Harada, M. Osaka J. Math. 23 (1986), 509-521

GENERALIZATIONS OF NAKAYAMA RING II

Manabu HARADA

(Received December 18, 1984)

We have defined (right US-3) rings satisfying (**, 3) in [5], which are rings generalized from Nakayama ring (right generalized uni-serial rings). As stated in [5], we shall give, in this note, another generalization of Nakayama rings, which is related to the condition (*, 3), and give a characterization of those rings.

1. Preliminary results. Let R be a ring with identity. We assume always throughout this note that R is a right artinian ring and every module is a right unitary R-module M with finite length, which we denote by |M|. We have studied the following conditions in [3] and [5]:

- (**, n) Every (non-zero) maximal submodule of a direct sum D(n) of n non-zero hollow modules contains a non-trivial direct summand of D(n).
- (*, n) Every (non-zero) maximal submodule of the D(n) is also a direct sum of hollow modules.

We shall study mainly, in this note, rings satisfying (*, 3) for any direct sum of three hollow modules. We shall use the same notations as given in [3] and [5].

Let e be a primitive idempotent in R.

CONDITION II [3]. $|eJ/eJ^2| \leq 2$ for each e, where J is the Jacobson radical of R.

In [3] we have given the structure of rings which satisfy Condition II and

CONDITION I. Every submodule in any direct sum of (three) hollow modules is also a direct of hollow modules.

However, checking carefully each step, we know that we utilize only (*, 3) for any direct sum of three hollow modules. Thus we have the following theorem.

Theorem 1. Let R be a right artinian ring. Assume that (*, 3) for any direct sum of three hollow modules and Condition II hold. Then for each primitive idempotent e in R, we have the following properties:

1) $eJ = A_1 \oplus B_1$, where A_1 and B_1 are uniserial modules. Further, if $A_1/J(A_1) \approx B_1/J(B_1)$, $\alpha A_1 = B_1$ for some unit α in eRe.

2) For every submodule N in eJ, there exists a trivial submodule $A_i \oplus B_j$ of eJ and a unit γ in eRe such that $N = \gamma(A_i \oplus B_j)$, where $A_i = A_1 J^{i-1} \subset A_1$ and $B_j = B_1 J^{j-1} \subset B_1$.

3) If $A_1 \approx B_1$, then $\Delta(A_i \oplus B_i) = \Delta$ and $[\Delta: \Delta(A_i \oplus B_j)] = 2$ provided $i \neq j$; further $\Delta(A_1) = \Delta(A_i) = \Delta(A_i \oplus B_j)$ (i < j) and $\Delta(B_1) = \Delta(B_j) = \Delta(A_i \oplus B_j)$ (i > j). If $A_1 \approx B_1$, then $\Delta(N) = \Delta$ for any submodule N in eJ.

Here we shall recall the notations above. Put $\Delta = eRe = eRe/eJe$. For any right ideal A in eR, $\Delta(A) = \{x \mid \in \Delta, (x+j)A \subset A \text{ for some element } j \text{ in } eJe\}$. Then $\Delta(A)$ is a subdivision ring of Δ and $[\Delta: \Delta(A)]$ means the dimension of Δ over $\Delta(A)$ as a right $\Delta(A)$ -vector space.

2. Rings with (*, 3). We shall study, in this section, the converse of Theorem 1. We assume that R has the structure given in Theorem 1, unless otherwise stated.

We have given the following lemma in [3], provided Condition II'' in [3] is satisfied. We shall show in the same manner that the lemma is valid under a weaker condition.

Lemma 1 ([3]). Let R be a ring whose structure is given as in Theorem 1, and e a primitive idempotent. Let $\{E_i\}_{i=1}^n$ be a family of right ideals in eR and $D = \sum_{i=1}^n \bigoplus eR/E_i$. Then, if $\Delta(A_1) = \Delta(B_1) = \Delta$, D satisfies (*, n)

Proof. We shall quote the same argument as given in the last part of §3 in [3], and hence use the induction on the nilpotency of J. If $E_i \subset E_j$ for some i, j, every maximal submodule of D contains a direct summand of D by assumption and [3], Lemma 27 (cf. the proof of Lemma 3 below). By induction we may consider the following case:

$$\begin{split} E_{0} &= A_{i}, E_{k} = A_{i_{k}} \oplus B_{j_{k}}; \\ i < i_{1} < i_{2} < \cdots < i_{p}, \quad j_{1} > j_{2} > \cdots > j_{p} \quad and \quad D = \sum_{i=0}^{p} \oplus eR/E_{i}. \end{split}$$

Assume $i_t \leq j_t$, $i_{t+1} > j_{t+1}$. Let M be a maximal submodule of D. We may assume that $\overline{M} = M/J(D)$ ($\subset \overline{D} = D/J(D)$) has a basis $\{(0, \dots, 0, e^{i_t}, \overline{k}_i, \dots, 0)\}_{i}^{p}$. Since $\Delta(A_1) = \Delta(B_1) = \Delta$, we can take k_s with $k_s A_1 = A_1$ for $s \leq t$ and $k_r B_1 = B_1$ for r > t. Set $M^* = A_1/A_i \oplus \sum_{s=1}^{p} \oplus eR/(A_{i_s} \oplus B_{j_{s-1}}) \oplus B_1/B_{j_p}$, $(B_{j_0} = 0)$, then $|M^*| = |D| - 1$. Define a homomorphism f of M^* to D by setting

$$\begin{split} f((x+A_i) + \sum_{s=1}^{p} (y_s + (A_{i_s} \oplus B_{i_{s-1}})) + (z+B_{i_p})) \\ &= (x+y_1 + A_i) + (ek_1y_1 + y_2 + (A_{i_1} \oplus B_{i_1}) \\ &+ (ek_2y_2 + y_3 + (A_{i_2} \oplus B_{i_2})) + \dots + (ek_py_p + z + (A_{i_p} \oplus B_{i_p})) \,, \end{split}$$

where $x \in A_1$, $y_s \in eR$ and $z \in B_1$. $A_{i_a} \oplus B_{j_{a-1}} \subset A_{i_{a-1}} \oplus B_{j_{a-1}}$, $k_a(A_{i_a} \oplus B_{j_{a-1}})$

