem 2.5.1] we obtain

Corollary 1.2. The following (i), (ii) and (iii) are equivalent:
(i) $[M, N]^{S K}=\left[M^{\prime}, N^{\prime}\right]^{S K}$ in $S K_{m, n}$,
(ii) $[M]^{S K}=\left[M^{\prime}\right]^{S K}$ in $S K_{m}$, and $[N]^{S K}=\left[N^{\prime}\right]^{S K}$ in $S K_{n}$,
(iii) $\chi(M)=\chi\left(M^{\prime}\right)$ and $\chi(N)=\chi\left(N^{\prime}\right)$.

2. Controllable cutting and pasting of pairs

We first define the $S K K$-group $S K K_{n}(X)$ of singular n-dimensional closed manifolds in a space X. Let P, P^{\prime}, Q and Q^{\prime} be n-dimensional compact manifolds with $\partial P=\partial P^{\prime}$ and $\partial Q=\partial Q^{\prime}$. Let φ and $\psi: \partial P \rightarrow \partial Q$ be diffeomorphisms. Define $A_{(\varphi, \psi)}$ as the closed manifold obtained from the disjoint union of ∂P $\times[0,1]$ and $\partial Q \times[0,1]$ by identifying $\partial P \times\{0\}$ with $\partial Q \times\{0\}$ by φ and ∂P $\times\{1\}$ with $\partial Q \times\{1\}$ by ψ. Let $f_{1}: P \cup_{\varphi} Q \rightarrow X, f_{2}: P^{\prime} \cup_{\psi} Q^{\prime} \rightarrow X, f_{3}: P \cup_{\psi} Q$
$\rightarrow X$ and $f_{4}: P^{\prime} \cup_{\varphi} Q^{\prime} \rightarrow X$ be maps such that
(1) there are homotopies $H_{1}: f_{1}\left|P \simeq f_{3}\right| P, H_{2}: f_{1}\left|Q \simeq f_{3}\right| Q, H_{3}: f_{2} \mid P^{\prime}$ $\simeq f_{4} \mid P^{\prime}$ and $H_{4}: f_{2}\left|Q^{\prime} \simeq f_{4}\right| Q^{\prime}$, and
(2) if $F: A_{(\varphi, \psi)} \rightarrow X$ is a map defined by $H_{1} \mid \partial P \times[0,1]$ and $H_{2} \mid \partial Q \times[0,1]$, and if $F^{\prime}: A_{(\varphi, \psi)} \rightarrow X$ is a map defined by $H_{3} \mid \partial P^{\prime} \times[0,1]$ and $H_{4} \mid \partial Q^{\prime} \times[0,1]$, then there is a homotopy $F \simeq F^{\prime}$.

Then give $\mathscr{M}_{n}(X)$ the $S K K$-equivalence relation \sim generated by the relations of the form

$$
\text { (*) }\left(P \cup_{\varphi} Q, f_{1}\right)+\left(P^{\prime} \cup_{\psi} Q^{\prime}, f_{2}\right) \sim\left(P \cup_{\psi} Q, f_{3}\right)+\left(P^{\prime} \cup_{\varphi} Q^{\prime}, f_{4}\right) \text {, }
$$

where + denotes the disjoint union. Define $S K K_{n}(X)$ as the Grothendieck group of the quotient semigroup $\mathscr{M}_{n}(X) / \sim$. If X is one point, we write $S K K_{n}$ for $S K K_{n}(X)$.

Denote by $\mathfrak{N}_{n}(X)$ the unoriented cobordism group of singular n-dimensional closed manifolds in X.

Lemma 2.1. There is a homomorphism $S K K_{n}(X) \rightarrow \mathfrak{N}_{n}(X)$ sending a class $[M, f]^{\text {SKK }}$ to the class $[M, f]^{\Re \text {. }}$.

Proof. It suffices to prove that the relation (*) implies the equality

$$
\text { (**) } \quad\left[P \cup_{\varphi} Q, f_{1}\right]^{\Re}+\left[P^{\prime} \cup_{\psi} Q^{\prime}, f_{2}\right]^{\Re}=\left[P \cup_{\psi} Q, f_{3}\right]^{\Re}+\left[P^{\prime} \cup_{\varphi} Q^{\prime}, f_{4}\right]^{\Re}
$$

in $\mathfrak{R}_{n}(X)$. From Karras-Kreck-Neumann-Ossa [1; Lemma 1.9] we see that

