GENERALIZATIONS OF NAKAYAMA RING II

Manabu HARADA

(Received December 18, 1984)

We have defined (right US-3) rings satisfying (**, 3) in [5], which are rings generalized from Nakayama ring (right generalized uni-serial rings). As stated in [5], we shall give, in this note, another generalization of Nakayama rings, which is related to the condition $(*, 3)$, and give a characterization of those rings.

1. Preliminary results. Let R be a ring with identity. We assume always throughout this note that R is a right artinian ring and every module is a right unitary R-module M with finite length, which we denote by $|M|$. We have studied the following conditions in [3] and [5]:
$(* *, n) \quad$ Every (non-zero) maximal submodule of a direct sum $D(n)$ of n nonzero hollow modules contains a non-trivial direct summand of $D(n)$.
$(*, n) \quad$ Every (non-zero) maximal submodule of the $D(n)$ is also a direct sum of hollow modules.

We shall study mainly, in this note, rings satisfying $(*, 3)$ for any direct sum of three hollow modules. We shall use the same notations as given in [3] and [5].

Let e be a primitive idempotent in R.
Condition II [3]. |eJ $/ e J^{2} \mid \leqslant 2$ for each e, where J is the Jacobson radical of R.
In [3] we have given the structure of rings which satisfy Condition II and
Condition I. Every submodule in any direct sum of (three) hollow modules is also a direct of hollow modules.

However, checking carefully each step, we know that we utilize only (*, 3) for any direct sum of three hollow modules. Thus we have the following theorem.

Theorem 1. Let R be a right artinian ring. Assume that (*, 3) for any direct sum of three hollow modules and Condition II hold. Then for each primitive idempotent e in R, we have the following properties:

1) $e J=A_{1} \oplus B_{1}$, where A_{1} and B_{1} are uniserial modules. Further, if $A_{1} / J\left(A_{1}\right) \approx B_{1} / J\left(B_{1}\right), \alpha A_{1}=B_{1}$ for some unit α in eRe.
2) For every submodule N in eJ, there exists a trivial submodule $A_{i} \oplus B_{j}$ of eJ and a unit γ in eRe such that $N=\gamma\left(A_{i} \oplus B_{j}\right)$, where $A_{i}=A_{1} J^{i-1} \subset A_{1}$ and $B_{j}=B_{1} J^{j-1} \subset B_{1}$.
3) If $A_{1} \approx B_{1}$, then $\Delta\left(A_{i} \oplus B_{i}\right)=\Delta$ and $\left[\Delta: \Delta\left(A_{i} \oplus B_{j}\right)\right]=2$ provided $i \neq j$; further $\Delta\left(A_{1}\right)=\Delta\left(A_{i}\right)=\Delta\left(A_{i} \oplus B_{j}\right)(i<j)$ and $\Delta\left(B_{1}\right)=\Delta\left(B_{j}\right)=\Delta\left(A_{i} \oplus B_{j}\right) \quad(i>j)$. If $A_{1} \approx B_{1}$, then $\Delta(N)=\Delta$ for any submodule N in eJ.

Here we shall recall the notations above. Put $\Delta=\overline{e R e}=e R e / e J e$. For any right ideal A in $e R, \Delta(A)=\{\bar{x} \mid \in \Delta,(x+j) A \subset A$ for some element j in $e J e\}$. Then $\Delta(A)$ is a subdivision ring of Δ and $[\Delta: \Delta(A)]$ means the dimension of Δ over $\Delta(A)$ as a right $\Delta(A)$-vector space.
2. Rings with (*, 3). We shall study, in this section, the converse of Theorem 1. We assume that R has the structure given in Theorem 1, unless otherwise stated.

We have given the following lemma in [3], provided Condition $\mathrm{II}^{\prime \prime}$ in [3] is satisfied. We shall show in the same manner that the lemma is valid under a weaker condition.

Lemma 1 ([3]). Let R be a ring whose structure is given as in Theorem 1, and e a primitive idempotent. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a family of right ideals in eR and $D=\sum_{i=1}^{n} \oplus e R / E_{i} . \quad$ Then, if $\Delta\left(A_{1}\right)=\Delta\left(B_{1}\right)=\Delta, D$ satisfies $\left({ }^{*}, n\right)$

Proof. We shall quote the same argument as given in the last part of $\S 3$ in [3], and hence use the induction on the nilpotency of $J . \quad$ If $E_{i} \subset E_{j}$ for some i, j, every maximal submodule of D contains a direct summand of D by assumption and [3], Lemma 27 (cf. the proof of Lemma 3 below). By induction we may consider the following case:

$$
\begin{aligned}
& E_{0}=A_{i}, E_{k}=A_{i_{k}} \oplus B_{j_{k}} ; \\
& i<i_{1}<i_{2}<\cdots<i_{p}, \quad j_{1}>j_{2}>\cdots>j_{p} \quad \text { and } \quad D=\sum_{i=0}^{p} \oplus e R / E_{i} .
\end{aligned}
$$

Assume $i_{t} \leqslant j_{t}, i_{t+1}>j_{t+1}$. Let M be a maximal submodule of D. We may assume that $\bar{M}=M / J(D)(\subset \bar{D}=D / J(D))$ has a basis $\left\{\left(0, \cdots, 0, \bar{e}, \bar{k}_{i}, \cdots, 0\right)\right\}_{1}^{p}$. Since $\Delta\left(A_{1}\right)=\Delta\left(B_{1}\right)=\Delta$, we can take k_{s} with $k_{s} A_{1}=A_{1}$ for $s \leqslant t$ and $k_{r} B_{1}=B_{1}$ for $r>t$. Set $M^{*}=A_{1} / A_{i} \oplus \sum_{s=1}^{p} \oplus e R /\left(A_{i_{s}} \oplus B_{j_{s-1}}\right) \oplus B_{1} / B_{j_{p}},\left(B_{j_{0}}=0\right)$, then $\left|M^{*}\right|$ $=|D|-1$. Define a homomorphism f of M^{*} to D by setting

$$
\begin{aligned}
& f\left(\left(x+A_{i}\right)+\sum_{s=1}^{p}\left(y_{s}+\left(A_{i_{s}} \oplus B_{j_{s-1}}\right)\right)+\left(z+B_{j_{p}}\right)\right) \\
& =\left(x+y_{1}+A_{i}\right)+\left(e k_{1} y_{1}+y_{2}+\left(A_{i_{1}} \oplus B_{j_{1}}\right)\right. \\
& \quad+\left(e k_{2} y_{2}+y_{3}+\left(A_{i_{2}} \oplus B_{j_{2}}\right)\right)+\cdots+\left(e k_{p} y_{p}+z+\left(A_{i_{p}} \oplus B_{j_{p}}\right)\right),
\end{aligned}
$$

