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1. Introduction

This paper is devoted to the study of the automorphism groups of com-
mutative (nonassociative) algebras related to a certain family of doubly transi-
tive groups.

Since R. Griess succeeded in demonstrating the existence of the Friendly
Giant in [3] using a 196884-dimensional commutative algebra, several studies
have been made to present some finite groups as automorphism groups of com-
mutative algebras.

S. Norton constructed commutative algebras, so called Norton algebras,
whose automorphism groups contain finite groups generated by 3-transposi-
tions. In [1], P. Cameron, J. Goethals and J. Seidel generalized his method
and showed that ‘Norton algebra’ can be defined for a large class of transitive
groups. It seems very natural to ask how close the full automorphism group
of a Norton algebra is to the original permutation group. S.D. Smith studied
this type of problem in [6] but it seems very hard to answer this question in
general at this point.

In [4], K. Harada defined an n-dimensional commutative algebra on the
nontrivial irreducible factor of the permutation module of a doubly transitive
group G and showed that the full automorphism group of it is isomorphic to
Z,+1, the symmetric group of degree n+1. He also showed that such a G-
invariant algebra structure is uniquely determined up to a scalar multiple if
G is 3-ply transitive.

So the next question is what happens if G is required to be just doubly
transitive. 'Then even in this case, it is not very hard to compute the structure
constants of G-invariant commutative algebras. (See Section 3.) But the
determination of the full automorphism group seems to be more demanding.
The first development in this direction was made in [5] by K. Narang. He
took the natural doubly transitive action of a group G satisfying PSL(m, q)=
G < PT'L(m, q) of degree n=(¢"—1)/(g—1) and showed that there exists an
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n—1 dimensional algebra whose full automorphism group is isomorphic to
PT'L(m, q) if m=3.

Let G be a doubly transitive group on the set Q of degree n. Suppose
that the global stabilizer of two points a, b of Q in G, i.e., G, has r-orbits
on Q—{a, b}. Let C[Q] be the permutation module over the complex num-
ber field with the natural basis {x,, -, x,}. Let V,=<{x,-}+-+x,)>, and

V1=<$)\.,-x,~: ':2)\,, = 0>.

Then C[Q]=V,®DV,. After we determine the structure constants of the
G-invariant algebra A4, on V,, with r parameters, we extend the multiplication
to C[Q] so that the automorphism group of this new algebra 4 on C[Q] is
isomorphic to that of 4, Now we can show that almost always the automor-
phism group of A4, ie., AutA, does not grow a lot from G under a
certain assumption on G; roughly speaking r=2. Our method is as follows.
Firstly using the nonassociativity of the algebra A, we obtain two Aut A-in-
variant multilinear mappings of degree 4. Now we apply a result in [7] (see
also Section 2) to get two symmetric trilinear forms 6, and 8, which are also
invariant under the action of Aut4. There are two cases:

(1) Aut4 stabilizes a symmetric trilinear form which is also =,-invariant.

(2) The restrictions of 6, and @, are similar on A4,.

If the case (2) occurs it follows that the parameters related to the structure
constants of the algebra 4 must satisfy a polynomial equation of degree 7. So
unless the parameters satisfy the equation the case (1) holds. Now it follows
from the main result in [2] that Aut4 must be contained in the group isomor-
phic to Z;x=,. Thus we have Aut4A=G provided that G is maximal among
the doubly transitive groups satisfying the conditions on G.

PT'L(m, q), Sp(2m, 2) (two types), PSL(2, 11) (n=11) and Co. 3 are in
the list of the groups satisfying our hypothesis. So in particular our theorem
includes K. Narang’s.

Recently, in [8], J. Tits showed that the irreducible part of the Griess’
algebra has the Friendly Giant as its full automorphism group and also the
author was informed that M. Kitazume obtained corresponding results for
some of the Conway-Norton algebras in [6] using the similar methods as Tits’.

2. Definitions, notations and preliminary lemmas

Let W be a vector space over the complex number field C. We define
the following: ,

L(W"; W): the set of multilinear mappings 6 of degreer, ie., 0: WX -
XW—W. ,

L(W’; C): the set of multilinear forms 6 of degree 7, ie., §: WX
X W—C.
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LW, Wy =4{0 LW, W): 0(uy, +++, u,) = O(uyo, *++, t,0)
forall oc€3,},

i.e., the set of symmetric multilinear mappings of degree 7.

LW C)y=0 LW ; C): Oy, -, u,) = O(uo, -+, u,0)
forall o€3,},

i.e., the set of symmetric multilinear forms of degree 7.
It is easy to see that these four sets become vector spaces with natural
additions and scalar multiples.

For an element 6 of L(W’; W) and L(W"; C), we define the automor-
phism group of 8 as follows:

Aut 0 = {g=GL(W): O(w?, -, u,f) = O(uy, -, u,)*
for all w, -, u,eW}, if 0c LW, W).

Aut 0 = {geGL(W): O(u?, -, 1,%) = O(uy, +**, u)
forall w, ., u,cW},ifdec LW ;C).

Let G be a subgroup of GL(W), and @ an element of L(W"; W) or
L(W"; C). Then @ is said to be G-invariant if G is contained in the automor-
phism group of 0, i.e., G <Aut 6.

Let L be L(W"; W), L(W'; C), L(W"; W) or L(W"; C). Then
Le={0=_L: G=Aut 8}, the set of G-invariant elements of _L.

We note that if 8 is an element of _L(W?; W), we identify 6 with the algebra
Ay on W whose product is defined by 6. So in particular, if 4 is an algebra
on a vector space W,

Aut 4 = {geGL(W): *v* = (uv)* for all u, vEW} .

