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We have defined (right US-3) rings satisfying (*#, 3) in [5], which are rings
generalized from Nakayama ring (right generalized uni-serial rings). As stated
in [5], we shall give, in this note, another generalization of Nakayama rings,
which is related to the condition (%, 3), and give a characterization of those
rings.

1. Preliminary results. Let R be a ring with identity. We assume
always throughout this note that R is a right artinian ring and every module is
a right unitary R-module M with finite length, which we denote by |M|. We
have studied the following conditions in [3] and [5]:

(**, n) Every (non-zero) maximal submodule of a direct sum D(n) of n non-
zero hollow modules contains a non-trivial direct summand of D(n).

(*, m)  Every (non-zero) maximal submodule of the D(n) is also a direct sum
of hollow modules.

We shall study mainly, in this note, rings satisfying (¥, 3) for any direct sum of
three hollow modules. We shall use the same notations as given in [3] and [5].
Let e be a primitive idempotent in R.

ConprtioN II [3].  |ef/e]?| <2 for each e, where ] is the Jacobson radical
of R.
In [3] we have given the structure of rings which satisfy Condition IT and
ConpriTioN 1. Every submodule in any direct sum of (three) hollow modules
1s also a direct of hollow modules.

However, checking carefully each step, we know that we utilize only (*, 3) for
any direct sum of three hollow modules. Thus we have the following theorem.

Theorem 1. Let R be a right artinian ring. Assume that (*, 3) for any
direct sum of three hollow modules and Condition II hold. Then for each primi-
tive idempotent e in R, we have the following properties:

1) ¢J=A,P B, where A, and B, are uniserial modules. Further, if
A,/J(A4,)~B,/J(B,), aA,=B, for some unit & in eRe.
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2) For every submodule N in e, there exists a trivial submodule A;PB;
of ¢] and a unit 7y in eRe such that N=v(A;BB;), where A;=A,]''C A, and
B;=B,]’"'CB,.

3) If Ai~B,, then A(A;DB,)=A and [A: A(A;DB;)]=2 provided i+ j,;
Surther A(A,))=A(A4,)=A(A:DB)) (i<j) and AB,)=A(B;)=A(4;DB;) (>j).
If A,A4B,, then A(N)=A for any submodule N in e].

Here we shall recall the notations above. Put A=—eRe—eRefefe. For
any right ideal 4 in eR, A(4)={x| €A, (x+j)AC A4 for some element j in ¢Je}.
Then A(4) is a subdivision ring of A and [A: A(4)] means the dimension of
A over A(A) as a right A(4)-vector space.

2. Rings with (*, 3). We shall study, in this section, the converse of
Theorem 1. We assume that R has the structure given in Theorem 1, unless
otherwise stated.

We have given the following lemma in [3], provided Condition II"" in [3]
is satisfied. 'We shall show in the same manner that the lemma is valid under
a weaker condition.

Lemma 1 ([3]). Let R be a ring whose structure is given as in Theorem 1,
and e a primitive idempotent. Let {E;}}_, be a family of right ideals in eR and
D= ®¢RJE;. Then, if A(4,)=A(B,)=A, D satisfies (¥, n)

Proof. We shall quote the same argument as given in the last part of §3
in [3], and hence use the induction on the nilpotency of J. If E;CE; for some
7, j, every maximal submodule of D contains a direct summand of D by assump-

tion and [3], Lemma 27 (cf. the proof of Lemma 3 below). By induction we
may consider the following case:

E,= A, E, = AikEBBj,,;
?
<y <bp < <dp J1>[p>>>f, and DzzééBeR/E,-.
Assume #,<j; %4,>>f;s1. Let M be a maximal submodule of D. We may

assume that M = M|J(D) (CD=D/J(D)) has a basis {(0, ---, 0, e, k-, 0)}4.
Since A(4,)=A(B,)=A, we can take k, with k,4,=A, for s<t¢ and k,B,=B,

for r>t. Set M*=A,|A,®3DeR/(4,DB;, )DB/B,, (Bj,=0), then |M*|
=|D|—1. Define a homomorphism f of M* to D by setting