 $= A_{i_a} \oplus B_{j_{a-1}} \subset A_{i_a} \oplus B_{j_a} \text{ for } a \neq t+1, \text{ and } k_{t+1}(A_{i_{t+1}} \oplus B_{j_t}) \subset k_{t+1}(A_{i_{t+1}} \oplus B_{j_{t+1}}) =$ $A_{i_{t+1}} \oplus B_{j_{t+1}}$. Hence f is well defined. Assume that the right hand side of the above is zero. Since $x \in A_1$ and $z \in B_1$, $y_s \in eJ$ for all s. Put $y_r = y_{r1} + y_{r2}$, where y_{r1} is in A_1 and y_{r2} in B_1 . Now $x+y_1 = x+y_{11}+y_{12} \in A_i$, $x \in A_1$ and so $y_{12} = 0$. $ek_1(y_{11} + y_{12}) + (y_{21} + y_{22}) \in A_{i_1} \oplus B_{j_1}$. Since $k_1 A_1 \subset A_1$, $y_{22} \in B_{j_1}$. Repeating those arguments, we assume by induction that $y_{l+12} \in B_{j_l}$ for l < t' $\leq t$. Put $w = ek_{t'}(y_{t'1} + y_{t'2}) + (y_{t'+11} + y_{t'+12}) \in A_{it'} \oplus B_{jt'}$. Since $ek_{t'}$ is an isomorphism of eJ, $ek_{t'}B_{j_{t'-1}} \subset A_{j_{t'-1}} \oplus B_{j_{t'-1}}$. Now $B_{j_{t'-1}} \subset B_{j_{t'}}$ and $k_{t'}A_1 \subset A_1$. Let π_2 : $eJ \rightarrow B_1$ be the projection. Then $B_{it'} \in \pi_2(w) = \pi_2(ek_{t'}y_{t'2} + y_{t'+12}) =$ $\pi_2(ek_{t'}y_{t'2}) + y_{t'+12}$. Since $\pi_2(ek_{t'}y_{t'2}) \in B_{j_{t'}}, y_{t'+12} \in B_{j_{t'}}$. Consider next from the bottom side. $ek_p(y_{p1}+y_{p2})+z \in A_{i_p} \oplus B_{i_p}$. Since $k_p B_1 \subset B_1$ and $x \in B_1$, $y_{p1} \in A_{i_p}$ from the same argument above (take $\pi_1: eJ \rightarrow A_1$). Repeating those arguments inductively, we obtain $y_{s1} \in A_{i_s}$ for $s \ge t+1$. Consider $ek_{t+1}(y_{t+11}+y_{t+12})+$ $(y_{t+21}+y_{t+22}) \in A_{i_{t+1}} \oplus B_{i_{t+1}}$. Since $y_{t+12} \in B_{i_t}$, $y_{t+11} \in A_{i_{t+1}}$ and $i_{t+1} > j_{t+1}$, $j_t > j_{t+1}$, $y_{t+22} \in B_{j_{t+1}}$. Similarly, from $ek_t(y_{t+1}+y_{t+2})+(y_{t+11}+y_{t+12}) \in A_{i_t} \oplus B_{j_t}$, $y_{t+1} \in A_{i_t}$. Combining the above two steps, we know that f is a monomorphism. Hence $M \approx M^*$.

It is remained for us, from Lemma 1, to study a case of $\Delta(A_1) \neq \Delta$, i.e., $\bar{A}_1 \approx \bar{B}_1$. We have shown in [3] that if a right artinian ring R has the structure in Theorem 1, then (*, n) is satisfied for any D(n), provided $J^3=0$. We shall show that (*, 3) is satisfied without the assumption $J^3=0$.

Lemma 2 ([3], Lemma 24). We assume the above situation. Let δ be an element in eRe such that $\delta \in \Delta(A_1)$. Then $\pi_2 \delta A_i = B_i$, where π_2 : $eJ \rightarrow B_1$ is the projection.

Proof. Since $[\Delta: \Delta(A_1)] = 2$, $\delta = \overline{a}_1 + \overline{\alpha} \overline{a}_2$; the $\overline{a}_i \in \Delta(A_1)$ and $\alpha A_1 = B_1$. Set $\delta = a_1 + \alpha_2 a_2 + j$; $a_i A_1 \subset A_1$, $j \in eJe$. Since $jA_i \subset A_{i+1} \oplus B_{i+1}$, $\pi_2 \delta A_i = B_i$.

Lemma 3. Assume that R has the structure 1), 2) and 3) given in Theorem 1. Then (*, 2) is fulfiled for any D(2).

Proof. The assumption 2) in Theorem 1 gives us a guarantee of (*, 1) for any hollow module. Let $eJ=A_1\oplus B_1$. If $A_1 \not\approx B_1$, $\Delta(C)=\Delta$ for any submodule C of eR by assumption. Then we have shown by Lemma 1 that (*, 2) is fulfiled for any D(2). Assume that $A_1 \approx B_1$. Then $\Delta = \Delta(A_1) \oplus \overline{\alpha} \Delta(A_1)$, where α is the element given in 1). Set $D=eR/N_1 \oplus eR/N_2$, where the N_i are submodules of eR. We shall show the lemma by induction on the nilpotency of J. If $J^3=0$, we are done in [3], §4. Assume $eJ^n \neq 0$ and $eJ^{n+1}=0$. If $N_i \supseteq eJ^n$ for $i=1, 2, eR/N_i$ is a hollow R/J^n -module. Hence we may assume that $N_1=A_i=A_1J^{i-1}$ by induction. Let M be a maximal submodule of D, and put $\overline{D}=D/J(D) \supseteq \overline{M}=M/J(D)$. We may assume that \overline{M} has a basis $\{(e+J(D), \delta+J(D))\}$, where δ is a unit element in eRe (it is sufficient to show

the lemma in case R is basic; see [2] and [3]).

