Kawai, O. and Miyanishi, M. Osaka J. Math. 23 (1986), 207-215

SPECIALIZATIONS OF COFINITE SUBALGEBRAS OF A POLYNOMIAL RING

Dedicated to Professor Hirosi Nagao on his sixtieth birthday

OSAMU KAWAI AND MASAYOSHI MIYANISHI

(Received December 14, 1984)

1. Introduction. Let K be a field of characteristic zero and let R_{κ} := K[x, y] be a polynomial ring in two variables over K. A normal K-subalgebra A of R_{κ} is said to be *cofinite* if R_{κ} is a finite A-module with the canonical A-module structure. In the case where K is an algebraically closed field, we know the following results:

(1) If A is regular, A is then a polynomial ring in two variables over K; see [3] and [8].

(2) If A is singular, then there exist a polynomial subalgebra R'_{κ} and a finite group G of linear K-automorphisms of R'_{κ} such that $A = (R'_{\kappa})^{G}$ and G is a small subgroup of GL(2, K); see [4] and [10].

In the present article, we shall show that the structures of normal cofinite subalgebras A of R_{κ} are invariant under specializations, provided the quotient field extension $Q(R_{\kappa})/Q(A)$ is a quasi-Galois extension; see Definition 2.2. Our problem is formulated as follows: Let $\mathfrak{D}=k[[t]]$ be a formal power series ring in one variable over an algebraically closed field of characteristic zero and let $R:=\mathfrak{D}[x, y]$ be a polynomial ring in two variables over \mathfrak{D} . Let A be an \mathfrak{D} -subalgebra of R. We say that A is *cofinite* if R is a finite A-module and that A is geometrically \mathfrak{D} -normal if $A_{\kappa}:=A\otimes K$ and $A_{k}:=A/tA$ are normal domains, where K is the quotient field $Q(\mathfrak{D})$ of \mathfrak{D} . If A is a cofinite, geometrically \mathfrak{D} -normal subalgebra of R, then A_{κ} and A_{k} are cofinite normal subalgebras in R_{κ} and R_{k} , respectively. Let \overline{K} be an algebraic closure of K. We ask whether or not certain properties of a cofinite normal subalgebra $A_{\overline{K}}$ of $R_{\overline{K}}$ are in-

Conjecture 1. Let \mathbb{D} and R be as above, and let A be a cofinite, geometrically \mathbb{D} -normal subalgebra of R. Then there exist a cofinite \mathbb{D} -subalgebra R' of R and a finite group G of \mathbb{D} -automorphisms of R' such that:

herited by the cofinite normal subalgebra A_k of R_k . We pose the following

(i) R' is a polynomial ring in two variables over \mathfrak{O} and contains A as an \mathfrak{O} -subalgebra;

(ii) A is the G-invariant subalgebra $(R')^{G}$ of R'.

Our result, though partial, is the following:

Main Theorem. Let \mathfrak{O} , R, K and \vec{K} be as above. Let A be a normal, cofinite \mathfrak{O} -subalgebra of R. Suppose that Q(R) is a quasi-Galois extension of Q(A) over K. Let G be the Galois group of the extension $Q(R) \bigotimes_{\overline{K}} \vec{K}/Q(A) \bigotimes_{\overline{K}} \vec{K}$.

Then the following assertions hold true:

(1) G acts effectively on R, and $A=R^{c}$. Namely, R is a Galois extension of A with group G in the sense of [11].

- (2) A is geometrically \mathfrak{O} -normal.
- (3) R_k is a Galois extension of A_k with group G.
- (4) If $A_{\bar{K}}$ is a polynomial ring in two variables over \bar{K} , so is A_k over k.

We shall see later that Conjecture 1 is reduced to the following:

Conjecture 2. Let \mathfrak{O} and R be as above. Let A be a normal, cofinite \mathfrak{O} -subalgebra of R such that A_K is a polynomial ring over K. Then A_k is a polynomial ring over k; hence A is a polynomial ring over \mathfrak{O} by virtue of a result of Sathaye [14]; see also Kambayashi [6].