$$
\begin{aligned}
& {\left[P \cup_{\varphi} Q, f_{1}\right]^{\Re}=\left[P \cup_{\psi} Q, f_{3}\right]^{\Re}+\left[A_{(\varphi, \psi)}, F\right]^{\Re}, \text { and }} \\
& {\left[P^{\prime} \cup_{\psi} Q^{\prime}, f_{2}\right]^{\Re}=\left[P^{\prime} \cup_{\varphi} Q^{\prime}, f_{4}\right]^{\Re+}+\left[A_{(\varphi, \psi)}, F^{\prime}\right]^{\Re}}
\end{aligned}
$$

in $\mathfrak{N}_{n}(X)$. Since $F \simeq F^{\prime}$, it follows that $\left[A_{(\varphi, \psi)}, F\right]^{\Re}=\left[A_{(\varphi, \psi)}, F^{\prime}\right]^{\Re \text {. }}$. This shows the equality $(* *)$ holds.
q.e.d.

Now we define the $S K K$-group $S K K_{m, n}$ of (m, n)-pairs. Let $\left(P_{i}, Q_{i}\right)$, $i=1,2,3,4$, be pairs of m-dimensional compact manifolds P_{i} and n-dimensional compact submanifolds Q_{i} of P_{i} such that $\left(\partial P_{1}, \partial Q_{1}\right)=\left(\partial P_{3}, \partial Q_{3}\right)$ and $\left(\partial P_{2}, \partial Q_{2}\right)=\left(\partial P_{4}, \partial Q_{4}\right)$. Let φ and $\psi: \partial P_{1} \rightarrow \partial P_{2}$ be diffeomorphisms inducing diffeomorphisms $\varphi \mid \partial Q_{1}$ and $\psi \mid \partial Q_{1}: \partial Q_{1} \rightarrow \partial Q_{2}$, respectively. Give $\mathscr{M}_{m, n}$ the $S K K$-equivalence relation \sim generated by the relations of the form

$$
\begin{align*}
& \left(P_{1}, Q_{1}\right) \cup_{\varphi}\left(P_{2}, Q_{2}\right)+\left(P_{3}, Q_{3}\right) \cup_{\psi}\left(P_{4}, Q_{4}\right) \tag{***}\\
& \quad \sim\left(P_{1}, Q_{1}\right) \cup_{\psi}\left(P_{2}, Q_{2}\right)+\left(P_{3}, Q_{3}\right) \cup_{\varphi}\left(P_{4}, Q_{4}\right) .
\end{align*}
$$

Define $S K K_{m, n}$ as the Grothendieck group of the quotient semigroup $\mathscr{M}_{m, n} / \sim$.
Let $\nu_{1}, \nu_{2}, \nu_{3}$, and ν_{4} be classifying maps of the normal bundles of $Q_{1} \cup_{\varphi} Q_{2}$ in $P_{1} \cup_{\varphi} P_{2}, Q_{3} \cup_{\psi} Q_{4}$ in $P_{3} \cup_{\psi} P_{4}, Q_{1} \cup_{\psi} Q_{2}$ in $P_{1} \cup_{\psi} P_{2}$, and $Q_{3} \cup_{\varphi} Q_{4}$ in $P_{3} \cup_{\varphi} P_{4}$,
respectively. When the relation $(* * *)$ holds, we see that in $\mathscr{M}_{n}(B O(m-n))$,

$$
\left(Q_{1} \cup_{\varphi} Q_{2}, \nu_{1}\right)+\left(Q_{3} \cup_{\psi} Q_{4}, \nu_{2}\right) \sim\left(Q_{1} \cup_{\psi} Q_{2}, \nu_{3}\right)+\left(Q_{3} \cup_{\varphi} Q_{4}, \nu_{4}\right) .
$$

From this we obtain a well-defined homomorphism $S K K_{m, n} \rightarrow S K K_{n}(B O(m-n))$ sending a class $[M, N]^{S K K}$ to the class $\left[N, \nu_{N}\right]^{S K K}$, where $\nu_{N}: N \rightarrow B O(m-n)$ is a classifying map of the normal bundle of N in M. We then obtain

Theorem 2.2. There is a split short exact sequence

$$
0 \rightarrow S K K_{m} \xrightarrow{i} S K K_{m, n} \xrightarrow{j} S K K_{n}(B O(m-n)) \rightarrow 0
$$

where i and j are the homomorphisms defined by $i\left([M]^{S K K}\right)=[M, \phi]^{S K K}$ and $j([M$, $\left.N]^{S K K}\right)=\left[N, \nu_{N}\right]^{S K K}$.