i) $N_2 = A_k \oplus B_j$, (we may assume $k \leq i$ [3]) a) $i \leq k \leq i$. $F = A_i \cap \delta^{-1}(A_k \oplus B_j) = \delta^{-1}(\delta A_i \cap (A_k \oplus B_j))$. a)-i) If $\delta \in \Delta_1 = \Delta(A_1)$, $F = A_k$ (we may assume $\delta A_1 \subset A_1$). a)-ii). If $\delta \in \Delta_1$, $F = A_j$ by Lemma 2. Put $M^* = eR/A_k \oplus A_1/A_i \oplus B_1/B_j$ for the case a-i). Define a homomorphism f of M^* to D by setting

$$f((x+A_k)+(y+A_i)+(z+B_j)) = (x+y+A_i)+(\delta x+z+(A_k \oplus B_j)),$$

where x is in eR, y in A_1 and z in B_1 . Then f is well defined. It is easy to check that f is a monomorphism, since $\delta A_1 = A_1$. Put $M^* = eR/A_j \oplus A_1/A_i \oplus A_1/A_k$ for the case a)-ii). Define a homomorphism f of M^* into D by setting

$$f((x+A_{j})+(y+A_{i})+(z+A_{k})) = (x+y+A_{i})+(\delta x+z+A_{k}\oplus B_{j}),$$

where x is in eR and y, z are in A_1 . We can show from the fact: $\delta \oplus \Delta_1$, that f is a monomorphism (cf. the proof of Lemma 4 below). Hence $M \approx M^*$, since $|M| = |M^*|$ and $f(M^*) \subset M$.

b) $k \leq i \leq j$. If $\delta \in \Delta_1$ (resp. $\notin \Delta_1$), $F = A_i$ (resp. $F = A_j$). We obtain the same result as in a-ii) for $F = A_j$. If $F = A_i$, put $M^* = eR/A_i \oplus A_1/A_k \oplus B_1/B_j$. Then $M \approx M^*$ as above.

c) $k \leq j \leq i$. Since $eReA_i \subset A_k \oplus B_j$, M contains a direct summand of D.

ii) $N_2=A_j$, $i \ge j$. If $\delta \oplus \Delta_1$, $\delta A_i \cap A_j=0$ and M is isomorphic to $eR \oplus A_1/A_i \oplus A_1/A_j$. If $\delta \oplus \Delta_1$, $\delta A_i \subset A_j$. Hence we obtain the same situation as in i)-c).

Lemma 4. (*, 3) is satisfied for any three hollow modules.

Proof. We may assume $\Delta(A_1) = \Delta_1 \neq \Delta$ by Lemma 1. From induction on the nilpotency of J(R), it is sufficient to study the case:

 $E_0 = A_i, E_1 = A_{i_1} \oplus B_{i_1}$ and $E_2 = A_{i_2} \oplus B_{i_2}$

with $i_k \leq j_k$ for k=1, 2, and $D = \sum \bigoplus eR/E_i$. Here B_{j_k} may be equal to zero (cf. [3], § 3).

If $B_{i_1}=B_{i_2}=0$, D satisfies (*, 3) by [4], Corollary 3. Let M be a maximal submodule of D. If M contains a non-zero direct summand D_1 of D, M= $D_1 \oplus M_1$ where M_1 is a maximal submodule of $N_1 \oplus N_2$; the N_i are isomorphic to some of $\{eR/E_i\}_{i=1}^3$. Then M_1 is a direct sum of hollow modules by Lemma 3, and hence so is M. Therefore we consider M not containing a direct summand of D. Put $\overline{D}=D/J(D)\supset \overline{M}=M/J(D)$, and $D=(\overline{e}\Delta, \overline{e}\Delta, \overline{e}\Delta)$. Then the above \overline{M} has a basis $\{(\overline{e}, \overline{\delta}_1, 0), (0, \overline{e}, \overline{\delta}_2)\}$, where $\overline{\delta}_i$ are in Δ and $\overline{\delta}_1\overline{\delta}_2 \neq 0$ (cf. [3]). We consider the following situation:

1) $i \leq i_1 \leq i_2 \leq j_1 \leq j_2$.

a) $\delta_2 \in \Delta_1$. Then $\delta_2 E_2 \subset E_1$. Hence *M* contains a direct summand of *D* by [1], Theorem 2. (1)

512

GENERALIZATIONS OF NAKAYAMA RING II

- b) $\delta_1 \in \Delta_1$ and $\delta_2 \notin \Delta_1$. $M \approx A_1 / A_i \oplus eR / A_{i_1} \oplus eR / (A_{j_1} \oplus B_{j_2}) \oplus A_1 / A_{i_2}$. (2)
- c) $\overline{\delta}_1$ and $\overline{\delta}_2 \oplus \Delta_1$. $M \approx A_1/A_i \oplus eR/A_{i_2} \oplus eR/(A_{j_1} \oplus B_{j_2}) \oplus A_1/A_{i_1}$. (3)
- 2) $i_1 \leqslant i \leqslant i_2 \leqslant j_1 \leqslant j_2$.
- a) $\overline{\delta}_1$ or $\overline{\delta}_2 \in \Delta_1$. We obtain (1).
- b) $\overline{\delta}_1$ and $\overline{\delta}_2 \oplus \Delta_1$. We obtain (3).
- 3) $i_1 \leq i_2 \leq i \leq j_1 \leq j_2$. Since $E_1 \supset E_2 \supset E_3$. We obtain (1) by [4], Corollary 3.
- 4) $i_1 \leq j_1 \leq i_2 \leq j_2$. Since $eReE_2 \subset E_1$, we obtain (1).
- 5) $i \leq i_1 \leq i_2 \leq j_2 \leq j_1$.

a)
$$\overline{\delta}_1$$
 and $\overline{\delta}_2 \in \Delta_1$. We obtain the same situation as in the proof of Lemma

1. i.e.,
$$M \approx A_1 | A_i \oplus eR | A_{i_1} \oplus eR | (A_{i_2} \oplus B_{j_1}) \oplus B_1 | B_{j_2}$$
. (4)