AN+ (1A, DBy, ))+(2+5s)
= (x+y1+z‘1,-)+(ek1y1+yz+(A.~1G9B,~l)
+(ekzyz+y3+(Ai2€BBiz))+"'+(ekpyp+2+(Aip@Bip)) ’
where ¥€4,, y,€eR and z2€ B, A4;PB;,_CA;, DBj, ,, k(4;,DBj,_)

ta-1
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=A;®B;, ,CA4,®B;, for a=t+1, and k., (4,,, DBj,) k4, BBj,, )=
A;,, ®Bj,,,. Hence f is well defined. Assume that the right hand side of
the above is zero. Since x4, and € B,, y,€e] for all s. Put y,=y,,+7,,
where y,, is in 4, and y,, in B,. Now x+y,=x+y,+y,E4;, x4, and
s0 y=0. ek(yu—+y)+(ya+y2) €A, DB;. Since kA, CA, y,EB;.
Repeating those arguments, we assume by induction that y,.,€B;, for I<t’
<t Put w=eky (v + )+ (Vrin+Yrin) EA4;,PBj,. Since eks is an
isomorphism of ef, ek, B;,, . CAj,_ ®Bj,_ .. Now Bj,_,CB;, and kyA,C4,.
Let =,: e/—B, be the projection. Then B, Emyw)=mekyYyotyyi)=
ro(eky Y1) +Ys12.  Since my(ekyy,) EBjyy Yy EB;,. Consider next from the
bottom side. ek)(yu+yp)t+2E4,;,BB;,. Since k,B,CB, and xEB,, y,E4;,
from the same argument above (take z,: e/ —4,). Repeating those arguments
inductively, we obtain y,€4; for s>t+41. Consider ek, ,(¥iru~+Yir12) +
(y:+21+y:+zz)EA;,HGBBJM- Since y,41.€ B, y:+u€z‘1,~,ﬂ and U1 Jevns Je Tt
yt+ZZEBj,+1- Similarly, from ekt(yu“f“ytz)+(yt+11+yt+1z)EA;’,@BJ';’ YnE€ 4,
Combining the above two steps, we know that f is a monomorphism. Hence
M =~M*.

It is remained for us, from Lemma 1, to study a case of A(4,)=*A, i.e.,
A~B,. We have shown in [3] that if a right artinian ring R has the structure
in Theorem 1, then (¥, #) is satisfied for any D(n), provided J*=0. We shall
show that (¥, 3) is satisfied without the assumption J3=0.

Lemma 2 ([3], Lemma 24). We assume the above situation. Let 8 be
an element in eRe such that 8¢ A(A,). Then n,6A4;,=B;, where m,: ¢J] — B, is
the projection.

Proof. Since [A: A(4,)]=2, §=a,+aad,; the a,A(4,) and ad,=B,.
Set 8=a,+a,a,+7j; a;,A,C Ay, jeefe. Since jA;,C A; DBy, m:04;=B,.

Lemma 3. Assume that R has the structure 1), 2) and 3) given in Theorem
1. Then (*, 2) is fulfiled for any D(2).

Proof. The assumption 2) in Theorem 1 gives us a guarantee of (*, 1)
for any hollow module. Let ¢/=A4,PB,. If A,a&B, A(C)=A for any sub-
module C of ¢R by assumption. Then we have shown by Lemma 1 that (*, 2)
is fulfiled for any D(2). Assume that A;~B,. Then A=A(4,)PaA(4,),
where « is the element given in 1). Set D=eR/N,@eR/N,, where the NN;
are submodules of ¢eR. We shall show the lemma by induction on the nilpo-
tency of J. If J®=0, we are done in [3], §4. Assume ¢J"=0 and eJ"*'=0.
If N;DeJ" for i=1, 2, eR/N; is a hollow R/J"-module. Hence we may assume
that N;=A4;=A4,]'"' by induction. Let M be a maximal submodule of D,
and put D=D|J(D)D M =M]/J(D). We may assume that M has a basis
{(e+]J(D), 6+4J(D)}, where 8 is a unit element in eRe (it is sufficient to show
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the lemma in case R is basic; see [2] and [3]).