Proof. It is easy to see that i is monic and $j \circ i=0$.
Given $(N, f) \in \mathscr{M}_{n}(B O(m-n))$, we take the pair $(R P(E \oplus R), N) \in \mathscr{M}_{m, n}$, where E is the pull-back by f of the universal $(m-n)$-dimensional vector bundle over $B O(m-n)$. This correspondence defines a homomorphism $k: S K K_{n}$ $(B O(m-n)) \rightarrow S K K_{m, n}$, and k satisfies $j \circ k=$ identity. This shows that j is epic and the sequence splits.

It now remains to show that $\operatorname{Ker} j \subset \operatorname{Im} i$. Suppose that $\left[M_{1}, N_{1}\right]^{S K K}-\left[M_{2}\right.$, $\left.N_{2}\right]^{S K K} \in \operatorname{Ker} j$. This implies that $\left[N_{1}, \nu_{N_{1}}\right]^{S K K}=\left[N_{2}, \nu_{N_{2}}\right]^{S K K}$ in $S K K_{n}(B O(m-n))$ and $\left[R P\left(\nu\left(N_{1}\right) \oplus R\right), N_{1}\right]^{S K K}=\left[R P\left(\nu\left(N_{2}\right) \oplus R\right), N_{2}\right]^{]_{K K}}$ in $S K K_{m, n}$. Let T_{i}, T_{i}^{\prime}, K_{i} and $K_{i}^{\prime}(i=1,2)$ be as in the proof of Theorem 1.1. We then see that in $\mathscr{M}_{m, n}$,

$$
\begin{aligned}
& \left(\left(M_{i}, N_{i}\right)+\left(K_{i}, \phi\right)\right)+\left(\left(K_{i}, \phi\right)+\left(K_{i}^{\prime}, \phi\right)\right) \\
& \quad \sim\left(\left(R P\left(\nu\left(N_{i}\right) \oplus R\right), N_{i}\right)+\left(K_{i}^{\prime}, \phi\right)\right)+\left(\left(K_{i}, \phi\right)+\left(K_{i}^{\prime}, \phi\right)\right) .
\end{aligned}
$$

This shows that in $S K K_{m, n}$,

$$
\left[M_{i}, N_{i}\right]^{S K K}+\left[K_{i}, \phi\right]^{S K K}=\left[R P\left(\nu\left(N_{i}\right) \oplus R\right), N_{i}\right]^{S K K}+\left[K_{i}^{\prime}, \phi\right]^{S K K} .
$$

From this we see that

$$
\begin{aligned}
& {\left[M_{1}, N_{1}\right]^{S K K}-\left[M_{2}, N_{2}\right]^{S K K} } \\
= & {\left[K_{1}^{\prime}, \phi\right]^{S K K}-\left[K_{1}, \phi\right]^{S K K}-\left[K_{2}^{\prime}, \phi\right]^{S K K}+\left[K_{2}, \phi\right]^{S K K} \in \operatorname{Im} i . \quad \text { q.e.d. } }
\end{aligned}
$$

Corollary 2.3. $[M, N]^{S K K}=\left[M^{\prime}, N^{\prime}\right]^{S K K}$ holds in $S K K_{m, n}$ if and only if $[M]^{S K K}=\left[M^{\prime}\right]^{S K K}$ in $S K K_{m}$ and $\left[N, \nu_{N}\right]^{S K K}=\left[N^{\prime}, \nu_{N^{\prime}}\right]^{S K K}$ in $S K K_{n}(B O(m-n))$.

Let X be a path connected space. Denote by I_{n} the subgroup of $S K K_{n}(X)$ generated by $\left[S^{n}, c\right]^{S K K}$, where c denotes a constant map (this map is unique up to homotopy). As in Karras-Kreck-Neumann-Ossa [1; Theorem 4.2] we obtain

Theorem 2.4. Given a path connected space X, there is a short exact sequence

$$
0 \rightarrow I_{n} \xrightarrow{i} \operatorname{SKK}_{n}(X) \xrightarrow{j} \Re_{n}(X) \rightarrow 0
$$

where i is the canonical inclusion, and j is defined by $j\left([M, f]^{S K K}\right)=[M, f]^{\Re}$ (see Lemma 2.1).

From Theorem 2.2, Theorem 2.4 and Karras-Kreck-Neumann-Ossa [1; Theorem 4.2] we obtain

Corollary 2.5. $\quad[M, N]^{S K K}=\left[M^{\prime}, N^{\prime}\right]^{S K K}$ holds in $S K K_{m, n}$ if and only if $[M]^{\Re}=\left[M^{\prime}\right]^{\Re}$ in $\mathfrak{\Re}_{m},\left[N, \nu_{N}\right]^{\Re}=\left[N^{\prime}, \nu_{N^{\prime}}\right]^{\Re}$ in $\mathfrak{\Re}_{n}(B O(m-n)), \chi(M)=\chi\left(M^{\prime}\right)$ and $\chi(N)=\chi\left(N^{\prime}\right)$.