- b) $\delta_1 \in \Delta_1$ and $\delta_2 \notin \Delta_1$. $M \approx A_1 / A_i \oplus eR / A_{i_1} \oplus eR / (A_{j_2} \oplus B_{j_1}) \oplus A_1 / A_{i_2}$. (5)
- c) $\overline{\delta}_1 \oplus \Delta_1$ and $\overline{\delta}_2 \oplus \Delta_1$. $M \approx A_1 / A_i \oplus eR / A_{j_2} \oplus eR / (A_{i_2} \oplus B_{j_1}) \oplus A_1 / A_{i_1}$. (6)
- d) δ_1 and $\delta_2 \oplus \Delta_1$. $M \approx A_1 / A_i \oplus eR / A_{i_2} \oplus eR / (A_{j_2} \oplus B_{j_1}) \oplus A_1 / A_{i_1}$. (7)
- 6) $i_1 \leq i \leq i_2 \leq j_2 \leq j_1$.
- a) $\overline{\delta}_1 \in \Delta_1$. We obtain (1).
- b) $\overline{\delta}_1 \oplus \Delta_1$ and $\overline{\delta}_2 \oplus \Delta_1$. We obtain (6).
- c) $\overline{\delta}_1$ and $\overline{\delta}_2 \oplus \Delta_1$. We obtain (7).
- 7) $i_1 \leqslant i_2 \leqslant i \leqslant j_2 \leqslant j_1$.
- a) $\delta_1 \in \Delta_1$ or $\delta_2 \notin \Delta_1$ and $\delta_2 = \delta_1 \bar{x}_2$; $\bar{x}_2 \in \Delta_1$. We obtain (1).
- b) $\overline{\delta}_1 \oplus \Delta_1$ and $\overline{\delta}_2 \oplus \Delta_1$. We obtain (6).
- c) δ_1 and $\delta_2 \oplus \Delta_1$ and $\{\delta_1, \delta_2\}$ is linearly independent over Δ_1 . $M \approx A_1 | A_{i_1} \oplus eR | A_i \oplus eR | (A_{j_2} \oplus B_{j_1}) \oplus A_1 | A_{i_2}$.

8) $i_1 \leq i_2 \leq j_2 \leq i \leq j_1$ or $i_1 \leq i_2 \leq j_2 \leq i_2$. Since $eReE_0 \subset E_2$, we obtain (1). We shall give a sample of proofs.

1)-c). Put $\xi' = (\bar{e}, \delta_1, 0)$ and $\eta' = (0, \bar{e}, \delta_2)$. Consider $\{\xi', \eta'' = (0, \delta'_2, \bar{e})\}$, where $\delta'_2 = \delta_2^{-1} \notin \Delta_1$. If $\{\delta_1, \delta'_2\}$ is lineraly independent, there exist a'_1 and a'_2 in Δ_1 such that $\bar{e} = \delta_1 \bar{a}'_1 + \delta'_2 \bar{a}'_2$ and $\bar{a}'_1 \bar{a}'_2 \neq 0$, since $[\Delta: \Delta_1] = 2$. Then \bar{M} has a basis $\{\xi = \xi' + \eta'' \bar{a}'_2 \bar{a}'_1^{-1} = (\bar{e}, \bar{a}_1, \bar{a}_2)$ and $\eta = \eta'' = (0, \delta'_2, \bar{e})\}$, where $\bar{a}_1 = \bar{a}'_1^{-1}$ and $\bar{a}_2 = \bar{a}'_2 \bar{a}'_1^{-1}$. On the other hand, if $\delta_1 = \delta'_2 \bar{a}'_2$, \bar{M} has a basis $\{\xi = \xi - \eta'' \bar{a}'_2 = (\bar{e}, 0, \bar{a}_2) (\bar{a}'_2 = \bar{a}_2)$ and $\eta = \eta'' = (0, \delta'_2, \bar{e})\}$. In either case, $\bar{a}_2 \neq 0$ and define a homomorphism f of $M^* = A_1/A_i \oplus eR/A_{i_2} \oplus eR/(A_{j_1} \oplus B_{j_2}) \oplus A_1/A_{i_1}$ to D by setting

$$\begin{split} f((x+A_i)+(y+A_{i_2})+(z+(A_{j_1}\oplus B_{j_2}))+(w+A_{i_1})) \\ &=(x+y+A_i)+(a_1y+\delta_2'z+w+(A_{i_1}\oplus B_{j_1}))+(a_2y+z+(A_{i_2}\oplus B_{j_2}))\,, \end{split}$$

where x is in A_1 , y and z in eR and w in A_1 .

Since $A_i \cap a_1^{-1}(A_{i_1} \oplus B_{j_1}) \cap a_2^{-1}(A_{i_2} \oplus B_{j_2}) = A_{i_2} (0^{-1}(A_{i_1} \oplus B_{j_1}) = eR)$ and $\delta_2'^{-1}(A_{i_1} \oplus B_{j_1}) \cap (A_{i_2} \oplus B_{j_2}) = A_{j_1} \oplus B_{j_2}$ by Lemma 2, f is well defined. Assume that the latter term of the above equation is zero, i.e.,

- 0) $x, w \in A_1$.
- 1) $x+y \in A_i$.
- 2) $a_1y + \delta'_2 z + w \in A_{i_1} \oplus B_{i_1}$.
- 3) $a_2y+z \in A_{i_2} \oplus B_{j_2}$.

(8)

Since x is in $A_1 \subset eJ$, y and z are in eJ by 1) and 3). Put z=a+b; $a \in A_1$, $b \in B_1$. Since we may assume $a_iA_1=A_1$, b is in B_{j_2} by 3). $\delta'_2 z = \delta'_2 a + \delta'_2$ and $\delta'_2 b \in A_{j_2} \oplus B_{j_2} \subset A_{i_1} \oplus B_{j_1}$. Hence a is in A_{j_1} by 2) and Lemma 2, and so z is in $A_{j_1} \oplus B_{j_2} \subset A_{i_2} \oplus B_{j_2}$. Therefore y is in A_{i_2} by 3), since $a_2 \neq 0$, and so x in A_i , w in A_{i_1} . We have shown that f is a monomorphism. On the other hand, $|D| = n + i + i_1 + i_2 + j_1 + j_2 - 2$ and $|M^*| = n + i + i_1 + i_2 + j_1 + j_2 - 3 = |D| - 1$, where $eJ^n \neq 0$, $eJ^{n+1} = 0$. Hence $f(M^*) = M$, for $M \supset J(D)$ and $f(M^*) = M$.