Concerning the second conjecture, we can show that Spec A_k has at most one singular point which has necessarily cyclic quotient singularity, provided A is geometrically \mathfrak{D} -normal; see Proposition 4.1 below.

2. Representability of a group functor

Let K be a field of characteristic zero, let L be a regular extension of K and let L' be a finite algebraic extension of L. Suppose that L' is a regular extension of K.

Let \mathcal{C} be the category of finite, reduced K-algebras. We define a group functor $\operatorname{Aut}_{K}(L'/L)$ on the dual category \mathcal{C}° by

$$\operatorname{Spec}(S) \in \mathcal{C}^{\circ} \mapsto \operatorname{Aut}_{\mathbb{K}}(L'/L)(S) := \operatorname{Aut}(L' \bigotimes S/L \bigotimes S),$$

where $\operatorname{Aut}(L' \bigotimes_{K} S/L \bigotimes_{K} S)$ denotes the group of all $L \bigotimes_{K} S$ -algebra automorphisms of $L' \bigotimes_{K} S$, which is a finite group. We then have the following:

Lemma 2.1. The functor $\operatorname{Aut}_{\kappa}(L'|L)$ is representable by a finite group scheme over K.

Proof. Let X be a projective normal variety defined over K such that L=K(X) and let X' be the normalization of X in L'. Let $\nu: X' \to X$ be the normalization morphism. We define a group functor $\operatorname{Aut}_{K}(X'|X)$ on the category of K-schemes by

208

$$T \in (\operatorname{Sch}/K) \mapsto \operatorname{Aut}_{\kappa}(X'/X)(T) := \operatorname{Aut}(X' \underset{\kappa}{\times} T/X \underset{\kappa}{\times} T),$$

where $\operatorname{Aut}(X' \underset{\kappa}{\times} T/X \underset{\kappa}{\times} T)$ denotes the group of all $X \underset{\kappa}{\times} T$ -automorphisms of $X' \underset{\kappa}{\times} T$. We claim that the restriction of $\operatorname{Aut}_{\kappa}(X'/X)$ on the full subcategory \mathcal{C}° of (Sch/K) coincides with the group functor $\operatorname{Aut}_{\kappa}(L'/L)^{\circ}$ which is the opposite of $\operatorname{Aut}_{\kappa}(X'/X)$, i.e., the order of multiplication is reversed.

In fact, let S be a finite, reduced K-algebra. Then S is a direct product $S = \prod_{i=1}^{n} K_i$, where K_i is a finite algebraic extension of K. We have apparently

$$\operatorname{Aut}_{K}(X'/X)(S) = \prod_{i=1}^{n} \operatorname{Aut}(X' \bigotimes_{K} K_{i}/X \bigotimes_{K} K_{i}), \text{ and}$$
$$\operatorname{Aut}_{K}(L'/L)(S) = \prod_{i=1}^{n} \operatorname{Aut}(L' \bigotimes_{K} K_{i}/L \bigotimes_{K} K_{i}).$$

Hence we may (and shall) assume that S is a field. Note that $X \bigotimes_{K} S$ is a normal variety and $X' \bigotimes_{K} S$ is the normalization of $X \bigotimes_{K} S$ in the field $L' \bigotimes_{K} S$. Moreover, it is easy to show that the canonical homomorphism

$$\operatorname{Aut}(X' \underset{\kappa}{\otimes} S/X \underset{\kappa}{\otimes} S)^{\circ} \to \operatorname{Aut}(L' \underset{\kappa}{\otimes} S/L \underset{\kappa}{\otimes} S)$$

is an isomorphism.

Now, applying the representability criterion of Grothendieck [2; 221–19], $\operatorname{Aut}_{K}(X'|X)$ is representable by a K-group scheme, say $\operatorname{Aut}_{K}(X'|X)$, which is locally of finite type over K^{1} . However, since $|\operatorname{Aut}_{K}(X'|X)(K')| \leq [L': L]$ for any finite algebraic extension K' of K, $\operatorname{Aut}_{K}(X'|X)$ is a finite Kgroup scheme. Moreover, since $\operatorname{char}(K)=0$, $\operatorname{Aut}_{K}(X'|X)$ is reduced by a theorem of Cartier (cf. [12]). Therefore we know that $\operatorname{Aut}_{K}(L'|L)$ is representable by a finite K-group scheme $\operatorname{Aut}_{K}(X'|X)^{\circ}$. Q.E.D.

