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0. Introduction

Let H be a real Hilbert space and 4 a lower semicontinuous convex proper
function from H to (—oo, co]. Here the terminology “proper” means that
Yr#= oo, The subdifferential of +Jr is defined as follows: For x&H, the value
ovrx is the set of all z& H such that

Y(y)—Y(x)=(2, y—x)  for every yeH

where ( , ) stands for the inner product of H.
H. Brezis in [1] and [2] proposed the initial value problem of the form

dZ

dtzu—i— Wus f

(0.1) J
w(0)=a, d—tu(O) =b.

In [1] he stated that in the particuler case where yr=1I is the indicator function
of a closed convex set K, the solution u represents, roughly speaking, the tra-
jectory of an optical ray caught in K and reflecting at the boundary of K. Then
—Oru=—0Iu may be regarded as the repulsive power at the boundary of
K. 1In case H is finite dimensional, M. Schatzman made a deep investigation
on this problem in [3] and [5] and established a general existence theorem as
well as various results on the uniqueness and non-uniqueness of sclutions. By
a simple example in which +r is the indicator function a closed convex set K
she showed that the uniqueness of the solution does not hold in general and
the solution which reflects optically on the boundary of K is an energy con-
serving solution. Moreover she obtained that even the energy conserving
solutoin is not necessarily unique.

In case H is infinite dimensional, to the author’s best knowledge, it seems
to be extremely difficult to solve this porblem in a general situation. Hence as
the first step of the study of this problem we are concerned with the case where
the subdifferential operator dvr is expressed as
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(0.2) o = A-+0Ix,

where A is a positive definite self-adjoint operator and Iy is the indicator func-
tion of a closed convex set K with non empty interior. M. Schatzman showed
in [2] the existence of local solutions of (0.1) in the case of (0.2) and for some
specific initial data.

Clearly if f is continuous, the solution » of (0.1) in the csae (0.2) is twice
continuously differentiable so long as u(¢) lies in the interior of K since 0Ju(t)=0
then. However, for some reason as was illustrated in M. Schatzman [5] in
a finiet dimensinal case a reflection occurs if u(#) reaches the boundary of K,

and this causes discontinuity of l% Thus we cannot expect the existence of

a twice continuously differnetial solution. Hence, following M. Schatzman [5]

we seek a function satisfying the equation with Lu and 0lxu considered
as measures with values in H. dt’

In Theorem 1 we will show the existence of the solutions of (0.1) in a slight-
ly more general case than (0.2), namaly, the case of dYr=0¢+0I;. Here ¢
is a lower semicontinuous proper convex function and coercive in a dense
subspace V such that VCH CV*, and K is a closed convex subset which is
contained in a closed subspace L of finite codimension and has interior points in
the relative topology of L. Assuming that the imbedding V' —H is compact
and 8¢ is single valued, continuous in some weak sense, we will show the
existence of global solutions of the above problem satisfying the prescribed
initial conditions. The solution is obtained as a limit of a subsequence of the
solutions of the above problems with the Yosida approximations d¢,, 0k, in
place of 3¢, 01.

In the subsequent part of the paper it will be always assumed that K has
interior points and the boundary of K is so smooth that there exists the out-
ward unit normal vector satisfying a uniform Lipschitz condition in each bounded
subset.

In Theorem 2 we will show the existence of an energy conserving solution
of (0.1) in the case of (0.2). To prove this theorem we consodier the follow-
ing sequence of functions

on(0) = [ 107 an(9) s

where #, are the solutions of the above problems with 81, replaced by its Yosida
approximation 0l , and apply Helly’s choice theorem to the above sequence of
functions. This enables us to extract a subsequence {u,;} so that u,,—u(z),
d d

Ay — Au(t), —u, (£)—>—
M @) dt () dt

the energy equality since as is easily seen %, are the energy conserving solutions

u(¢) from which it readily follows that u satisfies
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of the approximate equations with 8l , in place of 01.

Since the energy conserving solution is not necessarily unique (see [5]),
to obtain the uniqueness theorem, we are required to consider some specific
class of energy conserving solutions. Hence we introduce a class of energy
conserving solutions called herein ““{t;} -energy conserving sclutions””. Let {t;}
be a dense and countable sequence in the interval [0, T']. Roughly speaking a
{t;} -energy conserving solution is an energy conserving solution such that the
integral of the size of the replusive power from 0 to #; is minimal for each 7 in
the energy conserving solutions. It should be admitted that this class of solu-
tions depends also on the order of the elements of the sequence {¢;}.

In Theorem 3 we will study a linear functional assoicated with the solution
which plays an important role in the definition of {¢;}-energy conserving solu-
tion and establish a fairly concrete integral expression of the linear functional
playing the part of the measure 9xu.

In Theorem 4 we will show that the existence and uniqueness theorems of
{t;} -energy conserving solutions are established.

The outline of the present paper is as follows. Insection 1 we list notations
and properties of some operators. In section 2 we list definitions and state
the assumptions and our main theorems. In section 3, 4, 5 and 6 we prove
Theorem 1, 2, 3 and 4 respectively. Finally, section 7 contains some examples.

The author would like to express his hearty gratitude to Professor H. Tanabe
and the referee for their kind and helpful advice.

1. Preliminaries

We first list some notations and known results which will be used through-
out this paper. Let H be a real Hilbert space with inner product (, ) and norm
[|+]l, and V a real reflexive Banach space such that V' is a dense subspace of H
and the inclusion mapping V' —H is continuous. Identifying H with its dual
space we may consider VCHCV*. The paring between V' and I* is also
denoted by (¢, +). The norms of V and V* are denoted by ||+||; and ||+||y
respectively.

For a normed space X, C([0, T']; X) (resp. WC([0, T']; X) denotes the
space of all strongly continuous (resp. weakly continuous) functions from [0, 7']
to X. C¥([0, T]; X) is the space of all functions from [0, 7] to X whose all
derivatives up to order j all belong to C([0, T']; X).

L,0, T; X), 1=q< oo, is the space of all measurable functions from [0, T']
to X such that (||ullx)? is integrable on [0, T'], where ||+||x is the norm of X,
and L.(0, T'; X) is the space of all essentially bounded, measurable functions
in [0, T'] with values in X. Similarly we denote by W7 (0, T'; X) the totality of
mesurable functions from [0, 7'] to X such that all derivatives in the sense of
distributions up to order m belong to L, (0, T'; X).
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By dist(x, S) we denote the distance between a point x of H and a subset .S
of H. Let K be a closed convex subset of H. Then for any x& H there exists
a unique point Pyx of K satisfying |lx—Pgx||= dist(x, K). P is called the
projection operator on K. If K is contained in a closed subspace L of H, then

PPy — PyP, — Py.

By K and bdy(K) we denote the interior and the boundary of K in H respec-
tively. K, and bdy,(K) are the interior and the boundary of K in the relative
topology of L respectively if K CL.

Let A be a positive definite self adjoint linear operator in H and AY* the
1/2-fractional power of 4. We here employ the complexification H of H such
that

1) each zH is represented as

z=at+v—-18 for some a, BEH, and

2) the inner product (( , )) is defined by
(@+V =18, 6+ —19)) = (&, O)+(B, 7)
+V—1{(B, 0)—(a, M)} .
We then extend the operator 4 to an operator 4 in H by
Domain (4) = {a++/—18; &, BED(A)} ,
Ala+v/—18) = da++v/—148.

It is easy to see that the operator A is positive self adjoint in H.
Let {U(#)} be the (C,)-group H on generated by \/—1(A)2. In the fol-
lowing we write

D = 1AM, S(t) = 2"{U{t)—U(—¢)}D?,
C(t) = 27{U®)+ U(—1)},

for simplicit simplicity in notations. In view of the first property 1) of H, C()x
is represented as

C(t)x = a(t)+v/ —16(2) a(t)eH, B()eH

for each x€H, and it is easily seen from the definition of A4 that the function
3 is a solution of the initial-value problem

@ 8-+ AB() = 0
< s+ 480 =0,

o o
BO =0, Lp0)~0.



CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS 5

This implies B(¢2)=0 because of the uniqueness of the solution of the above
problem, and hence C(f)x&H. Similarly, S(t)xE H for any x&H. We denote
the norm of H by |||+]]].

Let ¢(+) be a proper, convex and lower semicontinuous function from ¥ to
(—oo, o) and let 3¢ be its subdifferential operator defined by

Opx = {fEV*; d(y)—¢(®)=(f, y—x)  forany yEV}.
Let Zx(+) be the indicator function of K defined by

0 if xeK

I"(x)z{oo if xeEK.

The subdifferential operator 8l of Ix(+) is defined by

D(0I) = {xE H; there exists z& H such that (y—x, 2)<
Ix(y)—Ix(x)  forany yeK},
olyx = {z€H; (y—x, 2)=0 for any yeK}.

We put
I (%) = (2N) 7Y |we— Pyl ? forfor any x€H

where A is a positive number. We see that I ,(+) is a convex, Frechet differenti-
able function on H and has a single valued subdifferential operator 9 , which
is represented as

0l v = A" (x—Pgx) .

For x€bdy(K) the set dlg(x) is equal to the union of the set of all exterior
normal vectors at the boundary point x and a O-vector’s set. In particular, if
the boundary of K holds some smoothness, we know that there exists only one
unit normal vector 7n(x) at the boundary point x such that

0lxx = {An(x); AE[0, oo)}.

Let ¢(+) satisfy the coerciveness condition in V. Then if ¢ is the convex from
H to (— oo, o] defined by

o (x) if xel
D(x) = .
oo if xeH-V ={geH;g&V},
it follows that ® is lower semicontinuous on H by the coerciveness condition and
its subdifferential operator 8® is defined with domain D(0®)={xV: 0px=H}.
Moreover 0®(x)=0¢(x) for any x&D(0P). For every A>0 a convex Frechet
differentiabel function @, is defined by
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D,(x) = (2N) " Y|lx— x| P+ Do Jax) forany xeH

where Jy=(I+A0®)™! and I is the identity operator on H. Let 3P, be the
Yosida approximation of 8@, namely,

0D,(x) = A" (x—Jjx) forany xeH.
Then it is known that 0@, is the subdifferential operator of @, and

0 (x) = 0D(Jy)

2. Assumptions and main results

In this section we list definitions and state assumptions and theorems.

Let H, V, ¢ be the ones stated in the previous section. We assume that
0¢ is a single valued, everywhere defined and bounded operator from ¥V to
V*, and that ¢(+) satisfies the following coerciveness condition

@1 lim g llelly = o

Next we suppose that f(#, x) is a continuous function from [0, T]X H to
H to H satisfying

/2, )—f (2, y)|=h@)|lx—yl]

2.2) for any x, ye H and any t [0, T']

”Zl%f(t’ x) [I=A@)(1+[lx]]) for any x€H

where £(-) is a positive integrable function of &[0, T'].
In this paper we consider the following type of equation

d2

& w(0)-+ogu()+0Laut)> £t u(t)

(2.3) J
W) =a, “u0)=s.

With regard to this type of problem we employ the notion of solution on [0, 7]
defined as follows

DrriniTION 2.1, We say that a function uC([0, T']; H) is a solution of
the problem (2.3) if the following conditions are satisfied:

1) ueWi0, T; Hyn WC([o, T1; V).
2) For any t€[0, T, u(t) belongs to V' N K.