3. Cobordism of pairs

Two (m, n)-pairs (M, N) and $\left(M^{\prime}, N^{\prime}\right) \in \mathscr{M}_{m, n}$ are cobordant, if there exists a cobordism (K, L) between (M, N) and ($\left.M^{\prime}, N^{\prime}\right)$, i.e., K is an ($m+1$)-dimensional compact manifold and L is an $(n+1)$-dimensional compact submanifold of K with $(\partial K, \partial L)=(M, N)+\left(M^{\prime}, N^{\prime}\right)$. The quotient set of $\mathscr{M}_{m, n}$ by this cobordism relation becomes a group with disjoint union as its group operation. We denote this group by $\mathfrak{n}_{m, n}$. Wall [3] showed that $[M, N]^{\mathfrak{M}}=\left[M^{\prime}, N^{\prime}\right]^{\mathfrak{R}}$ holds in $\mathfrak{N}_{m, n}$ if and only if $[M]^{\Re}=\left[M^{\prime}\right]^{\Re}$ in \Re_{m} and $\left[N, \nu_{N}\right]^{\Re}=\left[N^{\prime}, \nu_{N^{\prime}}\right]^{\Re}$ in $\Re_{n}(B O(m-n))$. From this fact and Corollary 2.5 we obtain

Proposition 3.1. $[M, N]^{S K K}=\left[M^{\prime}, N^{\prime}\right]^{S K K}$ holds in $S K K_{m, n}$ if and only' if $[M, N]^{\Re}=\left[M^{\prime}, N^{\prime}\right]^{\Re}$ in $\mathfrak{N}_{m, n}, \chi(M)=\chi\left(M^{\prime}\right)$, and $\chi(N)=\chi\left(N^{\prime}\right)$.

From this proposition we obtain a well-defined homomorphism $j: S K K_{m, n}$ $\rightarrow \mathfrak{N}_{m, n}$ sending a class $[M, N]^{S K K}$ to the class $[M, N]^{\Re}$, and obtain

Corollary 3.2. If both m and n are odd, then the homomorphism $j: S K K_{m, n}$ $\rightarrow \mathfrak{N}_{m, n}$ is an isomorphism.

Denoting by $I_{m, n}$ the subgroup of $S K K_{m, n}$ generated by [$\left.S^{m}, S^{n}\right]^{\text {SKK }}$ and $\left[S^{m}, \phi\right]^{S K K}$, we obtain

Theorem 3.3. There is a short exact sequence

$$
0 \rightarrow I_{m, n} \xrightarrow{i} S K K_{m, n} \xrightarrow{j} \mathfrak{N}_{m, n} \rightarrow 0
$$

where i is the canorical inclusion.
Proof. It is easy to see that i is monic, j is epic and $j \circ i=0$. To see that $\operatorname{Ker} j \subset \operatorname{Im} i$ let $[M, N]^{S K K}-\left[M^{\prime}, N^{\prime}\right]^{S K K} \in \operatorname{Ker} j$. Then (M, N) and $\left(M^{\prime}, N^{\prime}\right)$
are cobordant. Thus $\chi(M)-\chi\left(M^{\prime}\right)$ and $\chi(N)-\chi\left(N^{\prime}\right)$ are even. By Proposition 3.1 it follows that
$[M, N]^{S K K}-\left[M^{\prime}, N^{\prime}\right]^{S K K}$
$=\frac{1}{2}\left(\chi(N)-\chi\left(N^{\prime}\right)\right)\left[S^{m}, S^{n}\right]^{S K K}+\frac{1}{2}\left(\chi(M)-\chi\left(M^{\prime}\right)-\chi(N)+\chi\left(N^{\prime}\right)\right)\left[S^{m}, \phi\right]^{S K K}$.
This shows that $[M, N]^{S K K}-\left[M^{\prime}, N^{\prime}\right]^{S K K} \in \operatorname{Im} i$. q.e.d.

References

[1] U. Karras, M. Kreck, W.D. Neumann and E. Ossa: Cutting and pasting of manifolds; SK-groups, Publish or Perish, Inc., Boston, 1973.
[2] C. Kosniowski: Actions of finite abelian groups, Pitman, London-San Fran-cisco-Melbourne, 1978.
[3] C.T.C. Wall: Cobordism of pairs, Comment. Math. Helv. 35 (1961), 136-145.

Department of Mathematics Yamaguchi University Yamaguchi 753
Japan