We denote $Aut_{\kappa}(X'|X)^{\circ}$ by $Aut_{\kappa}(L'|L)$ or simply by \mathcal{G} . Write $\mathcal{G}=\operatorname{Spec}(\mathcal{A})$. Then the identity morphism $id_{\mathcal{G}}: \mathcal{G} \to \mathcal{G}$ corresponds to an L-homomorphism

1) Define a functor $\operatorname{Hom}_{\mathcal{K}}(X', X)$ on (Sch/K) by

 $T \in (\operatorname{Sch}/K) \mapsto \operatorname{Hom}_{\mathcal{K}}(X', X) (T) = \operatorname{Hom}_{\mathcal{T}}(X'_{\mathcal{T}}, X_{\mathcal{T}})$

(cf. [2], [16]). Then there exists the canonical morphism of functors

 $\phi: \operatorname{Aut}_{K}(X') \longrightarrow \operatorname{Hom}_{K}(X', X)$

such that, for $T \in (Sch/K)$ and $\alpha \in Aut_T(X'_T)$, $\phi_T(\alpha) = \nu_T \cdot \alpha$. Note that both $Aut_K(X')$ and $Hom_K(X', X)$ are representable by K-schemes locally of finite type, and hence ϕ is representable by a morphism of K-schemes,

$$f: Aut_{\mathcal{K}}(X') \longrightarrow Hom_{\mathcal{K}}(X', X)$$

(cf. [15] and [16; Th. 3]). The K-scheme $Hom_{K}(X', X)$ has a K-rational point $\nu: X' \rightarrow X$. It is now apparent that $Aut_{K}(X'|X)$ is representable by $f^{-1}(\nu)$, which is a K-group scheme locally of finite type.

O. KAWAI AND M. MIYANISHI

 $\Delta \colon L' \to L' \otimes \mathcal{A},$

and for any $S \in \mathcal{C}$ and any element $\alpha \in \operatorname{Hom}_{K-\operatorname{alg}}(\mathcal{A}, S) = \operatorname{Aut}_{K}(L'/L)(S)$, the action of α on $L' \bigotimes_{K} S$ is given by $(id_{L'} \otimes \alpha) \Delta \colon L' \to L' \bigotimes_{K} S$. It is then easy to see that the homomorphism Δ defines an action of \mathcal{G} on Spec L'

 $\sigma: \mathcal{G} \times \operatorname{Spec} L' \to \operatorname{Spec} L'$

which is a Spec L-morphism. We denote by $(L')^{\mathcal{G}}$ the set

$$(L')^{\mathcal{G}} = \{z \in L' \mid \Delta(z) = z \otimes 1\}$$
,

which is a subfield of L' containing L.

DEFINITION 2.2. We say that L'/L is a quasi-Galois extension over K if $(L')^{\mathcal{G}} = L$.

Let K' be a finite algebraic field extension of K. Then it is straightforward to show that:

- (1) $Aut_{K'}(L' \bigotimes_{K} K' | L \bigotimes_{K} K') \simeq Aut_{K}(L' | L) \bigotimes_{K} K'.$
- (2) The action of $Aut_{K'}(L' \bigotimes_{K} K'/L \bigotimes_{K} K')$ on Spec $(L' \bigotimes_{K} K')$ is given by

$$\Delta \bigotimes_{K} K' \colon L' \bigotimes_{K} K' \to (L' \bigotimes_{K} K') \bigotimes_{K'} (\mathcal{A} \bigotimes_{K} K') ,$$

and we have $(L' \bigotimes_{K} K')^{\mathcal{Q}'} = (L')^{\mathcal{Q}} \bigotimes_{K} K'$, where $\mathcal{Q}' = \mathcal{Q} \bigotimes_{K} K'$.

Lemma 2.3. The following conditions are equivalent:

(1) L'/L is a quasi-Galois extension over K.

