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GENERALIZATIONS OF NAKAYAMA RING II

MANABU HARADA

(Received December 18, 1984)

We have defined (right US-3) rings satisfying (**, 3) in [5], which are rings
generalized from Nakayama ring (right generalized uni-serial rings). As stated
in [5], we shall give, in this note, another generalization of Nakayama rings,
which is related to the condition (*, 3), and give a characterization of those
rings.

1. Preliminary results. Let R be a ring with identity. We assume
always throughout this note that R is a right artinian ring and every module is
a right unitary i?-module M with finite length, which we denote by \M\. We
have studied the following conditions in [3] and [5]:

(**, n) Every (non-zero) maximal submodule of a direct sum D(n) of n non-

zero hollow modules contains a non-trivial direct siimmand of D(ή).

(*,//) Every {non-zero) maximal submodule of the D(n) is also a direct sum

of hollow modules.

We shall study mainly, in this note, rings satisfying (*, 3) for any direct sum of
three hollow modules. We shall use the same notations as given in [3] and [5].

Let e be a primitive idempotent in R.

CONDITION II [3]. \eJ/eJ2\ < 2 for each e, where J is the Jacobson radical

ofR.
In [3] we have given the structure of rings which satisfy Condition II and

CONDITION I. Every submodule in any direct sum of (three) hollow modules

is also a direct of hollow modules.

However, checking carefully each step, we know that we utilize only (*, 3) for
any direct sum of three hollow modules. Thus we have the following theorem.

Theorem 1. Let R be a right artinian ring. Assume that (*, 3) for any
direct sum of three hollow modules and Condition II hold. Then for each primi-
tive idempotent e in R, we have the following properties:

1) eJ=Aλ®Bly where Ax and Bx are uniserίal modules. Further, if
i), aAι=B1for some unit a in eRe.
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2) For every submodule N in ej, there exists a trivial submodule
of ej and a unit γ in eRe such that N=(γ{Ai®BJ)i where Ai=A1J

i~1dA1 and

3) If A^Bl9 then A(i4f-®5f.) = A and [Δ: Δ ( Λ θ β y ) ] = 2 provided
further A{Aι)=A{Ai)=A{Ai®BJ) (i<j) and Δ(β1)
If A^Bly then A(N)=Afor any submodule N in ej.

Here we shall recall the notations above. Put A=eRe=eRe/eJe. For
any right ideal A in eRy A(A)= {x\ GΔ, (x+j)AdA for some element/ in eje}.
Then A(A) is a subdivision ring of Δ and [Δ: Δ(^4)] means the dimension of
Δ over A(A) as a right Δ(^ί)-vector space.

2. Rings with (*, 3). We shall study, in this section, the converse of
Theorem 1. We assume that R has the structure given in Theorem 1, unless
otherwise stated.

We have given the following lemma in [3], provided Condition I I " in [3]
is satisfied. We shall show in the same manner that the lemma is valid under
a weaker condition.

L e m m a 1 ([3]). Let R be a ring whose structure is given as in Theorem 1,

and e a primitive idempotent. Let {£,}?=i be a family of right ideals in eR and

D^JlQeR/Ei. Then, if Δ(-41) = Δ(β 1)=Δ, D satisfies (*, n)
ί = l

Proof. We shall quote the same argument as given in the last part of § 3
in [3], and hence use the induction on the nilpotency of/. If EjdEj for some
i, j , every maximal submodule of D contains a direct summand of D by assump-
tion and [3], Lemma 27 (cf. the proof of Lemma 3 below). By induction we
may consider the following case:

1i2<"'<iPy ji>J2> - >jp and ΰ Σ

Assume it^jt> h+i^jt+i Let M be a maximal submodule of D. We may
i

assume that M = M/J(D) ((zD=DIJ(D)) has a basis {(0, —,0, *, kh —, 0)}{.
Since A(A1) = A(B1)=A9 we can take ks with ksA1=A1 for s<* and krB1=B1

for r>t. Set M* = AJAi®Σ®eRI(Aiβ®Bjt_ι)®B1IBjp, (fiio=O), then \M*\

= IDI — 1. Define a homomorphism / of M * to D by setting

= (x+yι+Al)+(ekιyι+yt+{All@BJι)

+(ek2y2+y3+(Ai2ΘBJ2))+ +(ektyt+s+(Ait®B,f)),

where xeAu ys^eR and *€=£,. A,β®BJί_1c:A,β_1®Bjm_1, k.{
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=Aia®BJa_^Aia®BJa for α φ ί + 1 , and kt+1(Ait+iφBJt)akt+1(Ait+i®BJtJ=
Ait+lφBjί+l. Hence / is well defined. Assume that the right hand side of
the above is zero. Since x^Ax and z^Bly ys^ej for all s. Put yr— yrι+yf2,
where yrl is in A1 and yr2 in Bx. Now x+yγ = x+yn+ yl2^Ah x^Aλ and
so y12=0. ek1(y11+y12) + (y2L+y22)^Ail®BJi. Since k^czA^ y22£ΞBJi.
Repeating those arguments, we assume by induction that yι+ι2^Bjι for l<tf

<ί. Put w^ekt^yt^+y^2)+(y^+n+yt^+12)^Ai/®Bj/. Since ekt' is an
isomorphism of ej, ektfBjtf_l(zAjt,_ι®Bjt,_1. Now Bjt'_x(ZBj, and ktΆλςz.Aλ.
Let π2: eJ->B1 be the projection. Then BjΊ'^π2(w) = π2(ekt'yt'2+yt'+12) =
7Γ2(e£,/.)V2)+.}V+i2 Since π2{ekt'yt'2)^BJt,, yt/+12&Bjt,. Consider next from the

bottom side. ekp(ypl+yp2)+z^Aip(BBjp. Since kpB^Bi and x<=Bly ypl^Aip

from the same argument above (take πλ: eJ->A^). Repeating those arguments
inductively, we obtain ysl^Ais for s^t+1. Consider ekί+1(yt+11+yt+12) +
(yt+2i+yt+22)^Ait+i®BJt+i. Sinceyt+12(ΞBJtJ yt+u^Ah+1 and it+1>jt+ujt>jt+lf

yt+22<=BJt+i. Similarly, from ekt(yn+yt2)+(yt+n+yt+12)<=Ait®BJn ytl(=Air

Combining the above two steps, we know that / is a monomorphism. Hence

It is remained for us, from Lemma 1, to study a case of Δ(^4χ)ΦΔ, i.e.,
A^B^ We have shown in [3] that if a right artinian ring R has the structure
in Theorem 1, then (*, n) is satisfied for any D(ri)y provided J3=0. We shall
show that (*, 3) is satisfied without the assumption J3=0.

Lemma 2 ([3], Lemma 24). We assume the above situation. Let δ be
an element in eRe such that B^A(A1). Then π2δAi—Biy where π2: eJ-*B± is
the projection.

Proof. Since [Δ: Δ(Λ)]^2, S ^ + c ^ V , the ai^A(A1) and aA1

Set S=a1-\-a2a2-{-j; a^czA^j^eJe. Since jAidAi+ι(BBi+ly π2δAi~Bi.

Lemma 3. Assume that R has the structure 1), 2) and 3) given in Theotem
1. Then (*, 2) isfulfiledfor any Z>(2).

Proof. The assumption 2) in Theorem 1 gives us a guarantee of (*, 1)
for any hollow module. Let eJ=Aι@Bι. If ^ φ i ? ! , Δ(C)=Δ for any sub-
module C of eR by assumption. Then we have shown by Lemma 1 that (*, 2)
is fulfiled for any D{2). Assume that AX^BX. Then A=A(A1)®aA(A1),
where a is the element given in 1). Set D=eRlNi@eRjN2, where the Ns

are submodules of eR. We shall show the lemma by induction on the nilpo-
tency of / . If 7 3 = 0 , we are done in [3], §4. Assume e/*Φ0 and eJn+1=0.
If NiZDeJ" for ί = l , 2, eRjNi is a hollow i?//w-module. Hence we may assume
that Ni^Ai—A^J1'1 by induction. Let M be a maximal submodule of Z),
and put D = DI](D) Z)M = MI](D). We may assume that M has a basis
{(e-f-J(Z)), δ+J(Z))}, where δ is a unit element in eRe (it is sufficient to show
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the lemma in case R is basic; see [2] and [3]).
i) N2=Ak®Bji (we may assume ft<ι [3]) a) i<,k<i. F=A{ Π δ - 1 ( Λ θ

Bj) = δ-\δAin(Ak®Bj)). a)-i) If S G Δ 1 = Δ ( Λ ) , F=Ak (we may assume
SA^AJ. a)-ii). If BζAu F=Aj by Lemma 2. Put M*=eRIAk®A1/Ai®
BJBj for the case a-i). Define a homomorphism / of Λf * to D by setting

where Λ? is in eR, y in Ax and 2: in i^. Then / is well defined. It is easy to
check t h a t / is a monomorphism, since SAι=A1. Put M* = eRIAj(BA1IAi(B
AjAk for the case a)—ii). Define a homomorphism/ of Λf* into D by setting

where x is in eR and 3;, # are in Aι% We can show from the fact: SφΔx, that/
is a monomorphism (cf. the proof of Lemma 4 below). Hence M^> Λf*, since
| M | = | M * | and/(M*)cM.

b) k*ζi<j. If SeΔi (resp. φΔO, F = ^ t (resp. F=Aj). We obtain
the same result as in a-ii) for F=Aj. If F=Ah put M*=eRIAi(BA1IAk(B
BJBj. Then Λf « M * as above.

c) &< / </. Since eReAi<Z.Ak@Bh M contains a direct summand of D.
ii) N2=Aj, i^j. If δφΔx, 8 ^ 0 ^ = 0 and M is isomorphic to eR®

Aj. If SeΔx, SAiCZAj. Hence we obtain the same situation as in

L e m m a 4. (*, 3) is satisfied for any three hollow modules.

Proof. We may assume Δ(-41)=Δ1ΦΔ by Lemma 1. From induction
on the nilpotency of ](R)y it is sufficient to study the case:

Eo = Ah Eλ = Aiχ®Bh and E
2

f°r ^ = 1 , 2, and ΰ = Σ Φ ^ J ? / £ ι ( Here Bjk may be equal to zero
(cf. [3], §3).

If Bj=BJ2=Qy D satisfies (*, 3) by [4], Corollary 3. Let M be a maximal
submodule of D. If Λf contains a non-zero direct summand Dx of 2), Λf=
Dι@M1 where Mλ is a maximal submodule of Nλ@N2\ the iVf are isomorphic
to some of {eRfEi}]^. Then M1 is a direct sum of hollowr modules by Lemma
3, and hence so is Λf. Therefore we consider Λf not containing a direct sum-
mand of D. Put D=DIJ(D)Z)M=MIJ(D), and D=(έA, eA, eA). Then the
above M has a basis {(e, Έl9 0), (0, e, S2)}, where B{ are in Δ and S 1δ 2φ0 (cf. [3]).

We consider the following situation:

a) S2eΔi. Then S2E2aE1. Hence Λf contains a direct summand of D
by [1], Theorem 2. (1)
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b) S^ΔiandδaΦΔ!. M^AjA^eR/A^eRKAj^B^φAJA^ (2)

c) ^and^φΔx. M~A1IAi®eRIAia®eRI(Ajl®Bh)®A1IAil. (3)

2) i^i^^jΊ^jt.

a) Sx or δ 2 eΔj . We obtain (1).

b) Sj and S 2 $ ^ . We obtain (3).

3) h<i2<i<ji<j2 Since E1^>E2'ΏE3. We obtain (1) by [4], Corollary 3.

4) *Ί < ii < h < ./2 Since eReE2 dEu we obtain (1).

5) i^i^tz^jz^jΊ.

a) δ\ and S2eΔχ. We obtain the same situation as in the proof of Lemma

1. i.e., M^AJA^eRIA^eRKA^φB^ΘBJB^ (4)
b) 5 1 eΔ 1 and5 2 φΔ 1 . M ~A1IAi®eRIAii®eRI(AJ2®Bji)®A1IAi2. (5)
c) δ 1 φΔ 1 andδ 2 eΔ 1 . M^AιIAi®eRIAJ2®eRI(Ai2e>Bji)®A1IAii. (6)
d) 51and52φΔ1. M**A1IAi®eRIAi2®eRI(A, 2®Bj1)®A1IAil. (7)
6) h^i^t^j^jΊ.

a) SjGΔi. We obtain (1).

b) S^ΔiandδgGΔx. We obtain (6).

c) §! and δ2 φ Δlβ We obtain (7).

7) h<i2<i<j2<ji.

a) SiSΔi or S2φ Δx and S a ^ S ^ ; ^ G ^ . We obtain (1).

b) Έ1$A1 and S2GΔ lβ We obtain (6).

c) Sx and S2φΔ x and {Bly S2} is linearly independent over Δx.

M aAJA^φeRIA&eRliAj&BύφAJA,,. (8)
8) ix < ί2 < j 2 < ί < jΊ or iΊ < i2 < j2 < y2 < /. Since eReE0 c £2, we obtain (1).

We shall give a sample of proofs.

l)-c). Put ξ'=(e, δ1( 0) and , ' = ( 0 , e, S2). Consider {ξ', v"=(0, %, e)},

where δ ^ S Γ ^ Δ j . If {δj, §£} is lineraly independent, there exist a{ and δ2

in Δx such that i ^ S ^ ί + S ^ and Λ1Λ2ΦO, since [Δ: Δ J = 2 . Then ikf has a

basis {ξ=ξ'+v"a'2a'Γ1=(e, au a2) and ̂ = i 7

/ / = ( 0 , δ$, 5)>, where a1=a{"1 and

Λ2=Λ2Λί"1. On the other hand, if S1=Sja^, M has a basis {ξ=ξ—v"a'2' =

(i, 0, ez2) (fl2/ = Λ2) and 77=7/'= (0, 5J, β)}. In either case, S2ΦO and define a

homomorphism/ of M*=A1IAi®eRIAi2®eRI(AJl®BJ2)®A1IAij to Z) by setting

where Λ; is in Aly y and ^ in eR and eϋ in Aλ.

Since i4|.ΠαΓ1(-4l 1θfiy1)Παί1(iί l a θβy a )=i4 ί a (0- 1(^ ί lθ5y J) = ^ ) and 8'2-\An®
B^){λ(Ai2®BJ2)=A^@BJ2 by Lemma 2, / i s well defined. Assume that the
latter term of the above equation is zero, i.e.,

0) x,

1) x

2)
3) a2y+zEΞAi2®BJ2.
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Since x is in AλdeJy y and z are in ej by 1) and 3). Put z=a-\-b\
b^Bx. Since we may assume aiA1=Aly b is in Bj2 by 3). 82z=Sf

2a+82 and
8'2b^Aj2(BBj2ClAiχ®B^. Hence a is in Ajχ by 2) and Lemma 2, and so z is
in Aji®Bj2aAi2@Bjr Therefore y is in 4̂, 2 by 3), since ^ΦO, and so x
in Aiy w in A{ . We have shown that / is a monomorphism. On the other
hand, \D\=n+i+i1+i2+j1+j2-2 ^nd \M*\=n+i+i1+i2+j1+j2-3=\D\-ly

where ejn Φθ, eJn+1=0. Hence/(M*)=M, for M 3 J(Z>) and/(M*)=M.

Now let eJ=Aι®Bι be as before and eJn^0 and e/ M + 1 =0 L We consider
here together all cases: a) B1=0y b) A^BX and c) A^By We obtain
the following three hollow modules

1) Si(e)=eRI(A1®Bi)9 2) Ti(e)=eRIAi (or eR/Bj) and 3) Uij{e) =
eRj{Ai®Bj) (we denote those modules by H(e)).

Now Si and £/ί7 are i?/J'-modules, where ί = / and max {i,j}> respectively.
We shall give a weight for each hollow module H as follows; w(H) =
I ](H)ir(H)\, i.e., w(S, ) = l , w(T,)=2 (ίφl), w(Γ 1)=l and w(C/0)=2 (iΦl and

Lemma 5. Let S(e), T(e) and U(e) be as above. Then for a maximal
submodule M of D below, we obtain the following:

1) D=S(e)®S'(e). M~5(^)0%), S(e)®S(f2) or U(e).
2) D=T{e)®S{e). M^S{fι)®S{f2)®S{e) or T\e)®S{f).
3) D=U(e)®S(e). M~S{fι)®S(f2)®S(e), U(β)®S(J) or U'(e)®S(f)y

where e and f are primitive idempotents.

Proof. We can show the lemma from Lemmas 1 and 3 (consider D as
^//'-modules for 3); t<n).

Assume that

C = Σ Σθfl>(«ι),
* = 1 j = l

where l = Σ ^ ή fe} is a set of mutually orthogonal primitive idempotents (and

R is basic). Let M be a maximal submodule of C. Since H)(ei)IJ(H'/£,-))4*
HΛei')IΛHΛei')) f o r W > Λf=ΣΘM,., w h e r e Λ f Λ = Σ θ ί 0 ( ^ ) for all β except

« i

some ^ and Λfff is a maximal one in Σ©ff ; (^). Put w(C) = Σ Σ w ( % )).

L e m m a 6. Every submodule F of D(q) is a direct sum of hollow modules

Proof. We shall show the lemma for a case q=3. The remaining parts
are same. In order to prove the lemma, we may show that any maximal sub-
module M of C above with £=w(C)<6 has a similar direct decomposition and
w(M)^t. Further, from the argument before Lemma 6, we may assume e{=ey

and show that
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M = Σ Θ J Ϊ i and w(M)<t (#).

We note that if w(Hi(e))=2, J(/f, (̂ )) is a direct sum of two uniserial modules.

If Hi(e)=eR for some iy M contains a direct summand of C by [1], Theorem 2.

Hence M satisfies (#) by induction on m and the above remark. We shall

show (#) by induction on n (Jn+1=Q). If n=09 then (#) is trivial. We as-

sume that every maximal submodule M satisfies (#) for &<w— 1. Start from

D =H(ei)φH(e2)ΘH(e3).

w(Z))=6 provided no-one of {i/(e, )} is uniserial, and w(D)<5 for other cases.

Further, if no-one of {H{βi)} is isomorphic to Ti(e), the H(βj) are i?//'-modules

for some t^n. Then we can show (if) by the induction hypothesis. Hence

assume H{e1)=Ti{e^). We may further assume e=βi for all i from the re-

mark before Lemma 6. Let M be a maximal submodule of D. Then from

Lemma 4 M = Σ 0 f f ( / , ) ; / ί = ί if H(f{)**T or [/, and w(D)>w(M). Put
ί lί =

Λfo=ΣΘ-Hr(/i). First we remark that the Mo is an i?//'-module, and hence

(if) is satisfied for Mo. Further, if no-one of {if(#,-)} is isomorphic to Tx{e) =

eR/Aly the same for (H(fi)}. Now let M be the maximal submodule in C(dD)

given in the beginning. Remarking the above fact (the case H{e) = TΊ(^)),

we have the following cases:

I) C = Tiχ®Ti2®Th, Tiχ®Ti2θUkιh, or Tit®Uklh®Uk2J2.

In the first case M contains a direct summand of C, and hence we have (if)

by Lemmas 1 and 3. For the remaining cases we can use Lemmas 1 and 4.

II) 0=7^07*0^0^.
M contains a direct summand of C by [1], Theorem 2. Repeating this argu-

ment, we can reduce M to a case M=Mι®Sk^®Sk2 (M1 is a maximal in

7^0Γ ί a ), M = M 2 0 7 1

ί a 0 S i k a (M2 is maximal in 7^05^) or M=Mz®Tiχ®Ti2

(M3 is maximal in Ski®Sk2). Therefore M satisfies (if) by Lemma 5.

III) C=Γ/ l0C/ j k ly ]©SAl© ίS'Aa, or ^ © ^ © C / ^ © ^ .

We can make use of the same argument as in I).

IV) T{ does not appear in a direct summand of C, for instance C =

t/^θt^θ £/,,,,.
We can use the induction hypothesis.

V) Some of 71, C/ and S are equal to zero.
We have the same result as above.

Thus we have

Theorem 2. Let R be a right aitίnian ring satisfying Condition II. Then
the following conditions are equivalent:

1) Every submodule of any D(Z) is a direct sum cf hollow modules.

2) (*, 3) holds for any D(3).
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3) eR has the structure given in Theorem 1 for each primitive idempotent e.
In this case every submodule of D(i) is a direct sum of at most 2i hcllow modules

fori^Z.

REMARK. If R is an algebra of finite dimension over a field K, then H.
Asashiba has shown that (*, 3) implies Condition II. Further, if K is alge-
braically closed, A(N)=A=K for any submodule N of eR. If A(N) = A for N,
(*, 3) implies Condition II by [2], Proposition 10.

Theorem 3. Let R be as above. Assume that A(N) = A for any submodule
N of eR. Then the following statements are equivalent :

1) Every submodule of a finite direct sum of any hollow modules is also a
direct sum of hollow modules.

2) Every submodule of a direct sum of any three hollow modules is also a
direct sum of hollow modules.

3) (*, 3) holds for any D(3).
In this case every submodule M of D(i) is a direct sum of at most 2i hollow

modules.

The author believes that Theorem 3 will be true without assumption

Δ(iV) = Δ. However, he can not find a systematic proof. We have studied

this problem in [3], §4, provided J3=0. We shall extend this manner to the

Proposition 4. Let R be a right artinian ring with J4=0 and assume that

Condition II . Then the following conditions are equivalent:

1) Condition I for any direct sum of hollow modules holds.

2) Condition I for any direct sum of three hollow modules holds.

3) eR has the structure given in Theorem 1.

Proof. We may consider the proposition in case of A(A1)4ZA. Under

the assumption above, we obtain the diagram of submodules in ej up to iso-

morphism :

A1φB2

A2(BB2 i
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Let {Ei}Uι be a family of the modules above. Put fl=Σ0βψt . Then,
i = l

since Δ(^42φi?2)=Δ, every maximal submodule M of D contains a non-trivial
direct summand of D by [1], Theorem 2 and [4], Corollary 3, except D1=eR/A1

®eRjAι®eRI{A2@Bz)®eRj{A2@Bz), Let M be the maximal submodule such
that M=MI](D)=ξA®ηA®ζAy where f = ( i , Έly 0, 0), v=(0, e, δ2, 0) and ζ=
(0, 0, ey δ3). If Sx or δ3 is in Δ1? Λί contains a direct summand of D. Assume
Si and S3$Aj. If S2eΔj, there exist a2y β3 (Φ0) in Δx such that δ ^ 1 — δ ϊ 4 ? ^
= —Si, for [Δ: Δ J = 2 . Then JBf has a basis {£(-δr1δΓ1(tf2-Si'1)+^1(tf2-
Έϊ%)+ζ$ϊ% = (ϊ, 0, Λ2, a3), 77, ?}. Then M « eRIA2®eRjA2@eRl(Az®Bz) as
in the proof of Lemma 4. Next assume δ 2 $ Δ^ If Si=δi"1^2, M has a basis
{(£, 0, tf2, 0), η, ζ}. If {δi, δjfx} is linearly independent, there exist au a2 in A}

with ^ 2 Φ θ such that i=δiΛ1+δi"1^2 Then M contains a basis {(i, «!, β2, 0),
97, f}. Repeating this argument for η and ξ", we obtain a basis {(£, ^ , 2̂> 0),
(0, ey bly b2), ζ}, where ^ 2 ϊ 2 φ θ . In this case we obtain also the same result.
Therefore every maximal submodule of D is a direct sum of hollow modules.
Finally, if D is a direct sum of m hollow modules (m>5), M contains a non-
trivial direct summand of D by [1], Theorem 2 and [4], Corollary 3. Hence
we can prove the proposition by induction on m.

3. Right US-3 rings with (*, n). We have denned right US-3 rings in
[5], i.e., rings satisfying (**, 3). In this section we shall study the structure
of right US-3 rings with (*, 1) or (*, 2).

Lemma 7. // a right US-3 ring satisfies (*, 2) for any D(2), then Condi-
tion I is satisfied for any D(n).

Proof. Let {N^Li be a set of hollow modules, and put Z)=
i = 1n

If w>3, every maximal submodule M of D is of a form M i θ Σ θ Λ f ί , where
31 = 3

Mx is a maximal submodule of N{(BN2 and the N'i are isomorphic to some in
Hence M1 is a direct sum of hollow modules by (*, 2).

Theorem 5. Let R be a right artinian ring. Then R is a right US-3 ring
and (*, 2) holds for any D{2) if and only if, for each primitive idempotent e} ej
has the following structure:

I) eJ
2=0. 1) eJ=Aι@Bι with Aly Bλ simple or zero. 2) If Ax^Bly

[Δ: A(A1)]=2 and, for any simple submodule C in ejy Ax^Cy i.e., there exists a
unit x in eRe such that xC<Z.Aλ.

II) <?/2Φθ. 1) eJ=A1®B1 with Aγ uniserial and B1 simple or zero.
2) A=A(E) and 3) xE=A{ or xE=Ai®Bly where E is a submodule of ejy

Aι is a submodule of A1 and x is a unit in eRe.

Proof. If (*, 2) and (**, 3) hold, \eJ/eJ2\ < 2 by [5], Proposition 1, and
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Condition I holds for any Ό(n) by Lemma 7. Hence eR has the structure in
Theorem 1. If eJ2=0y we are done. Assume that tf/2Φ0, and eJ—Axξ&Bx with
AXy Bx uniserial. Put A^AJ1"1 and Bj=BxJ

j-1. If Ax^BXy [Δ: A{AX)]=2
by [3], Theorem 2. Since A2Φ0 and hence B2*0y eRIAx®eRjAx®eRI(A2@B2)
does not satisfy (*, 3) from [4], Corollary 2. Hence Ax^pBx. If ^ Φ 0 and
5 2 φ 0 , any two modules of {AXy A2@B2y Bx} are not related by ~ , which con-
tradicts [5], Lemma 1 (note that A=A(E) and eJ=Ax®Bx). Hence JBJ (or Ax)
is simple or zero. The remaining parts are clear from [3], Theorem 1. Con-
versely, if the case I) occurs, Condition I and (**, 3) hold by [2], Theorem 12
and [3], Theorem 2 (note that Δ=Δ(^4) provided AX^BX). Assume the case
II). Then (*, 2) holds for any D(2) by Lemma 3. Further, since A=A(E)y

iV10iV2 satisfies (**, 2) provided N^eR/Ci and CX~C2 by [4], Corollary 1.
If {#,}?=! is a family of submodules in ej, then E^r^E^ by the assumption 3).
Hence (**, 3) holds for any D(3).

Theorem 6. Let R be a right US-3 ring. Then (*, 1) holds for any hollow
module if and only if eR has one of the following structure for each primitive idem-
potent e:

1) \eJlep\<l.
2) \eJleJ2\=2
i) eβ=0

ii) £/2Φ0, eJ=Axξ&Bx has the structure as in Theorem 1, where Ax is uni-
serial and Bx is simple {Ax

Proof. Since R is a right US-3 ring, | ς //ς/ 2 |<2 by [5], Theorem 2.
Assume that (*, 1) holds and \eJleJ2\=2. Then eJ=Aι®Bι by assumption,
where Ax and Bλ are hollow. If A1=AJA1J^B1, ej2 is a waist and Aλ^Bx

by [5], Theorem 2. Hence, if */ 2Φ0, AJ^eJ2. Then eRjAJ contains a
non-trivial waist eJ2jAxJ and e]\Ax] is not hollow. Accordingly, e]\Aλ]
is not a direct sum of hollow modules. Therefore eJ2=0. Next assume ej2

ΦO, and hence A^BX. Then Δ(i41)=Δ(βi) = Δ and AxoϋBx. From the
proof of Theorem 5, we can show that either Ax or Bx is simple (note \e]\e]2\
=2), say Bx. We shall show that Ax is uniserial. We know from the proof of
[5], Theorem 2 that if Δ(C) ΦΔ for some submodule C of ej, then e/ contains
a non-trivial waist module ς/1' with \ej* /eji+1\ =2. Then (*, 1) does not hold
from the observation of the case eJ2—0. Hence Δ(C)=Δ for all C in eR. Now
J(Aι) = A2®A'2(BA'2'ξB— from (*, 1), where A2, Ar

2, ••• are hollow (actually
A2'=---=0 from [5], Theorem 2). Being A2QOBX and A2oθBXy we know that
A2~A'2. Let a2 be in A2—A2J. Since Δ(^42)

:=Δ and A2~A2y there exist
a unit # in &Re and j in <?/̂  such that xA2 = A2 and (x+j)A2 = A2. Put
a'2=(x+j)a2&A2. Since Λ? is an isomorphism of 4̂2> xa2^A2Jy ja2^eJeeJ(ZeJ2

= A2Jξ&A2®"-y which is a contradiction. Hence A2 = A2. Repeating this
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procedure, we know that A1 is uniserial. Therefore every submodule of ej
is one of the following: 1) Ah 2) A{@Bly and 3) Atf), where Ai=AJi'1

and Ai(f)= K + / K ) I a^Ah / G H o m ^ , - , Bx)}. Assume An*0 and An+1=0.
Then considering {Ah A(/)> Bά (i<n)> -4, ~ Λ (/) It is clear from [5],
Lemma 1 that An~An(f) or An(f)~B1 (if An~An(f), An=An(f) for */^ M =0).
Therefore ζ/ has the structure in Theorem 5. Conversely, assume that eR
has the structure of the theorem. If \eJjeJ2\ < 1 , ej2 is a waist, and hence,
for any submodule C deJ2> J{eRjC)=eJjG contains a unique maximal sub-
module eJ2jC. If eJ2=0y (*, 2) holds for any two hollow modules by [3],
Proposition 3. It is clear for the last case to show that (*, 1) holds.

4. Examples. 1. Let R be the algebra over a field K given in [3],
Example 2. Then the lattice of submodules of eR is the following:

where k are in K. Hence (**, 3) and (*, 2) are satisfied by Theorem 5.
2. Let R be a vector space over K with basis {e, /, α, b, c, d}. Define

the multiplication among these elements as follows: #=e, f2—/, ef=fe=Oy

ea=ae=ay eb=bf=b, ec=cf=c, fd=df=dy ab=bd—c and other products are
equal to zero. Then the lattice of submodules of eR is the following:

<a,c> <b,c>

<c> = ej2

Then R is a right US-3 ring with Condition II ' . However, ej is indecomposa-
ble, but not hollow. Hence (*, 1) is not satisfied.

3. LetL, i£ be fields with [L: ̂ = 2 . Put
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Then R is a right US-3 ring with (*, 1), but without (*, 2) (note that A(e13K)

4. Assume that a right artinian ring R has a decomposition R—eR(BfR
and J2=0, where {ey /} is a set of mutually orthogonal primitive idempotents.
Then (*, 2) holds for any D(2) by [3], Proposition 3. We shall give the com-
plete list of such rings with (**, 3) and Condition II. If R is the ring men-
tioned above, eJ=Aιζ&A2 and fJ=Bι@B2y where the A{ and the B{ are simple
or zero. We always assume, in the following observation, that

±ι A.γζj)A.2

τ2

means that 7\ and T2 are local right artinian rings, the A{ (resp. the JB, ) are
right T2 and left Tx (resp. right Tx and left T2) simple module, {Aλ@A2)J{T2)
=J(T1)(A1ΦA2) = O (the same for BX®B2\ and (A1®A2)(B1φB2) = (

β) Δ means a division ring.
γ) S means a local serial ring.
δ) L means the following local ring:

J(L) = AλφA2y AX^A2 as right L-modules,
ξ) [L/J(L): Z,//(L)(A)] = 2, and for any simple L-module A{ in J(L),

there exists a unit a in L such that A[—aAι (see [1] for such a ring),

i) A1^A2^eR and B1^B2^fR. Then ejf=fje=θ. Hence

R~(Ll °\

ii) Ai^&A^fR, Bγ^B^eR. Then

Δ:

Δ 2 J,

where the A{ (resp. B{) satisfy ξ) as A1—Δ2 (resp. Δ2— Δj) bimodules.

ϋi) A^A2

aίB1!^B2Λ:SeR (resp. *=»//?). Then

where the β, (resp. As) satisfy f) as Δ2—ZΊ//(Z-I) (resp. A1—L2IJ(L2)) bi-
modules.
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iv) A^Az^B^eR and
Then

A.ΘAΛ

U S2 J,
where the A{ are similar to iii).

v) A^A2 and B^B2. Then

vi) Other cases. We may put Ai=0 or £ , = 0 in the above. The right

serial rings appear in v) by setting S2= Δ2 or S^—Δ, and B2—0 (or ^42=0).
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