Next we define a mapping 8 from L(W™*'; W) to L(W’; C) introduced
in [7]. Let {x, ---, x,} be a basis of W and B be an element of L(W?; C)
satisfying B(x;, x;)=3,;, i.e., a nondegenerate symmetric bilinear form with an
orthonormal basis {x,, --*, x,}. Let & be an element of _L(W"™'; W) and
Uy, oy U, wE W. Let O(uy, +++,u,, *) denote a linear mapping defined by

r
Oty ++, t,, *)(w)=0(uy, ***, %,, w). Then 8(0) is a mapping from Wx -+ X W
to C defined by

8(0) (1w, *++y ) = Tr(O(uy, +++, 14y, %)) .
Then the following hold.

Proposition 2.1. (1) 0 L(W™'; W) implies ()sL(W"; C).
(2) e LW W) implies 3(0)sL(W'; C).
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(3) 8(0)(u1’ 0 u')zig} B(e(ul’ 0ty Uy xi)) xi).
(4) Aut 6=Aut 5(9).

Proof. (1), (2) and (3) are clear from the definitions. (4) is also easily
verified. See for example [7].

We note that Proposition 2.1 is one of the keys to our paper. See also
[8].

Next we consider multilinear mappings and forms defined on a space
related to the permutation module of a doubly transitive group.

Let G be a doubly transitive group on a set Q= {1, 2, ---;n}. Let
Qls, -++, O], be orbits of the global stabilizer of the set {1, 2} in G, denoted
by Gyga. For i, je{l, 2, -,n} with i=j define Qf; by Q};=(Qf,)° by an
element g such that {1, 2°} ={i, j}. 'Then it is easy to see that QF; does not
depend on the choice of g, and Q};=0%;.

Let V=C[Q] denote the permutation module of G over the complex
number field C with the standard basis {x, :*-, x,} such that x*=x;g, for
g€G. Let §=x,4++x,, V,=<8> and

Vl = {él 7\,,~x,-: 2”17\,, = O}‘ .

Then V, and V, are submodules of V, moreover V; is an irreducible module

as G is doubly transitive on Q. Let e,-:x,-——lb‘. Then ey, -+, e,>=V, and
n

e+ +e,=0.
Let S3(Q) denote the set of unordered 3-tuples of Q and 7’ be the number
of orbits of G on S*Q). Then we have the next proposition.

Proposition 2.2. The following hold:
(1) dim L3(V3; C)e=r".
(2) dim LY(VE; Vy)e=r=r'.

Proof. This is well-known and easy to prove.
Let 4, be an element of L(V?; C) defined by
O(e;, €, ¢;) = (n—1)(n—2), i=1.,n-1,
O(e;, € €;) = —(n—2), i%j, 4,7=1-,n—-1,
0s(ei’ €js e,,)=2, l#]#k#l, i,j,kz 1, e, n—1.
Note that {e,, -**, e,_,} defined above is a basis of V.

Proposition 2.3. Suppose r'=1. Then the following hold :
(1) LWV C)e=<0:.
(2) Autf,=Z,xZ=,.

Proof. See Egawa-Suzuki [2].
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Lemma 2.4. The following holds:
$4{j: j=1, -, n, REQL} =1, for 15t=r, 1<k=n, where r,=$Q,.

Proof. Counting the number of pairs (j, k) such that k€Q};, we have
the equality above.

3. Structure of algebra

In this section we shall study G-invariant algebras, where G is a doubly
transitive group for which we set some notations and definitions in the pre-
vious section. We note that throughout this paper algebras may not be associ-
ative, in fact most of them are nonassociative. We shall define algebra struc-
tures on two spaces, namely the permutation module 7 and the rontrivial
irreducible factor ¥, of V, and discuss the correspondence between the auto-
merphism groups of these two algebras. In this section we investigate the
structure of the algebra defined en V under some cendition on (G, Q).

Now we begin with the determination of G-invariant algebras defined
on V;. We should note that the following theorem has been known to a lot
of mathematicians who are interested in automorphism groups of commutative
nonassociative algebras.

Theorem 3.1. Let A, be a commutaitve algebra on V, satisfying the fol-
lowing conditions:
(1) ee;=ae;, for i=1, 2, -+, n—1,

(2) e,~e,-=§ CI;,EZQ‘. .ek,for 5, j=1,2, -, n—14i=j; and

(3) a:,él ¢y, wizere r,=4#Q¢,.
Here c,, -+, ¢, and a are constants in the complex number field C.

Then A, is G-invariant. Morecver if A, is a G-invariant commutative
algebra defined on V,, then A, must be the one defined above with constants
¢y 0y C, and a.

Proof. Suppose a commutative algebra 4, on V; is G-invariant. Since
{ey, -*-, e,} is a generator of an n—1 dimensional space V; with an equation
e,+-+--+e,=0, e;¢; can be written as a scalar multiple of e¢; because G is doubly
transitive. Let e;e;=ae;, for all =1, 2, ---, n. Similarly e;e; has an expression
as in (2) for all 4, j=1, 2, -, m, i==j. Note that as G is doubly transitive and
Q) =Qig;g for all gEG, ¢, +++, ¢, and a do not depend on the choice of 7
and j. Using Lemma 2.4, we have

a(ey+ - +e,) = —ae, = —ee; = eyt +e,)
= é 2'} €t 2keal G

i=2t¢t=1
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- kz (2 c(#{j: kEQL}))e

” r
=2 (2 clrt)ek .
k=2 t=1
Hence we have
r
a=>cy,.
t=1

This in turn implies that there are at most 7 linearly independent G-invariant
symmetric multilinear mappings of degree 2, i.e., bilinear mappings on V.
Since dim L*(V,’; V1)=r by Proposition 2.2. (2), it follows that these 7 linearly
independent symmetric bilinear mappings on V), are all G-invariant. Thus
we have the assertions.