where $x \in A_{1}, \quad y_{s} \in e R$ and $z \in B_{1} . \quad A_{i_{a}} \oplus B_{j_{a-1}} \subset A_{i_{a-1}} \oplus B_{j_{a-1}}, \quad k_{a}\left(A_{i_{a}} \oplus B_{j_{a-1}}\right)$
$=A_{i_{a}} \oplus B_{j_{a-1}} \subset A_{i_{a}} \oplus B_{j_{a}}$ for $a \neq t+1$, and $k_{t+1}\left(A_{i_{t+1}} \oplus B_{j_{t}}\right) \subset k_{t+1}\left(A_{i_{t+1}} \oplus B_{j_{t+1}}\right)=$ $A_{i_{t+1}} \oplus B_{j_{t+1}}$. Hence f is well defined. Assume that the right hand side of the above is zero. Since $x \in A_{1}$ and $z \in B_{1}, y_{s} \in e J$ for all s. Put $y_{r}=y_{r 1}+y_{r 2}$, where $y_{r 1}$ is in A_{1} and $y_{r 2}$ in B_{1}. Now $x+y_{1}=x+y_{11}+y_{12} \in A_{i}, x \in A_{1}$ and so $\quad y_{12}=0 . \quad e k_{1}\left(y_{11}+y_{12}\right)+\left(y_{21}+y_{22}\right) \in A_{i_{1}} \oplus B_{j_{1}} . \quad$ Since $k_{1} A_{1} \subset A_{1}, \quad y_{22} \in B_{j_{1}}$. Repeating those arguments, we assume by induction that $y_{l+12} \in B_{j_{l}}$ for $l<t^{\prime}$ $\leqslant t$. Put $w=e k_{t^{\prime}}\left(y_{t^{\prime} 1}+y_{t^{\prime} 2}\right)+\left(y_{t^{\prime}+11}+y_{t^{\prime}+12}\right) \in A_{i_{t^{\prime}}} \oplus B_{j_{t^{\prime}}}$. Since $e k_{t^{\prime}}$ is an isomorphism of $e J, e k_{t^{\prime}} B_{j_{t^{\prime}-1}} \subset A_{j_{t^{\prime}-1}} \oplus B_{j_{t^{\prime}-1}}$. Now $B_{j_{t^{\prime}-1}} \subset B_{j_{t^{\prime}}}$ and $k_{t^{\prime}} A_{1} \subset A_{1}$. Let $\pi_{2}: e J \rightarrow B_{1}$ be the projection. Then $B_{j t^{\prime}} \in \pi_{2}(w)=\pi_{2}\left(e k_{t^{\prime}} y_{t^{\prime} 2}+y_{t^{\prime}+12}\right)=$ $\pi_{2}\left(e k_{t^{\prime}} y_{t^{\prime}{ }^{\prime}}\right)+y_{i^{\prime}+12}$. Since $\pi_{2}\left(e k_{t^{\prime}} y_{t^{\prime}{ }^{\prime}}\right) \in B_{j_{t^{\prime}}}, y_{t^{\prime}+12} \in B_{j_{t^{\prime}}}$. Consider next from the bottom side. $e k_{p}\left(y_{p 1}+y_{p 2}\right)+z \in A_{i_{p}} \oplus B_{j_{p}} . \quad$ Since $k_{p} B_{1} \subset B_{1}$ and $x \in B_{1}, y_{p 1} \in A_{i_{p}}$ from the same argument above (take $\pi_{1}: e J \rightarrow A_{1}$). Repeating those arguments inductively, we obtain $y_{s 1} \in A_{i_{s}}$ for $s \geqslant t+1$. Consider $e k_{t+1}\left(y_{t+11}+y_{t+12}\right)+$ $\left(y_{t+21}+y_{t+22}\right) \in A_{i_{t+1}} \oplus B_{j_{t+1}}$. Since $y_{t+12} \in B_{j_{t}}, y_{t+11} \in A_{i_{t+1}}$ and $i_{t+1}>j_{t+1}, j_{t}>j_{t+1}$, $y_{t+22} \in B_{j_{t+1}}$. Similarly, from $e k_{t}\left(y_{t 1}+y_{t 2}\right)+\left(y_{t+11}+y_{t+12}\right) \in A_{i_{t}} \oplus B_{j_{t}}, \quad y_{t 1} \in A_{i_{t}}$. Combining the above two steps, we know that f is a monomorphism. Hence $M \approx M^{*}$.

It is remained for us, from Lemma 1 , to study a case of $\Delta\left(A_{1}\right) \neq \Delta$, i.e., $\bar{A}_{1} \approx \bar{B}_{1}$. We have shown in [3] that if a right artinian ring R has the structure in Theorem 1, then $\left(^{*}, n\right)$ is satisfied for any $D(n)$, provided $J^{3}=0$. We shall show that $\left({ }^{*}, 3\right)$ is satisfied without the assumption $J^{3}=0$.

Lemma 2 ([3], Lemma 24). We assume the above situation. Let δ be an element in eRe such that $\bar{\delta} \notin \Delta\left(A_{1}\right)$. Then $\pi_{2} \delta A_{i}=B_{i}$, where π_{2} : eJ $\rightarrow B_{1}$ is the projection.

Proof. Since $\left[\Delta: \Delta\left(A_{1}\right)\right]=2, \bar{\delta}=\bar{a}_{1}+\bar{\alpha} \bar{a}_{2} ;$ the $a_{i} \in \Delta\left(A_{1}\right)$ and $\alpha A_{1}=B_{1}$. Set $\delta=a_{1}+\alpha_{2} a_{2}+j ; a_{i} A_{1} \subset A_{1}, j \in e J e$. Since $j A_{i} \subset A_{i+1} \oplus B_{i+1}, \pi_{2} \delta A_{i}=B_{i}$.

Lemma 3. Assume that R has the structure 1), 2) and 3) given in Theorem 1. Then $(*, 2)$ is fulfiled for any $D(2)$.

Proof. The assumption 2) in Theorem 1 gives us a guarantee of (*, 1) for any hollow module. Let $e J=A_{1} \oplus B_{1}$. If $A_{1} \approx B_{1}, \Delta(C)=\Delta$ for any submodule C of $e R$ by assumption. Then we have shown by Lemma 1 that (*, 2) is fulfiled for any $D(2)$. Assume that $A_{1} \approx B_{1}$. Then $\Delta=\Delta\left(A_{1}\right) \oplus \bar{\alpha} \Delta\left(A_{1}\right)$, where α is the element given in 1). Set $D=e R / N_{1} \oplus e R / N_{2}$, where the N_{i} are submodules of $e R$. We shall show the lemma by induction on the nilpotency of J. If $J^{3}=0$, we are done in [3], §4. Assume $e J^{n} \neq 0$ and $e J^{n+1}=0$. If $N_{i} \supset e J^{n}$ for $i=1,2, e R / N_{i}$ is a hollow R / J^{n}-module. Hence we may assume that $N_{1}=A_{i}=A_{1} J^{i-1}$ by induction. Let M be a maximal submodule of D, and put $\bar{D}=D / \mathrm{J}(D) \supset \bar{M}=M / \mathrm{J}(D)$. We may assume that \bar{M} has a basis $\{(e+\mathrm{J}(D), \delta+\mathrm{J}(D)\}$, where δ is a unit element in $e R e$ (it is sufficient to show
the lemma in case R is basic; see [2] and [3]).
i) $\quad N_{2}=A_{k} \oplus B_{j}$, (we may assume $k \leqslant i[3]$) a) $i \leqslant k \leqslant i . \quad F=A_{i} \cap \delta^{-1}\left(A_{k} \oplus\right.$ $\left.B_{j}\right)=\delta^{-1}\left(\delta A_{i} \cap\left(A_{k} \oplus B_{j}\right)\right)$. a)-i) If $\delta \in \Delta_{1}=\Delta\left(A_{1}\right), F=A_{k}$ (we may assume $\delta A_{1} \subset A_{1}$). a)-ii). If $\delta \notin \Delta_{1}, F=A_{j}$ by Lemma 2. Put $M^{*}=e R / A_{k} \oplus A_{1} / A_{i} \oplus$ B_{1} / B_{j} for the case a-i). Define a homomorphism f of M^{*} to D by setting

$$
f\left(\left(x+A_{k}\right)+\left(y+A_{i}\right)+\left(z+B_{j}\right)\right)=\left(x+y+A_{i}\right)+\left(\delta x+z+\left(A_{k} \oplus B_{j}\right)\right),
$$

where x is in $e R, y$ in A_{1} and z in B_{1}. Then f is well defined. It is easy to check that f is a monomorphism, since $\delta A_{1}=A_{1}$. Put $M^{*}=e R / A_{j} \oplus A_{1} / A_{i} \oplus$ A_{1} / A_{k} for the case a)-ii). Define a homomorphism f of M^{*} into D by setting

$$
f\left(\left(x+A_{j}\right)+\left(y+A_{i}\right)+\left(z+A_{k}\right)\right)=\left(x+y+A_{i}\right)+\left(\delta x+z+A_{k} \oplus B_{j}\right),
$$

where x is in $e R$ and y, z are in A_{1}. We can show from the fact: $\bar{\delta} \notin \Delta_{1}$, that f is a monomorphism (cf. the proof of Lemma 4 below). Hence $M \approx M^{*}$, since $|M|=\left|M^{*}\right|$ and $f\left(M^{*}\right) \subset M$.
b) $k \leqslant i \leqslant j$. If $\bar{\delta} \in \Delta_{1}$ (resp. $\notin \Delta_{1}$), $F=A_{i}$ (resp. $F=A_{j}$). We obtain the same result as in a-ii) for $F=A_{j}$. If $F=A_{i}$, put $M^{*}=e R / A_{i} \oplus A_{1} / A_{k} \oplus$ B_{1} / B_{j}. Then $M \approx M^{*}$ as above.
c) $k \leqslant i \leqslant i$. Since $e R e A_{i} \subset A_{k} \oplus B_{j}, M$ contains a direct summand of D.
ii) $N_{2}=A_{j}, i \geqslant j$. If $\bar{\delta} \notin \Delta_{1}, \delta A_{i} \cap A_{j}=0$ and M is isomorphic to $e R \oplus$ $A_{1} / A_{i} \oplus A_{1} / A_{j}$. If $\delta \in \Delta_{1}, \delta A_{i} \subset A_{j}$. Hence we obtain the same situation as in i) -c).

Lemma 4. (*, 3) is satisfied for any three hollow modules.
Proof. We may assume $\Delta\left(A_{1}\right)=\Delta_{1} \neq \Delta$ by Lemma 1. From induction on the nilpotency of $\mathrm{J}(R)$, it is sufficient to study the case:

$$
E_{0}=A_{i}, E_{1}=A_{i_{1}} \oplus B_{j_{1}} \quad \text { and } \quad E_{2}=A_{i_{2}} \oplus B_{i_{2}}
$$

with $i_{k} \leqslant j_{k}$ for $k=1,2$, and $D=\Sigma \oplus e R / E_{i}$. Here $B_{j_{k}}$ may be equal to zero (cf. [3], §3).

If $B_{j_{1}}=B_{j_{2}}=0, D$ satisfies (*,3) by [4], Corollary 3. Let M be a maximal submodule of D. If M contains a non-zero direct summand D_{1} of $D, M=$ $D_{1} \oplus M_{1}$ where M_{1} is a maximal submodule of $N_{1} \oplus N_{2}$; the N_{i} are isomorphic to some of $\left\{e R / E_{i}\right\}_{i=1}^{3}$. Then M_{1} is a direct sum of hollow modules by Lemma 3, and hence so is M. Therefore we consider M not containing a direct summand of D. Put $\bar{D}=D / \mathrm{J}(D) \supset \bar{M}=M / \mathrm{J}(D)$, and $D=(\bar{e} \Delta, \bar{e} \Delta, \bar{e} \Delta)$. Then the above \bar{M} has a basis $\left\{\left(\bar{e}, \bar{\delta}_{1}, 0\right),\left(0, \bar{e}, \bar{\delta}_{2}\right)\right\}$, where $\bar{\delta}_{i}$ are in Δ and $\bar{\delta}_{1} \delta_{2} \neq 0$ (cf. [3]). We consider the following situation:

1) $i \leqslant i_{1} \leqslant i_{2} \leqslant j_{1} \leqslant j_{2}$.
a) $\bar{\delta}_{2} \in \Delta_{1}$. Then $\delta_{2} E_{2} \subset E_{1}$. Hence M contains a direct summand of D by [1], Theorem 2.
b) $\quad \bar{\delta}_{1} \in \Delta_{1}$ and $\bar{\delta}_{2} \notin \Delta_{1} . \quad M \approx A_{1} / A_{i} \oplus e R / A_{i_{1}} \oplus e R /\left(A_{j_{1}} \oplus B_{j_{2}}\right) \oplus A_{1} / A_{i_{2}}$.
c) $\bar{\delta}_{1}$ and $\bar{\delta}_{2} \oplus \Delta_{1} . \quad M \approx A_{1} / A_{i} \oplus e R / A_{i_{2}} \oplus e R /\left(A_{j_{1}} \oplus B_{j_{2}}\right) \oplus A_{1} / A_{i_{1}}$.
2) $i_{1} \leqslant i \leqslant i_{2} \leqslant j_{1} \leqslant j_{2}$.
a) $\bar{\delta}_{1}$ or $\bar{\delta}_{2} \in \Delta_{1}$. We obtain (1).
b) $\bar{\delta}_{1}$ and $\delta_{2} \notin \Delta_{1}$. We obtain (3).
3) $i_{1} \leqslant i_{2} \leqslant i \leqslant j_{1} \leqslant j_{2}$. Since $E_{1} \supset E_{2} \supset E_{3}$. We obtain (1) by [4], Corollary 3.
4) $i_{1} \leqslant j_{1} \leqslant i_{2} \leqslant j_{2}$. Since $e \operatorname{Re} E_{2} \subset E_{1}$, we obtain (1).
5) $i \leqslant i_{1} \leqslant i_{2} \leqslant j_{2} \leqslant j_{1}$.
a) δ_{1} and $\bar{\delta}_{2} \in \Delta_{1}$. We obtain the same situation as in the proof of Lemma 1. i.e., $M \approx A_{1} / A_{i} \oplus e R / A_{i_{1}} \oplus e R /\left(A_{i_{2}} \oplus B_{j_{1}}\right) \oplus B_{1} / B_{j_{2}}$.
b) $\delta_{1} \in \Delta_{1}$ and $\bar{\delta}_{2} \oplus \Delta_{1} . \quad M \approx A_{1} / A_{i} \oplus e R / A_{i_{1}} \oplus e R /\left(A_{j_{2}} \oplus B_{j_{1}}\right) \oplus A_{1} / A_{i_{2}}$.
c) $\bar{\delta}_{1} \oplus \Delta_{1}$ and $\bar{\delta}_{2} \in \Delta_{1} . \quad M \approx A_{1} / A_{i} \oplus e R / A_{j_{2}} \oplus e R /\left(A_{i_{2}} \oplus B_{j_{1}}\right) \oplus A_{1} / A_{i_{1}}$.
d) $\bar{\delta}_{1}$ and $\bar{\delta}_{2} \oplus \Delta_{1} . \quad M \approx A_{1} / A_{i} \oplus e R / A_{i_{2}} \oplus e R /\left(A_{j_{2}} \oplus B_{j_{1}}\right) \oplus A_{1} / A_{i_{1}}$.
6) $\quad i_{1} \leqslant i \leqslant i_{2} \leqslant j_{2} \leqslant j_{1}$.
a) $\bar{\delta}_{1} \in \Delta_{1}$. We obtain (1).
b) $\bar{\delta}_{1} \notin \Delta_{1}$ and $\delta_{2} \in \Delta_{1}$. We obtain (6).
c) $\bar{\delta}_{1}$ and $\bar{\delta}_{2} \notin \Delta_{1}$. We obtain (7).
7) $i_{1} \leqslant i_{2} \leqslant i \leqslant j_{2} \leqslant j_{1}$.
a) $\bar{\delta}_{1} \in \Delta_{1}$ or $\bar{\delta}_{2} \notin \Delta_{1}$ and $\bar{\delta}_{2}=\bar{\delta}_{1} \bar{x}_{2} ; \bar{x}_{2} \in \Delta_{1}$. We obtain (1).
b) $\bar{\delta}_{1} \notin \Delta_{1}$ and $\bar{\delta}_{2} \in \Delta_{1}$. We obtain (6).
c) $\bar{\delta}_{1}$ and $\bar{\delta}_{2} \notin \Delta_{1}$ and $\left\{\delta_{1}, \delta_{2}\right\}$ is linearly independent over Δ_{1}.

$$
\begin{equation*}
M \approx A_{1} / A_{i_{1}} \oplus e R / A_{i} \oplus e R /\left(A_{j_{2}} \oplus B_{j_{1}}\right) \oplus A_{1} / A_{i_{2}} \tag{8}
\end{equation*}
$$

8) $i_{1} \leqslant i_{2} \leqslant j_{2} \leqslant i \leqslant j_{1}$ or $i_{1} \leqslant i_{2} \leqslant j_{2} \leqslant j_{2} \leqslant i$. Since $e \operatorname{Re} E_{0} \subset E_{2}$, we obtain (1). We shall give a sample of proofs.
$1)-\mathrm{c})$. Put $\xi^{\prime}=\left(\bar{e}, \delta_{1}, 0\right)$ and $\eta^{\prime}=\left(0, \bar{e}, \bar{\delta}_{2}\right)$. Consider $\left\{\xi^{\prime}, \eta^{\prime \prime}=\left(0, \delta_{2}^{\prime}, \bar{e}\right)\right\}$, where $\bar{\delta}_{2}^{\prime}=\bar{\delta}_{2}^{-1} \notin \Delta_{1}$. If $\left\{\bar{\delta}_{1}, \bar{\delta}_{2}^{\prime}\right\}$ is lineraly independent, there exist a_{1}^{\prime} and \bar{a}_{2}^{\prime} in Δ_{1} such that $\bar{e}=\bar{\delta}_{1} \bar{a}_{1}^{\prime}+\bar{\delta}_{2}^{\prime} \bar{a}_{2}^{\prime}$ and $\bar{a}_{1}^{\prime} \bar{a}_{2}^{\prime} \neq 0$, since $\left[\Delta: \Delta_{1}\right]=2$. Then \bar{M} has a basis $\left\{\xi=\xi^{\prime}+\eta^{\prime \prime} \bar{a}_{2}^{\prime} \bar{a}_{1}^{\prime-1}=\left(\bar{e}, \bar{a}_{1}, \bar{a}_{2}\right)\right.$ and $\left.\eta=\eta^{\prime \prime}=\left(0, \bar{\delta}_{2}^{\prime}, \bar{e}\right)\right\}$, where $\bar{a}_{1}=\bar{a}_{1}^{\prime-1}$ and $\bar{a}_{2}=\bar{a}_{2}^{\prime} \bar{a}_{1}^{\prime-1}$. On the other hand, if $\bar{\delta}_{1}=\bar{\delta}_{2}^{\prime} \bar{a}_{2}^{\prime \prime}, \bar{M}$ has a basis $\left\{\xi=\xi-\eta^{\prime \prime} a_{2}^{\prime \prime}=\right.$ $\left(\bar{e}, 0, \bar{a}_{2}\right)\left(\bar{a}_{2}^{\prime \prime}=\bar{a}_{2}\right)$ and $\left.\eta=\eta^{\prime \prime}=\left(0, \bar{\delta}_{2}^{\prime}, \bar{e}\right)\right\}$. In either case, $\bar{a}_{2} \neq 0$ and define a homomorphism f of $M^{*}=A_{1} / A_{i} \oplus e R / A_{i_{2}} \oplus e R /\left(A_{j_{1}} \oplus B_{j_{2}}\right) \oplus A_{1} / A_{i_{1}}$ to D by setting

$$
\begin{aligned}
& f\left(\left(x+A_{i}\right)+\left(y+A_{i_{2}}\right)+\left(z+\left(A_{j_{1}} \oplus B_{j_{2}}\right)\right)+\left(w+A_{i_{1}}\right)\right) \\
& \quad=\left(x+y+A_{i}\right)+\left(a_{1} y+\delta_{2}^{\prime} z+w+\left(A_{i_{1}} \oplus B_{j_{1}}\right)\right)+\left(a_{2} y+z+\left(A_{i_{2}} \oplus B_{j_{2}}\right)\right),
\end{aligned}
$$

where x is in A_{1}, y and z in $e R$ and w in A_{1}.
Since $A_{i} \cap a_{1}^{-1}\left(A_{i_{1}} \oplus B_{j_{1}}\right) \cap a_{2}^{-1}\left(A_{i_{2}} \oplus B_{j_{2}}\right)=A_{i_{2}}\left(0^{-1}\left(A_{i_{1}} \oplus B_{j_{1}}\right)=e R\right)$ and $\delta_{2}^{\prime-1}\left(A_{i_{1}} \oplus\right.$ $\left.B_{j_{1}}\right) \cap\left(A_{i_{2}} \oplus B_{j_{2}}\right)=A_{j_{1}} \oplus B_{j_{2}}$ by Lemma 2, f is well defined. Assume that the latter term of the above equation is zero, i.e.,
0) $x, w \in A_{1}$.

1) $x+y \in A_{i}$.
2) $a_{1} y+\delta_{2}^{\prime} z+w \in A_{i_{1}} \oplus B_{j_{1}}$.
3) $a_{2} y+z \in A_{i_{2}} \oplus B_{j_{2}}$.

Since x is in $A_{1} \subset e J, y$ and z are in $e J$ by 1) and 3). Put $z=a+b ; a \in A_{1}$, $b \in B_{1}$. Since we may assume $a_{i} A_{1}=A_{1}, b$ is in $B_{j_{2}}$ by 3$)$. $\delta_{2}^{\prime} z=\delta_{2}^{\prime} a+\delta_{2}^{\prime}$ and $\delta_{2}^{\prime} b \in A_{j_{2}} \oplus B_{j_{2}} \subset A_{i_{1}} \oplus B_{j_{1}}$. Hence a is in $A_{j_{1}}$ by 2) and Lemma 2, and so z is in $A_{j_{1}} \oplus B_{j_{2}} \subset A_{i_{2}} \oplus B_{j_{2}}$. Therefore y is in $A_{i_{2}}$ by 3), since $\bar{a}_{2} \neq 0$, and so x in A_{i}, w in $A_{i_{1}}$. We have shown that f is a monomorphism. On the other hand, $|D|=n+i+i_{1}+i_{2}+j_{1}+j_{2}-2$ and $\left|M^{*}\right|=n+i+i_{1}+i_{2}+j_{1}+j_{2}-3=|D|-1$, where $e J^{n} \neq 0, e J^{n+1}=0$. Hence $f\left(M^{*}\right)=M$, for $M \supset \mathrm{~J}(D)$ and $f\left(M^{*}\right)=M$.

Now let $e J=A_{1} \oplus B_{1}$ be as before and $e J^{n} \neq 0$ and $e J^{n+1}=0$. We consider here together all cases: a) $B_{1}=0$, b) $\bar{A} \approx \bar{B}_{1}$ and c) $\bar{A}_{1} \approx \bar{B}_{1}$. We obtain the following three hollow modules;

1) $\left.\quad S_{i}(e)=e R /\left(A_{1} \oplus B_{i}\right), 2\right) \quad T_{i}(e)=e R / A_{i} \quad\left(\right.$ or $\left.e R / B_{j}\right)$ and 3) $U_{i j}(e)=$ $e R /\left(A_{i} \oplus B_{j}\right)$ (we denote those modules by $H(e)$).

Now S_{i} and $U_{i j}$ are R / J^{t}-modules, where $t=i$ and $\max \{i, j\}$, respectively. We shall give a weight for each hollow module H as follows; $\mathrm{w}(H)=$ $\left|\mathrm{J}(H) / \mathrm{J}^{2}(H)\right|$, i.e., $\mathrm{w}\left(S_{i}\right)=1, \mathrm{w}\left(T_{i}\right)=2(i \neq 1), \mathrm{w}\left(T_{1}\right)=1$ and $\mathrm{w}\left(U_{i j}\right)=2(i \neq 1$ and $j \neq 1$).

Lemma 5. Let $S(e), T(e)$ and $U(e)$ be as above. Then for a maximal submodule M of D below, we obtain the following:

1) $\quad D=S(e) \oplus S^{\prime}(e)$. $\quad M \approx S\left(f_{1}\right) \oplus S(e), S(e) \oplus S\left(f_{2}\right)$ or $U(e)$.
2) $\quad D=T(e) \oplus S(e) . \quad M \approx S\left(f_{1}\right) \oplus S\left(f_{2}\right) \oplus S(e)$ or $T^{\prime}(e) \oplus S(f)$.
3) $D=U(e) \oplus S(e) . \quad M \approx S\left(f_{1}\right) \oplus S\left(f_{2}\right) \oplus S(e), U(e) \oplus S(f)$ or $U^{\prime}(e) \oplus S(f)$, where e and f are primitive idempotents.

Proof. We can show the lemma from Lemmas 1 and 3 (consider D as R / J^{t}-modules for 3); $t \leqslant n$).

Assume that

$$
C=\sum_{i=1}^{p} \sum_{j=1}^{j_{i}} \oplus H_{j}\left(e_{i}\right),
$$

where $1=\sum e_{i},\left\{e_{i}\right\}$ is a set of mutually orthogonal primitive idempotents (and R is basic). Let M be a maximal submodule of C. Since $H_{j}\left(e_{i}\right) / J\left(H_{j}\left(e_{i}\right)\right) \approx$ $H_{j^{\prime}}\left(e_{i^{\prime}}\right) / J\left(H_{j^{\prime}}\left(e_{i^{\prime}}\right)\right)$ for $i \neq i^{\prime}, M=\sum_{i} \oplus M_{i}$, where $M_{k}=\sum_{j} \oplus H_{j}\left(e_{k}\right)$ for all k except some q and M_{q} is a maximal one in $\sum_{j} \oplus H_{j}\left(e_{q}\right)$. Put $\mathrm{w}(C)=\sum_{i} \sum_{j} \mathrm{w}\left(H_{j}\left(e_{i}\right)\right)$.

Lemma 6. Every submodule F of $D(q)$ is a direct sum of hollow modules H_{i} and $w(F) \leqslant 2 q(q \leqslant 3)$.

Proof. We shall show the lemma for a case $q=3$. The remaining parts are same. In order to prove the lemma, we may show that any maximal submodule M of C above with $t=\mathrm{w}(C) \leqslant 6$ has a similar direct decomposition and $\mathrm{w}(M) \leqq t$. Further, from the argument before Lemma 6, we may assume $e_{i}=e$, and show that

$$
M=\sum_{s=1}^{m} \oplus H_{s} \quad \text { and } \quad \mathrm{w}(M) \leqslant t
$$

We note that if $\mathrm{w}\left(H_{i}(e)\right)=2, \mathrm{~J}\left(H_{i}(e)\right)$ is a direct sum of two uniserial modules. If $H_{i}(e)=e R$ for some i, M contains a direct summand of C by [1], Theorem 2. Hence M satisfies $(\#)$ by induction on m and the above remark. We shall show (\#) by induction on $n\left(J^{n+1}=0\right)$. If $n=0$, then (\#) is trivial. We assume that every maximal submodule M satisfies (\#) for $k \leqslant n-1$. Start from

$$
D=H\left(e_{1}\right) \oplus H\left(e_{2}\right) \oplus H\left(e_{3}\right)
$$

$\mathrm{w}(D)=6$ provided no-one of $\left\{H\left(e_{i}\right)\right\}$ is uniserial, and $\mathrm{w}(D) \leqslant 5$ for other cases. Further, if no-one of $\left\{H\left(e_{i}\right)\right\}$ is isomorphic to $T_{i}(e)$, the $H\left(e_{j}\right)$ are R / J^{t}-modules for some $t \leqslant n$. Then we can show (\#) by the induction hypothesis. Hence assume $H\left(e_{1}\right)=T_{i}\left(e_{1}\right)$. We may further assume $e=e_{i}$ for all i from the remark before Lemma 6. Let M be a maximal submodule of D. Then from Lemma $4 M=\sum_{i=1}^{4} \oplus H\left(f_{i}\right) ; f_{i}=e$ if $H\left(f_{i}\right) \approx T$ or U, and $\mathrm{w}(D) \geqslant \mathrm{w}(M)$. Put $M_{0}=\sum_{f_{i} \neq e} \oplus H\left(f_{i}\right)$. First we remark that the M_{0} is an R / J^{t}-module, and hence $(\#)$ is satisfied for M_{0}. Further, if no-one of $\left\{H\left(e_{i}\right)\right\}$ is isomorphic to $T_{1}(e)=$ $e R / A_{1}$, the same for $\left\{H\left(f_{i}\right)\right\}$. Now let M be the maximal submodule in $C(\subset D)$ given in the beginning. Remarking the above fact (the case $H(e)=T_{1}(e)$), we have the following cases:

$$
\text { I) } \quad C=T_{i_{1}} \oplus T_{i_{2}}^{0} \oplus T_{i_{3}}, T_{i_{1}} \oplus T_{i_{2}} \oplus U_{k_{1} j_{1}} \text {, or } T_{i_{1}} \oplus U_{k_{1} j_{1}} \oplus U_{k_{2} j_{2}} .
$$

In the first case M contains a direct summand of C, and hence we have (\#) by Lemmas 1 and 3. For the remaining cases we can use Lemmas 1 and 4.
II) $C=T_{i_{1}} \oplus T_{i_{2}} \oplus S_{k_{1}} \oplus S_{k_{2}}$.
M contains a direct summand of C by [1], Theorem 2. Repeating this argument, we can reduce M to a case $M=M_{1} \oplus S_{k_{1}} \oplus S_{k_{2}}$ (M_{1} is a maximal in $T_{i_{1}} \oplus T_{i_{2}}$), $M=M_{2} \oplus T_{i_{2}} \oplus S_{k_{2}}$ (M_{2} is maximal in $T_{i_{1}} \oplus S_{k_{1}}$) or $M=M_{3} \oplus T_{i_{1}} \oplus T_{i_{2}}$ (M_{3} is maximal in $S_{k_{1}} \oplus S_{k_{2}}$). Therefore M satisfies (\#) by Lemma 5.
III) $\quad C=T_{i_{1}} \oplus U_{k_{1} j_{1}} \oplus S_{h_{1}} \oplus S_{h_{2}}$, or $T_{1} \oplus T_{1} \oplus U_{i_{1} j_{1}} \oplus S_{k_{1}}$.

We can make use of the same argument as in I).
IV) T_{i} does not appear in a direct summand of C, for instance $C=$ $U_{i_{1} j_{1}} \oplus U_{i_{2} j_{2}} \oplus U_{i_{3} j_{3}}$.
We can use the induction hypothesis.
V) Some of T, U and S are equal to zero.

We have the same result as above.
Thus we have
Theorem 2. Let R be a right artinian ring satisfying Condition II. Then the following conditions are equivalent:

1) Every submodule of any $D(3)$ is a direci sum of hollow modules.
2) $(*, 3)$ holds for any $D(3)$.
3) $e R$ has the structure given in Theorem 1 for each primitive idempotent e.

In this case every submodule of $D(i)$ is a direct sum of at most $2 i$ hcllow modules for $i \leqslant 3$.

Remark. If R is an algebra of finite dimension over a field K, then H . Asashiba has shown that (${ }^{*}, 3$) implies Condition II. Further, if K is algebraically closed, $\Delta(N)=\Delta=K$ for any submodule N of $e R$. If $\Delta(N)=\Delta$ for N, (*,3) implies Condition II by [2], Proposition 10.

Theorem 3. Let R be as above. Assume that $\Delta(N)=\Delta$ for any submodule N of $e R$. Then the following statements are equivalent :

1) Every submodule of a finite direct sum of any hollow modules is also a direct sum of hollow modules.
2) Every submodule of a direct sum of any three hollow modules is also a direct sum of hollow modules.
3) $(*, 3)$ holds for any $D(3)$.

In this case every submodule M of $D(i)$ is a direct sum of at most $2 i$ hollow modules.

The author believes that Theorem 3 will be true without assumption $\Delta(N)=\Delta$. However, he can not find a systematic proof. We have studied this problem in [3], §4, provided $J^{3}=0$. We shall extend this manner to the case $J^{4}=0$.

Proposition 4. Let R be a right artinian ring with $J^{4}=0$ and assume that Condition II. Then the following conditions are equivalent:

1) Condition I for any direct sum of hollow modules holds.
2) Condition I for any direct sum of three hollow modules holds.
3) $e R$ has the structure given in Theorem 1.

Proof. We may consider the proposition in case of $\Delta\left(A_{1}\right) \neq \Delta$. Under the assumption above, we obtain the diagram of submodules in $e J$ up to isomorphism:

Let $\left\{E_{i}\right\}_{i=1}^{4}$ be a family of the modules above. Put $D=\sum_{i=1}^{4} \oplus e R / E_{i}$. Then, since $\Delta\left(A_{2} \oplus B_{2}\right)=\Delta$, every maximal submodule M of D contains a non-trivial ditect summand of D by [1], Theorem 2 and [4], Corollary 3, except $D_{1}=e R / A_{1}$ $\oplus e R / A_{1} \oplus e R /\left(A_{2} \oplus B_{3}\right) \oplus e R /\left(A_{2} \oplus B_{3}\right)$. Let M be the maximal submodule such that $\bar{M}=M / \mathrm{J}(D)=\xi \Delta \oplus \eta \Delta \oplus \zeta \Delta$, where $\xi=\left(\bar{e}, \bar{\delta}_{1}, 0,0\right), \eta=\left(0, \bar{e}, \bar{\delta}_{2}, 0\right)$ and $\zeta=$ $\left(0,0, \bar{e}, \delta_{3}\right)$. If $\bar{\delta}_{1}$ or $\bar{\delta}_{3}$ is in Δ_{1}, M contains a direct summand of D. Assume $\bar{\delta}_{1}$ and $\bar{\delta}_{3} \notin \Delta_{1}$. If $\bar{\delta}_{2} \in \Delta_{1}$, there exist $\bar{a}_{2}, \bar{a}_{3}(\neq 0)$ in Δ_{1} such that $\bar{\delta}_{2} a_{2}^{-1}-\bar{\delta}_{2}^{-1} \bar{\delta}_{3} \bar{a}_{3}$ $=-\bar{\delta}_{1}$, for $\left[\Delta: \Delta_{1}\right]=2$. Then \bar{M} has a basis $\left\{\xi\left(-\bar{\delta}_{1}^{-1} \bar{\delta}_{2}^{-1}\left(a_{2}-\bar{\delta}_{3}^{-1}\right)+\eta \bar{\delta}_{2}^{-1}\left(\bar{a}_{2}-\right.\right.\right.$ $\left.\left.\bar{\delta}_{3}^{-1} a_{3}\right)+\zeta \delta_{3}^{-1} \bar{a}_{3}=\left(\bar{e}, 0, \bar{a}_{2}, \bar{a}_{3}\right), \eta, \zeta\right\}$. Then $M \approx e R / A_{2} \oplus e R / A_{2} \oplus e R /\left(A_{3} \oplus B_{3}\right)$ as in the proof of Lemma 4. Next assume $\bar{\delta}_{2} \notin \Delta_{1}$. If $\bar{\delta}_{1}=\bar{\delta}_{2}^{-1} \bar{a}_{2}, \bar{M}$ has a basis $\left\{\left(\bar{e}, 0, \bar{a}_{2}, 0\right), \eta, \zeta\right\}$. If $\left\{\bar{\delta}_{1}, \bar{\delta}_{2}^{-1}\right\}$ is linearly independent, there exist \bar{a}_{1}, \bar{a}_{2} in Δ_{1} with $\bar{a}_{1} \bar{a}_{2} \neq 0$ such that $\bar{e}=\bar{\delta}_{1} \bar{a}_{1}+\bar{\delta}_{2}^{-1} \bar{a}_{2}$. Then \bar{M} contains a basis $\left\{\left(\bar{e}, \bar{a}_{1}, \bar{a}_{2}, 0\right)\right.$, $\eta, \zeta\}$. Repeating this argument for η and ζ, we obtain a basis $\left\{\left(\bar{e}, \bar{a}_{1}, \bar{a}_{2}, 0\right)\right.$, $\left.\left(0, \bar{e}, \bar{b}_{1}, \bar{b}_{2}\right), \zeta\right\}$, where $\bar{a}_{2} \bar{b}_{2} \neq 0$. In this case we obtain also the same result. Therefore every maximal submodule of D is a direct sum of hollow modules. Finally, if D is a direct sum of m hollow modules ($m \geqslant 5$), M contains a nontrivial direct summand of D by [1], Theorem 2 and [4], Corollary 3. Hence we can prove the proposition by induction on m.
3. Right US-3 rings with (${ }^{*}, \boldsymbol{n}$). We have defined right US- 3 rings in [5], i.e., rings satisfying $(* *, 3)$. In this section we shall study the structure of right US-3 rings with $\left({ }^{*}, 1\right)$ or $\left({ }^{*}, 2\right)$.

Lemma 7. If a right $U S-3$ ring satisfies $\left({ }^{*}, 2\right)$ for any $D(2)$, then Condition I is satisfied for any $D(n)$.

Proof. Let $\left\{N_{i}\right\}_{i=1}^{n}$ be a set of hollow modules, and put $D=\sum_{i=1}^{n} \oplus N_{i}$. If $n \geqslant 3$, every maximal submodule M of D is of a form $M_{1} \oplus \sum_{i=3}^{n} \oplus N_{i}^{\prime}$, where M_{1} is a maximal submodule of $N_{1}^{\prime} \oplus N_{2}^{\prime}$ and the N_{i}^{\prime} are isomorphic to some in $\left\{N_{i}\right\}$. Hence M_{1} is a direct sum of hollow modules by (${ }^{*}, 2$).

Theorem 5. Let R be a right artinian ring. Then R is a right $U S-3$ ring and $\left({ }^{*}, 2\right)$ holds for any $D(2)$ if and only if, for each primitive idempotent e, eJ has the following structure:
I) $e J^{2}=0.1$ 1) $e J=A_{1} \oplus B_{1}$ with A_{1}, B_{1} simple or zero. 2) If $A_{1} \approx B_{1}$, $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$ and, for any simple submodule C in eJ, $A_{1} \sim C$, i.e., there exists a unit x in eRe such that $x C \subset A_{1}$.
II) $e J^{2} \neq 0$. 1) $e J=A_{1} \oplus B_{1}$ with A_{1} uniserial and B_{1} simple or zero. 2) $\Delta=\Delta(E)$ and 3) $x E=A_{i}$ or $x E=A_{i} \oplus B_{1}$, where E is a submodule of $e J$, A_{i} is a submodule of A_{1} and x is a unit in eRe.

Proof. If $(*, 2)$ and $(* *, 3)$ hold, $|e J| e J^{2} \mid \leqslant 2$ by [5], Proposition 1 , and

Condition I holds for any $\mathrm{D}(n)$ by Lemma 7. Hence $e R$ has the structure in Theorem 1. If $e J^{2}=0$, we are done. Assume that $e J^{2} \neq 0$, and $e J=A_{1} \oplus B_{1}$ with A_{1}, B_{1} uniserial. Put $A_{i}=A_{1} J^{i-1}$ and $B_{j}=B_{1} J^{j-1}$. If $A_{1} \approx B_{1},\left[\Delta: \Delta\left(A_{1}\right)\right]=2$ by [3], Theorem 2. Since $A_{2} \neq 0$ and hence $B_{2} \neq 0, e R / A_{1} \oplus e R / A_{1} \oplus e R /\left(A_{2} \oplus B_{2}\right)$ does not satisfy (${ }^{*}, 3$) from [4], Corollary 2. Hence $A_{1} \approx B_{1}$. If $A_{1} \neq 0$ and $B_{2} \neq 0$, any two modules of $\left\{A_{1}, A_{2} \oplus B_{2}, B_{1}\right\}$ are not related by \sim, which contradicts [5], Lemma 1 (note that $\Delta=\Delta(E)$ and $e J=A_{1} \oplus B_{1}$). Hence B_{1} (or A_{1}) is simple or zero. The remaining parts are clear from [3], Theorem 1. Conversely, if the case I) occurs, Condition I and (** 3) hold by [2], Theorem 12 and [3], Theorem 2 (note that $\Delta=\Delta(A)$ provided $A_{1} \approx B_{1}$). Assume the case II). Then (${ }^{*}, 2$) holds for any $D(2)$ by Lemma 3. Further, since $\Delta=\Delta(E)$, $N_{1} \oplus N_{2}$ satisfies ($* *, 2$) provided $N_{i}=e R / C_{i}$ and $C_{1} \sim C_{2}$ by [4], Corollary 1. If $\left\{E_{i}\right\}_{i=1}^{3}$ is a family of submodules in $e J$, then $E_{i_{1}} \sim E_{i_{2}}$ by the assumption 3). Hence $(* *, 3)$ holds for any $D(3)$.

Theorem 6. Let R be a right US-3 ring. Then $(*, 1)$ holds for any hollow module if and only if eR has one of the following structure for each primitive idempotent e :

1) $\left|e J / e J^{2}\right| \leqslant 1$.
2) $\left|e J / e J^{2}\right|=2$
i) $e J^{2}=0$
ii) $e J^{2} \neq 0, e J=A_{1} \oplus B_{1}$ has the structure as in Theorem 1 , where A_{1} is uniserial and B_{1} is simple $\left(A_{1} \approx B_{2}\right)$.

Proof. Since R is a right US-3 ring, $\left|e J / e J^{2}\right| \leqslant 2$ by [5], Theorem 2. Assume that (${ }^{*}, 1$) holds and $|e J| e J^{2} \mid=2$. Then $e J=A_{1} \oplus B_{1}$ by assumption; where A_{1} and B_{1} are hollow. If $\bar{A}_{1}=A_{1} / A_{1} J \approx \bar{B}_{1}, e J^{2}$ is a waist and $A_{1} \approx B_{1}$ by [5], Theorem 2. Hence, if $e J^{2} \neq 0, A_{1} J \subsetneq e J^{2}$. Then $e R / A_{1} J$ contains a non-trivial waist $e J^{2} / A_{1} J$ and $e J / A_{1} J$ is not hollow. Accordingly, eJ/ $A_{1} J$ is not a direct sum of hollow modules. Therefore $e J^{2}=0$. Next assume $e J^{2}$ $\neq 0$, and hence $A_{1} \approx B_{1}$. Then $\Delta\left(A_{1}\right)=\Delta\left(B_{1}\right)=\Delta$ and $A_{1} \nsim B_{1}$. From the proof of Theorem 5, we can show that either A_{1} or B_{1} is simple (note $\left|e J / e J^{2}\right|$ $=2$), say B_{1}. We shall show that A_{1} is uniserial. We know from the proof of [5], Theorem 2 that if $\Delta(C) \neq \Delta$ for some submodule C of $e J$, then $e J$ contains a non-trivial waist module $e J^{i}$ with $\left|e J^{i}\right| e J^{i+1} \mid=2$. Then (*, 1) does not hold from the observation of the case $e J^{2}=0$. Hence $\Delta(C)=\Delta$ for all C in $e R$. Now $\mathrm{J}\left(A_{1}\right)=A_{2} \oplus A_{2}^{\prime} \oplus A_{2}^{\prime \prime} \oplus \cdots$ from (${ }^{*}, 1$), where $A_{2}, A_{2}^{\prime}, \cdots$ are hollow (actually $A_{2}^{\prime \prime}=\cdots=0$ from [5], Theorem 2). Being $A_{2} \nsim B_{1}$ and $A_{2}^{\prime} \propto B_{1}$, we know that $A_{2} \sim A_{2}^{\prime}$. Let a_{2} be in $A_{2}-A_{2} J$. Since $\Delta\left(A_{2}\right)=\Delta$ and $A_{2} \sim A_{2}^{\prime}$, there exist a unit x in $e R e$ and j in $e J e$ such that $x A_{2}=A_{2}$ and $(x+j) A_{2}=A_{2}^{\prime}$. Put $a_{2}^{\prime}=(x+j) a_{2} \in A_{2}^{\prime}$. Since x is an isomorphism of $A_{2}, x a_{2} \notin A_{2} J, j a_{2} \in e J e e J \subset e J^{2}$ $=A_{2} J \oplus A_{2}^{\prime} \oplus \cdots$, which is a contradiction. Hence $A_{2}=A_{2}^{\prime}$. Repeating this
procedure, we know that A_{1} is uniserial. Therefore every submodule of $e J$ is one of the following: 1) A_{i}, 2) $A_{i} \oplus B_{1}$, and 3) $A_{i}(f)$, where $A_{i}=A_{1} J^{j-1}$ and $A_{i}(f)=\left\{a_{i}+f\left(a_{i}\right) \mid a_{i} \in A_{i}, f \in \operatorname{Hom}_{R}\left(A_{i}, B_{1}\right)\right\}$. Assume $A_{n} \neq 0$ and $A_{n+1}=0$. Then considering $\left\{A_{i}, A_{i}(f), B_{1}\right\} \quad(i<n), A_{i} \sim A_{i}(f)$. It is clear from [5], Lemma 1 that $A_{n} \sim A_{n}(f)$ or $A_{n}(f) \sim B_{1}$ (if $A_{n} \sim A_{n}(f), A_{n}=A_{n}(f)$ for eJe $A_{n}=0$). Therefore $e J$ has the structure in Theorem 5. Conversely, assume that $e R$ has the structure of the theorem. If $\left|e J / e J^{2}\right| \leqslant 1, e J^{2}$ is a waist, and hence, for any submodule $C \subset e J^{2}, J(e R / C)=e J / C$ contains a unique maximal submodule $e J^{2} / C$. If $e J^{2}=0,(*, 2)$ holds for any two hollow modules by [3], Proposition 3. It is clear for the last case to show that $(*, 1)$ holds.
4. Examples. 1. Let R be the algebra over a field K given in [3], Example 2. Then the lattice of submodules of $e R$ is the following:

where k are in K. Hence (**, 3) and (*, 2) are satisfied by Theorem 5.
2. Let R be a vector space over K with basis $\{e, f, a, b, c, d\}$. Define the multiplication among these elements as follows: $e^{2}=e, f^{2}=f, e f=f e=0$, $e a=a e=a, e b=b f=b, e c=c f=c, f d=d f=d, a b=b d=c$ and other products are equal to zero. Then the lattice of submodules of $e R$ is the following:

Then R is a right US-3 ring with Condition II'. However, eJ is indecomposable, but not hollow. Hence $\left({ }^{*}, 1\right)$ is not satisfied.
3. Let L, K be fields with $[L: K]=2$. Put

$$
R=\left(\begin{array}{lll}
L & L & L \\
0 & L & L \\
0 & 0 & K
\end{array}\right)
$$

Then R is a right US-3 ring with $(*, 1)$, but without $(*, 2)$ (note that $\Delta\left(e_{13} K\right)$ $=K \neq L=\Delta$).
4. Assume that a right artinian ring R has a decomposition $R=e R \oplus f R$ and $J^{2}=0$, where $\{e, f\}$ is a set of mutually orthogonal primitive idempotents. Then (*, 2) holds for any $D(2)$ by [3], Proposition 3. We shall give the complete list of such rings with $(* *, 3)$ and Condition II. If R is the ring mentioned above, $e J=A_{1} \oplus A_{2}$ and $f J=B_{1} \oplus B_{2}$, where the A_{i} and the B_{i} are simple or zero. We always assume, in the following observation, that
$\alpha)$

$$
\left(\begin{array}{cc}
T_{1} & A_{1} \oplus A_{2} \\
B_{1} \oplus B_{2} & T_{2}
\end{array}\right)
$$

means that T_{1} and T_{2} are local right artinian rings, the A_{i} (resp. the B_{i}) are right T_{2} and left T_{1} (resp. right T_{1} and left T_{2}) simple module, $\left(A_{1} \oplus A_{2}\right) J\left(T_{2}\right)$ $=J\left(T_{1}\right)\left(A_{1} \oplus A_{2}\right)=0$ (the same for $\left.B_{1} \oplus B_{2}\right)$, and $\left(A_{1} \oplus A_{2}\right)\left(B_{1} \oplus B_{2}\right)=\left(B_{1} \oplus B_{2}\right)$ $\left(A_{1} \oplus A_{2}\right)=0$.
β) Δ means a division ring.
万) S means a local serial ring.
$\delta) \quad L$ means the following local ring:

$$
J(L)=A_{1} \oplus A_{2}, A_{1} \approx A_{2} \text { as right } L \text {-modules }
$$

$\xi) \quad\left[L / J(L): L / J(L)\left(A_{1}\right)\right]=2$, and for any simple L-module A_{1}^{\prime} in $J(L)$, there exists a unit α in L such that $A_{1}^{\prime}=\alpha A_{1}$ (see [1] for such a ring).
i) $A_{1} \approx A_{2} \approx \overline{e R}$ and $B_{1} \approx B_{2} \approx \overline{f R}$. Then $e J f=f J e=0$. Hence

$$
R=\left(\begin{array}{cc}
L_{1} & 0 \\
0 & L_{2}
\end{array}\right)
$$

ii) $A_{1} \approx A_{2} \approx \overline{f R}, B_{1} \approx B_{2} \approx e \bar{R}$. Then

$$
R=\left(\begin{array}{cc}
\Delta_{1} & A_{1} \oplus A_{2} \\
B_{1} \oplus B_{2} & \Delta_{2}
\end{array}\right)
$$

where the $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$ satisfy $\left.\xi\right)$ as $\Delta_{1}-\Delta_{2}\left(\right.$ resp. $\left.\Delta_{2}-\Delta_{1}\right)$ bimodules.
iii) $A_{1} \approx A_{2} \approx B_{1} \approx B_{2} \approx \overline{e R}$ (resp. $\approx \overline{f R}$). Then

$$
R=\left(\begin{array}{cc}
L_{1} & 0 \\
B_{1} \oplus B_{2} & \Delta_{2}
\end{array}\right) \quad\left(\text { resp. } R=\left(\begin{array}{cc}
\Delta_{1} & A_{1} \oplus A_{2} \\
0 & L_{2}
\end{array}\right)\right)
$$

where the $B_{i}\left(\right.$ resp. $\left.A_{i}\right)$ satisfy ξ) as $\Delta_{2}-L_{1} / J\left(L_{1}\right)\left(\right.$ resp. $\left.\Delta_{1}-L_{2} / J\left(L_{2}\right)\right)$ bimodules.
iv) $A_{1} \approx A_{2} \approx B_{1} \approx \bar{e} \bar{R}$ and $B_{2} \approx \overline{f R}$.

Then

$$
R=\left(\begin{array}{cc}
\Delta_{1} & A_{1} \oplus A_{2} \\
B_{2} & S_{2}
\end{array}\right)
$$

where the A_{i} are similar to iij).
v) $A_{1} \approx A_{2}$ and $B_{1} \approx B_{2}$. Then

$$
R=\left(\begin{array}{cc}
S_{1} & A_{2} \\
B_{2} & S_{2}
\end{array}\right)
$$

vi) Other cases. We may put $A_{i}=0$ or $B_{i}=0$ in the above. The right serial rings appear in v) by setting $S_{2}=\Delta_{2}$ or $S_{i}=\Delta_{i}$ and $B_{2}=0$ (or $A_{2}=0$).

References

[1] M. Harada: On lifting property of direct sums of hollow modules, Osaka J. Math. 18 (1980), 783-791.
[2] -: On maximal submodules of a direct sum of hollow modules I, Osaka J. Math. 21 (1984), 671-677.
[3] —: On maximal submodules of a direct sum of hollow modules III, Osaka J. Math. 22 (1985), 81-98.
[4] M. Harada and Y. Yukimoto: On maximal submodules of a direct sum of hollow modules IV, Osaka J. Math. 22 (1985), 321-326.
[5] M. Harada: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181200.

> Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558
> Japan