Now let $eJ = A_1 \oplus B_1$ be as before and $eJ^n \neq 0$ and $eJ^{n+1} = 0$. We consider here together all cases: a) $B_1 = 0$, b) $\bar{A} \not\approx \bar{B}_1$ and c) $\bar{A}_1 \approx \bar{B}_1$. We obtain the following three hollow modules;

1) $S_i(e) = eR/(A_1 \oplus B_i)$, 2) $T_i(e) = eR/A_i$ (or eR/B_i) and 3) $U_{ij}(e) = eR/(A_i \oplus B_j)$ (we denote those modules by H(e)).

Now S_i and U_{ij} are R/J^t -modules, where t=i and max $\{i, j\}$, respectively. We shall give a weight for each hollow module H as follows; $w(H) = |J(H)/J^2(H)|$, i.e., $w(S_i)=1$, $w(T_i)=2$ $(i \neq 1)$, $w(T_1)=1$ and $w(U_{ij})=2$ $(i \neq 1$ and $j \neq 1$).

Lemma 5. Let S(e), T(e) and U(e) be as above. Then for a maximal submodule M of D below, we obtain the following:

1) $D=S(e)\oplus S'(e)$. $M\approx S(f_1)\oplus S(e)$, $S(e)\oplus S(f_2)$ or U(e).

2) $D=T(e)\oplus S(e)$. $M\approx S(f_1)\oplus S(f_2)\oplus S(e)$ or $T'(e)\oplus S(f)$.

3) $D=U(e)\oplus S(e)$. $M\approx S(f_1)\oplus S(f_2)\oplus S(e)$, $U(e)\oplus S(f)$ or $U'(e)\oplus S(f)$,

where e and f are primitive idempotents.

Proof. We can show the lemma from Lemmas 1 and 3 (consider D as R/J^t -modules for 3); $t \leq n$).

Assume that

$$C = \sum_{i=1}^{p} \sum_{j=1}^{j_i} \oplus H_j(e_i)$$
,

where $1 = \sum e_i$, $\{e_i\}$ is a set of mutually orthogonal primitive idempotents (and R is basic). Let M be a maximal submodule of C. Since $H_j(e_i)/J(H_j(e_i)) \approx H_{j'}(e_{i'})/J(H_{j'}(e_{i'}))$ for $i \neq i'$, $M = \sum_i \bigoplus M_i$, where $M_k = \sum_j \bigoplus H_j(e_k)$ for all k except some q and M_q is a maximal one in $\sum_j \bigoplus H_j(e_q)$. Put w(C) = $\sum_i \sum_j w(H_j(e_i))$.

Lemma 6. Every submodule F of D(q) is a direct sum of hollow modules H_i and $w(F) \leq 2q$ ($q \leq 3$).

Proof. We shall show the lemma for a case q=3. The remaining parts are same. In order to prove the lemma, we may show that any maximal submodule M of C above with $t=w(C)\leqslant 6$ has a similar direct decomposition and $w(M)\leq t$. Further, from the argument before Lemma 6, we may assume $e_i=e_i$, and show that

514

$$M = \sum_{s=1}^{m} \bigoplus H_s$$
 and $w(M) \leq t$ (#).

We note that if $w(H_i(e))=2$, $J(H_i(e))$ is a direct sum of two uniserial modules. If $H_i(e)=eR$ for some *i*, *M* contains a direct summand of *C* by [1], Theorem 2. Hence *M* satisfies (#) by induction on *m* and the above remark. We shall show (#) by induction on *n* ($J^{n+1}=0$). If n=0, then (#) is trivial. We assume that every maximal submodule *M* satisfies (#) for $k \leq n-1$. Start from

$$D = H(e_1) \oplus H(e_2) \oplus H(e_3)$$
.

w(D)=6 provided no-one of $\{H(e_i)\}$ is uniserial, and $w(D)\leqslant 5$ for other cases. Further, if no-one of $\{H(e_i)\}$ is isomorphic to $T_i(e)$, the $H(e_i)$ are R/J^i -modules for some $t\leqslant n$. Then we can show (\sharp) by the induction hypothesis. Hence assume $H(e_1)=T_i(e_1)$. We may further assume $e=e_i$ for all *i* from the remark before Lemma 6. Let *M* be a maximal submodule of *D*. Then from Lemma 4 $M=\sum_{i=1}^{4} \oplus H(f_i)$; $f_i=e$ if $H(f_i)\approx T$ or *U*, and $w(D)\geqslant w(M)$. Put $M_0=\sum_{f_i\neq e} \oplus H(f_i)$. First we remark that the M_0 is an R/J^i -module, and hence (\sharp) is satisfied for M_0 . Further, if no-one of $\{H(e_i)\}$ is isomorphic to $T_1(e)=eR/A_1$, the same for $\{H(f_i)\}$. Now let *M* be the maximal submodule in $C(\subset D)$ given in the beginning. Remarking the above fact (the case $H(e)=T_1(e)$), we have the following cases:

I) $C = T_{i_1} \oplus T_{i_2} \oplus T_{i_3}$, $T_{i_1} \oplus T_{i_2} \oplus U_{k_1 j_1}$, or $T_{i_1} \oplus U_{k_1 j_1} \oplus U_{k_2 j_2}$. In the first case M contains a direct summand of C, and hence we have (#) by Lemmas 1 and 3. For the remaining cases we can use Lemmas 1 and 4.

II) $C = T_{i_1} \oplus T_{i_2} \oplus S_{k_1} \oplus S_{k_2}$.

M contains a direct summand of C by [1], Theorem 2. Repeating this argument, we can reduce M to a case $M=M_1\oplus S_{k_1}\oplus S_{k_2}$ (M_1 is a maximal in $T_{i_1}\oplus T_{i_2}$), $M=M_2\oplus T_{i_2}\oplus S_{k_2}$ (M_2 is maximal in $T_{i_1}\oplus S_{k_1}$) or $M=M_3\oplus T_{i_1}\oplus T_{i_2}$ (M_3 is maximal in $S_{k_1}\oplus S_{k_2}$). Therefore M satisfies (\sharp) by Lemma 5.

III) $C=T_{i_1}\oplus U_{k_1i_1}\oplus S_{k_1}\oplus S_{k_2}$, or $T_1\oplus T_1\oplus U_{i_1i_1}\oplus S_{k_1}$.

We can make use of the same argument as in I).