Let 4 be an algebra on V" with parameters ¢, +*+, ¢, and @ in C defined by
the following:

(1) xx;=ax;, fori=1, 2, -+, n,

2) x,-xj:l_i‘, ¢ Ekeggjx,,, for i, j=1,2, «-,n, i3 ; and

3) z‘, cr=a.

The next main objective is to show that if a=1, Aut 4 is isomorphic to
Aut 4,, where A, is an algebra on V, defined in Theorem 3.1 with parameters

¢, *+, ¢, and 1 for a.  So let 4, be the algebra on V, defined above with para-
meters ¢;, ***, ¢, and 1.

Lemma 3.2. The following hold:
(1) x,8=3, 8°=ns, for i=1, -+, n.
(2) V,and V, are ideals in A.

(3) The restriction of A to V, is A,.

Proof. Since the definition of 4 is symmetric on the 7’s, to show x;6=28
we may assume =1,

1,8 = o0y(%y+ -+ +2x,,)
= xr{‘g g C:Ejeo{ixj

= 433 (S ey i€ QL)

= w433 (33 e
=3.

So x,8=8. As d=ux,+-+++x,, 8°>=nd follows immediately. Since e,-=x,-—l S,
we have the following. "
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8,'8 =0.
eie; = €; .
If £ = j, then
1 1
e,-e,- = (x,—;S)( x,——;8)
= x,xl——ia
n

r 7
1
=216 Ekeofjxk—(z ¢iry)—0
=1 t=1 n
r
=2¢ Ekeaijela .
t=1

Hence (2) and (3) follow.
Let s be a mapping from ¥ to C defined by

S(zé h;x,-) = é 7\,,- .

Then s€ L(V?; C), and Vi=Ker(s). Let B be the natural symmetric bilinear
form on V according to the basis {x, -+ x,} ie., BEL(V?; C) satisfying
B(x,', x,)zs,l.

Proposition 3.3. The following hold if a=1.

(1) Aut A<Auts.

(2) V,and V, are Aut A-invariant.

(3) The restriction of elements of Aut A to V, induces an isomorphism
Aut A=Aut A,.

Proof. Let 6 be an element of _L(V?; V) associated with the algebra

structure 4, i.e., 6(x, y)=xy. Let & be the mapping defined in Section 2 and
3(O)=0*c LV C).

0*(x;) = é B(x;x;, x;) = B(xx;, 2) = 1.

So 6*=s. Hence (1) follows from Proposition 2.1. As V,=Ker(s), V, is
Aut A-invariant. Let

Vit ={x€V:xy =0 forall yin V}.
Then by Lemma 3.2. (1) and (2) we have
Vervt<v,

and ¥, is Aut 4-invariant. Thus in particular V" is G-invariant. Since
V|V, is an irreducible G-module isomorphic to V;, V,=V;". (2) holds.
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Let o be an element of Aut 4. Then (2) implies that the element & is
an eigenvector with a nonzero eigenvalue . Applying o to 8*=nd, we have
AE2=nAS, or mA’=nA. Since A=+0, A=1. Now we can define an isomor-
phism between Aut A and Aut 4, easily as the restriction of 4 to V, is 4, by
Lemma 3.2.

Lemma 3.4. For all elements x and y in V s(xy)=s(x)s(y), if a=1.

Proof. Let 6(x, y)=s(xy) and 0'(x, y)=s(x)s(y). Then 6 and 6’ are
elements of _L°(V?; €). So it suffices to check the equality at the basis ele-
ments.

S(x;25) = s(x;) = 1 = s(x;)s(x;) ,
s(x;x;) = s(fj": ¢y Ekeoﬁjxk) = g ¢ Zkeafjs(xk)
= 1= s(x;)s(x;) ,
for all 4, j=1, ++-, m, 14 j. Hence we have the equality.

In Proposition 3.3, we verified that Aut A,=Aut 4 under a hypothesis
that a=1. So we do not know whether or not we can say something about
Aut 4, if a%=1. However, if a=:0, it is easy to see that Aut 4, is isomorphic
to the algebra on V, defined by the parameters ¢/a, -+, c¢,/a and 1. Hence
a=0 is the only case actually excluded. In order to investigate Aut A we re-
quire stronger assumption, i.e., the following Hypothesis I on (G, Q).

Hypotnesis I. (1) r=2.
(2) keQf;if and only if j €Q/y, for all 4, j, kEQ, i & j +k=+i and t=1, 2.

For a list of groups which satisfy Hypothesis I, see Section 6, and we also
note that (2) automatically holds if a one point stabilizer G, of G is of even
order or r;#+7r, by Lemma 2.4.

From now on assume that (G, Q) satisfies Hypothesis I and 4 is a G-
invariant algebra satisfying the following:

1) wwy=ux; 1=1, 2, -, m,

(2) xxj=c Ekeggjxk—f—cz Zkeggjx,,, 1, j=1, 2, «-,m, i3, and

Q3) anter,=1.

We define some constants which we shall need later. Let

phi= QL N, if we, i, j, ke{l, 2}.

It is well-known that each p%; does not depend on the choice of u, v and w.
Let

by = by(cy, ¢3) = e’ phit-2ciplata’ iz,
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d, = dt(cb )
= b pli+(cby+6by) plat-cbopiatci(el’nitclre) .

By our Hypothesis I, ¢#;=p%;.

nii = nii(cy €2)
= Clzlﬂ}j N Qo [ ‘|‘Clcz(lﬂ}j nQZ, [+ IQ?jﬂﬂbu |)+022|Q?jﬂﬂﬁu .

Lemma 3.5. The following hold if i +1.
(1) xl(xlxi)=(6'127'1+sz’2)+b12jen};xj+b22jenf,~xj'
(2)  m(wer(xex;))=(byery+boers)xi+dy 3 jeal ¥j+dy 21 jea? X ;.