i) N,=A,PB;, (we may assume k<i[3]) a)i<k<i. F=A;N8'(4D
B;))=387"Y8A4;N(ABB;)). a)) If €A, =A4,), F=A4, (we may assume
84,cAd)). a)-i). If8&A, F=A4; by Lemma 2. Put M*=eR/A,DA,/A:;D
B,/B; for the case a-i). Define a homomorphism f of M* to D by setting

A3 +A)+(y+A)+H+B)) = (x+y-+4)+(Sv-+3+(ADB,),

where x is in eR, y in 4, and =z in B;. Then fis well defined. It is easy to
check that f is a monomorphism, since 8§4,=4,. Put M*=e¢R|A;DA,/A:D
A,/4, for the case a)-ii). Define a homomorphism f of M* into D by setting

f(e4-A)+(y+4)+(2+4) = (x+y+4)+(8x+2+4,DB)) ,

where x is in eR and y, = are in 4,. We can show from the fact: §& A, that f
is a monomorphism (cf. the proof of Lemma 4 below). Hence M~ M?*, since
|M|=|M#*| and f(M*)C M.

b) k<i<j. If 8€A, (resp. &A)), F=A,; (resp. F=4;). We obtain
the same result as in a-ii) for F=4, If F=A4;, put M*=eR/A;PA,/A,D
By/B;. Then M=~M?* as above.

c) k<j<i. Since eRed;CA,PB;, M contains a direct summand of D.

i) Ny,=A;, i>j. If §&A, 64;,NA4;=0 and M is isomorphic to eRD
A, JA;PAJA;. If €A, §4;,CA;. Hence we obtain the same situation as in
i)—c).

Lemma 4. (¥, 3) s satisfied for any three hollow modules.

Proof. We may assume A(4,)=A;#=A by Lemma 1. From induction
on the nilpotency of J(R), it is sufficient to study the case:

Eo == A,‘, El == Aﬁ@Bj] and Ez = A‘-2®Bi2

with 4, <j, for k=1, 2, and D=3 @eR/E;. Here B;, may be equal to zero
(cf. [3], §3).

If B; =B,;,=0, D satisfies (*, 3) by [4], Corollary 3. Let M be a maximal
submodule of D. If M contains a non-zero direct summand D, of D, M=
D, M, where M, is a maximal submodule of N,@PN,; the N; are isomorphic
to some of {eR/E;}?.,. Then M, is a direct sum of hollow modules by Lemma
3, and hence so is M. Therefore we consider M not containing a direct sum-
mand of D. Put D=D|J(D)DM=M]|J(D), and D=(eA, €A, ¢A). Then the
above M has a basis {(e, &, 0), (0, &, 8,)}, where 3; are in A and 88,30 (cf. [3]).
We consider the following situation:

1) <4<, <) <J,

a) 8,€A,. Then §,E,CE,. Hence M contains a direct summand of D
by [1], Theorem 2. 1)
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b) 8, €A and 8,A,. M~A/A:DeR|A; DeR|(A;DB;,)DA[A;, (2)

c) & and §,EA,. M=~A,|A;DeR|A;,DeR|(A; DB;,)DA /A, 3)

2) §SUISL<HS)

a) § or5,A,. We obtain (1).

b) &, and §,£A,. We obtain (3).

3) 4<4<i<)<j, Since E,DE,DE,; We obtain (1) by [4], Corollary 3.

4) 4<j;<5,<j, Since eReE,CE,, we obtain (1).

5) i< <L<,H<

a) 9§, and §,=A;. We obtain the same situation as in the proof of Lemma
1. ie, M=~A,/A;PeR|A; DeR|(A;,DB; )P B,/Bj, 4)

b) 8, €A and §,&A,. M=~A,/A;DeR|A; DeR|(A;,DB;)D A4, (5)

¢) 8,&A and §,€A,. M~A,/A;DeR|A;,PeR|(4;,DB;)DAA;,. (6)

d) & and 8, A, M=~A,|A;BeR|A;,DeR|(A;,DB;)DA/A;. @)

6) 4<I<L<},<J.

a) 8,A,. We obtain (1).

b) §,&A, and §,€A,. We obtain (6).

c) &, and 5,&A,. We obtain (7).