IV) T_i does not appear in a direct summand of C, for instance $C = U_{i_1 j_1} \oplus U_{i_2 j_2} \oplus U_{i_3 j_3}$.

We can use the induction hypothesis.

V) Some of T, U and S are equal to zero. We have the same result as above.

Thus we have

Theorem 2. Let R be a right artinian ring satisfying Condition II. Then the following conditions are equivalent:

1) Every submodule of any D(3) is a direct sum of hollow modules.

2) (*, 3) holds for any D(3).

3) eR has the structure given in Theorem 1 for each primitive idempotent e. In this case every submodule of D(i) is a direct sum of at most 2i hcllow modules for $i \leq 3$.

REMARK. If R is an algebra of finite dimension over a field K, then H. Asashiba has shown that (*, 3) implies Condition II. Further, if K is algebraically closed, $\Delta(N) = \Delta = K$ for any submodule N of eR. If $\Delta(N) = \Delta$ for N, (*, 3) implies Condition II by [2], Proposition 10.

Theorem 3. Let R be as above. Assume that $\Delta(N) = \Delta$ for any submodule N of eR. Then the following statements are equivalent:

1) Every submodule of a finite direct sum of any hollow modules is also a direct sum of hollow modules.

2) Every submodule of a direct sum of any three hollow modules is also a direct sum of hollow modules.

3) (*, 3) holds for any D(3).

In this case every submodule M of D(i) is a direct sum of at most 2i hollow modules.

The author believes that Theorem 3 will be true without assumption $\Delta(N) = \Delta$. However, he can not find a systematic proof. We have studied this problem in [3], § 4, provided $J^3=0$. We shall extend this manner to the case $J^4=0$.

Proposition 4. Let R be a right artinian ring with $J^4=0$ and assume that Condition II. Then the following conditions are equivalent:

1) Condition I for any direct sum of hollow modules holds.

2) Condition I for any direct sum of three hollow modules holds.

3) eR has the structure given in Theorem 1.

Proof. We may consider the proposition in case of $\Delta(A_1) \neq \Delta$. Under the assumption above, we obtain the diagram of submodules in eJ up to isomorphism:

Let $\{E_i\}_{i=1}^4$ be a family of the modules above. Put $D = \sum_{i=1}^3 \bigoplus eR/E_i$. Then, since $\Delta(A_2 \oplus B_2) = \Delta$, every maximal submodule M of D contains a non-trivial direct summand of D by [1], Theorem 2 and [4], Corollary 3, except $D_1 = eR/A_1$ $\oplus eR/A_1 \oplus eR/(A_2 \oplus B_3) \oplus eR/(A_2 \oplus B_3)$. Let M be the maximal submodule such that $\overline{M} = M/J(D) = \xi \Delta \oplus \eta \Delta \oplus \zeta \Delta$, where $\xi = (\overline{e}, \overline{\delta}_1, 0, 0), \eta = (0, \overline{e}, \overline{\delta}_2, 0)$ and $\zeta = (1 + 1) ($ $(0, 0, \overline{e}, \overline{\delta}_3)$. If $\overline{\delta}_1$ or $\overline{\delta}_3$ is in Δ_1 , M contains a direct summand of D. Assume $\overline{\delta}_1$ and $\overline{\delta}_3 \oplus \Delta_1$. If $\overline{\delta}_2 \in \Delta_1$, there exist \overline{a}_2 , \overline{a}_3 (± 0) in Δ_1 such that $\overline{\delta}_2 \overline{a}_2^{-1} - \overline{\delta}_2^{-1} \overline{\delta}_3 \overline{a}_3$ $=-\overline{\delta}_1$, for $[\Delta:\Delta_1]=2$. Then \overline{M} has a basis $\{\xi(-\overline{\delta}_1^{-1}\overline{\delta}_2^{-1}(\overline{a}_2-\overline{\delta}_3^{-1})+\eta\overline{\delta}_2^{-1}(\overline{a}_2-\overline{\delta}_3^{-1})\}$ $\overline{\delta}_3^{-1}\overline{a}_3) + \zeta \overline{\delta}_3^{-1}\overline{a}_3 = (\overline{e}, 0, \overline{a}_2, \overline{a}_3), \eta, \zeta \}. \quad \text{Then } M \approx eR/A_2 \oplus eR/A_2 \oplus eR/(A_3 \oplus B_3) \text{ as}$ in the proof of Lemma 4. Next assume $\overline{\delta}_2 \notin \Delta_1$. If $\overline{\delta}_1 = \overline{\delta}_2^{-1} \overline{a}_2$, \overline{M} has a basis $\{(\bar{e}, 0, \bar{a}_2, 0), \eta, \zeta\}$. If $\{\bar{\delta}_1, \bar{\delta}_2^{-1}\}$ is linearly independent, there exist \bar{a}_1, \bar{a}_2 in Δ_1 with $\bar{a}_1\bar{a}_2 \neq 0$ such that $\bar{e} = \bar{\delta}_1\bar{a}_1 + \bar{\delta}_2^{-1}\bar{a}_2$. Then \bar{M} contains a basis { $(\bar{e}, \bar{a}_1, \bar{a}_2, 0)$, η , ζ }. Repeating this argument for η and ζ , we obtain a basis { $(\bar{e}, \bar{a}_1, \bar{a}_2, 0)$, $(0, \bar{e}, \bar{b}_1, \bar{b}_2), \zeta$, where $\bar{a}_2\bar{b}_2 \neq 0$. In this case we obtain also the same result. Therefore every maximal submodule of D is a direct sum of hollow modules. Finally, if D is a direct sum of m hollow modules $(m \ge 5)$, M contains a nontrivial direct summand of D by [1], Theorem 2 and [4], Corollary 3. Hence we can prove the proposition by induction on m.

3. Right US-3 rings with (*, n). We have defined right US-3 rings in [5], i.e., rings satisfying (**, 3). In this section we shall study the structure of right US-3 rings with (*, 1) or (*, 2).

Lemma 7. If a right US-3 ring satisfies (*, 2) for any D(2), then Condition I is satisfied for any D(n).

