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Introduction

Let G be a finite group and F a field of prime characteristic p. Let M
be an irreducible FG-module belonging to a block B of FG with defect group D.
Then the following fact is well-known. Namely if M has height 0 in B, then
D is a vertex of M and the dimension of D-source of M is prime to p (provided
that F is sufficiently large). The main objective of this paper is to study an
indecomposable module M which satisfies the conclusion in the above state-
ment. In particular it will turn out that My has a component with the same
property for H <G under certain circumstances (see Theorem 2.1). We shall
apply our results to give new proofs to some of important theorems concerning
blocks.

The notation is almost standard: We fix a complete discrete valuation
ring R of characteristic 0 with F as its residue class field. We assume that
the quotient field of R is a splitting one for every subgroup of G. We let
denote R or F. By an 6G-module M, we understand a right §G-module
which is finitely generated free over §. If M is indecomposable, we denote
its vertex by vx(M). For another module N, N |M indicates that N is iso-
morphic to a direct summand of M and we say “NN is a component of M” if
N is indecomposable. If 7 is an integer and p™ is the highest p-power dividing
n, then we write m=v(n). Finally for a block B of G, we denote by §(B) a
defect group of B.

1. Sources with #-rank prime to p

For later convenience, we put down the following well-known fact without
proof.

Lemma 1.1. Let M be an indecomposable 0G-module with vertex Q.
Let V be an indecomposable 0Q-module. Then V is a Q-source of M if and only
if V|Mgq and Q is a vertex of V.
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Let M be an indecomposable #G-module. We consider the following
condition;

*) pArank, V' for a source V of M .

Theorem 1.2. Let H be a subgroup of G. Let M be an indecomposable
0G-module with vertex Q which satisfies (*). Let P be a maximal member of
{O"NH |x=G}. Then there exists a component N of My such that P is a vertex
of N and N satisfies (*).

Proof. We set P=0Q°NH (a=G) and let V be a Q°-source of M. Then
there exists a component W of V, with p frank, W. Then P is a vertex of
W by Green’s theorem. We may assume that V' | Mg and hence W |Mp,. Let
N be a component of My such that W|N,. Then PC vx(N). On the other
hand, N | My means that vx(IN)S ;0" N H for some x&G. Therefore we have
vx(IN)=ygP by the choice of P. Moreover W is a P-source of N by Lemma 1.1.
This completes the proof.

We mention a couple of remarks concerning the condition (*).

RemArk 1.3. Let M be an indecomposable FG-module with cyclic vertex.
Then M satisfies (*).

For the proof of this fact, it is sufficient to show the following lemma,
which may be, much or less, well-known.

Lemma 1.4. Let Q=<x)> be a cyclic group of order p°. Let M be an ar-
bitrary indecomposable FQ-module. Then M satisfies (*).

Proof. (Watanabe) We denote by O, the subgroup of Q with order p’
(0<i<s). For each i, FQ; has exactly p' indecomposable modules V;; with
dim; V;j=j (1<j<p’). Recall that each M;;=(V;;)? is indecomposable by
Green’s theorem. Moreover if (j, p)=1, then »(dimy M;;)=»(|Q: O;]). This
implies that Q; is a vertex of M;; and so V;; is a Q;-source of it. Now we

see that the set U {M;;|(j, p)=1, 1<j<p’} must be a full set of non-isomor-
i=0
phic indecomposable FQ-modules, since p°=>] () (@ denotes the Euler totient
i=0

function). This completes the proof of Lemma 1.4.

Remark 1.5 (Knorr [5], Theorem 4.5). Assume that F is algebraically
closed. Let M be an indecomposable §G-module. Then if »(rank, M)=
v(|G: vx(M)]), M satisfies (*).

As an application of Theorem 1.2, we show the following;

Corollary 1.6. Let H be a normal subgroup of G. Let M be an irreducible
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FG-module and N an irreducible constituent of My. Then if v(dimpM)=
v(|G: vx(M)|), we have v(dim; N)=v(|H: vx(N)|).

Proof. For the proof of this result, we may assume that F is algebraically
closed. By Theorem 1.2 and Remark 1.5, there exists an irreducible consti-
tuent NV of My such that N satisfies (*). However, since a source of N and
that of N are G-conjugate to each other, we have that »(dim; N)=v»(| H: vx(N)|)
by Theorem 4.5 in [5].

As one of typical modules which satisfy (*), let us take what is called a
Scott module. For any subgroup X of G, we denote by I, the trivial §X-
module (an §X-module of rank 1 on which X acts trivially). For a p-subgroup
O of G, (Iy)° has exactly one component S which contains I; as a submodule,
and then Q is a vertex of S (see Burry [2]). Following Burry, we call S the
Scott G-module with vertex Q. The following theorem was suggested by
Okuyama.

Theorem 1.7. Let H be a subgroup of G and S the Scott G-module with
vertex Q. Let P be a maximal member of {Q*NH |x&G}. Then there exists
a component U of Sy which is the Scott H-module with vertex P.

Proof. We prove by the induction on |Q|/|P|. If |Q|=]|P|, our
assertion follows immediately from Theorem 2 in [2]. So we assume that
|Q]>|P|. We set H=N,(P) and let P, be a maximal member of Q={0*N
H\|Q"NH,2P, x&€G}. It is clear that Q is not empty. Thus by the
induction hypothesis, there exists a component U, of Sy which is the Scott
H,-module with vertex P;,. We set T=Ng(P), then there exists a component
U of (U,); which contains I, as a submodule. However, since (P,)’N T=P
for all yeH,, {(Ip)¥:}r is a direct sum of copies of (Z;)" by Mackey decom-
position theorem. Thus U must be the Scott T-module with vertex P. Let
U be a component of Sy such that U|U;. Then since P is a vertex of U, U
corresponds to U in the Green correspondence with respect to (H, P, T).
Thus by Theorem 1 in [2], U is the Scott H-module with vertex P.

2. Some applications to block theory

Let H be a subgroup of G and b a block of H. Following Brauer, we call
b G-admissible provided C;(8(h))SH. Note that this does not depend on the
particular choice of 8(b) and b° is defined. The following theorem was sug-
gested by Okuyama.

Theorem 2.1. Let b be a G-admissible block of H. If M is an indecom-
posable 0G-module in B=0bC¢ which has 8(B) as a vertex and satisfies (*), then
there exists a component N of My which belongs to b and has 8(b) as a vertex and
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satisfies (*).

Proof. We prove by the induction on |§(B)|/|8(d)|. If |8(B)|=]8(d)|,
our assertion follows immediately from Corollary 9 in [6] and Lemma 1.1. So
we assume that |8(B)| > |8(b)|. Let b be a root of b in T=358(b)Cs(8(b)). We
set H;=Ng(8(d)) and b=b%. Then |8(dy)| > 18(d)| by Brauer’s first main
theorem and the assumption. Thus by the induction hypothesis, there exists
a component V; of My in b, such that §(,) is a vertex of N; and N, satisfies
(*). Since H,> T, b, covers b. Thus by Theorem 1.2, we can show that
there exists a component N of (V)7 such that N belongs to b and v)x(.lv )=
7,9()NT. However, since ox(IN) S 8(b) S8(b,), we have that va(N )=20(b) from
the above. Let N be a component of M, such that N |Ny. Then Ne€b by
(3.7a) in [3]. Since N'€b and N|Ny, 8(b) is a vertex of N and N satisfies (*) by
Lemma 1.1. Thus the proof is complete.

The above theorems allow us to give alternative proofs to some of impor-
tant results concerning blocks.

Corollary 2.2 (Brauer’s third main theorem). Let b be a G-admissible
block of a subgroup of G. If b° is principal, then b is principal.

Proof. This is immediate from the above theorem by taking M=I,
the trivial §G-module.

For the proofs of the following corollaries, we may assume that F is
algebraically closed.

Corollary 2.3 (Alperin and Burry [1]). Let Q be a p-subgroup of G and H
a subgroup of G such that H2QCy(Q). Let B be a block of G. If P is a maximal
member of {8(B)"NH |xG, 8(B)*NH 20}, then there exists a block b of H
such that b=B and P is a defect group of b.

Proof. Let M be an irreducible FG-module in B of height 0. Then
v(dimz M)=v(|G: vx(M)|) and &(B) is a vertex of M. By Theorem 1.2 and
Remark 1.5, there exists a component N of My such that P is a vertex of N.
Let b be a block of H which contains N. Since Cy(P)< H, b° is defined and
equals to B by (3.72) in [3]. Furthermore by the maximality of P, we see easily
that P is a defect group of b.

Corollary 2.4 (Knorr [4]). Let H be a normal subgroup of G. Let B be
a block of G and b a block of H. If B covers b, then 8(b)=¢8(B) N H.

Proof. Let M be an irreducible FG-module in B of height 0. Then
by Theorem 1.2 and Remark 1.5, we can show that there exists a component
N of My such that N belongs to b and vx(N)=¢8(B)NH. So we have 3(b)2



INDECOMPOSABLE MODULES AND BLOCKS 205

¢d(BYNH. On the other hand, for an irreducible FH-module N in b with
8(b) as a vertex, there exists an irreducible FG-module M in B such that N | My,
(see Proposition 4.1 in [4]). Thus we have 8(b)S;8(B)NH. Combining with
the above, 8(8)=;6(B) N H as asserted.

Corollary 2.5. Let H be a normal subgroup of G. Let B be a block of G
and @ an irreducible Brauer character of G in B. If @ has height 0, then any
irreducible constituent of @y has height O in the block of H to which it belongs.

Proof. This is immediate from Corollary 1.6 and Corollary 2.4.
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