7)) G<5p<Ii<}j,<Jj;

a) §,EA, or 8,& A, and §,=8%,; X,A,. We obtain (1).

b) §,& A, and 5,A,. We obtain (6).

c) & and §,& A, and {6, 5} is linearly independent over A,.

M=~A,[A; DeR[A;DeR|(A;,DB;)DA,/A, (8)

8) << <i<y or <,<},<j,<i. Since eReE,C E,, we obtain (1).

We shall give a sample of proofs.

1)—). Put &'=(e, 8, 0) and »'=(0, &, §,). Consider {&’, »”=(0, &8, &)},
where 8,=358;'e A,. If {5, 85} is lineraly independent, there exist ai and @}
in A, such that e=8§a{+8%a} and afa;+0, since [A: A]]=2. Then M has a
basis {E=&'+"atal"'=(e, a;, a,) and n=x"=(0, &%, €)}, where a,=ai™" and
a,=asa;”'. On the other hand, if §,=8%a}’, M has a basis {f=E—y"a}/=
(e, 0, a,) (a5’ =a,) and n=7"=(0, 8%, €)}. In either case, @,#0 and define a
homomorphism f of M*=A4,/4;PeR|A;,BeR|(A; D B;,)DA,/A;, to D by setting

f((x+A)+(y+4:,)+(2+(4;,DBj,)) +(w+4:))
= (x+y+4)+(a,y+8tz+w+(4;, DB;)))+(ay+2+(4,DBj)) ,

where x is in 4,, y and 2 in eR and w in 4,.

Since 4;Nar'(4; B B;,)Naz (4, DB),)=A;, (07(A; B B;,)=eR) and & (4,D
B;)N(A4:,BB),)=A4;®B;, by Lemma 2, fis well defined. Assume that the
latter term of the above equation is zero, i.e.,

0) x wed,.

1) x4+yed,.

2) ay+diztwed,; OB;,.

3) ay+z2€4,0B),
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Since x is in A;CeJ, y and 2z are in ¢J by 1) and 3). Put 2=a+b; a4,
beB,. Since we may assume a;4,=4,, b is in Bj, by 3). diz=08%a-+05% and
8ibeA;,OB;,C A, ®B;,. Hence ais in 4; by 2) and Lemma 2, and so z is
in 4; ®B;,C 4,,®Bj,. Therefore y is in 4;, by 3), since @,+0, and so x
in A;, w in Ai,- We have shown that f is a monomorphism. On the other
hand, | D| =n-+i-Hi+iy+ji+jo—2 and | M*| =n-+i-i,+ip+ji-Ho—3= | D] —1,
where e]” +0, ¢/*"'=0. Hence f(M*)=M, for MDJ(D) and f(M*)=M.

Now let /=A@ B, be as before and ¢/"=+0 and ¢/""'=0. We consider
here together all cases: a) B,—0, b) AaB, and ¢) A~B,. We obtain
the following three hollow modules;

1) Si(e)=eR/(A,PB,;), 2) Tie)=eR|A; (or eR/B;) and 3) U,j(e)=
eR/(A;®B;) (we denote those modules by H(e)).

Now S; and U;; are R/J‘-modules, where t=: and max {z, j}, respectively.
We shall give a weight for each hollow module H as follows; w(H)=
| JCH)/J(H)|, i.e., w(S;)=1, w(T;)=2 (i%1), w(T})=1 and w(U,;)=2 (%1 and
J=*1).

Lemma 5. Let S(e), T(e) and U(e) be as above. Then for a maximal
submodule M of D below, we obtain the following

1) D=S(e)®@S'(e). M=S(f,)DS(e), S(e)DS(f2) or Ule).

2) D=T(e)®S(e). M=~S(f)DS(f)DS(e) or T'(e)DS(f)-

3) D=U(e)®S(e). M~S(f)DS(f)DS(e), U()DS(f) or U'(e)DS(f),

where e and f are primitive idempotents.