(2) For any finite algebraic field extension K' of K, $L' \bigotimes_{K} K' | L \bigotimes_{K} K'$ is a quasi-Galois extension over K'.

(3) $L' \bigotimes_{\mathbf{K}} \overline{K} / L \bigotimes_{\mathbf{K}} \overline{K}$ is a Galois extension, where \overline{K} is an algebraic closure of K.

Proof. The equivalence of (1) and (2) is clear in view of the preceding observations. (2) \Rightarrow (3): There exists a finite algebraic extension K'/K such that $\mathcal{Q}' := \mathcal{Q} \bigotimes_{K} K'$ is a constant K'-group scheme with group $G := \mathcal{Q}(K')$. Since $G = \operatorname{Aut}(L' \bigotimes_{K} K'/L \bigotimes_{K} K')$ and $(L' \bigotimes_{K} K')^{G} = L \bigotimes_{K} K', L' \bigotimes_{K} K'/L \bigotimes_{K} K'$ is a Galois extension with group G. Hence $L' \bigotimes_{K} K''/L \bigotimes_{K} K''$ is a Galois extension with group G for any field extension K'' of K with $K'' \supseteq K'$. (3) \Rightarrow (1): The condition (3) implies that $L' \bigotimes_{K} K'/L \bigotimes_{K} K'$ is a Galois extension for some finite algebraic extension K'/K. Since $L \bigotimes_{K} K' = (L')^{\mathcal{Q}} \bigotimes_{K} K'$ as noted above, we have $(L')^{\mathcal{Q}} = L$. Namely, L'/L is a quasi-Galois extension over K. Q.E.D.

Corollary 2.4. L'|L is a quasi-Galois extension over K if and only if $|\mathcal{G}|$

210

(:= the rank of K-module \mathcal{A}) is equal to [L': L].

A quasi-Galois extension is not necessarily a Galois extension as shown by the following trivial

EXAMPLE. Let K be the rational number field Q, let L=K(x) with indeterminate x and let L'=K(y), where $y^n = x$ and n > 2. Then $\mathcal{Q}=Aut_K(L'/L)$ \simeq Spec $Q[\xi]/(\xi^n-1)$ and $\mathcal{Q}(Q) \neq Z/nZ$. Hence L'/L is a quasi-Galois extension, but not a Galois extension. In fact, let K' be the extension of Q with all *n*-th roots of unity adjoined. Then $\mathcal{Q}(K')\simeq Z/nZ$ and $L' \bigotimes_K K'/L \bigotimes_K K'$ is a Galois extension.

We don't know which conditions on K assure that a quasi-Galois extension L'/L over K is a Galois extension. In the next section, we shall, however, show that this is the case if K is the quotient field of a formal power series ring k[[t]] in one variable over an algebraically closed field k of characteristic zero. We use only the property that k[[t]] is strictly henselian.

3. Constancy of the K-group scheme $\operatorname{Aut}_{K}(L'/L)$

Let $(\mathfrak{O}, t\mathfrak{O})$ be a discrete valuation ring of equicharacteristic zero, let $K = Q(\mathfrak{O})$ be the quotient field and let k be the residue field. First of all, we shall prove:

Lemma 3.1. Let A be a finitely generated, normal \mathbb{O} -domain and let L = Q(A). Let L' be a finite Galois extension of L with group G and let A' be the integral closure of A in L'. Then the following assertions hold true:

(1) G acts effectively on A'_k , and the canonical injection $A_k \hookrightarrow A'_k$ induces an isomorphism $A_k \simeq (A'_k)^G$.

(2) Suppose A'_k is an integral domain. Then $Q(A'_k)$ is a Galois extension of $Q(A_k)$ with group G.

Proof. Our proof consists of several steps.

(I) Note that A' is a finite A-module (cf. Matsumura [7]). Furthermore, A_k is a subring of A'_k . In fact, we have only to show that $A \cap tA' = tA$. Suppose a = ta' with $a \in A$ and $a' \in A'$. Then $a' \in Q(A)$ and a' is integral over A. Hence $a' \in A$ because A is normal. The Galois group G acts effectively on A' and $A = (A')^c$. Hence G acts on A'_k and $A_k \subseteq (A'_k)^c$.

(II) We shall show that G acts effectively on A'_k . Suppose, on the contrary, that an element $g \in G$ of order n > 1 acts trivially on A'_k . For any element $a' \in A'$, we have

$$a' - a' = ta'_1$$
 with $a'_1 \in A'_1$

Write ${}^{g}a'_{1}=a'_{1}+ta'_{2}$ with $a'_{2}\in A'$. Inductively, we define $a'_{i}\in A'$ $(1\leq i\leq n)$ by ${}^{g}a'_{i-1}=a'_{i-1}+ta'_{i}$. Then it is easy to show

O. KAWAI AND M. MIYANISHI

$$a' = {}^{g^n}a' = a' + nta'_1 + \cdots + {n \choose i}t^ia'_i + \cdots + t^na'_n.$$

Hence $a'_1 \in tA'$. Namely, we can write ${}^{g}a' = a' + t^2a'_1$. This is true for every $a' \in A'$. By the same argument as above with t replaced by t^2 , we have $a'_1 \in t^2A'$. Thus, we can show that ${}^{g}a' - a' \in \bigcap_{m \geq 0} t^m A'$. Since A' is a Noetherian integral domain, we have $\bigcap_{m \geq 0} t^m A' = (0)$ by Krull's intersection theorem (cf. [11]). Namely, ${}^{g}a' = a'$ for every $a' \in A'$. This is a contradiction.

(III) We shall show that $A_k = (A'_k)^c$. In fact, suppose $\bar{a}' \in (A'_k)^c$, and write

 ${}^{g}a' = a' + tb(g)$ with $b(g) \in A'$,

where $a' \in A'$ with $\bar{a}' = a' \pmod{tA'}$. Then we have

$$b(hg) = {}^{h}b(g) + b(h)$$
 for $g, h \in G$.

Set $c = (\sum_{s \in G} b(g))/|G|$. Then $b(g) = c - {}^{g}c$ for any $g \in G$, and $a' + tc \in (A')^{G} = A$. Hence $\bar{a}' \in A_{k}$. Namely, we have $A_{k} = (A'_{k})^{G}$. Now, the assertion (2) is readily ascertained. Q.E.D.

Hereafter, we assume that \mathfrak{O} is a formal power series ring k[[t]] over an algebraically closed field k of characteristic zero. The constancy of the K-group scheme $Aut_{\kappa}(L'|L)$ is assured by

Lemma 3.2. Let $\mathfrak{D}=k[[t]]$ be as above and let $K=Q(\mathfrak{D})$. Let L be a regular extension of K and let L' be a quasi-Galois extension of L such that L' is a regular extension of K. Then L'/L is a Galois extension.

Proof. We have only to prove that the K-group scheme $Aut_{K}(L'|L)$ is constant. Since the Puiseux field $\bigcup k((t^{1/n}))$ is an algebraic closure of k((t)), where $k((t^{1/n}))$ is the quotient field of $k[[t^{1/n}]]$, there exists a cyclic extension $\mathfrak{D}'=k[[\tau]]$ of \mathfrak{D} $(\tau^n=t)$ such that $Aut_K(L'|L) \bigotimes_K K' \cong Aut_{K'}(L' \bigotimes_K K'/L \bigotimes_K K')$ is constant, where $K'=Q(\mathfrak{D}')$. Note that the morphism Spec $\mathfrak{D}' \to$ Spec \mathfrak{D} is a faithfully flat and finite morphism. Let $G=Aut_K(L'|L)(K')$. Then the constant K'-group scheme $G_{K'}$ has apparently a Néron model $G_{\mathfrak{D}'}$, a constant \mathfrak{D}' group scheme with group G. Hence the K-group scheme $Aut_K(L'|L)$ has an \mathfrak{D} -Néron model \mathcal{G} ; see [13] for relevant results. By definition, the group scheme \mathcal{G} is smooth over \mathfrak{D} and satisfies $\mathcal{G} \otimes K \cong Aut_K(L'|L)$. By virtue of \mathfrak{D} [1; IV (18.10.16)], \mathcal{G} is finite and étale over \mathfrak{D} . Therefore \mathcal{G} must be a constant \mathfrak{D} -group scheme $H_{\mathfrak{D}}$, where $H \cong \mathcal{G}(k) = \mathcal{G}(K)$. Since $G = \mathcal{G}(K') \cong H_{\mathfrak{D}}(K')$ = H, we know that $\mathcal{G} \cong G_{\mathfrak{D}}$. Thus L'/L is a Galois extension with group G. Q.E.D.