3) 'The right derivative Z—ttu(t) and the left derivative Z—t—u(t) exist on [0, T']
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both in the weak topology of H and in the strong topology of V* (with necessary
modifications at 0 and T').
4) We have

t
27 1 (t) [P ) S 2B+ @)+ [ (- (s, fs, (o) )
t o\dt
for any t&[0, T']) with necessary modifications at 0 and 7).
5) There exists a linear continuous functional F on C([0, T']; H) such
that

Fo—u)<0 for any v€C([0, T]; K)
and for any ve W1([0, T']; H)YnC([0, T]; V)

—("(2 L3 —
Flo) = §0 (ds w(ds), L o(e)ds
T d..
[, @ou)—1s, us)), o(s+6, 0(O) (L u(T), o(T)).
6) The initial condition is satisfied in the following sense:
#(0) = a and b—j—:u(O)EalKa .

ReMARK. Vaguely speaking, the functional F is a element of the set 0, u
in the dual space of C([0, T']; H).

We state the assumption and the existence theorem for the solutions of
(2.3) as mentioned above.

AssuMPTION A-1.

1) There exists a closed linear subspace L of H such that the closed convex
set K is contained in L and has interior points in L.

2) The orthogonal complement L™ of L is of finite dimension and is
contained in V.

3) For any sequence of functions {«,} in W.(0, T'; H)N L..(0, T; V) such
that {u,} is bounded in L.(0, 7'; V) and converges to some % in the strong
topology of L0, T'; H) as n—>oo, a subsequence {u,;} can be extracted so
that 0¢,,—>0¢u in the weak star topology of L.(0, T; '*). In particular, the
sequence {0¢u,(+)} is bounded in L..(0, T'; V'*).

4) For any a€L and any u, vV such that ||u||y, <R and [|v||,=<R, the
following inequality holds:

|(@pu—0pv, a)| = Cllu—m|
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where C, is a constant depending only on ¢ and R.

Theorem 1. Assume that H is separable, and that the injection mapping of
V into H is compact. Let the initial values a and b be given in VN K and H,
respectively. Then under the assumption A-1 there exists at least one solution of
(2.3) on [0, T].

In what follows we consider the case in which 9¢=4 is a positive definite
self adjoint linear operator in H. In this case ¢(w)=27"|4A"u|?, and V=D(4'7?)
endowed with the graph norm of 4%2. Then the problem (2.3) is written as

dil: w(t)+-Au(t)+-01u(t) 3 f(t, (®))
(24) p
w0)=a, —u0)=5.

ReMaArk. Theorem 1'. Replacing in Theorem 1 the assumption A-1 by
conditions listed below and assuming ac= D(A), we have the same conclusion as in
Theorem 1 for the problem (2.4):

1) For the subspace L condition 1) of A-1 is satisfied.

2) The orthogonal complement L™ is spaned by a infinite set {p;}7-o of
orthonormal eigenvectors of A.

3) The function h stated in (2.2) belongs to L(0, T).

We employ the following notion of the energy conserving solution of (2.4)
(c.f Schatzman [5]).

DrerFiNiTION 3.2. We say that « is an energy conserving solution of (2.4) if
satisfies the following requirements:
1) u is a solution of (2.4) in the sense of Definition 1.1.
2) u belongs to C([0, T]; V).
+ —
3) Z—tu(t) and Z—tu(t) are respectively right an left-continuous on [0, 77 in
the strong topology of H (with necessary modifications at 0 and T').

4) We have
20 | a2 Au), u(e) =

271 bl P2 Aa, a)+S' (%u(s), £, u(s)))ds
0
for any t&[0, T'] (with necessary modifications at 0 and T').

We then state the assumption and the existence theorem for energy con-
serving solutions of (2.4).
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ASSUMPTION A-2.
1) The closed convex set K has interior points.
2) For any x€bdy(K), 0lxx forms a closed convex set

{n(x); A=0, n(x)€0Igx and  ||n(x)|| = 1}.
3) For any x, yebdy(K) such that ||x||<R and ||y||<R
[1n(x) —n(P)I=Nllx—yl|

where R is any positive number and N is a constant depending only on R.

Theorem 2. Let acV NK and beH. Under the assumption A-2 the
problem (2.4) admits at least one energy conmserving solution.

We here give a representation theorem for the linear functionals F in-
troduced in (5) of Definition 2.1.

Theorem 3. Suppose that assumption A-2 holds. Let u be a solution of
(2.3) and F be the associated linear functional as in 5) of Definition 2.1. Then
functional F is represented as

Fo) = | (1(5), o(9)dp.(s)

for v€C([0, T]; H), where

o [n®) i whebdy(K),
a(u(t)) = {0 if w(t)Ebdy(K),

and p, is a left continuous increasing function on [0, T'] such that p,(0)=0 and
0= p.(O)=<||F|| for each t€[0, T]. If u(t) belongs to the interior K of K, dp,=0
in some neighborhood at t.

Moreover the function p, is uniquely determined by u.

ReMARK. Vaguely speaking, if u(t)ebdy(K), —#(u(t)) is the direction of
the repulsive power at the boundary point %(¢) and p,(t+0)—p,(?) is its size.

In order to study the uniqueness of the energy conserving solution, we shall
introduce a restricted class of solutions of (2.4) by using the increasing function

p. as mentioned in Theorem 3.
Let {t;}7-1 be a dense subsetof [0, T'], and define

M, = {v=C([0, T]; H); v is the energy conserving
solution of (2.4) on [0, T},
M = {WEMo; ul,VI}i[n Pw(tl) = Pa(tl)} ’
EHXy
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M2 = {AZ)EMI; g}tn pw(ti) = pv(tZ)} ’
1
= {veM;, §w¥in Pu(ts) = po(t)}
i-1

inductively. If M; is empty for some j, we regard M, as empty sets for all 2= j.

DerFINITION 2.3. We call an element of ﬁ M; a {t;}-energy conserving
solution of (2.4). -

Theorem 4. Under assumption A-2 there exists a unique {t;}-energy con-
serving solution of (2.4) for each pair of initial values acV NK and beH.

3. Existence of the solution

In this section we discuss the existence of the solutions of (2.3) and give
the proof of Theorem 1.

Throughout this section we assume that all of the conditions listed in the
assumption A-1 hold.

We begin by introducing for each A>0 the following equation:

pr ux(t)‘[“adhu)«(t)‘f“alx wih() = (2, w(2))

3.1)
w(0) =a€V NK and %u@):beﬂ.

Lemma 3.1. The equation (3.1) has a unique solution w,&C*([0, T']; H).

Proof. Since the operators 8®,, 0l , and f(z, -) are all Lipschitz con-
tinuous in H, this lemma is easily shown.

Lemma 3.2. For any tE[0, T), the following inequality holds :

||ua(t)||2+||gul(t)l|2+Ix,x(uz(t»+¢>x(ux<t))
< C(1-+lalP+- Bl P+ D)) ,

where C is a constant depending only on h and T.

Proof. Taking the inner products of both sides of (3.1) with —u,‘(t) and
integrating the resultant equality over [0, ], we have

32 27 %um) 1P Lt (£) +- @5 ((2))

= 2B+ @)+ [ (o, (6D, (o).
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From (2.2) it follows
[, @), Lan(opas
0 A)
<[ o)A+ 1 L (sl
0 L)
<[ RO+ @I+ 1L an(oIF s
Since I \uy(2) is nonnegative and @,(u,(£)) = — C,||ux(?)]| — C; we have
12w IF S IBIF-+20,(@) i BIF+ CE+-C,
2 HO( 1+ 1P+ 161 ds.
Hence noting
P 2{liale+ 7§ 1 L (o)
we get
]+ 112 158 P< Const (lal-+ 11+ @ o) + 1
+ [} D (1O () )ds

for t€[0, T']. Using Gronwall’s lemma and the fact that % is integrable on
[0, T'] we have

“u)\(t)”z"f"H‘%uA(t)“zé Const ([|al[*+[[8][*+DPr(a)+1) .
From the relation (3.2) and above estimates the assertion of the lemma is ob-

tained.

Lemma 3.3. Let x, belong to K, and R be any positive number. Then for
any x< B(x,, R) we have

(GIK,»’C: x—x,) = Const ||PLaIK,Ax” Hx— ],

where Const stands for a positive constant independent of x and N, and B(x, R)
is the ball of radius R centered at x,.

Proof. Put 8I,,x==2 and P,z=g,. If 2=0, the conclusion is clear.
Hence assume 2;0. Set



12 K. Maruo

(3.3) 2y = 2,—(2;, x— )| [x—a|| "2(x— ) .

Since P Py=PyP,=Py, P, is a self adjoint operator and (P, x— Pgx, xo—PgP x)
=0 it follows that

(21, ®—%) = APy (x—Pgx), x—xy)
= NN (Px—Pgx, Prx—x,)
= NN (Pyx—Pgx, Pyx— P Pyx)— (P x— Pgx, xp—Pyx P x)}
= \7Y|Ppix—P Pgx|[P=0 .

Since

(P2, x—x5) = N"Y(Py+(x—Pgx), x—x,)
= NP (x—x,), x—x0) =0 .

and 2=P,2+P;+2, we have
0= (2, x—xp) =(2, x—2x,) .
On the other hand, from (3.3) it follows that
ll2o—21ll = (21, 2—a00)llx—20ol| 7" .
We now assume the following relation and derive a contradiction:
(B4 (3 x—x0)=dist(xe, bdy (K))(4R)|lx—axpl|-[I2]] -
From the estimates mentioned above we have
ll2o— 21|l <dist (%o, bdy ((K))(4R) |l -

If dist(xy, bdy,(K))>R, P;x would belong to K, and so we would have
0Ix yx=2&L*. This contradicts z,=P,2=0. Hence dist(x, bdy,(K))=R.
From this we have

(3.5 llzll=(1—dist(xo, bdy (K))(4R)™)[|2]|>0.
Put
w = xo+dist (xg, bdy (K ))2ol[20l]7* .
From P,weK it follows (P x—Pgx, Piw—PxP;x)<0. Then
(21 #—w) = M"Y (Px—P Pgx, P x—P,w)
2N Y (P,x—P,Pgx, P.x—Pw)

+(PLx—‘PKPLx, PLw—_‘PKPLx)}'
- X—IIIP]_x——PLPKxHZgO .
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Hence, noting that (2;, 2,)l|2l|™*=]|2"||, we have

Oé(zl’ x——w)
= (2, ¥—xo)—dist (%, by (K))(0, 21)120l] 7}
= (2, x—x,)—dist (%, bdy(K))l|2l] .

Combining (3.4), (3.5) and the above mentioned estimates yields

0=(z, x—w)
=dist (g, by (K)){(4R)™|lx—ol| - [|21]l — |21}
= dist (g, by (K)){(4R) 7 [lx—axol| 7' —1
+(4R) ™ dist (%, bdy (K)}HIzll=1I .

Since ||x—x,|| <R and dist(x,, bdy (K)<R, we get
I <dist (%, bdy (K))l|2ll(47'—1+471)<0,
This is impossible, and we have

(6IK,Ax: X—Xo)= (PLalK,)«xy x—xo)
= dist (x,, bdyL(K))(‘I-R)‘l[ [oe— 2,/ | [P,_GIK,AxII .

Lemma 3.4. If the initial value b belongs to L we have
— (T
fim 10T (o)l ds< oo
A>0 Jo

Proof. Let {py, ps, -, pn} be an orthonormal base of L*. Set
Yi(t) = (m(t)—a, p;) = (1a(t)—Pxin(?), p;)
== X(alx,xu)\(t), Pi) .
By (3.1) and the condition b€ L we get

2 X .
%z WO+ = gl(t)

PO — a iy —
yi(0)=0, 57 0 =0,
where
g{(t) = (f(2, wA(2))—0Du(2), pj)-

Since | ®,(ux(2))| is bounded on [0, 7] by Lemma 3.2, it follows that | ®( [ u,(2))|
is bounded on [0, T']. On the other hand, (2.1) implie that || Jyu\(2))ll is bounded
on [0, T]. Hence it follows from the assumption A-1, (2.2), Lemma 3.2 and
the above-mentioned facts that
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. . t
(3.6)  lele)—gl)] = Const {(1-+h(s) 1 t—s| +| )t
Let e belong to D(6®). - Then
l (6CI>A“’ P:) I
= [(0@ra—0Dse, ;)| + | (0Dse, p))|
= [(0D Jxa—0® Jie, p;)| +(0Dse, ;) |
= Const (|| /ya— Jxel|+|0Dell)
= Const(|la—e||+-||0De]|) .
Thus
Tim | g/(0)| <oo.
Hence (3.6) and the above fact together imply that
(3.7) th | g{(#)| is uniformly bounded on [0, T'].
A
Since y{ is explicitly represented as
yi() =1 S’sin(x“/z(t—s))g i(s)ds
0
for >0 and A>0, combining (3.6) and (3.7) yields
[ (0 xu(2), ;)| = A7 ¥{()| =Const
where the constant on the right side is independent of A. Thus we have
(3.8) [|P 01 \u\(2)|| < Const .
Next we see from Lemma 3.2
|[un(t)—al||= T - Const for te[0, T.
Thus Lemma 3.3 implies that for x,&K; NV we have

(3.9) (81x xuan(2), un(2)— )
= Const || PL3 g x1r(2)|] ||un(2) — %o | -

Multiplying both sides of (3.1) by u,(tf)—x,, intergrating the resultant equality
on [0, T'] and applying an intergration by parts we have

g:(aIK,Aux(s), () — x)ds
— (b, a—xo)—(d%u,‘(T), W(T)—x,)

L+, 1(9) —0Bian(6), 1(6)—) [
=1l.
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Applying the above-mentioned estimates, Lemma 3.2, (2.2) and the relation:
(0D, 1r(5) — %) =Dy (1r(5)) — Pp(%)

we see that II is bounded by a constant independent of A. Therefore, using
(3.9) and the fact that ||u,(#)—x,|| is larger than dist (x,, bdy.(K)) provided
P9I ,ux(t) %0, we have

ST P8I »145(s)||ds < Const
0

where the constant is independent of A. From this and (3.8) we obtain the
desired assertion of the lemma.

Lemma 3.5. The sequence {u,} contains a subsequence {u,;} such that {u,;}
converges uniformly to a continuous function u on [0, T'] with respect to the strong

topology of H and the sequence {iu,\}} of the derivatives converges weakly to iu
. i dt dt
in L,(0, T; H).

Proof. In view of the assumption of the theorem and Lemma 3.2 we see
that {u,(¢)} is a precompact set in H for each ¢. Moreover the sequence {u,}

and {%u,\} are uniformly bounded in H by Lemma 3.2. Hence there exists

a subsequence {u,,} which converges to some element % in C([0, T']; H). Since
fd
Lt
4 in L0, T; H).
dt

uA(t)} is uniformly bounded, it is clear that {%"M} converges weakly to

We denote the above-mentioend subsequence {u,} by {,}.
Lemma 3.6. For each t€[0, T)], u(t)esKNV.
Proof. By virture of Lemma 3.2 we have
I \(ur())+Da((t)) = Const .
From this and Lemma 3.5 deired assertion follows.

Lemma 3.7. If the initial value b belongs to L, then the sequence {Ix \()}
converges to zero in L0, T'). Therefore there exists a subsequence {Ix;(u,)}
such that

lim Iy , (w;(2)) =0  forae t€[0, T].
j>ee

Proof. By the definition of I, we have
0= L z(uA(2)) 1 (0L pt0x(2), u(t)—w(2)) -
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On the other hand, Lemmas 3.4 and 3.5 together yield
T
lim S (0L xtr(2), w(t)—u(£))dt = O .
> 0
Hence we have
(T
1)‘15)1 So I \((s))ds = 0.

The remaining part of the assertion of the lemma is now obvious.
We denote the above-mentioned subsequence {u,;} by {u}.

We next study the convergence of {0Ix u,}.
For a while let b belong to L. We put

(t) = S:alx,,ua(s)ds .

Lemma 3.8. The sequence {r\(t)} contains a subsequence {r,,(t)} which
converges weakly to 7(t) for any t&[0, T'], and the limit function « is of bounded
variation as a function from [0, T] to H with +(0)=0.

Proof. Let O be a countable dense subset of H and set for each x&Q
and t€[0, T,

B «() = (TA(l)’ x) .

Then it follows from Lemma 3.4 that the total variation of E, , on [0, T'] is
uniformly bounded with respect to A. Since a function of bounded variation
is expressed as the difference of two nondecrasing functions, we can choose
with the aid of Helly’s choice theorem a subsequence {E,;.} which is con-
vergent on [0, T']. Since Q is a countable set, we apply the usual diagonal pro-
cedure to extract a subsequence {E,,.} such that

lim B, .(2) = E,(?)

oo
for x€Q and t€[0, T'], and we see that E,(+) is a function of bounded varia-
tion in [0, T']. Moreover
(3.10)  |E.(t)—E,(t)| =Const|[x—yl|

for x, yEQ and t€[0, T'], where the constant on the right side is the constant
independent of £. It then follows from (3.10) that for each t&[0, T], the
mapping x— E,(f) can be extended to a continuous linear functional on H.
Therefore the Riesz theorem asserts that for each t&[0, T'] there exists an
element 7(t)EH such that

E.(t) = (7(¢), x) for x€H.
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Since the total variations on [0, T'] of 7,(+) are uniformly bounded for A, it
immediately follows that =(+) is a function of bounded variation on [0, T'] and

7(0)=0.

For simplicity in notation we denote the subsequence as mentioned above

by {m}.
We then put
t
Foa(8) = | (0Lat(), £()ds
for t€[0, T'] and g C([0, TT; H).
Lemma 3.9. For any gC([0, T]; H) the limit
}\i_gl Fi\(8) = Fi(g)

exists and the limit functional F, is a bounded linear functional on C([0, T]; H).

Proof. By the relation 91 ,‘u,‘(t)~iﬁ(t) and the integration by parts we
obtain

Foa(®) = (), )~ [ (), Le(s))as

for ge Wi(0, T; H). Hence Lemma 3.8 implies that the limit lim F, ,(g) exists
an d A>0

(A1) lim Fou(g) = (0, g0)— (70, L) )as
=F, t(g) .

Since

|Fi(g)| = lim | F \(g)| = Const-Sup [Ig(s)]l,

F, is extended to a linear functional on C([0, T']; H) and the limit hm F,\(g)=
F(g) exists for any g=C[0, T']; H).

In what follows, we write F(«)=F;(+).
For a function g €C([0, T']; H) we introduce the scalar-valued integral

t n-1
(312)  { (g00), dr(s) = lim S (408, ~(thr) ()
where {#;} is a sequence of partions of [0, ¢] such that

0=H<th<-<th =1t

and
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lim Max |#,.,—1]=0.
7300 g=1,2,3,,0~-1

It is easy to verify that the limit on the right side of (3.12) exists and does not
depend on the choice of {#;}.

Lemma 3.10. We have

Fig) = (&), dr(s)

forte[€0, T] and g=C([0, T]; H).
Proof. Using Lemma 3.9, (3.12) and applying the integration by parts,

we obtain the conclusion of the lemma.

Lemma 3.11. The sequence {Ediuh(t)} converges weakly in H to %u(t)

for ae t€[0, T). Further, the sequence {0®u} converges to dDu in the weak
star topology of L..(0, T; V'*).

Proof. In view of Lemma 3.5 we see that {/,u,} converges pointwise to
u(t) with respect to the strong topology of H.
Since || Jyur(?)lly is uniformly bounded for A and # by Lemma 3.2, we see
with the aid of the assumption A-1 that there is a null sequence A;—0 for
which

0D, r, — Ocput

in the weak-star topology of L..(0, T'; V'*).

Hereafter we denote this subsequence by {0®,u,(¢)} .

Multiplying both side of equation (3.1) by eV, integrating the resultant
relation over [0, ¢], and using Lemma 3.5, (3.11), (2.2) and then the above-

mentioned fact we infer that the limit lim (%u,(t), a) exists for any t€(0, T).
A>0
On the other hand, { %ua} converges to %u in the weak topology of L,(0, T'; H).
Thus, noting that V is dense in H, we conclude that {ditu,\(t)} converges in H
to L u(t) for a.e 1[0, T).
dt
We put
X, = {tE[O, T1; tis a Lebesgue point of ditu

qd . a
and wealclim (1) — Eu(t)} .
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Lemma 3.12.
+ -—
1) The one-sided weak derivatives w-j—tu(-) and w-g? u(+) exist every-
where in the intervals [0, T), (0, T'] and are weakly right- and weakly left-continuous

+ -—
in H, respectively. Moreover w-j—tu and w-j?u are respectively right- and

left- continuous in the strong topology of V*. (with necessary modifications at 0

and T).
2) Let 7(+) be the weak limit of functions 7,(+) as An—>0. Then

(t-£0)=b+ w-Lu(t)— | @duls) (s, u(s))ds

for any t&[0, T (with necessary modifications at 0 and T).

Proof. Applying Lemmas 3.5, 3.9, and 3.11 and using the relation (3.1),
we have

(13) (o) 2®)—[ (), Lg(0))as
= [{ (e w), g0t (L, Lg(e))as
~(Luv), 2(0)-+(b, 0D~ @pu(s), g6

for any t€ X, and any gC([0, T]; V)N Wi([0, T]; H). Since the total

variation of 7 is finite, the limit

lim 7(s) = 7(t—0)

Syt s<t
t
exists for any t€[0, T']. By (2.2) and Lemma 3.2 and function t—>s (f(s, u(s)),
0
a)ds is continuous over [0, T'] for any element o of V. Since ||0¢u(s)||y+ are
uniformly bounded on [0, T'] with respect to s, the function t——»St(ﬁqSu(s), a)ds
]

is continuous in [0, T']. Letting a=g(?) in (3.13) we see that for any t&(0, T]
the limite

. d )
exists. 'Therefore w—% u(t) exists for any t&(0, T']. Noting that d—iu belongs
to L.(0,7T"; H) and using the relation (3.12) with g(¢)=a, we get

I( S;de(s)ds, )| = Const |||
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foraeV and t€ X, Since I and X, are dense respectively in H and (0, T'],
t

the integral S d¢u(s)ds belongs to H for any t<[0, T']. Therefore we have
0

(t—0)= b—w-‘% u(t)—l—S:( (s, 1(s))—Opuu(s))ds

t
for t(0, T']. Since the function t—>($ d¢u(s)ds, ) is continuous for aV
0
t ¢
and the function t—>S 0¢u(s)ds is bounded in H, S d¢u(s)ds is weakly contin-
0 ]

uous in H. Since 7(¢—0) is left-continuous in H, we see that w-g—u is weakly
left-continuous in H on (0, T]. t

+
By the same argument as in the above, we conclude that w-‘f?u is weakly right
continuous in H on [0, T'] and the relation t

(t+0) = b—wo-Lou(e) - (s, u(0)—0pu(e)ds

holds for &[0, T).
+ -

Moreover ||d¢pu(s)||y+ is uniformly bounded, and so w-%tu and w-%u are

strongly right- and left- continuous in V'*, respectively.

Lemma 3.13. Let F be the linear functional on C([0, T']; H) stated in
Definition 2.1. Then we have :

) & o) (L ur), o)+ [ (L) Lo9))as
(" @uts), ot)as +{ (s, w(s), o(6))ds = Feo)
for any vEW0, T; H)N C([0, TT; V).
2) Fo—w)<0 forany veC([0, T]; K).
3) 2L wO I+ @) S2 b+ (@)

+ (0, w@), Luohds for any te[0, 7]

(with necessary modifications at 0 and T).

Proof. Asser.on 1) follows from (3.11), (3.13) and Lemma 3.12. Since
{Jxu,(2)} converges to u(t) and ®(-) is lower semicontinuous, we have

lim ,(x(141)) Z D(u(?) = H(ul?))
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Hence Assertion 3) is obtained by using (3.2), Lemma 3.11 and 1) of Lemma
3.12 and the lower semicontinuity of @®(+). Finally, Assertion 2) is obtained
by applying Lemma 3.5 and 3.9 to the inequality

Fy(o—1) = [ (0Tk00(), o(5)— ()

= || Inate(o)ds = 0.

Lemma 3.14. The function u satisfies the initial condition 6) stated in
Definition 2.1.

Proof. It is obvious that #(0)=a. Taking any ¢ &V and putting g(*)=a
in (3.13), we get

(w(0+0), &) = (b—w-L u(0), ).
Hence

(3.14)  7(0+0)= b—w-%u(O) :

On the other hand, in virtue of Lemma 3.8, we have
(7(t), x—a) = l}\im (7A2), x—a)
>0
t t
= }grol §o(al . aUA(S), x——u,\(s))ds—}—}‘i_gl So(alk,,‘u,‘(s), u(s)—a)ds .

for x€K and t€[0, T]. Hence, using the relation (01 \#,(s), x—u,(s))=0 and
Lemma 3.4, we get

(7(¢), x—a) < Const Sup ||u(s)—al| .
ogs<t
From this it follows that
(7(04-0), x—a)=<0 for any x€K.

Combining this with (3.14) we have
d+
b— w-ﬂu(O) €0lga.

We now give the proof of Theorem 1.
Let b be any element of H. We put P;b=b, From Lemma 3.12, 3.13
and 3.14 we have a solution %, of (2.3) with the initial-value b replaced by b&,.
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We denote by F, the linear functional associated with #,. First we shall find a
solution % of (2.3) and the associated function F.

We put u(t)=wu,(t) and define F(+) as the linear functional Fo(«)—+(b—b,, Jo*)
where 8, is the Dirc measure. Then

F(v) = Fo(v)+(b—b,, ©(0))
— (&, v(O))—(%u(T), o) +S:(iu(s), iv(s))ds

ds ds
{7 s )00, v

for any ve W1(0, T; HYN C([0, T']; V).
Since b—b, belongs to L, we have

F(o—u) = Fy(v—u)-+(b—b, v(0)—u(0))<0

for any veC([0, T']; K). But u=u, and u, is the solution of (2.3); it is clear
that the energy inequality of (2.3) holds for u.
Noting that b—b,E0Iga, and that 0lga is a convex cone, we have

d* dt
b-—w-Eu(O) = b,— w-a?uo(O)—{—bo—bEaIKa .
From the above-mentioned it is concluded that the function # is the solution
of (2.3), and the proof of Theorem 1 is complete.

We next prove the Theorem 1’ stated in Remark.
Under the conditions of Remark we get

Asp; = (L4H2N) 7N b5

where A; is the eigenvalue of A associated with p;.
Let y{(¢)=(m\(t)—a, p;) be the function as defined in the proof of Lemma 3.4.

Then, by the method employed the proof of Lemma 3.4 and by the equation
(3.4), we have

LA M) = (-, ()~ e, )

; d
{(0)=0, =9{(0)=0.
\yx() dty)‘()

Using a method similar to the proof of Lemma 3.4 we get
[(1+22) (120} i) |
= I(f(o’ a)’ P;)I + I (f(t’ u}\(t))’ P}) ! + I (A)\a’ PJ)I

—I_j; | (d%f(s’ u (9)), P,-)lds.
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From this together with Bessel’s inequality we obtain
4 SN IPSIAO, @)+ Sup 1 w(®)IE

+||Aha|lz+g (s, u(s))|*ds .

tod
P2
Thus condition (2.2) and Lemma 3.2 together imply
IP+0 I sn(®)IF = 33 In1y4(2)|°< Const .

=

Condition A-1, 3) is clearly satisfied in the present case and conditions A-1 2),
4) are needed in the proof of Lemma 3.4. Consequently, we can obtain the
desired conclusion of Remark by following each step of the proof of Theorem 1.

4. Energy conserving solutions

In this section we discuss the existence of energy conserving solutions
which belong to W.(0, T; H)N C([0, T]; V). Throughout this section we
assume that all of the conditions listed in the assumption A-2 are satisfied.
We begin by preparing some lemmas concerning the closed set ddy(K).

Lemma 4.1. Let R be any positive number. For any x,y < bdy(K)N
B(0, R) there exists a positive constant Ny, depending only on R, such that
0=(n(x), x—y) < Nellx—ylP
and

|(n(x)+n(y), —y)| = Nellx—ylf*.

Proof. From the assumption A-2 it follows that the function n(x) from
bdy(K)N B(0, R) to H is Lipschitz continuous. We denote the Lipschitz con-
stant by N. From the convexity of K we see that for x, yebdy(K)N B(0, R)

(4.1) (n(y), x—y)=0=(n(x), x—y) .
Thus

wn  {T 5= (n(x)—n(3), ¥—),

((y), x—y)Z(n(x)—n(y), y—*) .

The first part of the lemma is then proved by combining (4.1), (4.2) and the
Lipschitz continuity of n(x). Next, (4.1) yields

(#3)  (n(y), x—y)=(n(x)+n(y), x—y)=(n(x), x—y) .

Thus the remaining part of the lemma is easily proved by the first part
and (4.3).
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In what follows we assume N,=1 and set
K§ = {x€K N B(0, R); dist(x, bdy(K))<Nzhi}-

Lemma 4.2. Let 2 be any point of K§. Then there is one and only one
point x belonging to bdy(K) such that

dist (2, bdy(K)) = ||x—z]| and x—2€0lx.

Proof. Pu. a=dist(z, bdy(K)) and x-+n(x)=c(x) for x,bdy(K). By the
definition of K¢ thereexists an element x&bdy(K) such that ||x;—=2||<Nzi:.
Let x, be the point of intersection of ddy(K) and the segment connecting the
point ¢(x,) and 2. Inductively, we denote a sequence {x,},-; in such a way
that x,,, is the point of intersection of ddy(K) and the segment connecting the
point ¢(x,) and 2 for each n. Then we know the following inequalitis

s —2] 141 Im(xa) | 2 lle(xa) — 2
= [|# 1= 2| Flc(%s) = Xl | Z %10 — 21|+ |m(a2,) ] -

Thus ||x,—z2||=|)x,+1—2||= e, and we have
lim |lx,—2ll = Bz, lim|le(x,)—2Il = B+1.
Put x,—=2=p0n(x,)+E&,. Then
(B+D)n(x,) -+, = c(x5)—= .
Since ||Bn(x,)+&,ll and ||(B+1)n(x,)+E,l| tend respectively to 8 and (B8+41)

as n—>o0, we get
lim ((x,), &) = 0.
Thus
(4.4) }‘Lrg & =0.
On the other hand
g — a2 = B(1(2,) —1(%p)s Xg— %)+ (En—Emms Xy—X)
for m, n sufficiently large. Since
B(n(%)—1(%), %p— %) < BNpssllt,— 24l and BNz, <1
we have
1263 — 2] [ = (1— BN gera) (1€l +-1E M2 — 0l -

Hence we see (4.4) that {x,}_, is a Cauchy sequence. We put
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lim x, = x.. .

fn-poo

Then x,—2=pBn(x..). We now show that 8=a. Assume to the contrary that
a=pR. Then we can choose %, such that

2 ebdy(K) and ||%—z||<B.

Using the same method as in the above argument we find a boundary point
X, of K such that

R—2 = On(x.) and a=<F<B<Nzi:.
On the other hand, Since (#(®.), ¥.—%..)=<0, we have
(45) a8l = B(n(x.)—n(E.). x—5.)
H(B—B)(M(Ees), Xeo—Beo) < BN || ¥ —Boo| [ .

But BNz.,<1, and so x.=&.. Thus we must have 8=@, which is a con-
tradiction. Thus B.=dist(x, ddy(K)). Finally, we can prove the uniqueness
of the point x.. by using the same method as in the derivation (4.5).

For any 0<<8<1 we define
K= {xeB(0, R); dist (x, bdy(K))<SN7l1} .
Let = belong to K§ and define

{ the point x as in Lemma 4.2 if zekK
r(z) = Pyz if 2&K.

Lemma 4.3. For 2, 2,€K¢§ we have
”r(z‘,)—r(z‘z)ll§_2(1—3)"1”2‘1—2’2|| .

Proof. Let 2, 2,€K.
Then r(2;)—=z;=dist (2;, bdy(K))n(r(z;)) for i=1, 2. On the other hand

|dist (21, bdy(K)—dist (2,, bdy(K))| =|z1—=l| ,
and so we have

”r(z1)_"(zz)”éznzl_zz’”+8N1_?-1+1NR+1”7(2'1)_7(22)“ .
Hence
[lr(2)) —r(2)[=2(1—8) ||y —2,| .

Next let 2,&K and 2, H—K.
Then 7(2,)—z2,=—dist (2,, bdy(K))n(r(z,)) and dist (2, bdy(K))-+dist (2, bdy(K))
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=<||#;—=,|l. Hence the application of the same method as above implies the
desired estimate.

Finally, the assertion of the lemma is clear for the case in which both 2, and 2,
belong to H—K.

We now cosider the following equation:
/ 2

s

(0) = aeV K, %uA(O) — beH.

uA+Au}.+6IK,}\uA = f(' ) %)
(4.6)

Lemma 4.4. For any \>0 the initial value problem (4.6) has a unique
solution u, such that

heC(0, T]; V)N CY0, T1; H) N CX([0, TT; V%)
Moreover we have for any t<[0, T,
(4.7) [[ax()I P11 % ()| P+ I A(un(2)) - (Aur(2), u(2))
=<Const {1+[a|P+]|[bl*+(Aa, a)} ;
(4.8) S: | 91g.» 1x(s) || ds < Const;
and
(49)  IFE(0) IP-+H(A5(0), 1a(0)+2Lalu1)
— ||l +-(Aa, a)+-2 S: (F(5, 1(5))s _% us(s)) ds .

Proof. Since D(4) is dence in D(A4'?) and since D(A'?) is dense in H, there
exist sequences {a;}7.1 in D(4) and {b;} 7., in D(A'?) such that

|| A*(a;—a)||+||b;,—b|| < j~2,
“aj—alléj_z .

Let u, be a solution of the initial value problem
2
-(létz— ut+Au=0

#(0) = ay, %.u(O) —5.
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We then define a sequence {u;}7., of “approximate” solutions in an inductive
manner by

d2

—a Uit Au; = E(+,u;.,),
(4.10)
w0 =a;, L) =b, j=1,23,

where E(¢, x)=f(t, x)—8Ix,, x.
By (2.2) and the Lipschitz continuity of 8l , we have

IE(2, x)—E@, p)l| = h(®)llx—yl ,

(4.11) ”%E(t,x)llgh,(t)(llxuﬂ)

where h\(2)=h(t)+r"". Using the well-known result for the linear hyperbolic
equation repeatedly, we get solutions of (4.10) in such a way that

w,eWLO, T; VYN W20, T; H)
for all nonnegative integers ;. Now (4.10) implies the relations

d2

d—tz (uj_uj—1)+A(uj——uj—-l) = E(+, u;_)—E(-, U;js)

for j=1,2,3, ---. Taking the inner product of —;t—(uj—u,-_l) and both sides of

the above equality and then intergating the resulting equation with respect to
t, we have

(#12) 27 “—ddt—(uj(t)—“;-l(t))l|2+2'1(A(“j(t)—uj—1(t)), u;(2)—u;-(2))
— 2 e§+S:(E(s, 4, +(5))— E(s, 4; o(5)), %(uj(s)—uj_l(s))) ds

Where 8; == Iij_bj_llIz"—‘“Al/z(aJ_aj_l)”z .
From (4.11), (4.12) and the positivity of A it follows that
d
1 Gy 0y
<g’ ! d
=€5+2 ) Iu(olltja(s)—u-o( I — - () —;(5))llds -

Hence Gronwall’s inequality ([2; p. 157]) yields
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t
l dit(u,-(t)—u,--l(t))ll &N+ So I(5)\tj-o(5)—u;o(s)| 2 .
Combining this with the estimate

()t s S sl -+, 11ty )— o ENIE
we have

1ty )1 5808 112ty 9)— sl
where  Cf{ = S: hys)ds and & = &P Clla;or—a,ll .
Therefore we obtain

H%(u,-(t)—u,--l(t))u gz &;-{(CLE) )+ CLM(CLY~¥((j—3)),

where  M—Max [li5(t)—(0)

Since &;_;=Const(j—i—2)"? and Cj;= Const independing of A we see
o  j- L.
31 3T &,(CL) (i) <o

Then we obtain

3 1Ly ()~ @l| < Cons

Thus we conclude that {% uj(t)} is uniformly convergent on [0, 7']. Moreover
from the above result and lim a;=a it follows that {u;(f)} converges to some
oo
function u,(?) on [0, T] and the convergence is uniform for t&[0, T']. It thus
follows from (4.12) and the above result that
lim A2 u;(t) = A2 uy(t)  uniformly on [0, T7].
Since A u, is continuous and V=D(A4'?), we infer that Au,&C([0, T]; V'*).
Further, f(+, u\(+))€C([0, TT; H), and so u,(+)C?[0, T]; V'*). Therefore u,

is the solution of (4.6). Multiplying both sides of (4.10) by diu ; and integrating
the resultant equality over [0, #] we have t
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270 (|- (8) IF-+-27 A1), )+ Lea((0)
¢ d -1 2
- O -4~ 0L (), -6 = 27
1 ! d
+27 Ay, @)+ I a(as) - (G5 1), () ds
Combining the above results, we obtain (4.9) and (4.7). Assertion (4.8) is

verified in the same way as in Lemma 3.4.

We here employ the complexification H of H and the extension 4 in H of
A as mentioned in Section 1. Let {C(#)} and {S(¢)} be the cosine function
generated by D(=+/—1 AY?) and the associated sine function, respectively.
Recall that C(¢)x as wall as S(¢)x belong to H for t=0 and xH. Moreover,
we have

4.13) { N27H{U@ LU= HII=IIxll ,
' N2H{U@BLU(— )} DI INAT A =]l for x€H.

Now let R’ be the square root of the right side of (4.7) and put R=R'T+
llal]l. Then the solution u,(¢) of (4.6) takes its values in B(0,R) for A>0 and
0=:=T.

Suppose for the moment that the initial value a belong to ddy(K). For
8€(0, 1) and A>0, set

Ty, = Sup {t=T: u\(s)€ Ky for any 0<s=t} .
¢

Then the energy estimate (4.7) ensures that there is a positive number 7T; such
that

T,,=T,=8Nz5 R for any A>0.

We then consider the equation (4.7) on the interval [0, 7}]. First we recall
that 0l ,(u,(2)) is represented as

(4.14) 0l un(2) = L(2) n(r\(t)) ,

where 1,(£) = r(a(#)) and h(t) = [[0Zx» t(2)] -
Further, the solutions #; of (4.10), which belong to W.(0, T; V)N WZ(0, T'; H),

are expressed as

4y = C(0a;+ (0|, St—)10Len ;-1 (5, (N} ds.
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Noting that

Ol u;_y(s) = 7\_1”1‘;-1(5')—})1( ;| |n(r(u;-4(5)))
converges to [,(s) n(r,(s)) as j—oo, we have
(4.15)  w(t) = a(t)+W(2, uA)—g: S(t—s) h(s) n(r\(s)) ds ,

where  a(t) = C(t)a+S()b and
t
Wit u) = go S(t—3) f(s, m(s)) ds .
Similarly, we obtain

(4.16) 757 () = % a(t)—|—% Wi, uA)~S: Clt—s) 1y(s) n(rx(s)) ds

by computing the derivatives of #; and taking the limit as j—oo.

Lemma 4.5. The sequence {u},>, contains a subsequence {u,;} convergent
uniformly in the strong topology of H to a continuous function u(t) on [0, T3)].

Proof. Put
t
p,\(t)zs L(s)ds  for #=0 and A>0.
0

Then p,(+), A>0, are uniformly bounded functions on [0, 77] by (4.8). Ap-
plying Helly’s theorem, we find the subsequence {p,;(+)} such that

(417) limpy(B)=p(t) for te[0, T]—Q

where p(t) is a left-continuous, increasing function on [0, 73] and Q, is some
countable set in [0, 7;]. Now in view of (4.15) we get

#18)  uy () —tn(8) = (WL, wy,))— W(t, 1)}
| Stt—5) () 2, O} 105) &
— |} 8(t=9) 22, 9) L (o)) ds
= L—I,—I,.

By 3) of the assumption A-2 and Lemma 4.3 we have

(+19) LI Const | 4,9l ()~ o)l ds
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Also we infer from (2.2) that
(420) LIS Const || Al (s)—ta, ()l ds.
Using p,;(0)=p,,(0)=0 and applying an integration by parts in I; we have
I, = . Cl—5) 10, 6)) (o, (5)— ) d
[} 509 L o) (or (o)

=1+

The first term I, is estimated as
NS 1on ()P0l
and 3) of the assumption A-2, Lemma 4.3 and (4.7) together imply
[ % n(r2,(8)) || = Const .
Therefore the norm of I, is bounded by
w5t)=Const {1 (5)—pr6) 1 ds .
Combining (4.18), (4.19), (4.20) and the above estimate gives
() — ) Se.(2)+ Comst § 4h(5), ()l ()14, s
Hence Grownall’s lemma yields

(4.21) ””A;(t)‘“a,,(t)”éwj,k(t)
+ [} 1@ )+ exp | 06+, @k ds.

We now show by use of (4.21) that {u, } converges. First (4.17) impies that

(4.22) hzn wj(t)=0 uniformly on [0, T3] .
Since STI {h(s)+14 (s)} ds=Const, it follows from (4.21) and (4.22) that
[}

lim u, () = u(?) uniformly on [0, T}] .
jroo

In what follows we write %, and A for #,; and A}, respectively.
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Lemma 4.6. We have
uit)eKnV  for t<[0, Ty]
and
lim n(r,(1)) = n(r(t))
A>0
where r(t)=r(u(t)) and the convergence is uniform on [0, T] with respect to t.

Proof. The assertion of the lemma follows immediately from (4.7), 3) of
the assumption A-2, Lemmas 4.3 and 4.7.

Lemma 4.7. {7dt— uA(t)} converges strongly in H to %u(t) for a.etE[0, T1].

Proof. In view of (4.16) we write
d = d d
4.23 ——w(t) = ——a(t)+—— W2,
“2)  Luw=Lan+ L wew

t ¢
[ ct—s) i)~ 6D b5y ds—{ Ct—9) ) 15y ds
= % a(t)—l—% Wit w)+L+1,
Then Lemma 4.6 yields
(4.24) £1I£1 1Ll =0
and Lemma 4.5 ensures that

(425) lim % W(t, 1) — S: Clt—9) f(s, u(s))ds .

On the other hand, V'=D(A4"?) is dense in H, and so there exist exists a sequence
of functions {g;} in C*(([0, 7}]; H) N C([0, T}]; V) such that

_ ;1 —1
(4.26)  Sup llg;(&)—n(rt)lI=;""
In order to estimate I, we write
t
I,=—{ C(t—s) () g5} h(s) s
‘ d
—{ Ct—98/9 L pu(o) sd = Lt L.

Then the first term I, is estimated as

(427)  |ILI|SConst)j  for j=1,2,3, .
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The second term I, is transformed to the following from by integration by parts
and p,(0)=0;

I, = —g;(0) P+, Ct—) -2 g,6) pac) s
| St—5) D g,(9) r(s) ds
The application of (4.17) then implies
lim £, = —g,(t) p(0)+{, Clt—5) -2 4,(9) pls) s
| S(t—5) D g,(6) pls) s
=—{ ct—9215) do(s) .
Hence we infer from (4.26) that
(+28) || Ct—9) ntr(s)) do(o)+lim il p(e)

forany j=1.
Using (4.23), (4.24), (4.25), (4.27) and (4.28) and letting j—>oo we see that the

iim % u,\(t) exists for any t£(0, 7;]—Q, and the assertion of the lemma is now

obtained by combining Lemma 4.5 and the above-mentioned estimates.
Lemma 4.8. We have
t
u(t) = a(t)+ Wit, w)— | S(t—s) n(r(s)) dp(s)
for t€]0, Ty] and
% u(t) — % a(t)—}—% Wi, u)—S; Clt—s) n(r(s)) dp(s)

for a.e t€[0, T']

Proof. The assertion of the lemma is readily shown by (4.15), (4.16),
Lemma 4.5, Lemma 4.7 and together with the argument employed in the proof.

Lemma 4.9. We have

lim A2 u\(t) = A% u(t)  in C([0, Ty]; H).
A0

In particular, A*? u belongs to C([0, T\]; H).
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Proof. By virtue of (4.15) we have
(429) AV uy(t)— A" u, (1)
= [ 5=9) 0t )~ oD, () s

] =90, () L (o1, )= pr(9)

_S: S/(t—35) {£(5, A $))—F (s, 10 (s))} ds
=LA L+,
where  S'(f) = 27'/—1 {U@#)—U(—1t)} .

Using the same method as in the derivation of (4.19) and (4.20), we obtain

IEI-HIE]S Const || 4h(s)-+h,(H I, (), (9l

Hence we infer from Lemma 4.5 that

(4.30) LI +-ILl = 0,

lim
Apirg>0
uniformly on [0, T7].
Next, we write

t
I = | 5'(t—5) 1l () — (Db, — ()} ds
b d
+§ S0 mr) - {pr () —piy (o) ds
—_ 14—'_‘[5 .
As to the first term I, we see from Lemmas 3.4 and 4.6 that
(4.31) }\ln’}\l [ILIl = 0 uniformly in [0, T7] .
P

>0

The second term I is written as
I = | 5/t=9) () g/ -2 Apn ()= s, (O} d
+{ 59 8,6 Lo, —pa o) ds = It T

where g; is the function in C'([0, T1]; H) N C([0, T}]; V) satisfying (4.26).
For the term I; we have

(4.32)  Sup ||L]|=Const/j.
0=0xT,
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By integration by parts and (4.17) we have
lim [|[;]| =0 uniformly on [0, T}] .

4\1,,)\,,—>0

Combining this with (4.29), (4.30), (4.31) and (4.32) and letting j—oo, we ob-

tain the assertion of the lemma.

Lemma 4.10. The function t-—>St U(i—s) n(r(s)) dp(s) has both of the left
0
and right limits on (0, T\] and [0, T}). Moreover this function is left continuous
on (0, Ty].

Proof. We put
[} Ut—s) n(r(s)) o)

t t
= [} U= 1) g, dp(s)+” Ut—9),(5) dp(s)
= 1"“[2 .
where g; is a function satisfying (4.26). Since each is a contraction mappn map-

ping on H, (4.26) yields

LI =p®)j -

By integration by parts we have

I, — &) p()+ ]| U(t—5) D) pls) ds— | Ult—) -2 g6) p(s) .

Noting that p has both the left and right limits we infer that I, has both the
left and right limits as well. Thus the function stated in the lemma possesses
the left and right limits. Further, since p is left-continuous, we see that the
function is left-continuous on (0, T].

- +
Lemma 4.11. The one-sided derivatives i—u and iid—u are left and right
continuous on (0, Ty] and [0,T)), respectively. t

Proof. The derivatives dita(‘ +) and %W(, u) are continuous, and so the

d

assertion follows from Lemma 4.8 and 4.10.

Lemma 4.12. The function u satisfies all conditions stated in Definition 2.2
on [0, T].

Proof. The proof is obtained by applying Lemma 3.7, 4.5, 4.6, 4.7, 4.9,
4.11 and (4.9).
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In what follows we simply write dp(t,)=0 when dp(<)=0 in some neigh-
borhood of ¢,

Lemma 4.13. If u(t;) belongs to K, then dg(t;)=O0.

Proof. Lemma 4.5 implies that there exists a positive constant & such
that

inf  dist(u(t), bdy(K)
telty—8,49+8

=27 dist(u(l,), bdy(K)),

and that if 8 is sufficiently small, then u,(¢) belong to K for all te[t,—8, t,+8].
From the definitions of /, and p, in (4.14) and the proof of Lemma 4.5 we have
L(t)=0 and p,(t)=p.(t,) respectively for any ¢E[1,—3, t,+8]. Letting A tend to
0 implies that

plt) = plty)  for any 1€[t,—3, 4+3],
which means that dp(z,)=0.
We here recall the definitions of the mapping # and numbers R’ and R;

_ _ [n(u(t)), if u(t)ebdy(K),
(#33) A1) = {0 it w(t)eEbdy(K),
R’ = {the right side of (4.7)}'”# and R = R'T+||4||.

Lemma 4.14. We have the relations
w(t) = a(t)+W(t, u)— S: S(t—s) (u(s)) dp(s)
‘fi—;u(t) — %a(t)—l—% W(t,u)—S: C(t—s) A(u(s)) dp(s)

for any tE(0, T\] where T\<T and T,=Min{SNz., R, T}. Moreover we
have the energy estimates

(434 @I+ a0, u(0) < Const{1 +lal-+IBP+(4a, O}
(4.35) ||%j—u(t)l|2—|—(/1u(t), (1)) = |IBlP+(Aa, a)+-2 S: (f(s, u(s)), %u(s)) ds
for t€[0, T,] (with necessary modifications at 0 and Ty).

Proof. The integral repesentations of () and ;l%u(t) are readily obtained

from Lemma 4.8, 4.13 and (4.33). The energy estimates (3.43) and (4.35) fol-
lows from (4.7), (4.9), Lemmas 4.5, 4.7, 4.9 and 4.11.
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Lemma 4.15. Let the initial values a and b be given respectively in VN K
and H. Then there exists a solution u of (2.4) on some interval [0, T1] such that

T ST and

u(t)EK for 0=t<T1, and u(T{)bdy(K) else T{=T, and such that u belongs to

W0, T1; HYNC([0, T; V) and conserves the energy. Morecver u and i1—14 are
represented as in Lemma 4.14. with p=0. d

Proof. From the well-known result for linear hyperbolic equations and
(4.33) the proof is easily obtained.

DerINITION 4.1.  We say a function uC([0, T]; V) is a mild solution of
(2.4) on [0, T'] if the following conditions are satisfied;

1) For any t€[0, T, u(z) belongs to K,

2) u satisfies the equality 4) stated in Definition 2.2,

3) uand ‘fl—;u are represented as in I.emma 4.14, where p is a left con-

tinuous and nondecreasing function on [0, T], p(0)=0, and dp(¢)=0 provided
ut)eK.
Since a mild solution is specified by a function p as above, we denote a

mild solution ty (#, p), where p is a function as mentioned in 3) of Definition

4.1.
The next lemma is redaily obtained from Lemma 4.14 and 4.15.

Lemma 4.16. Let the initial values a and b be given respectively in V N K
and H. Then there exists a mild solution u of (2.4) on some interval [0, T,] where

T, in Lemma 4.14 if ac€bdy(K),

T, = .
' T' in Lemma 4.15 if a€K.

Lemma 4.17. Let (u, p;) be a mild solution of (2.4) on [0, T}] satisfying
u(0)=a, Au(O) b, (y, py) a mild solution of (2.4) on [0, T,] with f(s u) replaced

by fi(s, u) f(s+ Ty, u), and suppose that u, satisfies 1u,(0)=u,(T)), uz(O)
(Ty). Set

u,(t) if 0=<t<T,
“3(")—% .
u(t—Th) if Tyst=T,
and
(t)_{pl() if 0<t<T,
: p(t—T)+p(T)  if Ty<t<T\+T,.
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Then (us, ps) s also a mild solution of (2.4) on [0, Ty+T,] satisfying uy(0)=a, ‘—gu3

(0)=b. Moreover uy enjoys the energy equality (4.35) on [0, T,-+T,]. Thus this
solution u, satisfies the energy inequality (4.34) on [0, T,+T,).

Proof. By the definition of mild solution we have
wft—T0) = C—T0) w(T)+S(—T,) Su(Ty)
t-1, t-T, _
+ 7 ST A wls)) do— T S(—Ti—9) aef9) dpis)

for T\=:t=T,+T,.

Using the integral representations of % and —d—u1 and the group property of
di

{U(®)} we get

%wduzam+am+rswﬂﬁmmmm
.7 S0 () dpio) ] Stt—9) (s w(s—T) ds
[, St Aus—T3) dpue—T)
Hence by the definitions of u; and p; we get
ut) = a(t)+ W(t, )~ S(t—s) A(u(s)) dpy(s)
for t<[0, T,+T,]. Similary, we get
92 i(0) = L o)+ LWt )~ Clt—9) Ao6(9) dpls)
for t<[0, T,+T,]. Since u, and u, satisfy the energy equality it is easy to show

that the energy equality is valid for ;. Using this energy equality and apply-
ing the same method as in Lemma 4.4, we have the inequality (3.44).

Lemma 4.18. Let acVNK and b&H. Then there exists a mild solution
(#, p) of (2.4) on [0, T satisfying u(0)=a, ditu(O):b.

Proof. First assume that a€bdy(K). We use the notation (4, p, ¢, 3, g)
to denote the mild solution of the problem

j_;u—q—Au—l—GIKuBg(t, u) )

mm=¢£mm:3.
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By Lemma 4.16 there exists a mild solution (u,, p,, 4, b, f) on [0, T}], where
T, = Sup{t<T; dist(w(s), bdy(K)) <8Nz, and
t
ll()l<R  for O0=s<t}.

If T,=T, then the proof is complete. Hence suppose that 7,<7. From the
difinition of R’ and (4.34) we have u(¢)B(R, 0) for t<[0, T;]. Then |[u(s)||[<R
for 0=<s=<T; and dist(#,(T}), bdy(K))=8N i1 by the definition of 7}. Thus it
follows from (4.34) that 7,=8Nz3: R'™'. Now Lemma 4.15 ensures that there

exists a mild solution (uy, ps, #,(7TY), ditul( Ty), f(-+ Ty, +)) on [0, T,] where

T, = Min{T—T1{, T1{; T{ in Lemma 4.15} .

Let u; and p, be the functions defined in Lemma 4.17. Then Lemma 4.17 im-
plies that (u, ps, a, b, f) gives a mild solution of (2.4) on [0, T\+T,]. If T\+T,
=T, then the proof is complete. Suppose then that T\+T,<T. From (4.35)
and the definition of R it follows ||us(s)||<<R for 0=s=<T,+T,. Since dist(u,(T}),
bdy(K))==8Nz%: we have T,=8Nz}, R'". Lemma 4.16 again implies that there
exists a mild solution

(o o AT T3), 2 T4 T), f(-+ T+ T) on [0, T, where

T;= Sltlp {t=T—(T\+T,); dist(uys), bdy(K))<8Ng4,
and ||u,(s)||<R for any 0<s=<t} .
We then put
us(2) if 0SI<ST 4T,
u(t) = { w(t—T+T)  if T+T,<t<T+T,+T,
and
ps(2) if 0<t<T,+T,
pell) = { pll—Ty—T)tp Tyt Ty  if To+T,<t<T,+T,4- T,

Then Lemma 4.17 states that (us, ps, @, b, f) is a mild solution of (2.4) on [0, T+
T,+7T5). 1f T,+T,+Ts=T, then the proof is complete. Suppose then that
T,+T,+Ts<T. Then T;=8Nzii R'™'. Repeating this argument we get a
sequence of mild solutions (uy;_;, p,j-y, @, b, f) on [0, Ty+T,+---+T;], where T;
=>8NzL, R for 15i<j.