Proof. Let

x(e, By, Be) = ax;+B Efen}ixj-ﬁ@z Eien%ixj .
Then

xx(ety, By B2)
= axyx;+B1 2jeal X1%:+ B2 2ljea? X1X;
= a6 2ljeal Xjt 06 3ljeal, ¥+ B0 2jeal; Eken}jxk
+B16; 2jeal; Dl HitBat1 2jeal; Zhel M
+B:6; 2jen?; Shren? X
= (Bieiri+Betarz)x;
+(3101P11+(B1Cz+ﬁzczpiz+'82€2P%2+,301)2jen},-xj
F(BricrptrH(Bica+Batr) pia+ Bata pia+Bcs) >ljeal X -
Since xx;=x(0, ¢;, ¢;), (1) follows. Hence by (1), x,(xx;)=x(c,’r1+¢;%r2 by, b).
So (2) holds.

Lemma 3.6. The following holds. B (x,(xx,), x,)=niu(cy, ), if 3, ], %, ©
are distinct.

Proof. Since G=Aut 4 is doubly transitive, we may assume =1 and
j=2. Let1,2,7and j be distinct.

B(ay(2,x), %) = c1B(Zheal %1% %;)+C:B(Zreal, %1%, X;) -
Since B(x%;, x;)=B(x, x;)=0, we may assume 13k. So B(x(xx;), ;)

=n}i(c;, ;). Hence we have the assertion.

Lemma 3.7. The following are equivalent.
(1) r*(pir—ph)—2riry pla—ple) +1(Pre—p32)=0.
(2) i) rn=ry, and
i) If pli=a, then rn=2(a+-1), p3.=a and plo=pi.=pl,=pi.=a+1.
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Proof. It is clear that (2) implies (1).
Assume (1). Since (1) is symmetric, by way of contradiction we may
assume 7,<<7,. By definition,

phtplatl=r, platpi=r,,

P%H‘P?z =r and P:fz-f-P%z‘f"l =T1,;.
Hence (p11—pi)+1=—(piz—pi2), so

(p1i—ph)+2 = 1-(?12'—_?:122) = P%z-P%z .
So (1) implies
7‘22(?}1—P¥1)+27271(P}1—Pf1+1)+7’1(P}1—‘P§1+2) =0,
or
(p}I_Pfl)(r] +rz)2+2’1("1+7z)
= (n+r)(ph—ph)(n+r)+2n) = 0.
Thus we have
ph—ph = 2n/(r+m) .

Since r,<r, 0<pii—pli<<l. A contradiction. Therefore r,=r, and pi,—ph
=1. Let pli=a. Counting the number of elements of the set

{(x, y): xEQ12, yEQL,, x€Q1,},

we have 7,pi.=npi.. So r,=r, implies pi,=pi;. Now the rest of the
assertion in (ii) follows easily from the four equations above.

4. Aut A and Aut A-invariant trilinear forms

In this section we consider Aut 4 under Hypothesis I, using Aut 4-in-
variant trilinear forms. Our goal of this section is to prove the following theo-
rems.

Theorem 4.1. Suppose (G, Q) satisfies Hypothesis 1. Let A be the G-
invariant commutative algebra on V=C [Q)] with parameters ¢, and c, defined in
Section 3. Then one of the following holds :

(i) AutA=<3,,

(i) 7 (pri—pi)—2nm(pia—ple)+n(pra—pl:) =0,

(i) ar+cr,=0,

(iv) ¢fri+clr,=0, or

(V) an+tcar,=a=+0 and ca is a root of a polynomial (X)EZ[X] of
degree 4 which depends only on (G, Q).

Theorem 4.2. Suppose (G, Q) satisfies Hypothesis I. Let A, be the
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G-invariant commutative algebra on the nontrivial irreducible factor V, of V
with parameters ¢, and c, in Theorem 3.1. Then one of the following holds :

(i) Aut A3,

(i) 7 (phi—pi)—2nr( Pra—ple)+7"(p2a—p2:) =0,

(iil) en+cr;=0,

(iv) e'ritcir,=0, or

(V) antcr,=a+0 and ca is a root of a polynomial f(X)EZ[X] of
degree 4 which depends only on (G, Q).

As we have noted in Section 3, the G-invariant algebra with parameters
¢, and ¢;, and the one with parameters ac, and ac, have isomorphic automor-
phism groups if « is a nonzero constant. So (iii), (iv) and (v) in Theorem 4.1
and 4.2 can be said as follows:

(vi) fle, €2)=0, where f(X;, X;)EZ[X,, X,] is a homogeneous polynomial
of degree 7 which depends only on (G, Q).

Viewing (¢, ¢;) as a point on the projective line P(C), we can say that
if (ii) does not occur, (i) holds unless (¢;, ¢,) is one of the seven points on P(C)
which are determined by (G, Q).

By Lemma 3.7 the condition (ii) can be replaced by the two conditions in
Lemma 3.7. (2). Hence if r,#7r,, Hypothesis I (1) implies (2) and the case
(ii) does not occur.

Since ¢,7,+ ;7,70 implies Aut A=<Aut 4, by Proposition 3.3, Theorem 4.1
implies Theorem 4.2 and vice versa.

Assume ¢71+¢,7,F0. Replacing ¢; with ¢;/a, we may assume ¢;7,4¢,7,=1.

Lemma 4.3. Let B, be a symmetric bilinear form on V satisfying the fol-
lowing:

(1) By(x;, x;)z1+(n—1)(c12r1+02212), i=1, -, nm.

(2) By(x;, x))=1—(c’r,+c’ry), 5, j=1, «+, m, i==].

Then Aut A<AutB,.

Proof. Let O(x, y, 2)=x(y2). Then it is easy to see that 6 _L(V?; V)
and that Aut A=<Autd. Let §(d)=0%* where & is a mapping from L(V?; V)
to L(V?; C) defined in Section 2. Then by Proposition 2.1. (4), Aut A=< Aut @
<Aut *. So to have the assertion of this lemma, it suffices to show 6*=B,.
Applying Proposition 2.1. (3) and Lemma 3.5. (1), we have

0% (%, ) = 23 B(O(x,, 3, 42, %)

= 3} B(x (w3, )
= 1+4+(n—1)(c’nn+c’r,) .

Since G <Aut6* and G is doubly transitive, we have (1). Again using the



552 H. Suzuki

double transitivity, we have
O0*(xy, x;) = 6* (21, x,) forall ¢=2, +,n.
Moreover it follows from Lemma 3.2
6*(x,, 8) = SIB(x,(8x:), 1) = 31 B(S, %) = n
Hence n=0*(x;, 8)=0%(x,, x,)+(n—1)0*(x;, x,). Solving the equation above
using (1), we have (2).
Lemma 4.4. Let 0,(x, y, 2)=B(xy, 2). Then the following hold:
(1) G,eL(V3;C).
(2)  Oy(x;, x;, 2;)=1, Op(x;, 2x;, 2;)=0 and Oy(x;, x;, x,)=c,, where i, j=1, +--,
n, i j and kEQ!;.
(3) bu(e;, ey e;)=1—l, 0q(e;, €, tej)=——i and G(e;, e;, e,,)=c,——i, where
n n n
i, j=1, -, n, ik j and kEQ!;.

4) Bi(x, y)=n(c’ri+c’rs) B(x, y)+(1—(c’ri+6.7r2))s(xy).
(5) If ¢’ri+c’r, =0, then Aut A< Aut BN Aut 6,,.

Proof. By the definition of 6,
Oo(xiy %y %;) = B(xsx;, x;) = B(x, x) =1,
Go(x,-, xj, x,) = Go(xj, Xiy x,) = B(x,‘xj, x,)
= B(c; 2sea} M1 t-C2 Zkeo;',.xk, x)=0,
Oo(xj, xj, x;) = B(x;x;, ;) = B(x;, ) = 0. and
Oo(xs, x5, 24) = B(xixj, %)
= B(¢, Zhen}j“’h‘f‘czzhea?jxm x) = ¢, where kEQ;.
Since k€Q!; if and only if i€Qf;, and i€Qf if and only if jE Qf; by
Hypothesis I, we have (1) and (2). Moreover using Lemma 3.4, we have

Oo(x, ¥, 8) = B(xy, 8) = s(xy) = s(x)s(y) -

So Oy(e;, e;, e,,):ﬁo(x;—%& xj—%B, x,,—%&)z Oo(x;, %;, x,,)—%. Thus (3)
follows. Leti=j. Then
n(ci?ry+¢tra) B(x;, %)+ (1—(c’ri+¢,7r2))s(x;%;)
= 1—(n+1)(c’'r-+clr,)
n(c’ry+¢'r) B(x;, %)+ (1—(e’ri+-c.7r)2)s(xix)
= 1—(c¢’n+clry) .

This implies (4).
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Suppose ¢,’r,+¢,,#+0. Then B(x, y) can be written as a linear com-
binaticn of By(x, ¥) and s(xy). Now Proposition 3.3 (1) and Lemma 4.3. imply
Aut A<Aut B. (5) follows from the definition of §,.

Lemma 4.5. For x,y, 2€V let
0:(x, 3, ) = 33 B(x(y(as)), )

Then the following hold :

1) 6,eL(V3C).

(2)  O(xs, x5 2;)=14+(n—1)(brer1+bocars), Oi(xi, x5y x5) = 1—(byerry+-byc515),
where i, j=1, <+, n, i==].

(3) Oi(es & )=(n—1)(brerr+bocrrs), Oi(es, €, €;) = —(brerr1+-bs0o1), where
1, j=1, -+, m, i=kj.

4) Aut A=Autd,.

Proof. Let 8(x, y, 2, w)=x(y(zw)) for x, y, 2 and w V. Then it is clear
that 0 _L(V*; V). So it follows frem Proposition 2.1 that §(§)=60,-L(V?3; C).

Moreover

Aut A<Aut < Aut §(0) = Autd, .

Thus we have (4).
Since B(xy(xy(xy%;)), %;)=b,c,1,+byc;r, by Lemma 3.5. (2), unless i=1,

0,(%y, %y, %)) = 14+(m—1)(bieyry+bycor,)
As Aut @, contains a subgroup G which acts double transitively on the set
{xl) Y xn})
Oy(xiy 25, ;) = 14-(n—1)(bieyr+-bycors)
holds for all 2. Using the definition of 6,, we have
01(9";, Xiy 8) = al(xi) 3, x;) = 91(8, Xy X)) =mn.
Again using the double transitivity of a subgroup G of Aut8,, we have for all
1]
(x5 xj, %) = Oy(x5, x;, x7) = Or(x), x5, %)
= 1—(byeyr,+-byco1s) -

Thus (2) holds.

(3) can be verified easily by the similar method we employed to calculate
the values of §, in the previous lemma.

To show the symmetricity of 6, it remains to show the following equalities:
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el(xi) Xy xk) == el(xln Xjy xi) == el(xj) Xy xk) .

Firstly, using the symmetricity of 6, in Lemma 4.4. (1), we have B(xy, 2)=
B(x, y2), in general. So

Ou(%;, xj, 24) = gB(xi(xj(xkxh))’ Xp)

= gﬂ B(acy(2;(x:x4))s %)
= 0,(%s, xj, ;) -

Since O}, and Qf; are orbits of G; y<G=Aut 0, 0,(x;, x;, x;)=a, if jEQi4,
ie., 0y(x;, xj, x;) is a constant as x; varies on an orbit Qf,. Let o be an ele-
ment in G; such that ;=j. Applying the automorphism of V' corresponding
to o, we have 0,(xj, x,, x,)=a,, if s€Q};, where s=j°. Since j €Q!; implies
¢ €Q% by Hypothesis I,

ol(xn Xjy xlc) = 61(36']', Xiy xlt) J

Therefore (1) holds.

Lemma 4.6. The following hold:
(1) Oi(x;, xj, x2)—1=0,(e;, ¢, &), where i, j, k=1, -+, n, i j FkF1.
(2) Suppose keQl;. Then

Oy(xs, x5, 24) = 3b,+2d,—b,(c12r,+czzr2)—{—"2_ Ca Dy niicy, ¢;) -

=1 ks, kEQY,
{r,s}n{i,j}=0

Proof. (1) follows easily as for all x, yeV, 01<x, ¥, L8>=s(xy).
n

To prove (2), we set i=1, j=2 and k=3 in order to save symbols. Assume
3 Eﬂfz

01(%1, %z, %3)
= 33 Bla(xu(xsry), =)
= B, (x2(25%,)), %1) 4 B(a(3(2%)), %5)+B(21(%2(%5%5)), ¥3)
+i:§,2'3(01 Sljeal B®i(xox5), x;)+¢, 3 jend 2B (x1(%%5), %:))
= B(xy(%%3), %)+ B(2,(25(%2%1)), %3)-+B(25(x3%1), x2)
+c; 23 B(oy(%1%5), x;)4-c EQ B(x,(x1%,), x;)
1eQl; ieQl,

+*1
4+ X3 Bl(xzx, xi)‘l“"z P B(xle) x;)
i€Qg i€Qf,
1

+a > B(xy(xyx5), x;) ¢, 2 B(xy(x;%5), %:) .
i+j,3€Ql; i%73€Q%;
{ix3xn{1,2}=9 {i,73n{1,2}=0
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Hence by Lemma 3.5 and Lemma 3.6,

2 .
ol(xb X2y xa) = 3bz+2dt+cx(clzrx+czzrz)+2 Cy P "%;(Cn Cz) ’
“=1 j%5,3€Q;
{,73n{1,2}=¢
as
1, 25 B(oy(wyxp), x:)+c2 20 B(xy(%1%5), %)
1€Ql, 1€Ql;
+2
= B(xy(x1%2), %1%65)— €, B(21(%1%5), %)
= B(xy(%1(%1%2)), x3)— ¢, B(21(%1%5), %)
= dt“ct(clzﬁ‘f“’zz"z) ’
a1 23 B(xyey, x)4c, 23 B(xyx,, x;)
ieQ}; ieQ3,
+1 +1
= B(x,%,, %,%3)
= bl .
Now assume ¢,’r;+¢,’7,=+0. Since the restriction mapping Aut A—Aut 4,

sending ¢ EAut 4 to oy, €Aut 4, is an isomorphism and Aut A acts trivially
on V=<8, by Proposition 3.3, we have

Aut Al éAut ellyl n Aut 00”’1 >

by Lemma 4.4 and Lemma 4.5. So 0y, 6y, are elements of L%(V*; C)g.
Since

dim LY(V?: C)e<dim LV Vy)e = 2

by Proposition 2.2, one of the following holds:
(i)  Oyy, is a scalar multiple of Gy, or
(11) dim<011v1, 0o|v1>=2 and <01|V,> 0olvl>=-£s(V13§ C)s.
Suppose (ii) holds. Since G=3, and

0> = LYV, C'),_”§_L'S(Vl3; C) = <01|V1’ 00|V1> s

by Proposition 2.3, 6, can be written as a nontrivial linear combination of 6,y
and 6,y,. Say

0, = 6191|v1‘|‘:3‘9ow1 .
As
Aut AléAut 01"}1 n A.ut 00[V1§Aut o, '

Proposition 2.3. (2) implies that Aut 4, is a subgroup of Z;xZ=,. Because
of the irreducibility of Aut 4,, we can conclude by Schur’s lemma that Z,-part
acts as scalars on V,. So if o is an element of the center of Aut 4, and ¢,"=0M\e;,
e;e;=—e; implies A’>=X. Hence A=1. Thus we have Aut 4,=<%3, in this case.
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On the other hand, suppose (i) holds. Let
Oy, = by, -
Since Gy(e;, e, e,-)=——% and 6,(e;, e, €;)=—(byc;r1+bycsr;) by Lemma 4.4 and
Lemma 4.5, a=n(b,c;r,+byc,r,). So
0\(e;, €j, ) = n(bycyry+bocors)c— (byerry+bscors)

It follows from Lemma 4.6 that 0,(e;, ¢;, ) can be written as a polynomial g;;
of ¢, of degree at most 3 as ¢;r,+c7,=1, where g;;,€@Q[c,] and g;; depends
only on (G, Q), namely r,, 7,, p&, and |QZ, N Q% |. So it suffices to have the
condition when n(b,c,r,+byc5r5)c;— (byeyr+bacor;) is a polynomial of ¢, of degree
exactly 4. Since the degree of the second term is at most 3, we need to see the
degree of byc;7,+byc,r, in terms of ¢,.
byeyry+bycor,
= (e’ pii+2ci0p12+ 2 pro)erry (e prr+ 201,12+ ¢ pha)cor
= ((512,?}1 +251‘72Pi2 +C12P%2)—(5121’%1+25162P%2+C12P§2))0171
H(e’ph+-2c6,ph0 42 p32) -

Since

17 ((c?pli+2¢16,p12 ¢ pi2) — (.2 phi+2¢16,p3 2+ p32))
= 512(722(}’}1 —Pfl) — 2’1’2(Pi2 _’P%Z) +712(Pé2 —sz))
+2¢i7,pia+pia—2cir pra—2cipl—pha 20 phe

n(bieiry+bycor)e,— (bieyry+bycyry) is a polynomial of ¢, of degree exactly 4, if
and only if

r2(pi1—pi) —2rir(pla—ple) +r2(pra—p32) 0.
Thus we have Theorem 4.1 and Theorem 4.2.
As a corollary of our proof, we have the following.

Corollary 4.7. Suppose (G, Q) satisfies Hypothesis I, and (c;r,+ c;r5) X
(ei’r1+-cr;) 0.  Moreover assume

Or(%i, x5, x4) F1(bicyr1+-bocars)c,— (bierry+bacar2) +1

91(31'» €js ele) :F”(b151’1+b2€zrz)ct—(b101’1+b20272) ’

for a set of three numbers i, j, k (+), where kEQ};. Then Aut A\ =<3, and
Aut 4A<3,.
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ReEMARK. Since we have Proposition 2.2, if G is a doubly transitive group
which is maximal among the ones satisfying Hypothesis I, Aut A=<Aut 4,=G,
unless ¢;=¢, in which case Aut A=Aut A,=~%,,, whenever we have the case
(1) in our theorems.

5. O(x; x; X3)

In this section we shall determine the value é,(x;, x;, x;) under a stronger
hypothesis in order to simplify the condition in Corollary 4.7 and the case (v)
of the theorems in the previous section.

Hypornesis II.  Let (G, Q) satisfy Hypothesis I. Moreover
Q1 N Q55| = Q1N Q]
for all 1=i=j=<mn, with =1 or 2.

We begin with an introduction of another trilinear form invariant under
the action of Aut 4.

Lemma 5.1. For all x, y, €V, let
04(x, 3, ) = 33 B((xy)(3x), %) -
Then the following hold.
(1) e Li(V3; ).
(2) Aut A=<Aut 6;.
(3) 0i(x, y, 2) =By(xy, 2)=mn(c,’ri+c,’r5) Os(x, ¥, 2) + (1—(c,2r,+cr5))s(x) X
s()s(2).
4 03(x;, x4 x,)=(n—1)(c’ry+c’r))+ 1.
05(x;, x5, x;) = 1_(01271+02272)
05(x;, x5, %) = ”(51271+52272)Ct+1“‘(0127’1‘1‘02272) ,

where 11+ j <n and kEQ};, t=1, 2.

(5) di(e;, e;, ei)z(”—l)(clzﬁ‘f‘czz’z)
i(e;, e, €;) = —(ci’r4-c.°r)
05(e;, e, €x) = n(c’ry+c’r)c,—(e’ri+c’r)
where 1 i+ j<n and keQ};, t=1, 2.

Proof. Let 8(x,y, 2, w)=(xy)(2w). Thend& L(V*; V)and Aut A=<Autd.
Hence Proposition 2.1. (1) implies §(8)e-L(V?; C), (3) implies §(8)=86; and
(4) implies Aut 0 <Aut 8(f). Thus we have (1) and (2). By the definition of
B, (see the proof of Lemma 4.3), we have
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By(xy, 2) = 3 B((wy)(sx), 5)=0(x, 3, 2) .

Now (3) follows from Lemma 4.4. Since s(xy)=s(x)s(y) by Lemma 3.4, (4)
and (5) follow from the value of 6, calculated in Lemma 4.4.

Lemma 5.2. Suppose 1=i+j=<n and keQ};. Then

2
06(xiy %), x)=4d,+c,—2c(c’n+-c’r)+ 2 e 2 nii(cr, C2) -
“=1 ks keQ)
{r,s}n{i, j3=0

Proof. To save symbols let /=1, j=2 and k=3.

B4, 33, ) = 33 B(wts) (xys), )

= B((%1205)(xt3%1), %)+ B((162)(263%), %2)+B((%1%)(%5%3), %3)
+ 3 (q 2 B((xle)xj) x)‘*’@ 2 B((xlxz)xn x;))

i%1,2,3 ]E S'SI
= B(x)(%,(xx5)), x3)+B(x2(x2(x2xl)), x3)+B(x1x2, x3)
+cl-6291 B((x,5)xy, x,-)—|—cz.ezgz B((%x2)%,, %;)

+2 +2

‘I‘C]_ 23 B((x1x5)x,, xi)‘l“cz. 23 B((wyx0)x, x;)+D
161952 lflggz
=+

= 2dl+ct_2’cl(clzrl+622rl)+B(xl(xlx2)r xlxs)‘l“B(xz(xle)y x2x3)+CI>
= 4d,+c;—2¢,(c’n ')+,

where
2 2 ..
D =D, = B((wyx5)x;, x;) = 2 ¢, 3 nis(cy, €2) .
=1 {%7,3€dy; ¥=1 z=l=_1,3EQ"
{0,740 {L,23=0 {5,73n{1, %3=0

Hence we have the formula as desired.

Lemma 5.3. Suppose Hypothesis II holds. Let us{l, 2} —{t}. Then

the following hold.
(1) 1QLNQ%4+1QLN0Q4H|= QL NQ% | +Q4 N QS| for all 1<i+j<n.
(2) 1QLNQ4|=1QLNQS;| for all 1<i*j=<n.

Proof. To show (1) it suffices to show the following.
210N Q4|+ Q1N Q% |+ Q1N Q|
= 2|Q0: N Q% |+ QL NQ%; |+ Q1 N QS| (%)
Since Q= {v, w} UQL, UQZ,, we have
210N Q%1+ 19 N0% ]+ QN Q)
= I\sznﬂsﬂ‘i“lﬂ 2N QY ;I‘f"lexﬂQ |+|Q?zn~0§jl



COMMUTATIVE ALGEBRAS 559

=r,— QN {}— QN {} [ +7— Q5N {1} - Q5N {2}
= 2r,— [Q1: N {2} — [Q2; N {1} | = 195N {7} | —192;N {d} |
= QLN Q|+ 191N Q% |+ Q1L N Q2|+ Q1 N Q5
= 2|Q1: N Q|+ 1Q1;N 08, | +1Q1: N Q251
Hence (*) holds. Moreover since (*) is symmetric for ¢ and %, (1) implies (2).

Theorem 5.4. If (G, Q) satisfies Hypothesis 11, the following hold.

(1) n¥%ey, c)=nii(cy, ¢;) for all ¢, and c,, where i, j, u, v are distinct.

(2) Oi(x;, x5, %)
= 06(90.', Xjy xk)+3bt—2dt—“ct+ct(512’1+czzrz)
= (n+1)ecl’r+c’r)+-3b—2d,—c,+1—(c’r+c'r2)
where 1 =i+ j <n and kEQ},.
3) I (Clrl‘f"czfz)(clz"x'*‘czz”z)4:0 and

(ne,—1)((by—er)erry+(br—e2)ears) F (e’ r+¢i°ry)+ 3b,—2d,—c,
then Aut A,<3, and Aut A<L3,,.

Proof. Since

n’f?(cl, Cz) = Clzlﬂ}j nal, | -I—L‘ZZIQ?,‘ n Q.ﬁal

(1) is a consequence of Lemma 5.3.

It follows from (1) that the last term of 6,(x;, x;, x;) in Lemma 4.6 and
that of fy(x;, x;, x;) in Lemma 5.2 coincide. Hence (2) follows from Lemma
4.6, Lemma 5.2 and Lemma 5.1. (4). Now using the formula in (2), we have
(3) by Corollary 4.7.

6. Examples

In this section we study examples of doubly transitive groups satisfying
Hypothesis I and show which one satisfies Hypothesis II and which one does
not satisfy the condition (ii) in Theorem 4.1 and Theorem 4.2.

ExampLe 1. PSL(m, )<G =<PTL(m, q), m=3 and n=(¢"—1)/(g—1).
In this case Q=P""(q) or the set of one dimensional subspaces of an m-dimen-
sional vector space over a field of ¢ elements.

n=gq—1, rp=q¢"'4+¢,
P%l = q—2 , P}z = O, PZ% = qm'1+...+q2 ,
P%ZZO; P}.2=q—"1, sz_—"qm—l+"'+q2‘—q.
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Since 7,%r1,, it {ollows from Lemma 2.4 that (G, Q) satisfies Hypothesis I.
Moreover it is an easy calculation to show that (G, Q) satisfies Hypothesis 11
as well, for [Q};NQ;;| is determined according to the following four cases,
where v;, v;, v,, and v, are nonzero vectors of the corresponding one dimen-
sional space.

(1) dim<v;, v}, vy, v,0=2.

(2) dim<w;, v;, v,, v,>=3 and there is a 2-dimensional subspace contain-
ing three vectors of the four.

(3) dim<v, v;, v, v;,)=3 and there is no 2-dimensional subspace con-
taining three vectors of the four.

4) dim<v;, vj, v, v,o=4%.
Since 7,77,, the case (ii) in Theorem 4.1 and Theorem 4.2 does not occur by
Lemma 3.7.

Suppose ¢,=0. Then ¢;=1-r,. Hence b,=(1—1/r,)/r;, b,=0 ard d,=0.
So the assumption of Theorem 5.4. (3) is satisfied. Thus Aut 4= Aut 4,
is a subgroup of X,, which is the result of K. Narang in [5].

ExampLE 2. G=PSL(2, 11) and n=11. Let a=(0123456789X), 8=
(0)(13954)(267X8) and v=(0)(19)(26)(3)(45)(78)(X). Then G=<a, B, v> and
the following hold.

n=3, rn==6,

Pilzoy P}ZZZ) P;2=4, ]ﬁl:l, P%ZZZ, P§2:3-
Since 7,%7,, (G, Q) satisfies Hypothesis I, and the case (ii) in Theorem 4.1
and Theorem 4.2 does not occur by Lemma 3.7. Further calculation shows
that (G, Q) satisfies Hypothesis II, too. Using the parameters above we can

compute the explicit expression of the equation in Theorem 5.4. (3). It yields
as follows.

fle) = %g(—2673c‘—5292¢.3+2160c2——108c~7) :
where ¢=c,/a. Hence Theorem 5.4. (3) reads if (cy1+c.7,)(cllri+6,r;) 0 and

f(ci/a)=+0, then Aut A,=~Aut 4 is a subgroup of =,.

ExampLE 3. G=Co. 3 and n=276. 'Then we have the following.
rn=112, r,=162,
P}1:3O, P}2=81, péz=81,
P%I == 56 N p%z == 56 y sz = 105 .

Since r,%7, (G, Q) satisfies Hypothesis I, and the case (ii) of Theorem 4.1
and Theorem 4.2 does not occur by Lemma 3.7.
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ExampLE 4. G=3Sp(2m, 2). Then there are 2 types of doubly transitive

action of G. One point stabilizers of G corresponding to these two actions
are O°(2m, 2), where E=4-1. And the parameters are as follows.

n=2""2"+E), r =227 1—E)(2"2LE), r,=2""2,
Pl =233 ply =273 pyy = 223
ph= (2" —e)2m ), pla=2mpe2m i1,

Pi2 = 2m7%(2m71_¢g),

Unless é=1 and m=2, r;#r,. And if 8=1 and m=2, the case (ii) is satisfied.
Hence if €=—1 or €=1 and m=3, Hypothesis [ is satisfied and the case (ii)
in Theorem 4.1 and Theorem 4.2 does not occur.

(1]
[2]

(3]
(4]

[5]
(6]
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