Proof. Let $\{N_i\}_{i=1}^n$ be a set of hollow modules, and put $D = \sum_{i=1}^n \bigoplus N_i$. If $n \ge 3$, every maximal submodule M of D is of a form $M_1 \bigoplus \sum_{i=3}^n \bigoplus N'_i$, where M_1 is a maximal submodule of $N'_1 \bigoplus N'_2$ and the N'_i are isomorphic to some in $\{N_i\}$. Hence M_1 is a direct sum of hollow modules by (*, 2).

Theorem 5. Let R be a right artinian ring. Then R is a right US-3 ring and (*, 2) holds for any D(2) if and only if, for each primitive idempotent e, eJ has the following structure:

I) $eJ^2=0$. 1) $eJ=A_1\oplus B_1$ with A_1 , B_1 simple or zero. 2) If $A_1 \approx B_1$, $[\Delta: \Delta(A_1)]=2$ and, for any simple submodule C in eJ, $A_1 \sim C$, i.e., there exists a unit x in eRe such that $xC \subset A_1$.

II) $eJ^2 \neq 0$. 1) $eJ = A_1 \oplus B_1$ with A_1 uniserial and B_1 simple or zero. 2) $\Delta = \Delta(E)$ and 3) $xE = A_i$ or $xE = A_i \oplus B_1$, where E is a submodule of eJ, A_i is a submodule of A_1 and x is a unit in eRe.

Proof. If (*, 2) and (**, 3) hold, $|eJ/eJ^2| \leq 2$ by [5], Proposition 1, and

Condition I holds for any D(n) by Lemma 7. Hence eR has the structure in Theorem 1. If $eJ^2=0$, we are done. Assume that $eJ^2\pm 0$, and $eJ=A_1\oplus B_1$ with A_1 , B_1 uniserial. Put $A_i=A_1J^{i-1}$ and $B_j=B_1J^{j-1}$. If $A_1\approx B_1$, $[\Delta:\Delta(A_1)]=2$ by [3], Theorem 2. Since $A_2\pm 0$ and hence $B_2\pm 0$, $eR/A_1\oplus eR/A_1\oplus eR/(A_2\oplus B_2)$ does not satisfy (*, 3) from [4], Corollary 2. Hence $A_1\approx B_1$. If $A_1\pm 0$ and $B_2\pm 0$, any two modules of $\{A_1, A_2\oplus B_2, B_1\}$ are not related by \sim , which contradicts [5], Lemma 1 (note that $\Delta=\Delta(E)$ and $eJ=A_1\oplus B_1$). Hence B_1 (or A_1) is simple or zero. The remaining parts are clear from [3], Theorem 1. Conversely, if the case I) occurs, Condition I and (**, 3) hold by [2], Theorem 12 and [3], Theorem 2 (note that $\Delta=\Delta(A)$ provided $A_1\approx B_1$). Assume the case II). Then (*, 2) holds for any D(2) by Lemma 3. Further, since $\Delta=\Delta(E)$, $N_1\oplus N_2$ satisfies (**, 2) provided $N_i=eR/C_i$ and $C_1\sim C_2$ by [4], Corollary 1. If $\{E_i\}_{i=1}^{i=1}$ is a family of submodules in eJ, then $E_{i_1}\sim E_{i_2}$ by the assumption 3). Hence (**, 3) holds for any D(3).

Theorem 6. Let R be a right US-3 ring. Then (*, 1) holds for any hollow module if and only if eR has one of the following structure for each primitive idempotent e:

1) $|eJ/eJ^2| \leq 1$.

- $2) |eJ/eJ^2| = 2$
- i) $eJ^2 = 0$

ii) $eJ^2 \neq 0$, $eJ = A_1 \oplus B_1$ has the structure as in Theorem 1, where A_1 is uniserial and B_1 is simple $(A_1 \neq B_2)$.

Proof. Since R is a right US-3 ring, $|eJ/eJ^2| \leq 2$ by [5], Theorem 2. Assume that (*, 1) holds and $|eJ/eJ^2|=2$. Then $eJ=A_1\oplus B_1$ by assumption, where A_1 and B_1 are hollow. If $\bar{A}_1 = A_1/A_1 J \approx \bar{B}_1$, eJ^2 is a waist and $A_1 \approx B_1$ by [5], Theorem 2. Hence, if $eJ^2 \neq 0$, $A_1J \subseteq eJ^2$. Then eR/A_1J contains a non-trivial waist eJ^2/A_1J and eJ/A_1J is not hollow. Accordingly, eJ/A_1J is not a direct sum of hollow modules. Therefore $eJ^2=0$. Next assume eJ^2 $\neq 0$, and hence $A_1 \not\approx B_1$. Then $\Delta(A_1) = \Delta(B_1) = \Delta$ and $A_1 \not\propto B_1$. From the proof of Theorem 5, we can show that either A_1 or B_1 is simple (note $|eJ|/|eJ|^2$) =2), say B_1 . We shall show that A_1 is uniserial. We know from the proof of [5], Theorem 2 that if $\Delta(C) \neq \Delta$ for some submodule C of eJ, then eJ contains a non-trivial waist module eJ^i with $|eJ^i/eJ^{i+1}| = 2$. Then (*, 1) does not hold from the observation of the case $eJ^2=0$. Hence $\Delta(C)=\Delta$ for all C in eR. Now $J(A_1) = A_2 \oplus A'_2 \oplus A''_2 \oplus \cdots$ from (*, 1), where A_2, A'_2, \cdots are hollow (actually $A_2''=\cdots=0$ from [5], Theorem 2). Being $A_2 \not\sim B_1$ and $A_2' \not\sim B_1$, we know that $A_2 \sim A'_2$. Let a_2 be in $A_2 - A_2 J$. Since $\Delta(A_2) = \Delta$ and $A_2 \sim A'_2$, there exist a unit x in eRe and j in eJe such that $xA_2 = A_2$ and $(x+j)A_2 = A'_2$. Put $a'_2 = (x+j)a_2 \in A'_2$. Since x is an isomorphism of A_2 , $xa_2 \notin A_2J$, $ja_2 \in eJeeJ \subset eJ^2$ $=A_2J\oplus A'_2\oplus \cdots$, which is a contradiction. Hence $A_2=A'_2$. Repeating this procedure, we know that A_1 is uniserial. Therefore every submodule of eJ is one of the following: 1) A_i , 2) $A_i \oplus B_1$, and 3) $A_i(f)$, where $A_i = A_1 J^{j-1}$ and $A_i(f) = \{a_i + f(a_i) \mid a_i \in A_i, f \in \operatorname{Hom}_R(A_i, B_1)\}$. Assume $A_n \neq 0$ and $A_{n+1} = 0$. Then considering $\{A_i, A_i(f), B_1\}$ $(i < n), A_i \sim A_i(f)$. It is clear from [5], Lemma 1 that $A_n \sim A_n(f)$ or $A_n(f) \sim B_1$ (if $A_n \sim A_n(f), A_n = A_n(f)$ for $eJeA_n = 0$). Therefore eJ has the structure in Theorem 5. Conversely, assume that eR has the structure of the theorem. If $|eJ/eJ^2| \leq 1, eJ^2$ is a waist, and hence, for any submodule $C \subset eJ^2$, J(eR/C) = eJ/C contains a unique maximal submodule eJ^2/C . If $eJ^2 = 0$, (*, 2) holds for any two hollow modules by [3], Proposition 3. It is clear for the last case to show that (*, 1) holds.

4. Examples. 1. Let R be the algebra over a field K given in [3], Example 2. Then the lattice of submodules of eR is the following:

where k are in K. Hence (**, 3) and (*, 2) are satisfied by Theorem 5.

2. Let R be a vector space over K with basis $\{e, f, a, b, c, d\}$. Define the multiplication among these elements as follows: $e^2 = e$, $f^2 = f$, ef = fe = 0, ea = ae = a, eb = bf = b, ec = cf = c, fd = df = d, ab = bd = c and other products are equal to zero. Then the lattice of submodules of eR is the following:

Then R is a right US-3 ring with Condition II'. However, eJ is indecomposable, but not hollow. Hence (*, 1) is not satisfied.

3. Let L, K be fields with [L: K] = 2. Put

$$R = \begin{pmatrix} L & L & L \\ 0 & L & L \\ 0 & 0 & K \end{pmatrix}.$$

Then R is a right US-3 ring with (*, 1), but without (*, 2) (note that $\Delta(e_{13}K) = K \neq L = \Delta$).

4. Assume that a right artinian ring R has a decomposition $R=eR\oplus fR$ and $J^2=0$, where $\{e, f\}$ is a set of mutually orthogonal primitive idempotents. Then (*, 2) holds for any D(2) by [3], Proposition 3. We shall give the complete list of such rings with (**, 3) and Condition II. If R is the ring mentioned above, $eJ=A_1\oplus A_2$ and $fJ=B_1\oplus B_2$, where the A_i and the B_i are simple or zero. We always assume, in the following observation, that

$$\alpha) \qquad \qquad \begin{pmatrix} T_1 & A_1 \oplus A_2 \\ B_1 \oplus B_2 & T_2 \end{pmatrix}$$

means that T_1 and T_2 are local right artinian rings, the A_i (resp. the B_i) are right T_2 and left T_1 (resp. right T_1 and left T_2) simple module, $(A_1 \oplus A_2)J(T_2) = J(T_1)(A_1 \oplus A_2) = 0$ (the same for $B_1 \oplus B_2$), and $(A_1 \oplus A_2)(B_1 \oplus B_2) = (B_1 \oplus B_2)$ $(A_1 \oplus A_2) = 0$.

- β) Δ means a division ring.
- γ) S means a local serial ring.
- δ) L means the following local ring: $J(L) = A_1 \oplus A_2, A_1 \approx A_2 \text{ as right } L\text{-modules},$
- ξ) $[L/J(L): L/J(L)(A_1)] = 2$, and for any simple L-module A'_1 in J(L), there exists a unit α in L such that $A'_1 = \alpha A_1$ (see [1] for such a ring).
- i) $A_1 \approx A_2 \approx e\overline{R}$ and $B_1 \approx B_2 \approx \overline{fR}$. Then eJf = fJe = 0. Hence

$$R = \begin{pmatrix} L_1 & 0 \\ 0 & L_2 \end{pmatrix}$$

ii) $A_1 \approx A_2 \approx \overline{fR}, B_1 \approx B_2 \approx \overline{eR}$. Then

$$R=egin{pmatrix} \Delta_1&A_1\oplus A_2\ B_1\oplus B_2&\Delta_2 \end{pmatrix}$$
 ,

where the A_i (resp. B_i) satisfy ξ) as $\Delta_1 - \Delta_2$ (resp. $\Delta_2 - \Delta_1$) bimodules.

iii) $A_1 \approx A_2 \approx B_1 \approx B_2 \approx \overline{eR}$ (resp. $\approx \overline{fR}$). Then

$$R = \begin{pmatrix} L_1 & 0 \\ B_1 \oplus B_2 & \Delta_2 \end{pmatrix} \quad (\text{resp. } R = \begin{pmatrix} \Delta_1 & A_1 \oplus A_2 \\ 0 & L_2 \end{pmatrix}),$$

where the B_i (resp. A_i) satisfy ξ) as $\Delta_2 - L_1/J(L_1)$ (resp. $\Delta_1 - L_2/J(L_2)$) bimodules.

520

iv)
$$A_1 \approx A_2 \approx B_1 \approx \overline{eR}$$
 and $B_2 \approx \overline{fR}$.
Then

$$R=egin{pmatrix} \Delta_1 & A_1\oplus A_2\ B_2 & S_2 \end{pmatrix}$$
 ,

where the A_i are similar to iii).

v) $A_1 \not\approx A_2$ and $B_1 \not\approx B_2$. Then

$$R = \begin{pmatrix} S_1 & A_2 \\ B_2 & S_2 \end{pmatrix}.$$

vi) Other cases. We may put $A_i=0$ or $B_i=0$ in the above. The right serial rings appear in v) by setting $S_2=\Delta_2$ or $S_i=\Delta_i$ and $B_2=0$ (or $A_2=0$).

References

- [1] M. Harada: On lifting property of direct sums of hollow modules, Osaka J. Math. 18 (1980), 783-791.

- [4] M. Harada and Y. Yukimoto: On maximal submodules of a direct sum of hollow modules IV, Osaka J. Math. 22 (1985), 321-326.
- [5] M. Harada: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181-200.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan