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1. Introduction. Let K be a field of characteristic zero and let Ry
:=K]x, y] be a polynomial ring in two variables over K. A normal K-sub-
algebra A4 of Ry is said to be cofinite if Ry is a finite 4-module with the canonical
A-module structure. In the case where K is an algebraically closed field,
we know the following results:

(1) If A is regular, 4 is then a polynomial ring in two variables over K;
see [3] and [8].

(2) If A is singular, then there exist a polynomial subalgebra R} and
a finite group G of linear K-automorphisms of Rk such that A=(R%)® and
G is a small subgroup of GL(2, K); see [4] and [10].

In the present article, we shall show that the structures of normal cofinite
subalgebras 4 of Ry are invariant under specializations, provided the quotient
field extension Q(R;)/Q(A4) is a quasi-Galois extension; see Definition 2.2.
Our problem is formulated as follows: Let O=k[[¢]] be a formal power series
ring in one variable over an algebraically closed field of characteristic zero and
let R:=O[x, y] be a polynomial ring in two variables over . Let 4 be an
O-subalgebra of R. We say that A4 is cofinite if R is a finite 4-module and
that A4 is geometrically O-normal if AK:=A<§K and A4,:=A[tA are normal

domains, where K is the quotient field Q(©) of O. If 4 is a cofinite, geometric-
ally ©-normal subalgebra of R, then Ax and A4, are cofinite normal subalgebras
in Ry and R,, respectively. Let K be an algebraic closure of K. We ask wheth-
er or not certain properties of a cofinite normal subalgebra Az of Rg are in-
herited by the cofinite normal subalgebra 4, of R,. We pose the following

Conjecture 1. Let O and R be as above, and let A be a cofinite, geometrical-
ly O-normal subalgebra of R. Then there exist a cofinite O-subalgebra R’ of R and
a finite group G of O-automorphisms of R' such that:

(i) R’ is a polynomial ring in two variables over O and contains A as an
O-subalgebra;
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(i1) A is the G-invariant subalgebra (R')¢ of R'.
Our result, though partial, is the following:

Main Theorem. Let O, R, K and K be as above. Let A be a normal,
cofinite O-subalgebra of R. Suppose that Q(R) is a quasi-Galois extension of
Q(A4) over K. Let G be the Galois group of the extension Q(R)@K/Q(A)%K.

Then the following assertions hold true:

(1) G acts effectively on R, and A=RS. Namely, R is a Galois extension
of A with group G in the sense of [11].

(2) A is geometrically O-normal.

(3) Ry is a Galois extension of A, with group G.

4) If Az is a polynomial ring in two variables over K, so is A, over k.

We shall see later that Conjecture 1 is reduced to the following:

Conjecture 2. Let O and R be as above. Let A be a normal, cofinite
O-subalgebra of R such that Ax is a polynomial ring over K. Then A, is a poly-
nomial ring over k; hence A is a polynomial ring over O by virtue of a result of
Sathaye [14]; see also Kambayashi [6].

Concerning the second conjecture, we can show that Spec 4, has at most
one singular point which has necessarily cyclic quotient singularity, provided
A is geometrically £0-normal; see Proposition 4.1 below.

2. Representability of a group functor

Let K be a field of characteristic zero, let L be a regular extension of K
and let L’ be a finite algebraic extension of L. Suppose that L’ is a regular
extension of K.

Let C be the category of finite, reduced K-algebras. We define a group
functor Autg(L’/L) on the dual category C° by

Spec(S)eC° - Autg(L'[L) (S):= Aut(L’?S/L?S) ,
where Aut(L'(?S/L@S) denotes the group of all L%S—algebra automorphisms
of L’?S, which is a finite group. We then have the following:

Lemma 2.1. The functor Autg(L'[L) is representable by a finite group
scheme over K.

Proof. Let X be a projective normal variety defined over K such that
L=K(X) and let X’ be the normalization of X in L’. Let »: X'~ X be the
normalization morphism. We define a group functor Autg(X'/X) on the
category of K-schemes by
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T &(Sch/K) - Aut,(X'|X)(T):= Aut(X’ig T/X;{< T),
where Aut(X'?{< TIX X T) denotes the group of all X X T-automorphisms of
X ';{< T. We claim that the restriction of Auty(X’/X) on the full subcategory

C* of (Sch/K) coincides with the group functor Autg(L’/L)" which is the op-
posite of Autg(X’/X), i.e., the order of multiplication is reversed.
In fact, let S be a finite, reduced K-algebra. Then S is a direct product

S=ﬁ K;, where K; is a finite algebraic extension of K. We have apparently

i=1

Auty(X'/X)(S) = IT Aut(X'QK,/XQK;), and

Aut (L'|L) (S) = 11 Aut(L’ @ K,/LOK).

Hence we may (and shall) assume that S is a field. Note that X ?S is a normal
variety and X '(;g)S is the normalization of X ?S in the field L’@S. More-

over, it is easy to show that the canonical homomorphism
Aut(X'QS/X®S)” — Aut(L'QS/LRS)
K K K K

is an isomorphism.

Now, applying the representability criterion of Grothendieck [2; 221-19],
Aut,(X’'/X) is representable by a K-group scheme, say Autg(X'/X), which is
locally of finite type over K. However, since [Auty(X'/X)(K')|<[L': L]
for any finite algebraic extension K' of K, Auty(X'/X) is a finite K-
group scheme. Moreover, since char(K)=0, Autx(X'/X) is reduced by a
theorem of Cartier (cf. [12]). Therefore we know that Autg(L’/L) is repre-
sentable by a finite K-group scheme Aut(X'/X)’. Q.E.D.

We denote Auty(X'/X)° by Auty(L’/L) or simply by G.  Write G=Spec(A).
Then the identity morphism idg: G— G corresponds to an L-homomorphism

1) Define a functor Homg(X’, X) on (Sch/K) by
Te(Sch/K)+— Homg(X’, X) (T)=Homqn(X7, Xr)
(cf. [2], [16]). Then there exists the canonical morphism of functors
¢: Autg(X’) - Homg(X’, X)
such that, for T'€(Sch/K) and a€ Autr(X7), dr(a)=vr-a. Note that both Autg(X’) and

Homg(X’, X) are representable by K-schemes locally of finite type, and hence ¢ is repre-
sentable by a morphism of K-schemes,

fi: Autg(X’)—> Homg(X', X)
(cf. [15] and [16; Th. 3]). The K-scheme Homg(X’, X) has a K-rational point v: X’'—
X. It is now apparent that Autg(X’/X) is representable by f~1(v), which is a K-group
scheme locally of finite type.
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A:L' - L'?Jl ,
and for any SE€C and any element a€Homg_aig( A, S)=Auty(L'/L)(S), the
action of @ on L’%S is given by (id,Qa)A: L’»L’?S. It is then easy to
see that the homomorphism A defines an action of G on Spec L’
o: GxSpec L' — Spec L’
which is a Spec L-morphism. We denote by (L’)¥ the set
(L)e = {zeLl’| AR) = #@1}
which is a subfield of L’ containing L.

DeFINITION 2.2. We say that L'/L is a quasi-Galois extension over K
if (L")9=L.
Let K’ be a finite algebraic field extension of K. Then it is straight-

forward to show that:
(1) AutK,(L’?K'/L%K’):AutK(L'/L)%)K'.

(2) The action of Auty(L'®@K'|LQK’) on Spec (L’@K') is given by
K K
AQK'": L'QK' - (L'QK")Q(ARK"),
K K K K’ K
and we have (L'?K')g’z(L')g’@K’, where Q'=Q§)K’.
K

Lemma 2.3. The following conditions are equivalent:

(1) L'[L is a quasi-Galois extension over K.

(2) For any finite algebraic field extension K' of K, L'?K’/L?K' s a

quasi-Galois extension over K'.
3) L'?K/L@K is a Galois extension, where K is an algebraic closure of K.
K

Proof. The equivalence of (1) and (2) is clear in view of the preceding
observations. (2)=>(3): There exists a finite algebraic extension K'/K such
that §':= GQK' is a constant K’-group scheme with group G:= G(K’). Since

K

G=Aut(L’§)K’/L®K’) and (L'QK')Y°=LQK’, L’(%K’/L@K' is a Galois
K K K K
extension with group G. Hence L'QK”|LQK" is a Galois extension with
K K

group G for any field extension K” of K with K”2K'. (3)=>(1): The condi-
tion (3) implies that L'QK’'/LQK’ is a Galois extension for some finite alge-
K K

braic extension K'/K. Since LQK'=(L')9QK’' as noted above, we have
K K
(L")9=L. Namely, L’/L is a quasi-Galois extension over K. Q.E.D.

Corollary 2.4. L'/L is a quasi-Galois extension over K if and only if |G|
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(:= the rank of K-module ) is equal to [L’: L].

A quasi-Galois extension is not necessarily a Galois extension as shown
by the following trivial

ExampLE. Let K be the rational number field @, let L=K(x) with in-
determinate x and let L'=K(y), where y"=x and n>2. Then G=Auty(L'|L)
=Spec Q[£]/(§"—1) and G(Q)=*Z|nZ. Hence L'|L is a quasi-Galois extension,
but not a Galois extension. In fact, let K’ be the extension of @ with all n-th
roots of unity adjoined. Then G(K')=Z/nZ and L'?K’/L(?K’ is a Galois

extension.

We don’t know which conditions on K assure that a quasi-Galois extension
L’[L over K is a Galois extension. In the next section, we shall, however,
show that this is the case if K is the quotient field of a formal power series ring
k[[t]] in one variable over an algebraically closed field & of characteristic zero.
We use only the property that Z[[#]] is strictly henselian.

3. Constancy of the K-group scheme Aut,(L’'/L)

Let (9, #O) be a discrete valuation ring of equicharacteristic zero, let K
=@Q(®) be the quotient field and let £ be the residue field. First of all, we
shall prove:

Lemma 3.1. Let A be a finitely generated, normal O-domain and let L
=Q(A). Let L' be a finite Galois extension of L with group G and let A’ be the
integral closure of A in L'. Then the following assertions hold true:

(1) G acts effectively on A}, and the canonical injection Ay— A} induces an
isomorphism A,—=(A44)°.

(2) Suppose A} is an integral domain. Then Q(A}) is a Galois extension of
Q(A4,) with group G.

Proof. Our proof consists of several steps.

(I) Note that A’ is a finite 4-module (cf. Matsumura [7]). Furthermore,
A4, is a subring of 4;. In fact, we have only to show that ANt4'=tA. Sup-
pose a=ta’ with a4 and a’'€4’. Then a'€Q(4) and 4’ is integral over
A. Hence a’eA because A4 is normal. The Galois group G acts effectively
on A’ and 4=(A4")°. Hence G acts on 4}, and 4,<(4%)°.

(IT) We shall show that G acts effectively on A4;. Suppose, on the contrary,
that an element g&G of order n>1 acts trivially on A4;. For any element a’
€A’, we have

¢a’'—a' = ta) with a{€s4’.

Write “ai=a}-t+ta; with a5 A’. Inductively, we define a4’ (1=i<n) by
¢a,_1=a,_+ta}. Then it is easy to show
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a =¢q = a+nta+ - —|—< ’: )t‘aH— - +t"al .

Hence ajtA’. Namely, we can write fa’=a’-}-£a}’. This is true for every

a'€A4’'. By the same argument as above with ¢ replaced by #?, we have af’

€£A’. Thus, we can show that %a’—a’eNt"A4A’. Since A’ is a Noetherian
m20

integral domain, we have N¢"4'=(0) by Krull’s intersection theorem (cf. [11]).
m=0

Namely, #a’=a’ for every a’€A’. This is a contradiction.
(III) We shall show that 4,=(4})°. In fact, suppose a'&(4})° and write

ta’ = a'+th(g) with b(g)ed’,
where a’ €A’ with a’=a’(mod t4’). Then we have
b(hg) = *b(g)+b(h)  for g, hEeG.
Set c:(gg;b(g))“Gl. Then b(g)=c—*c for any g€@G, and a'+itc(4")°=A4.

Hence a’€4,. Namely, we have 4,=(4})°. Now, the assertion (2) is readily
ascertained. Q.E.D.

Hereafter, we assume that © is a formal power series ring k[[f]] over an
algebraically closed field & of characteristic zero. The constancy of the K-
group scheme Auty(L’'[L) is assured by

Lemma 3.2. Let O=k[[t]] be as above and let K=Q(O). Let L be a
regular extension of K and let L' be a quasi-Galois extension of L such that L'
is a regular extension of K. Then L'|L is a Galois extension.

Proof. We have only to prove that the K-group scheme Auty(L’[L) is
constant. Since the Puiseux field U k((#/*)) is an algebraic closure of k((t)),
n>0

where k((t/")) is the quotient field of [[t"/*]], there exists a cyclic extension
O'=k[[r]] of O (+"=t) such that AutK(L’/L)?K’:Aut,«(L’(?K'/L?K') is

constant, where K'=@Q(0’). Note that the morphism Spec ’'—Spec O isa
faithfully flat and finite morphism. Let G=Auty(L'/L)(K'). Then the con-
stant K’'-group scheme Gy has apparently a Néron model Gy, a constant O'-
group scheme with group G. Hence the K-group scheme Autg(L’/L) has
an ©-Néron model &; see [13] for relevant results. By definition, the group
scheme & is smooth over © and satisfies Q?K:AutK(L’/L). By virtue of

[1; IV (18.10.16)], & is finite and étale over ©. Therefore & must be a con-
stant O-group scheme Hp, where H=G(k)=G(K). Since G=G(K')=Hp(K")
=H, we know that ¢=Gp. Thus L’/L is a Galois extension with group G.

Q.E.D.



SPECIALIZATIONS OF COFINITE SUBALGEBRAS 213

Lemma 3.3. Let the notations and the assumptions be the same as in Lemma
3.1. Assume that L is the quotient field of a finitely generated, normal O-domain
A. Let A be the normalization of A in L', and let G be the Galois group of the
extension L'|L. Then the following assertions hold true:

(1) A’ is a Galois extension of A with group G.

(2) Suppose that A’ is geometrically O-normal. Then, so is A, and A}
is a Galois extension of A, with group G.

Proof. (1) is now clear. As for (2), A; is a normal domain by the hypo-
thesis, and 4,=(4})° by Lemma 3.1. Hence 4, is normal, and 4 is geo-
metrically O-normal. The remaining assertion is clear by Lemma 3.1. Q.E.D.

Now, Main Theorem except the assertion (4) follows from Lemma 3.3.
In fact, set L:=Q(A4) and L":=Q(R) with 4 and R as in Main Theorem. Then
R is the normalization of 4 in L', and R is geometrically O-normal. So, we
can apply Lemma 3.3. We shall prove the assertion (4). Since Ag is a poly-
nomial ring over K, Ay is a polynomial ring over K by [5]. We can identify
G as a finite subgroup of GL(2, K), and it is well-known that G is then gener-
ated by pseudo-reflections. Recall that an element g&GL(2, K) is a pseudo-
reflection if and only if the fixed-point locus I'(g)z in A%:=Spec K[x, y] under
the action of g has codimension=1. Since g acts on Af:= Spec O[x, y], let
T'(g) be the fixed-point locus in Ap under the action of g. Namely, I'(g) is
a closed subscheme of Af defined by an ideal I, where I is the smallest ideal
of O[x, y] generated by all elements of the form fa—a with a=O[x,y]. Then
we know that T'(g) ,-(=1‘(g)§K and that P(g)%k is the fixed-point locus in A}:=

Spec k[x, y] under the action of g. Hence I'(g)®% has codimension<1 in
A}. This implies that when one embeds G into GL(2, k) upto conjugation
in Autk[x, y], G is generated by pseudo-reflections. Hence the G-invariant

subring A4, of k[x, y] is a polynomial ring over k. This verifies the assertion
(4) of Main Theorem.

4. Reduction from Conjecture 1 to Conjecture 2

Let ©O, R and 4 be as in Conjecture 1. Let Y:=A4%=Spec R, let X:=
Spec A and let z: Y— X be the canonical finite morphism. For an algebraic
closure K of K=Q(9D), Ax is a normal, cofinite K-subalgebra of K[x,y]. Note
that Xz=Spec Az has at most one singular point. Let Z’ be the universal
covering space of Xz—Sing(Xg). Then zg: Yz—="! (Sing Xz)—Xz—Sing(Xz)
factors through Z’ because Yz—="!(Sing X%) is simply connected. Let Z
be the normalization of X% in the function field K(Z’) of Z'. Then Z=—A%
and zg: Yg—Xg factors through Z;

a -
wg: Ygp— Z —> Xi.
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See [10] for the relevant results. Choose a K-rational point P of Yz—
7~'(Sing Xg), and let Q=a(P). We shall show that Z descends down to a K-
scheme. Namely, there exist a K-scheme Z and K-morphisms a: Y—Z and
B: Z—X such that Z=Z(§K, d=a§f( and B:ﬁ@ﬁ. In fact, for o€

Gal(K/K), let “Z=Spec p,(O(Z)), where p,: K[x, y] >K][x, y] is e ®idyt,,,1 and
O(Z) is the coordinate ring of Z which is a K-subalgebra of K[x, y]. We denote
by “a: Yg—°Z and °B:°Z—Xg the morphisms induced by p,(O(Z))—K[x, y]
and Az p(O(Z)), respectively. Hence nz=("8)-("a). Let °Q be the point
of °Z which corresponds to @ under the canonical isomorphism Spec p(O(Z))
— Spec O(Z). 'Then we have a unique K-isomorphism ¢,: °Z— Z such that
p"Q)=Q, a=¢,-’a and °B=FB+¢p,. Then it is easy to show that ¢,,=
¢.+"¢p, for o, rEGal(K/K). In fact, this is the case for a finite Galois extension
K’|K instead of K/K. By the faithfully flat descent, we know that there exists
a K-scheme Z such that ZzZ?K. Then @="a and °F=_3 for any o € Gal(K/K).

Therefore & and B descend down to K-morphisms a: Xx—>Z and B: Z— Y,
such that zz=@+a. On the other hand, Z is K-isomorphic to A% by virtue of
[5]. Identify the coordinate ring O(Z) with a K-subalgebra of K[x, y] under
a. Let B be the normalization of 4 in the function field K(Z) of Z. Then
B is a normal, cofinite O-subalgebra of R such that By=0((Z) is a polynomial
ring over K. The Conjecture 2 then implies that B is a polynomial ring in
two variables over 0. Note that Q(B) is a quasi-Galois extension of Q(4)
over K. Main Theorem then asserts that Conjecture 1 is affirmative.
As for the Conjecture 2, we know the following:

Proposition 4.1. Let O, R and A be the same as in Conjecture 2, and let
X=Spec A. Suppose that A is geometrically O-normal. Then X, has at most
one singular point which has necessarily cyclic quotient singularity.

Proof. By the hypothesis, Ay is a polynomial ring K[u, v]. Let Azéa—,
u

which is a locally nilpotent K-derivation of Ax. Since A4 is finitely generated
over O, we find an integer #=0 such that *A(4)<S A4 and t"A(4)<EtA. Define
a k-derivation 8 of 4, by

8(a) = "A(a) (mod t4),

where a=a(mod t4) with ac 4. Then § is well-defined, and § is a nontrivial,
locally nilpotent k-derivation on A,. Hence X,:= Spec 4, is affine-ruled
(cf. [9]) and X, has at most one singular point which has necessarily cyclic
quotient singularity (cf. [10]). Q.E.D.
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