Proof. We can show the lemma from Lemmas 1 and 3 (consider D as
R/J*-modules for 3); t<n).
Assume that

i

C =3 SOHe),

i=17

where 1=37¢;, {e;} is a set of mutually orthogonal primitive idempotents (and
R is basic). Let M be a maximal submodule of C. Since H(e;)/J(H;(e;))A=
H/(e)J(H(er)) for ii', M= @ M;, where M,=>DH(e;) for all k except

some ¢ and M, is a maximal one in 3P H (e,). Put w(C)=23>] 3] w(H,e)).

Lemma 6. Every submodule F of D(q) is a direct sum of hollow modules
H; and w(F)<2q (¢<3).

Proof. We shall show the lemma for a case ¢g=3. The remaining parts
are same. In order to prove the lemma, we may show that any maximal sub-
module M of C above with #=w(C)<(6 has a similar direct decomposition and
w(M)=t. Further, from the argument before Lemma 6, we may assume ¢;=e,
and show that
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M=§;@H, and w(M)<t 8).

We note that if w(H,(e))=2, J(H,(e)) is a direct sum of two uniserial modules.
If Hi(¢)=eR for some 7, M contains a direct summand of C by [1], Theorem 2.
Hence M satisfies (#) by induction on m and the above remark. We shall
show (#) by induction on n (J"*'=0). If n=0, then (%) is trivial. We as-
sume that every maximal submodule M satisfies (§) for k<n—1. Start from

D =H(e)®H(e)) ®Hies) -

w(D)=6 provided no-one of {H(e;)} is uniserial, and w(D)<5 for other cases.
Further, if no-one of {H(e;)} is isomorphic to Ty(e), the H(e;) are R/J*-modules
for some t<n. Then we can show (#) by the induction hypothesis. Hence
assume H(e)=7T;(e;). We may further assume e=e; for all 7 from the re-
mark before Lemma 6. Let M be a maximal submodule of D. Then from

Lemma 4 MzﬁEBH(f,-);fize if H(f;)=T or U, and w(D)=>w(M). Put
Mozf‘;éBH( f;). First we remark that the M, is an R/J*-module, and hence
f.e

#) is satisfied for M,. Further, if no-one of {H(e;)} is isomorphic to Tj(e)=
eR[A,, the same for {H(f;)}. Now let M be the maximal submodule in C(C D)
given in the beginning. Remarking the above fact (the case H(e)= Ty(e)),
we have the following cases:

I) C=T,®T,DT;, T;DT;,®U,;, or T; U, ; DUy,
In the first case M contains a direct summand of C, and hence we have (%)
by Lemmas 1 and 3. For the remaining cases we can use Lemmas 1 and 4.

IT) C=T;DT;,DS:DS,:
M contains a direct summand of C by [1], Theorem 2. Repeating this argu-
ment, we can reduce M to a case M=M,DS, DS, (M, is a maximal in
T, ®T,), M=M,DT; DS, (M, is maximal in T; BS,)) or M=M,DT; DT},
(M; is maximal in S, DS,,). Therefore M satisfies (#) by Lemma 5.

III) C=T;®U,,;DS) DS, or TiDTiDU, ; DS,
We can make use of the same argument as in I).

IV) T; does not appear in a direct summand of C, for instance C=
Ui i, ®U,;, P Usj,
We can use the induction hypothesis.

V) Some of T, U and S are equal to zero.
We have the same result as above.

T’hus we have

Theorem 2. Let R be a right artinian ring satisfying Condition II. Then
the following conditions are equivalent:

1) Every submodule of any D(3) is a direci sum cf hollow modules.

2) (%, 3) holds for any D(3).
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3) eR has the structure given in Theorem 1 for each primitive idempotent e.
In this case every submodule of D(1) is a direct sum of at most 21 hcllow modules
Jor i<3.

ReMARK. If R is an algebra of finite dimension over a field K, then H.
Asashiba has shown that (*, 3) implies Condition II. Further, if K is alge-
braically closed, A(N)=A=K for any submodule IV of eR. If A(N)=A for N,
(*, 3) implies Condition II by [2], Proposition 10.

Theorem 3. Let R be as above. Assume that A(N)=A for any submodule
N of eR. Then the following statements are equivalent :

1) Every submodule of a finite direct sum of any hollow modules is also a
direct sum of hollow modules.

2) Every submodule of a direct sum of any three hollow modules is also a
direct sum of hollow modules.

3) (%, 3) holds for any D(3).

In this case every submodule M of D(1) is a direci sum of at most 2i hollow
modules.

The author believes that Theorem 3 will be true without assumption
A(N)=A. However, he can not find a systematic proof. We have studied
this problem in [3], § 4, provided J3=0. We shall extend this manner to the
case J*=0.

Proposition 4. Let R be a right artinian ring with J*==0 and assume that
Condition 11.  Then the following conditions are equivalent:

1) Condition I for any direct sum of hollow modules holds.

2) Condition I for any direct sum of three hollow modules holds.

3) eR has the structure given in Theorem 1.

Proof. We may consider the proposition in case of A(4,)+A. Under
the assumption above, we obtain the diagram of submodules in eJ up to iso-
morphism:

A,®B,
|
Al@Bz
— |
4,0 B, AP B,

— ]
Az@B:; AI
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4
Let {E;}i{., be a family of the modules above. Put D=3PeR/E;. Then,
i=1

since A(4,PB;)=A, every maximal submodule M of D contains a non-trivial
direct summand of D by [1], Theorem 2 and [4], Corollary 3, except D;=eR/A,
DeR|A,DPeR|(A; B B;)DeR/(A,PB;). Let M be the maximal submodule such
that M=M]|](D)=EADnADEA, where E=(¢, 5, 0, 0), =(0, ¢, 5,, 0) and {=
(0, 0, & &). If3, or & is in A,, M contains a direct summand of D. Assume
8, and 8;¢ A, If 3,EA,, there exist @, @; (+0) in A, such that §,a;'—8:'5,a,
—=—3, for [A: A]J=2. Then M has a basis {£(—87'87"(@,—85")+ 707 "(@,—
83'a;)+85'a; = (e, 0, @y, @), 5, ¢}. Then M~ eR/A,PeR|/A,PeR|(A;PB;) as
in the proof of Lemma 4. Next assume §,eEA,. If §,=387a,, M has a basis
{(, 0, @, 0), 3, ¢}. If {5,, 8z} is linearly independent, there exist @,, @ in A,
with @,@,#+0 such that é=8,a,+8;'a@,. Then M contains a basis {(¢, a, a,, 0),
», £}. Repeating this argument for % and §, we obtain a basis {(¢, a,, a,, 0),
(0, &, by, b)), £}, where @,b,+0. In this case we obtain also the same result.
Therefore every maximal submodule of D is a direct sum of hollow modules.
Finally, if D is a direct sum of m hollow modules (m>5), M contains a non-
trivial direct summand of D by [1], Theorem 2 and [4], Corollary 3. Hence
we can prove the proposition by induction on .

3. Right US-3 rings with (¥, n). We have defined right US-3 rings in
[5], i.e., rings satisfying (**, 3). In this section we shall study the structure
of right US-3 rings with (¥, 1) or (¥, 2).

Lemma 7. If a right US-3 ring satisfies (*, 2) for any D(2), then Condi-
tion 1 is satisfied for any D(n).

Proof. Let {N;}%.; be a set of hollow modules, and put D:E"}EBN,-.
i=1
If n>3, every maximal submodule M of D is of a form M PSIPN/, where
. i=3

M, is a maximal submodule of N{@ N} and the N/ are isomorphic to some in
{N.;}. Hence M, is a direct sum of hollow modules by (*, 2).

Theorem 5. Let R be a right artinian ring. Then R is a right US-3 ring
and (*, 2) holds for any D(2) if and only if, for each primitive idempotent e, e]
has the following structure:

I) ¢J?=0. 1) eJ=A,PB, with A,, B, simple or zero. 2) If A,~B,,
[A: A(4)]=2 and, for any simple submodule C in e], A,~C, i.e., there exists a
unit x in eRe such that xC C A,.

II) ¢J*%0. 1) eJ=A,PB, with A, uniserial and B, simple or zero.
2) A=A(E) and 3) xE=A; or xE=A;PB,, where E is a submodule of e],
A; is a submodule of A, and x is a unit in eRe.

Proof. If (*, 2) and (**, 3) hold, |eJ/eJ?| <2 by [5], Proposition 1, and
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Condition I holds for any D(n) by Lemma 7. Hence eR has the structure in
Theorem 1. If e/?=0, we are done. Assume that /%30, and e/=A4,P B, with
A,, B, uniserial. Put 4;=A4,]""' and B;=B,]J’"". If A,~B, [A: A(4,)]=2
by [3], Theorem 2. Since 4,=0 and hence B,#0, eR/A,PBeR|/A;DeR/(A, P B,)
does not satisfy (*, 3) from [4], Corollary 2. Hence 4,4*B,. If A, +0 and
B,=0, any two modules of {4,, 4, B,, B} are not related by ~, which con-
tradicts [5], Lemma 1 (note that A=A(E) and ¢/=A4,PB,). Hence B, (or 4,)
is simple or zero. The remaining parts are clear from [3], Theorem 1. Con-
versely, if the case I) occurs, Condition I and (**, 3) hold by [2], Theorem 12
and [3], Theorem 2 (note that A=A(A4) provided 4,”&B;). Assume the case
II). 'Then (*, 2) holds for any D(2) by Lemma 3. Further, since A=A(E),
NN, satisfies (**, 2) provided N;=eR/C; and C,~C; by [4], Corollary 1.
If {E;}}., is a family of submodules in e], then E; ~E;, by the assumption 3).
Hence (**, 3) holds for any D(3).

Theorem 6. Let R be a right US-3 ring. Then (*, 1) holds for any hollow
module if and only if ¢R has one of the following structure for each primitive idem-

potent e:
1) leJjef?I<1.
2) leffeJ?l=2
i) €J?=0

i) eJ*#0, eJ=A,PB, has the structure as in Theorem 1, where A, is uni-
serial and B, is simple (A,”4<B,).

Proof. Since R is a right US-3 ring, |eJ/eJ?| <2 by [5], Theorem 2.
Assume that (*, 1) holds and |eJ/eJ?|=2. Then ¢J=A4,HB, by assumption,
where A4, and B, are hollow. If A,=A,/A,J~B,, e]? is a waist and 4,~B,
by [5], Theorem 2. Hence, if ¢J?+0, 4,]SeJ?. Then eR/4,] contains a
non-trivial waist eJ%/4,] and eJ/A,] is not hollow. Accordingly, ef/4,]
is not a direct sum of hollow modules. Therefore ¢/?=0. Next assume eJ?
#0, and hence A4;#&B,. Then A(4,)=A(B,))=A and A4,,¢B;. From the
proof of Theorem 5, we can show that either 4, or B, is simple (note |e]/e]?|
=2), say B;. We shall show that 4, is uniserial. We know from the proof of
[5], Theorem 2 that if A(C)=A for some submodule C of e/, then e] contains
a non-trivial waist module eJ¢ with |eJ?/eJ'*'|=2. Then (¥, 1) does not hold
from the observation of the case ¢/?>=0. Hence A(C)=A for all C ineR. Now
J(4)=A4,p A;PAY D -+ from (*, 1), where 4, A3, --+ are hollow (actually
Ay =--+=0 from [5], Theorem 2). Being AyxB,; and AjB,;, we know that
A,~A;. Let a, be in A4,—A,]. Since A(A4;)=A and A,~A}, there exist
a unit x¥ in eRe and j in efe such that x4,=4A4, and (x+4j)4.=Aj. Put
as=(x+j)a,A5. Since x is an isomorphism of 4,, xa,& A4, ], ja,Eefee] CeJ?
=A,]JPA},D -+, which is a contradiction. Hence 4,= A4j. Repeating this
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procedure, we know that A4, is uniserial. Therefore every submodule of ef
is one of the following: 1) A;, 2) A,®B, and 3) A,(f), where 4;=A4, ]’
and 4,(f)=A{a;+f(a;)|a;€ A;, f EHomg(4;, B,)}. Assume A4,#+0 and 4,,,=0.
Then considering {4;, 4;(f), By} (i<n), A;~A(f). It is clear from [5],
Lemma 1 that 4,~A4,(f) or A,(f)~B, (if A,~A,(f), As=A.(f) for eJeA4,=0).
Therefore ¢/ has the structure in Theorem 5. Conversely, assume that eR
has the structure of the theorem. If |ef/eJ?| <1, eJ* is a waist, and hence,
for any submodule C CeJ? J(eR/C)=eJ|/C contains a unique maximal sub-
module ¢J?/C. If ¢J?=0, (*, 2) holds for any two hollow modules by [3],
Proposition 3. It is clear for the last case to show that (*, 1) holds.

4. Examples. 1. Let R be the algebra over a field K given in [3],
Example 2. Then the lattice of submodules of eR is the following:

(e +x11k)B1

where k are in K. Hence (**, 3) and (¥, 2) are satisfied by Theorem 5.

2. Let R be a vector space over K with basis {e, f, a, b, ¢, d}. Define
the multiplication among these elements as follows: é&=e, f’=f, ef=fe=0,
ea=ae=a, eb=>bf=b, ec=cf=c, fd=df=d, ab=bd=c and other products are
equal to zero. Then the lattice of submodules of eR is the following:

eR
eJ

<a, ¢ <b, c>
e>=¢J?
0

Then R is a right US-3 ring with Condition II’. However, e/ is indecomposa-
ble, but not hollow. Hence (¥, 1) is not satisfied.
3. Let L, K be fields with [L: K]=2. Put
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L LL
R=|0L L
00 K/.

Then R is a right US-3 ring with (¥, 1), but without (*, 2) (note that A(e;;K)
=K=+L=A).

4. Assume that a right artinian ring R has a decomposition R=eRP fR
and J?=0, where {e, f} is a set of mutually orthogonal primitive idempotents.
Then (¥, 2) holds for any D(2) by [3], Proposition 3. We shall give the com-
plete list of such rings with (**, 3) and Condition II. If R is the ring men-
tioned above, eJ=A4,P A, and f/=B,P B,, where the 4; and the B; are simple
or zero. We always assume, in the following observation, that

o) ( T, 4 EBAz)
B1®BZ T2

means that T and T, are local right artinian rings, the A; (resp. the B;) are
right T, and left T (resp. right T} and left T},) simple module, (4,DA4,)J(T>)
= J(T)(A,P4,)=0 (the same for B,PB;), and (4,PA,)(B,DB,)=(B,BB;)
(4,4,)=0. '

B) A means a division ring.

v) S means a local serial ring.

8) L means the following local ring:

J(L) = A,DA,, Ay~ A4, as right L-modules,
&) [LUJ(L): L|J(L)(A:)]=2, and for any simple L-module A{ in J(L),
there exists a unit & in L such that A{=a4, (see [1] for such a ring).
i) A,~A,~eR and Bj~B,~fR. Then eJf=fJe=0. Hence

R— (Ll 0)
0 L,/ .
ii) A,~A,~fR, B~B,~eR. Then

R_( A, AI@AZ)
Bl@Bz AZ ’

where the 4; (resp. B;) satisfy £) as A;— A, (resp. A,—A,) bimodules.
iy A,~A,~B~B,~eR (resp. ~fR). Then
L, 0 ) (Al AIGBAZ)
R= .R= ,
(}31@9192 a) P o I )

where the B; (resp. A;) satisfy &) as A,—L,/J(L,) (resp. A,—Ly[J(L)) bi-
modules.
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iv) A~A,~B,~eR and B,~{R.
Then

R (Al A@Az)
2 SZ ’

where the 4; are similar to iii).
v) A,”&A, and B;&B,. Then

R— (51 Az)
2 SZ .
vi) Other cases. We may put 4;=0 or B;=0 in the above. The right
serial rings appear in v) by setting S,=A, or S;=A; and B,=0 (or 4,=0).
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