212

Lemma 3.3. Let the notations and the assumptions be the same as in Lemma 3.1. Assume that L is the quotient field of a finitely generated, normal \mathfrak{D} -domain A. Let A' be the normalization of A in L', and let G be the Galois group of the extension L'/L. Then the following assertions hold true:

(1) A' is a Galois extension of A with group G.

(2) Suppose that A' is geometrically \mathbb{O} -normal. Then, so is A, and A'_k is a Galois extension of A_k with group G.

Proof. (1) is now clear. As for (2), A'_k is a normal domain by the hypothesis, and $A_k = (A'_k)^G$ by Lemma 3.1. Hence A_k is normal, and A is geometrically O-normal. The remaining assertion is clear by Lemma 3.1. Q.E.D.

Now, Main Theorem except the assertion (4) follows from Lemma 3.3. In fact, set L := Q(A) and L' := Q(R) with A and R as in Main Theorem. Then R is the normalization of A in L', and R is geometrically \mathfrak{O} -normal. So, we can apply Lemma 3.3. We shall prove the assertion (4). Since $A_{\bar{K}}$ is a polynomial ring over \vec{K} , A_{κ} is a polynomial ring over K by [5]. We can identify G as a finite subgroup of $GL(2, \overline{K})$, and it is well-known that G is then generated by pseudo-reflections. Recall that an element $g \in GL(2, \overline{K})$ is a pseudoreflection if and only if the fixed-point locus $\Gamma(g)_{\bar{K}}$ in $A_{\bar{K}}^2$:=Spec $\bar{K}[x, y]$ under the action of g has codimension ≤ 1 . Since g acts on $A_{\mathfrak{D}}^2 := \operatorname{Spec} \mathfrak{O}[x, y]$, let $\Gamma(g)$ be the fixed-point locus in A_{D}^{2} under the action of g. Namely, $\Gamma(g)$ is a closed subscheme of A_{D}^{2} defined by an ideal I, where I is the smallest ideal of $\mathfrak{O}[x, y]$ generated by all elements of the form ${}^{g}a - a$ with $a \in \mathfrak{O}[x, y]$. Then we know that $\Gamma(g)_{\bar{k}} = \Gamma(g) \bigotimes_{\bar{D}} \bar{K}$ and that $\Gamma(g) \bigotimes_{\bar{D}} k$ is the fixed-point locus in $A_k^2 :=$ Spec k[x, y] under the action of g. Hence $\Gamma(g) \otimes k$ has codimension ≤ 1 in A_{k}^{2} . This implies that when one embeds G into GL(2, k) upto conjugation in $\operatorname{Aut}_k k[x, y]$, G is generated by pseudo-reflections. Hence the G-invariant subring A_k of k[x, y] is a polynomial ring over k. This verifies the assertion

4. Reduction from Conjecture 1 to Conjecture 2

(4) of Main Theorem.

Let \mathfrak{O} , R and A be as in Conjecture 1. Let $Y:=A_{\mathfrak{O}}^2=\operatorname{Spec} R$, let X:=Spec A and let $\pi: Y \to X$ be the canonical finite morphism. For an algebraic closure \overline{K} of $K=Q(\mathfrak{O})$, $A_{\overline{k}}$ is a normal, cofinite \overline{K} -subalgebra of $\overline{K}[x, y]$. Note that $X_{\overline{k}}=\operatorname{Spec} A_{\overline{k}}$ has at most one singular point. Let \overline{Z}' be the universal covering space of $X_{\overline{k}}-\operatorname{Sing}(X_{\overline{k}})$. Then $\pi_{\overline{k}}: Y_{\overline{k}}-\pi^{-1}(\operatorname{Sing} X_{\overline{k}})\to X_{\overline{k}}-\operatorname{Sing}(X_{\overline{k}})$ factors through \overline{Z}' because $Y_{\overline{k}}-\pi^{-1}(\operatorname{Sing} X_{\overline{k}})$ is simply connected. Let \overline{Z} be the normalization of $X_{\overline{k}}$ in the function field $\overline{K}(\overline{Z}')$ of \overline{Z}' . Then $\overline{Z}\simeq A_{\overline{K}}^2$ and $\pi_{\overline{k}}: Y_{\overline{k}}\to X_{\overline{k}}$ factors through \overline{Z} ;