Since each T; is larger than SN z4; R’™" there must exist j, such that 7+ 7,4+
+T;j,=T. In this case the assertion is proved.

Next let a belong to K. Using the similarly aboev method we can prove this
lemma.
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Lemma 4.19. A4 mild solution (u, p) on [0, T'] is an energy conserving solution
on [0, TT.

Proof. Pui
V(1) = C(t)¢.+S(t)b—|—S: S(t—s) f(s, u(s)) s ,

z(t):di’Y(t) for te[0, T].
Then ditzez,z(o, T, H), YEWL(0, T; V), and

(4.36) £z+AY — f(-, u).
Moreover, by Definition 4.1,

4.37)  u@)= Y(t)—s: S(t—s) 7a(u(s)) dp(s)
and
(4.38) 7;—u(t) = z(t)—S: C(t—s) ni(u(s)) dp(s) .
For any vCY[0, T1; HYNC([0, T]; V) we infer from (4.36) that
4.39) S: (2(5), disv(s)) ds—S: (AY(5)—f(s, u(s)), v(s)) ds
= ((7), o(T))—(=(0), ©(0)) .
By switching the order of integration and integration by parts, we have

@a0) | (§, ct—9) ) dps), Lotr)) ar
— S: (ST Clt—s) A(u(s)), %v(t)dt) dp(s)
= (s: C(T—s) n(u(s)) dp(s), ”(T))
_S: (@ (u(s)), o(s)) dp (s)—S:S: (D*S(t—s) A(u(s)), v(1)) dtdp(s) ,

where the parenthesis of the integrand of the last term stands for the paring
between V* and V. The relation D?=—4 and Fubini’s theorem together yield
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T
0

@41 [ [ oesu—syanu), ompardp(s)
— S:(S:—-AS(t—s)iz(u(s))dp(s), o(2))dt .
Combining (4.37) through (4.41) we have
@492 (Lue), Log)de— Aue) s, u), o()ds
— (D), (1)), 90+ (A(ats), o(6)dp0)

Thus, putting

F(v) = S:(ﬁ(u(s)), v(s))dp(s)  for veC([0, T]; H)

we infer that u is the energy conserving solution on [0, T'].

Proof of Theorem 2. The proof is easily obtained from Lemma 4.18 and
4.19.

5. The representation of the linear functional F

Throughout this section we assume all of the conditions listed in the as-
sumption A-2. In what follows we put

R = {the right side of (4.7)}%- T+||al| .

In this section we give the proof of Theorem 3.

We first list some notations which will be used throughout this section.

Let & be a positive number such that 0<<2&<Nzi:;. For simplicity
suppose that dist(a, bdy(K))<&,. Let {s;}1-; be an increasing sequence satisfy-
ing the following conditions:

1) 5=0, S,=T,

2) Forj=1,2,--, N—1, dist(u(s), bdy(K))'=2&, and dist(u(s;), bdy(K))
<28, for s;_,<s;<s; if j is odd; and dist (u(s), bdy(K))=E&, and dist(u(s), bdy(K))
>§, for s;_; =s<s; if j is even.

We put I;=[s;, $;41] for 7=0, 1, ---, N—1 and define

n(r(t)) if tel;,

(.1) m(t) = o 17 (S3541))+ (1 =0 ))n(r(s35+2)) if t€hm,

where o;=(—5,j41)(S3j42—5j+1)"* and 7(+) is the mapping defined before Lemma
4.3.
Further we define
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n'(2) = n(2)|Ing(2)]|

and
1 if 0=s<t—¢
Xe 1 (5) = { (t—s)&7! if 1—&ss<t
0 if t<s.

Lemma 5.1. For any v C([0, T]; H) there exists
1!131 F(X,,v) .

Proof. From condition 5) stated in Definition 2.1 it follows that for any
veC([0, T]; H)NC([0, T]; V)

[ (e, L o))+ (fts uts)—06us), w(s))ds
+§:_! (t—s)é“{ (%u(s), disv(s)) L (f(s, u(s)—Dus), v(s))}ds
—G‘Ij:_!(%u(s), o)) ds-+(b, ©(0) = F(X,,0)
From condition 3) of Definition 2.1 we infer that
(52 limFOe0) = —(Lu(e), o) )+, ()
|G, o)+, ) —agu), vep)as.
Now let » be any element of C([0, T]; H). Then there exists a sequence
Ty(v)eCY[0, T1; H)NC([0, T]; V') such that
02};};’HTj(v)(t)—v(t)ng" for any j=1,2, .
Since

[ F(Xep,10)—F(Xep10) | = | F(Xe,,0) — F(Xe,,: T(0)) |
| F(Xey 1 T5(0) = F(Xeg,t Ti(0)) | 4 | F(Xey,t Tj(0)) = F (X, 10) |
for small 0<<&, <€, and
| F(Xe,0)—F(Xe,: Tj(v)) | =IIFll[j ~ for &>0,
we get
lim | F(Xe,,0)—F(Xe,,0) | <2||F |/

!l-yo, 22—)0

+, lim | F(Xe,, T5(0)) = F(Xey, T5(2)) |

2,50, €,
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Therefore lim F(X, ;v) exists by (5.2).
>0
We then put p(0)=0 and
p(t) = {mol F(Xem') fcrany t=(0, T].
>

Lemma 5.2. p s a left continuous nondecreasing function on [0, T].
Moreover if u(to)Ef{ dp(t,)=0.

Proof. For any 0<#,<t,<T we get
|p(t) ()| SHm [F(Xe ')~ F(Xe, 50|
Hlim | B Tn) ~Fu T,
Hlm [P, T5(0) —F(Xet).
Hence condition 5) of Definition 2.1 yields
|p(t)—p(t)| S2IF1j
), 5 T+ (s w9 —0pule), T (o) ds

(G )= G e, T8

+n‘fl§u(tl)u IT,(n")(t)— T5(n' Yt »

and so condition 3) of Definition 2.1 implies that
lim | p(t,)—p(2) | =2I|F]|/5 -
tl—)lz

This means that p is left continuous.
Next there exists a sufficiently small £;>0 and any 0=<#,<<t,=T u(s)—&3(Xe,s,(5)
—Xe,1,(5))n(s) belongs to K for any s€(0, T') condition 5) of Definition 2.1
gives
F((Xe,1;—Xe,e,)n') 20 for 0<,<t,<T.
Letting € — 0, we see that p is nondecreasing over [0, T']. If u(z,) €K for some
t,>>0, there must exist ¢, t, &[0, T] and &>0 such that t,<#,<t, and
U($) 1-Eo(Xe i, Xe, J(S)' () EK for s€[0, T]. But u()E(Xe,1;—Xe,e )0 () E
C([0, T]; K) by (5.1), and so condition of Definition 2.1 implies that
F((Xe, e, —Xex)n') = 0.
Thus
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p(ts)—p(t) = Lm F((Xe,e,—Xe,1,)n") = 0.
This means that
(53)  dp(t)=0  for any point #,>0 with u(t,)EK .

Proof of Theorem 3.

For a small &>0 let dist(u(t,), bdy(K))>¢€;. We assume that r(f)—
En(r(fy))+\/ € (4Ng+1) "%(t) is an exterior point of K, where e(f,) denotes a
vector satis{ying (e(t,), n(7(%,)))=0, |le(t,)l|=1. Since r(t,)—&sn(r(Z,)) is an interior
point of K there exists a number m,(f,) such that

1) 7(t))—E3n(r(ty))+myy(to)e(to) Ebdy(K)
2) VE&(ANg) P=my,>0.

Since 7(t,)€ B(0, R+1), Lemma 4.1 implies that

| (n(r(ts)), Exn(r(te)) —me(te)e(te)) | S N {6+t
which gives

615 N s 163+t
If Np41€3=1/2, then we have

2716 S N it (16’ = (64N 1) "N /4 .

This is a contadiction. Hence it is concluded {r(2,)—&:n(r(%,))++/&; (4Ngyy) 2+
e(t,)} belongs to K. Therefore there exists an €0 such that for any £<(0, &)
and any t€[0, T,

{u(t)—é&n'(t)4-/"€ (4Ng4) Ve(t)} belongs to K,

where e(+) is a function in C([0, T']; H) with (e(2), #'(2))=0 and |le(?)||=1.
Thus from condition 5) of Definition 2.1 it follows that

F(—V/ En'+(4Ngyy) %) <0 .
Letting E—0 we get F(e)=0.
Let '€ C([0, T]; H) and let (e'(¢), »'(£))=0. Then
(54  FeE)=IllelFE[lle’])=0.
For any v C([0, T']; H) we write

o(t) = (v(2), n'(O))n'(t)+-€' ()= (t)n'(t)+e'(2) .
Then (5.4) yields
(5.5) F(v) = F(an')+(F(e') = F(a,n') .
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Let {¢7} 7. be any sequence satisfying

1) 0=m<it<ti< - <tn=T,
2) |tha—t7|=2T|m for j=1,2,3,---,m—1.

Then F(v) can be decomposed as

(5.6) F(v) = F(X,m 7))—1—2‘. F((Xe, i, —Xe,ym)0)+F((1—X,,m)0)

i+l
=1+ L+1.
First we consider I,. Since
F(( x! f,+1 x!.f?)v) F((X! tz+l !:t?)aﬂnl)

= av(t:‘"){F(xe,t G ) F(xe R )}
+F((Xc,t?‘+l_xe,t?')(av_ v(t?))n ) ’

we have

| L,— Z‘. a,(t7){F (X, 1) —F(Xe,mn" )} |

i+1

ol Fl| Sup E (X, —Xem) (1) = 200ul|F Il

i=1

where w,= Sup |a,(t)—a,(s)|. Thus it follows

1t-s|<2r /m
(57  ERIL—% a(t)(p(th) —p(t) | S204lIFll.

Next, (5.5) implies that

(5.8)  Im|L—a (0)p(t)| SwallFll .

Finally, using condition 5) of Definition 2.1 and noting that —u( ) is left con-
tinuous we have for j=1, 2, - dt

lim 11m (F(1—X,,mTi(2)) = 0.

Combining ||Tj(v)—v]|=<1]j and the above we see
(59)  limlim F(1—X,,z)0) = 0.

Noting lim w,,=0, Combining (5.6), (5.7), (5.8) and (5.9) and then letting m

go to oo, we get the desired integarl representation of the functional F:

F(o) = || 0(6), #(6)dp(s) -
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This, togher with (5.3), implies that for any v C([0, T']; H),

(5:10)  F(e) = | (o(5), mus))dp(s)

In aprticular, for any o €C([0, T']), we obtain an integral representation of the

type
F(on') = S: (s)dp(s) -

On the other hand if @ is left continuous, non decreasing, of bounded varia-
tion, 6(0)=0, and

S:a-(s)de(s)z() forany oeC([0, T]),

then it follows that 0(t)=0 for any ¢<[0, T']. This means that the function
p is uniquely determined by the solution u.

In view of this, we denote by p, the function p associated with « in the
following.

6. {t}-energy conserving solutions

In this section we discuss the relation of the energy conserving solution to
the mild solution and study the existence and uniqueness of {t;}-energy con-
serving solutions. Throughout this section we assume all of the conditions
listed in the assumption A-2.

Lemma 6.1. An energy conserving solution of (2.4) is a mild solution of
(24). More precisely, if u is an energy conserving solution, (u, p,) is a mild solu-
tion.

Proof. Let u be an energy conserving solution of (2.4) and set

7(t) = Y- (| St—9)mu(s)dp. (),

where Y(-) is the function defined jn the proof of Lemma 4.19 and p, the
function provided by Therem 3. Using (4.36) and applying the same method
as in the verifications of (4.40) and (4.41), we have
T
0

S {(% Y(s), ‘-isd‘v(s)>+(f(s, u(s))—AY(s), v(s))}ds

+& 9 O) (L 7(T), (1)) ={ (s, o()dpute)
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for any v C¥([0, T1; H)NC[([0, T]; V). Put Y—u=w. The above relation
and (4.42) together yield

6.1) S:{(%w(s), %c(s))—(Aw(s), zz(s))} ds——(%w(T), v(T)) —o0.

For each g C([0, T]; H) we denote by v the solution of the problem

dz
—t,z'v+Av =g, 0<t<T,

(6.2) ;
uT)=0, Zo(T)=0.

From (6.1) and (6.2) it follows that

S: <w(s), g;z'”(s)-FAv(s))ds —0
and
S: (w(s), &(s))ds = 0.

Since C'([0, T']0; H)) is dense in L,(0, T; H), we infer that w(s)=0 for a-e
s€[0, T]. Since Y and u are continuous, the proof is complete.

We are now in a position to give the proof of Theorem 4.

Let M;, j=0, 1, ---, be the sets as mentioned in Definition 2.3. For each
energy conserving solution u let p, be the associated function provided by
Theorem 3.

Lemma 6.2. All of M;, j=1, 2, ---, are not empty.
Proof. We put
(6.3) inf p,(2) = a; -
vEM,
Then one can choose a sequence {u;} of energy conserving solutions such that
limp, () = o .
jree” d

The application of Helly’s theorem to {p,;} implis that there exists a convergent
subsequence {p, } such that
Ii

limp, (t)=p(f) for te[0, T1-0,

where p, is an increasing left continuous function and p,(0)=0 and Q, is some
countable set in [0, 7']. Let Q; be some countable sets in [0, T'] for /=1, 2, ---.
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For simplicity in notation we denote the subsequence {u;} by {u;}. Applying
lemma 6.1 to u; and using the same method as in Section 4, we infer that there
exists a subsequence {u;;} such that

lim u;,(2) = u(t) uniformly on [0, T,

jire

lim L t) = Sut)  for tef0, T]—0,
i dt dt =
lim A", (t) = A'?u(t)  forany &[0, T].

It is easy to show if u(t)EIﬂf then p,=Const near z. It is also clear that u
satisfies the enregy equality (4.35) as well a as the energy inequality (4.34).
Hence Lemma 4.19 states that u is an energy conserving solution. Since
Pus ()= pu; (1) for <<t and so py(f)=e; for a-e tE[0, #;). Now the left con-
tinuity of p, yields p,(#;})<a;. Combining this with the fact that u is an energy
conserving solution, we get p,(¢;)=a,. Thus M, is not an empty set. Suppose
then that M;, 1<{/<j, are not empty, and put

(64) infpultin) = @y -

“’EHJ-
Using the same method as in the case j=1, we can show that there exists a
sequence {u,} in M; such that

lim u,(2) = u(t) uniformly for [0, T,

k->oo

kg} Pu‘.(tj+l) = C‘Cj+l ’ and

lim p, () = pu(t)  for t€[0, T]—Qsur,
First we see in the same as way as the above that # belongs to M,. Since
M;c M, we have p, (t,)=a, for k=1,2,3,.--. Now the left continuity of p,
yields a;=p,(2;). Hence ay=p,(t,) by the definition of M,. Thus usM,. We
next assume uEM; (0=:<j). Since M;CM,,,, we have p, (t;1,)=a;, for all
k. Hence, in the same way as the above, we see from the left continuity of p,
and the defini.ion of M, that a;,,=p,(f;,,) and u€M,,,. By induction we

conclude that uM;. Therefore we can apply the same method as in the case
j=1to get u€ M;,,, and the proof is complete.

Lemma 6.3. For ucM;, j =2, we have
Pu(th) =0 = Min pw(tk) for k= 1, 2) '“9j .
VEMy,
The proof follows directly from the definition of M;.
Proof of Theorem 4.
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First we show that N M; is nonempty. We can choose a sequence {u;}5-1
i=1

such that u, & M, for k=1, 2, ---. For simplicity in notation we denote p,, by
pr- Then Lemma 6.3 yields

lim py(2;) = a; .
k>o0
Applying Helly’s theorem to {p,}, we get a {p,;} subsequence such that
lim p(2) = p(2) for t€[0, T]—0-
k>

where p is left continuous and Q.. is some countable set in [0, 7']. For brevity
in notation we write p; for p,,. Following the argument of Section 4 we see that

lim u,(2) = u(?) uniformly on [0, T']

lim A”uyt) = A?u(t)  for any t€[0, T],
. d d
lim —u;(t) = —u(t e 1[0, T],
lim - w(t) = —u(t)  a-e t€[0, T]
and that the limit function u is the energy conserving solution. Further, by
the method employed in the proof of Lemma 6.2 we can show z&M; for
j=1,2,--. Thus n M, is nonempty.
i=1 - -
Second we demonstrate that N M, is a singletion set. Let #, w€ NM,. Then
j=1 i=1
we have p,(t;)=p,(t;) for any i=1, 2, ---. 'Therefore it follows from the left
continuity of p,, p, and the desnseness of {¢;} that p,(¢)=p,(t) for any tE[0, T'].
We then put p,=p,=p. _
We now assume that there exists a number 7, T and a subse subset {&,} 7., of

(, T] such that

u(t) = w(t) for any 0=<it=r~,
u(€y) Fw(&) and ll_gj E=r.

If 7>0, then we have
- . d; .
d—tu(T) - dt ‘ZO(T),

and if =0, then we understand as ‘tu(O) = d;w(O)zb. Recalling {U(#)} is a
group, we have dt t

(6.5) u(t+7) = C(t)u('r)—]—S(t)j—;u(-r)

~ [\ sa—9n@tm)dpstr)+{] Sa—9f (-7, uls-+m)ds
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for 0<r<7+t<T.

1) Case of u(T)Ef{. The third term on the right side of (6.5) vanishes
for ¢ small. Hence u(t+7)=wu(t+7) for those values of ¢, which contradicts
the definition of .

2) Case of u(t)€bdy(K). From (6.5) we have

¢
[lu(t+7)—w(t+7)|| < Ngsy SoIlu(s+7)“w(s+7)l|dP(5+T)
t
+ [ Bt ) luts+m)—wfs-+ o) ds

for positive sufficiently small z. Applying Gronwall’s inequality, we obtain
(6.6)  llu(t+7)—w(t+T)ll
t
SNew(1+C-exp O) | llus-+7)—w(s+n)lldp(s+7)

T
where C=S h(s)ds.
0

Now we consider the case such that Ng,(14+C-exp C)(p(7+0)—p(7))<1/2.
We put

T, = Min {7 as in lemma 4.18, the Maximum of number of
¢ satisfying Ny, (1+4+C +exp C)(p(t+7)—p(7))=1/2} .

Let t,&(0, T;] be such that Max [[u(t+7)—w(t+7|)=|lu(t,+7)—w(t,+7)Il.
Then we see from (6.6) that ostsT,

|lea(2z4-7) —2o(Z+7)l
= Nea(1+4C-exp C)(p(To+7)—p(7)[u(t;+7)—w(ty+7)|
=27u(ty+7)—w(t+7)Il -

Thus we have u(t+7)=w(t-+7) for any 0=¢t=<7T,. This is also a contradiction.
Next suppose Ngi(14+C-exp C)(p(t+0)—p(7))=1/2. Since  is a mild solu-
tion of (2.4) by Lemma 6.1 it follows from (6.5) that

+ -
2 () = L ur)—(p(r-+0)—p(r) ("))
In view of the energy equality stated in Definition 2.2 we have
-+ -
I ol = 1 u (il
This equality and the relation p(7+40)—p(7)>0 together yield

p(r+0)—p(r) = 2( L atr), Au(r)) ) <o
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Hence
(6.7) (%u(—r), A(u(r)) ) — —(%; u(7), ﬁ(u('r)))<0.

Further, assume that there exists a sequence {s;} ., in (v, T ] such that
lims;=7 and u(s;)€bdy(K) forany 7.
§>o0

Then Lemma 3.1 implies that
d+ - ) 0
(£ ), au()) =0,

which contradicts (6.7). Hence there would exist ;>0 such that
u(t—i—’r)EIo{ forany 0=t=¢,.

But we see with the aid of the result of linear hyperbolic equation that
uw(t+7) = w(t+7) for 0=t=t,.

This contradictions the definition of 7.
Thus u(t)=w(t) for any 0=t <T.

It is concluded that N M is a singleton set.
j=1

7. Examples
Exampii 1. Let H=1L,0, 1), V=W}0, 1)= {ucWi(0, 1); u(0)= u(1)
=0} and define the function ¢: V' —[0, o] by

b(u) = g: {z—1 T }dx .

£ u(x)

We then intreduce the closed linear subspace of H
1
L= {feL,0,1); S f(x) sin 2mzx)dx = 0
0
forany m=20,1, 2, ---, N(N<oo)},
and the closed convex subset of H
K={feL; | If@laxs1}.
0
Then
L~ ={feL,0,1); f(x) = i;oo-,,, sin (2mzx) for o,E(—o0, o)}
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and conditions 1), 2) and 4) of the assumption A-1 are easily verified. More-
over the application of Sobolev’s imbedding theorem implies that for any u, vEV

Sup |u(x)—v(x) | = Const [lu—ollyllu—o]l)"* .

On the other hand it is seen that
d2
6¢u = ~E?u+u3 .

Combining the above two facts we conclused that the operator satisfies condi-
tion 3) of the assumption A-1, too. Thus all of the conditions listed in the
assumption A-1 are satisfied.

ExaMPLE 2. Let QCR" be a domain with smooth boundary and consider
the Hilbert space H=L,(Q). Let {p;}7-: be an orthonomal base of H and
{a;}7-1 a set of positive numbers such that

0<§y=a,;=<8;' forany j=1,2,.
We then define the closed convex set K by
K = {x€H; 3 a(x, p;<1}.
i=1

The set K may be regarded as an “infinit dimensional elliptic”
Then, defining

L(x) = 3}2a(x p)p;  forany xebdy(K),
we have
n(x) = |ILx)||"L(x)  for any xebdy(K).
Moreover we infer that
lln(x) —n(PII=Nellx—yll ~ for =, yebdy(K)NB(0, R).

Thus it is concluded that all of the conditions given in the assumption A-2 are
satisfied.
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