$$\pi_{\bar{K}}\colon Y_{\bar{K}} \xrightarrow{\overline{\alpha}} \bar{Z} \xrightarrow{\overline{\beta}} X_{\bar{K}} .$$

See [10] for the relevant results. Choose a K-rational point P of $Y_{\bar{R}} - \pi^{-1}(\operatorname{Sing} X_{\bar{R}})$, and let $Q = \overline{\alpha}(P)$. We shall show that \bar{Z} descends down to a K-scheme. Namely, there exist a K-scheme Z and K-morphisms $\alpha \colon Y \to Z$ and $\beta \colon Z \to X$ such that $\bar{Z} = Z \bigotimes_{\bar{K}} \bar{K}$, $\bar{\alpha} = \alpha \bigotimes_{\bar{K}} \bar{K}$ and $\bar{\beta} = \beta \bigotimes_{\bar{K}} \bar{K}$. In fact, for $\sigma \in \operatorname{Gal}(\bar{K}/K)$, let ${}^{\sigma}\bar{Z} = \operatorname{Spec} \rho_{\sigma}(\mathcal{O}(\bar{Z}))$, where $\rho_{\sigma} \colon \bar{K}[x, y] \to \bar{K}[x, y]$ is $\sigma \otimes id_{\kappa[x, y]}$ and $\mathcal{O}(\tilde{Z})$ is the coordinate ring of \bar{Z} which is a \bar{K} -subalgebra of $\bar{K}[x, y]$. We denote by ${}^{\sigma}\bar{\alpha} \colon Y_{\bar{K}} \to {}^{\sigma}\bar{Z}$ and ${}^{\sigma}\bar{\beta} \colon {}^{\sigma}\bar{Z} \to X_{\bar{K}}$ the morphisms induced by $\rho_{\sigma}(\mathcal{O}(\bar{Z})) \hookrightarrow \bar{K}[x, y]$ and $A_{\bar{K}} \hookrightarrow \rho_{\sigma}(\mathcal{O}(\bar{Z}))$, respectively. Hence $\pi_{\bar{K}} = ({}^{\sigma}\bar{\beta}) \cdot ({}^{\sigma}\bar{\alpha})$. Let ${}^{\sigma}Q$ be the point of ${}^{\sigma}\bar{Z}$ which corresponds to Q under the canonical isomorphism $\operatorname{Spec} \rho_{\sigma}(\mathcal{O}(\bar{Z})) \to \operatorname{Spec} \mathcal{O}(\bar{Z})$. Then we have a unique \bar{K} -isomorphism $\phi_{\sigma} \colon {}^{\sigma}\bar{Z} \to \bar{Z}$ such that $\rho_{\sigma}({}^{\sigma}Q) = Q, \ \bar{\alpha} = \phi_{\sigma} \cdot {}^{\sigma}\bar{\alpha}$ and ${}^{\sigma}\bar{\beta} = \bar{\beta} \cdot \phi_{\sigma}$. Then it is easy to show that $\phi_{\tau\sigma} = \phi_{\tau} \cdot {}^{\tau}\phi_{\sigma}$ for $\sigma, \tau \in \operatorname{Gal}(\bar{K}/K)$. In fact, this is the case for a finite Galois extension K'/K instead of \bar{K}/K . By the faithfully flat descent, we know that there exists a K-scheme Z such that $\bar{Z} = Z \otimes \bar{K}$. Then $\bar{\alpha} = {}^{\sigma}\bar{\alpha}$ and ${}^{\sigma}\bar{\beta} = \bar{\beta}$ for any $\sigma \in \operatorname{Gal}(\bar{K}/K)$.

Therefore $\overline{\alpha}$ and $\overline{\beta}$ descend down to K-morphisms $\alpha: X_K \to Z$ and $\beta: Z \to Y_K$ such that $\pi_K = \beta \cdot \alpha$. On the other hand, Z is K-isomorphic to A_K^2 by virtue of [5]. Identify the coordinate ring $\mathcal{O}(Z)$ with a K-subalgebra of K[x, y] under α . Let B be the normalization of A in the function field K(Z) of Z. Then B is a normal, cofinite \mathfrak{O} -subalgebra of R such that $B_K = \mathcal{O}(Z)$ is a polynomial ring over K. The Conjecture 2 then implies that B is a polynomial ring in two variables over \mathfrak{O} . Note that Q(B) is a quasi-Galois extension of Q(A)over K. Main Theorem then asserts that Conjecture 1 is affirmative.

As for the Conjecture 2, we know the following:

Proposition 4.1. Let \mathfrak{D} , R and A be the same as in Conjecture 2, and let X=Spec A. Suppose that A is geometrically \mathfrak{D} -normal. Then X_k has at most one singular point which has necessarily cyclic quotient singularity.

Proof. By the hypothesis, A_{κ} is a polynomial ring K[u, v]. Let $\Delta = \frac{\partial}{\partial u}$, which is a locally nilpotent K-derivation of A_{κ} . Since A is finitely generated over \mathfrak{D} , we find an integer $n \ge 0$ such that $t^n \Delta(A) \subseteq A$ and $t^n \Delta(A) \not\equiv tA$. Define a k-derivation δ of A_k by

$$\delta(\bar{a}) = t^{n} \Delta(a) \pmod{tA},$$

where $a = a \pmod{tA}$ with $a \in A$. Then δ is well-defined, and δ is a nontrivial, locally nilpotent k-derivation on A_k . Hence $X_k := \text{Spec } A_k$ is affine-ruled (cf. [9]) and X_k has at most one singular point which has necessarily cyclic quotient singularity (cf. [10]). Q.E.D.

References

- J. Dieudonné et A. Grothendieck: Eléments de Géométrie Algébrique, Publ. Inst. Hautes Etudes Sci. 32 (1967).
- [2] A. Grothendieck: Fondements de la Géométrie Algébrique, Secrétariat mathématique, Paris, 1962.
- [3] R.V. Gurjar: Affine varieties dominated by C², Comm. Math. Helv. 55 (1980), 378-389.
- [4] R.V. Gurjar and A.R. Shastri: A topological characterization of C^2/G , to appear in J. Math. Kyoto Univ.
- [5] T. Kambayashi: On the absense of nontrivial separable forms of the affine plane, J. Algebra 35 (1975), 446-456.
- [6] T. Kambayashi: On one-parameter family of affine planes, Invent. Math. 52 (1979), 275-281.
- [7] H. Matsumura: Commutative algebra, Benjamin, New York, 1970.
- [8] M. Miyanishi: Regular subrings of a polynomial ring, Osaka J. Math. 17 (1980), 329-338.
- [9] M. Miyanishi: An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), 1469–1486.
- [10] M. Miyanishi: Normal affine subalgebras of a polynomial ring, to appear in a volume dedicated to the memory of T. Miyata, Kinokuniya-North-Holland.
- [11] M. Nagata: Local rings, Interscience Tracts in Pure and Appl. Math., Wiley, New York, 1962.
- F. Oort: Algebraic group schemes in characteristic zero are reduced, Invent. Math. 2 (1967), 79-80.
- [13] M. Raynaud: Modèles de Néron, C.R. Acad. Sci. Paris, Ser. A 262 (1966), 345-347.
- [14] A. Sathaye: Polynomial rings in two variables over a D.V.R.: a Criterion, Invent. Math. 74 (1983), 159-168.
- [15] H. Matsumura and F. Oott: Representability of group functors and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1-25.
- [16] J.P. Murre: Representation of unramified functors, Applications, Séminaire Bourbaki, 17^e année, 1964/65, nº 294, Secrétariat mathématique, Paris, 1966.

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan