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0. Introduction

Let H be a real Hubert space and ψ a lower semicontinuous convex proper
function from H to (-—oo, oo]. Here the terminology "proper" means that
•ψ^oo. The subdifferential of ψ is defined as follows: For xE~Hy the value
dψx is the set of all z^H such that

—Λlr(x)^(zy y—χ) f° r every

where ( , ) stands for the inner product of H.
H. Brezis in [1] and [2] proposed the initial value problem of the form

(0.1)

In [1] he stated that in the particuler case where ψ=Iκ is the indicator function
of a closed convex set K, the solution u represents, roughly speaking, the tra-
jectory of an optical ray caught in K and reflecting at the boundary of K. Then
—dψu~—dlκu may be regarded as the repulsive power at the boundary of
K. In case H is finite dimensional, M. Schatzman made a deep investigation
on this problem in [3] and [5] and established a general existence theorem as
well as various results on the uniqueness and non-uniqueness of sclutions. By
a simple example in which ψ is the indicator function a closed convex set K
she showed that the uniqueness of the solution does not hold in general and
the solution which reflects optically on the boundary of K is an energy con-
serving solution. Moreover she obtained that even the energy conserving
solutoin is not necessarily unique.

In case H is infinite dimensional, to the author's best knowledge, it seems
to be extremely difficult to solve this porblem in a general situation. Hence as
the first step of the study of this problem we are concerned with the case where
the sub differential operator dψ is expressed as
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(0.2) 9^ = A+dIκ ,

where A is a positive definite self-adjoint operator and Iκ is the indicator func-
tion of a closed convex set K with non empty interior. M. Schatzman showed
in [2] the existence of local solutions of (0.1) in the case of (0.2) and for some
specific initial data.

Clearly if/ is continuous, the solution u of (0.1) in the csae (0.2) is twice
continuously difϊerentiable so long as u{t) lies in the interior of K since dlκu(t)=θ
then. However, for some reason as was illustrated in M. Schatzman [5] in
a finiet dimensinal case a reflection occurs if u(t) reaches the boundary of K,

and this causes discontinuity of —. Thus we cannot expect the existence of

a twice continuously differnetial solution. Hence, following M. Schatzman [5]

we seek a function satisfying the equation with —~ and dlκu considered
as measures with values in H.

In Theorem 1 we will show the existence of the solutions of (0.1) in a slight-
ly more general case than (0.2), namaly, the case of dψ—dφ+dlκ. Here φ
is a lower semicontinuous proper convex function and coercive in a dense
subspace V such that F c i / c F * , and K is a closed convex subset which is
contained in a closed subspace L of finite codimension and has interior points in
the relative topology of L. Assuming that the imbedding F—>ίf is compact
and dφ is single valued, continuous in some weak sense, we will show the
existence of global solutions of the above problem satisfying the prescribed
initial conditions. The solution is obtained as a limit of a subsequence of the
solutions of the above problems with the Yosida approximations 8φλ, dIKtλ in
place of dφ> dlκ.

In the subsequent part of the paper it will be always assumed that K has
interior points and the boundary of K is so smooth that there exists the out-
ward unit normal vector satisfying a uniform Lipschitz condition in each bounded
subset.

In Theorem 2 we will show the existence of an energy conserving solution
of (0.1) in the case of (0.2). To prove this theorem we consodier the follow-
ing sequence of functions

where uλ are the solutions of the above problems with 3/^ replaced by its Yosida
approximation dlκ>λ and apply Helly's choice theorem to the above sequence of
functions. This enables us to extract a subsequence {uλJ} so that uλj.->u(t),

A1/2uλ.->A1/2u(t)y—uλί(t)->—u(t) from which it readily follows that u satisfies
dt dt

the energy equality since as is easily seen uλ are the energy conserving solutions
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of the approximate equations with dIKtλ in place of dlκ.

Since the energy conserving solution is not necessarily unique (see [5]),
to obtain the uniqueness theorem, we are required to consider some specific
class of energy conserving solutions. Hence we introduce a class of energy
conserving solutions called herein "{ff } -energy conserving solutions". Let -fo }
be a dense and countable sequence in the interval [0, T]. Roughly speaking a
{ti} -energy conserving solution is an energy conserving solution such that the
integral of the size of the replusive power from 0 to t{ is minimal for each i in
the energy conserving solutions. It should be admitted that this class of solu-
tions depends also on the order of the elements of the sequence {ίt }.

In Theorem 3 we will study a linear functional assoicated with the solution
which plays an important role in the definition of -fo} -energy conserving solu-
tion and establish a fairly concrete integral expression of the linear functional
playing the part of the measure dlκu.

In Theorem 4 we will show that the existence and uniqueness theorems of
{tj} -energy conserving solutions are established.

The outline of the present paper is as follows. In section 1 we list notations
and properties of some operators. In section 2 we list definitions and state
the assumptions and our main theorems. In section 3, 4, 5 and 6 we prove
Theorem 1, 2, 3 and 4 respectively. Finally, section 7 contains some examples.

The author would like to express his hearty gratitude to Professor H. Tanabe
and the referee for their kind and helpful advice.

1. Preliminaries

We first list some notations and known results which will be used through-
out this paper. Let H be a real Hubert space with inner product (,) and norm
|| ||, and V a real reflexive Banach space such that V is a dense subspace of H
and the inclusion mapping V-+H is continuous. Identifying H with its dual
space we may consider F c ί f c F * . The paring between V and V* is also
denoted by ( , •). The norms of V and F * are denoted by || | |F and || |IF*
respectively.

For a normed space X, C([0, T]; X) (resp. WC([0, T]; X) denotes the
space of all strongly continuous (resp. weakly continuous) functions from [0, T]
to X. C'([0, T];X) is the space of all functions from [0, T] to X whose all
derivatives up to order/ all belong to C([0, T]; X).

Lq(0, T; X)y 1^#<°°, is the space of all measurable functions from [0, T]
to X such that (|MI*)* is integrable on [0, Γ], where || | |* is the norm of X,
and Loo(0, T; X) is the space of all essentially bounded, measurable functions
in [0, T] with values in X. Similarly we denote by W%(0, T; X) the totality of
mesurable functions from [0, T] to X such that all derivatives in the sense of
distributions up to order m belong to Lq(0, T; X).
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By dist(#, S) we denote the distance between a point x of H and a subset S
of H. Let K be a closed convex subset of H. Then for any x ^ i f there exists
a unique point Pκx of i£ satisfying ||#—P^Λ;|| = dist(x, K). Pκ is called the
projection operator on K. If K is contained in a closed subspace L of Hy then

By i t and bdy(K) we denote the interior and the boundary of K in i/ respec-

tively. if£ and bdyL(K) are the interior and the boundary of K in the relative

topology of L respectively if KdL.
Let A be a positive definite self adjoint linear operator in H and ^41/2 the

1/2-fractional power of A. We here employ the complexification H of H such
that

1) each Z^LH is represented as
1/3 for some a, β^Hy and

2) the inner product (( , )) is defined by

^ίΎ)) = (a,

We then extend the operator A to an operator A in H by

Domain (A) = {a+V^Λβ\ a, βt=D(A)} ,

It is easy to see that the operator A is positive self adjoint in H.
Let {U(t)} be the (C0)-group H on generated by \/ZΓΐ( J)1/2. In the fol-

lowing we write

D = V^i(A)1^2, S(t)

for simplicit simplicity in notations. In view of the first property 1) of H, C(t)x
is represented as

C(t)x = a(t)+y/=ϊβ(t) a(t)(ΞH, β(t)^H

for each x^H, and it is easily seen from the definition of A that the function
β is a solution of the initial-value problem

ξ2 = 0,

0(0) = 0, J
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This implies β(t) = O because of the uniqueness of the solution of the above
problem, and hence C(t)x^H. Similarly, S(t)x^H for any x^H, We denote
the norm of i ϊ by | | | | | |.

Let φ( ) be a proper, convex and lower semicontinuous function from V to
(-00, 00) and let dφ be its subdifferential operator defined by

dφx= if(ΞV*;φ(y)-φ(x)^(f,y-x) for any y(ΞV}.

Let /g ( ) be the indicator function of K defined by

0 if x^K

00 if X^LK .

The subdifferential operator dlκ of /#(•) is defined by

D(dlκ) = {x^H; there exists z^H such that (y—x, z)^

Iκ{y)—Iκ{x) for any y£ΞK},

dlκχ — {z&H; (y—x, z)^0 for any y&K}.

We put

IKtλ(x) = (2X)~1 | |Λ7—Pκx\\2 forfor any x€zH

where λ is a positive number. We see that /jτ,λ( ) is a convex, Frechet differenti-
able function on H and has a single valued subdifferential operator dIKtλ which
is represented as

dIKβλx = \-\x-Pκx).

For x^bdy(K) the set dlκ(x) is equal to the union of the set of all exterior
normal vectors at the boundary point x and a 0-vector's set. In particular, if
the boundary of K holds some smoothness, we know that there exists only one
unit normal vector n(x) at the boundary point x such that

dlκx= {λrc(*);λ€Ξ[0, 00)}.

Let φ( ) satisfy the coerciveness condition in V. Then if φ is the convex from
H to (— °°, °°] defined by

[φ(x) if
Φ ( * ) = = l 00 if x<=H-V=igGΞH;gGV}9

it follows that Φ is lower semicontinuous on H by the coerciveness condition and
its subdifferential operator 3Φ is defined with domain D(dΦ)= {x^ V: dφx^H}.
Moreover dΦ(x)—dφ(x) for any x^D(dΦ). For every λ > 0 a convex Frechet
differentiabel function Φλ is defined by
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Φλ(*) = (2X)-1\\x-Jλx\\2+Φλ(Jλx) for any

where Jλ=(I+\dΦ)~1 and / is the identity operator on H. Let 9Φλ be the
Yosida approximation of 3Φ, namely,

dΦλ(x) = \~\x—J\x) for any

Then it is known that 9Φλ is the sub differential operator of Φλ and

9Φλ(x) = 8Φ(Jλx).

2. Assumptions and main results

In this section we list definitions and state assumptions and theorems.
Let Hy V, φ be the ones stated in the previous section. We assume that

dφ is a single valued, everywhere defined and bounded operator from V to
V*y and that φ( ) satisfies the following coerciveness condition

(2.1) Jimφ(x)l\\x\\v=oo.

Next we suppose that /(/, x) is a continuous function from [0, T] X H to
H to H satisfying

\\f{t,x)-f(t,y)\\Sh{f)\\x-y\\
f°r anY x, y^H and any t S [0, T]

I) for any xf=H

,2 γ\

where h( ) is a positive integrable function of tEΞ[Oy T].
In this paper we consider the following type of equation

(2.3)

£u(t)+dφu(t)+dIκu(t)Έ>f(t, u(ή),
at

u(0) = a, |-«(0) = i .

With regard to this type of problem we employ the notion of solution on [0, T]
defined as follows

DEFINITION 2.1. We say that a function MEC([0, T]; H) is a solution of
the problem (2.3) if the following conditions are satisfied:

1) u££Wl(0, T; H)ΠWC([O, T]; V).
2) For any te [0, Γ], u(t) belongs to Vf)K.

3) The right derivative — u(t) and the left derivative — u(t) exist on [0, T]
at dt
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both in the weak topology of H and in the strong topology of V* (with necessary
modifications at 0 and T).

4) We have

«)+J^(|-M(,)) f{s,u{ή))ds

for any t^[0, T]) with necessary modifications at 0 and T).
5) There exists a linear continuous functional F on C([0, T]; H) such

that

F(υ-u) ^ 0 for any υ<Ξ C([0, Γ] K)

and for any V<ΞW\([0, T];H)f] C([0, 71] V)

s)-f(s, u(s))y υ(s))ds+(b, v

6) The initial condition is satisfied in the following sense:

u{0) = a and b-—u(0)£ΞdIκa .

REMARK. Vaguely speaking, the functional F is a element of the set dlκu
in the dual space of C([0, Γ]; H).

We state the assumption and the existence theorem for the solutions of
(2.3) as mentioned above.

ASSUMPTION A-1.

1) There exists a closed linear subspace L of H such that the closed convex
set K is contained in L and has interior points in L.

2) The orthogonal complement I/~ of L is of finite dimension and is
contained in V.

3) For any sequence of functions {un} in PFL(0, T; H) Π 1^(0, T; V) such
that {un} is bounded in Loo(0, T; V) and converges to some u in the strong
topology of L2(0, T\H) as n—>oo, a subsequence {wni} can be extracted so
that dφnj->dφu in the weak star topology of 2^(0, T; F*). In particular, the
sequence (dφun( )} is bounded in Loo(0, T; V*).

4) For any a^L and any u, e e F s u c h that | |ί/| |7^i2 and | |^ | | F ^i?, the
following inequality holds:

I (dφu-dφv, a) I ^Cx\\u-v\\
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where Cx is a constant depending only on a and R.

Theorem 1. Assume that H is separable, and that the injection mapping of
V into H is compact. Let the initial values a and b be given in V Γl K and H,
respectively. Then under the assumption AΛ there exists at least one solution of
(2.3) on [0, T].

In what follows we consider the case in which dφ=A is a positive definite
self adjoint linear operator in H. In this case φ(u)=2"1\\A1^u\\\ and V=D(A1/2)
endowed with the graph norm of A1/2. Then the problem (2.3) is written as

£u(t)+Au(t)+dIκu(t)=)f(t, u(t))

REMARK. Theorem 1'. Replacing in Theorem 1 the assumption A-ί by
conditions listed below and assuming a^D(A), we have the same conclusion as in
Theorem 1 for the problem (2.4):

1) For the subspace L condition 1) of A-l is satisfied.
2) The orthogonal complement ZΛ is spaned by a infinite set ipj}J=o of

orthonormal eigenvectors of A.
3) The function h stated in (2.2) belongs to L^O, T).

We employ the following notion of the energy conserving solution of (2.4)
(c.f Schatzman [5]).

DEFINITION 3.2. We say that u is an energy conserving solution of (2.4) if
satisfies the following requirements:

1) u is a solution of (2.4) in the sense of Definition 1.1.
2) u belongs to C([0, T]; V).

3) —u(t) and —u{t) are respectively right an left-continuous on [0, T] in
dt dt

the strong topology of H (with necessary modifications at 0 and T).
4) We have

2-ι\\ψu(t)\f+2-\Au(t),u(t)) =
at

2-1||i||2+2-1(^4α, α)+Γ (— u{s), f(sy u(s))\ds

for any ίe[0, T] (with necessary modifications at 0 and T).

We then state the assumption and the existence theorem for energy con-
serving solutions of (2.4).
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ASSUMPTION A-2.

1) The closed convex set K has interior points.
2) For any x^bdy(K), dlκx forms a closed convex set

{λn(x) λ ̂  0, n(x) e QIκx and | \n(x)11 = 1}.

3) For any ar, y<=bdy{K) such that IWI^i? and | | j | | ^ Λ

\\n(x)-n{y)\\^N\\x-y\\

where R is any positive number and N is a constant depending only on R.

Theorem 2. L^ β G F Π i f and b&H. Under the assumption A-2 the
problem (2.4) admits at least one energy conserving solution.

We here give a representation theorem for the linear functionals F in-
troduced in (5) of Definition 2.1.

Theorem 3. Suppose that assumption A-2 holds. Let u be a solution of
(2.3) and F be the associated linear functional as in 5) of Definition 2.1. Then
functional F is represented as

for v <Ξ C([0, T] H\ where

[U()) 10 if u(t)$bdy(K),

and pu is a left continuous increasing function on [0, T] such that pu(Q)=0 and
^pu(t)-ζ\\F\\ for each fe[0, T]. If u(t) belongs to the interior K of K} dpu=0
in some neighborhood at t.
Moreover the function ρu is uniquely determined by u.

REMARK. Vaguely speaking, if u(t)^bdy(K), —n(u(t)) is the direction of
the repulsive power at the boundary point u(t) and pM(ί+0)— pu(t) is its size.

In order to study the uniqueness of the energy conserving solution, we shall
introduce a restricted class of solutions of (2.4) by using the increasing function
ρu as mentioned in Theorem 3.

Let {̂  }Γ«=i be a dense subsetof [0, T]y and define

MQ = {UGC([0, X1]; H)\ v is the energy conserving

solution of (2.4) on [0, T]} ,

ilfi = {ϋ€=M0;
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M2 = {©eilίi; Min pw(t2) = pv(t2)} ,
: eJCj

inductively. If My is empty for some j , we regard ΛfΛ as empty sets for all k^j.

DEFINITION 2.3. We call an element of ΓlΛf. a {ί,}-energy conserving
solution of (2.4).

Theorem 4. Under assumption A-2 there exists a unique {t{} -energy con-
serving solution of (2.4) for each pair of initial values a^V f]K and b^H.

3. Existence of the solution

In this section we discuss the existence of the solutions of (2.3) and give
the proof of Theorem 1.

Throughout this section we assume that all of the conditions listed in the
assumption A-l hold.

We begin by introducing for each λ > 0 the following equation:

=f(t, uλ(t))

(3.1) .
and —

dt

Lemma 3.1. The equation (3.1) has a unique solution wλGC2([0, 71]; H).

Proof. Since the operators 3Φλ, dlκλ and f(t, ) are all Lipschitz con-
tinuous in H, this lemma is easily shown.

Lemma 3.2. For any t^[0y T], the following inequality holds:

where C is a constant depending only on h and T.

Proof. Taking the inner products of both sides of (3.1) with —uλ(t) and
integrating the resultant equality over [0, t]> we have

(3.2) 2-1!! j-iφ) \\2+Iκ,Mt)+Φλ(uλ(t))
at

= 2-1\\b\?+Φ,(a)+\
Jo
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From (2.2) it follows

ds

<S \'h(s)(l+\K(sψ+\\j-uλ(s)\ήds.

Since / ^ ^ ( ί ) is nonnegative and Φλ(«λ(ί))^— C2||z/λ(ί)||—C3 we have

at

+2 j

Hence noting

we get

(s)\n\\fuλ(s)
ds

for £G[0, T]. Using GronwalΓs lemma and the fact that h is integrable on
[0, T] we have

dt

From the relation (3.2) and above estimates the assertion of the lemma is ob-
tained.

Lemma 3.3. Let x0 belong to KL and R be any positive number. Then for
any x€zB(x0, R) we have

where Const stands for a positive constant independent of x and X, and B(xOi R)
is the ball of radius R centered at x0.

Proof. Put dlktλx=z and PLz—zv If #i=0, the conclusion is clear.
Hence assume ^ φ O . Set
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(3.3) #o = si—fa, x—xo)\\x—xo\\~2(x—xo).

Since PLPK=PKPL=PK, PL is a self adjoint operator and (PLx—Pκx, xo—PκPLx)
it follows that

= λ-^P^-P^, PLx-x0)

^ - P , * , PLx-PLPκx)-(PLx-Pκx, xo-PκPLx)}

Since

( P ^ s , Λ;—Λ?0) = λ-^P^^—PjΛ?) , Λ;—ΛT0)

= λ-^P^ΛJ—Λ?o), Λ?—#o)^

and z=PLz-\-PL-ι-2, we have

On the other hand, from (3.3) it follows that

y ^ «. II (<? v v\\\v v II" 1

We now assume the following relation and derive a contradiction:

(3.4) (*, ^-xo)^dist(^o, bdy^K^Ry'Wx-XoW-W^W .

From the estimates mentioned above we have

If dist (xo> bdyL(K))>Ry PLx would belong to K, and so we would have
dIKίλx=z^LJ", This contradicts z1=PLzΦθ. Hence dist(xOy bdyL(K))^R.
From this we have

(3.5) |W|

Put

w =

From PLwSΞK'ύ follows (PLx-Pκx, PLw-PκPLx)^0. Then

(*, X-ΪO) = \-\PLx-PLPκx, Pjx-Pjw)

-PLPKx, PLx-PLw)

+(PLx-PκPLx, PLw-PκPLx)}
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Hence, noting that (zl9 ô)l WΓ^II^IIί w e have

^ ( ^ , x—w)

= fa, x—x0)—dist(#0> bdyL(K))(z0, s ^

Combining (3.4), (3.5) and the above mentioned estimates yields

0^(#i, x—w)

^άht{xo,bdyL{K)){{AR)-'\\x-x,\\ \\z1\\-\\zlί\\}

1dist(*0, bdyL{K))}|k||=/.

Since ||#—xQ\\tίR and dist(Λ:0, bdyL{K)^Ry we get

This is impossible, and we have

Wx-XoW \\PLdIKtλx\\ .

Lemma 3.4. // the initial value b belongs to L we have

Proof. Let {pu p2, --,pN} be an orthonormal base of ZΛ. Set

-"> Pi) = WO-W), Pi)

By (3.1) and the condition JGLwe get

£yl(t)+\-1yi(t)=gl(t),

where

Since | ΦA(uλ(t)) \ is bounded on [0, T] by Lemma 3.2, it follows that | Φ(Jλuκ(ή) |
is bounded on [0, T], On the other hand, (2.1) implie that \\J\Uλ(t))\\v is bounded
on [0, T]. Hence it follows from the assumption A-l, (2.2), Lemma 3.2 and
the above-mentioned facts that



14 K. MARUO

(3.6) \gί{t)-gί(s)\ ^

Let e belong to Z>(9Φ). Then

^ I (9Φλα-3Φλe, p,) \ + | (βΦλe, ps) \

= I (dΦJxa-dΦJxe, pj) I +1 (dΦλe, p,) |

Thus

Hence (3.6) and the above fact together imply that

(3.7) ίίrή I g{(t) I is uniformly bounded on [0, T].

Since y{ is explicitly represented as

y{(t) = X-1 ['smCx-Wit-s^gi^ds
Jo

for t>0 and λ > 0 , combining (3.6) and (3.7) yields

I (diκ.M*)> Pi) \ = ^"ι\ yίif) I ̂  Const

where the constant on the right side is independent of λ. Thus we have

(3.8) | |P L -3/* A (OI |^Const .

Next we see from Lemma 3.2

I \uλ(t)-a\ I ^ T Const for t e [0, T] .

Thus Lemma 3.3 implies that for ^ G ^ Γ l F w e have

(3.9) (dI

Multiplying both sides of (3.1) by uλ(t)—xOy intergrating the resultant equality

on [0, T] and applying an intergration by parts we have

> uλ(s)-x0)ds

= (b, a-xJ-f^uάT), u(T)-x0)

=11.
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Applying the above-mentioned estimates, Lemma 3.2, (2.2) and the relation:

λ«λ, uλ(s)-x0)^Φλ(uλ(s))-Φλ(x0),

we see that // is bounded by a constant independent of λ. Therefore, using
(3.9) and the fact that \\uλ(t) —xo\\ is larger than dist (x0, bdyL(K)) provided

0, we have

where the constant is independent of λ. From this and (3.8) we obtain the
desired assertion of the lemma.

Lemma 3.5. The sequence {uλ} contains a subsequence {uλj} such that {uλJ}

converges uniformly to a continuous function u on [0, T] with respect to the strong

topology of H and the sequence \—uλJ\ of the derivatives converges weakly to —u

inL2(0,T;H). Kdt J d t

Proof. In view of the assumption of the theorem and Lemma 3.2 we see
that {uλ(t)} is a precompact set in H for each t. Moreover the sequence {uλ}

and I—uλ\ are uniformly bounded in H by Lemma 3.2. Hence there exists

a subsequence {uλj} which converges to some element u in C([0, T]; H). Since

I — uλ(t)\ is uniformly bounded, it is clear that I—uλΛ converges weakly to

j-umL2{Q,T;H).
at

We denote the above-mentioend subsequence {uλ.} by {%}.

Lemma 3.6. For each te[0, Γ], u(t)€ΞK Π V.

Proof. By virture of Lemma 3.2 we have

/*>λW)+Φλ("λ(*))^ Const.

From this and Lemma 3.5 deired assertion follows.

Lemma 3.7. If the initial value b belongs to L, then the sequence {IK,\(U*)}

converges to zero in i>i(0, T). Therefore there exists a subsequence ilκ,λj(u\j)}

such that

lίm Iκ,λj(uλj(t)) - 0 for a.e t <= [0, T] .

Proof. By the definition of dlκλ we have
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On the other hand, Lemmas 3.4 and 3.5 together yield

BE \T(dIκ.M*)> u(t)-uλ(t))dt = 0 .
λ-*o JoΓ

Jo

Hence we have
λ-*Ό Jθ

The remaining part of the assertion of the lemma is now obvious.

We denote the above-mentioned subsequence {uλJ} by {wλ}.

We next study the convergence of {dIKtλuλ}.
For a while let b belong to L. We put

nW =

Lemma 3.8. The sequence {τλ(t)} contains a subsequence {rλj(t)} which
converges weakly to τ(t) for any t&[0, T], and the limit function r is of bounded
variation as a function from [0, T] to H with τ(0)=0.

Proof. Let Q be a countable dense subset of H and set for each
andίe[0, T],

Then it follows from Lemma 3.4 that the total variation of Hλ)JC on [0, T] is
uniformly bounded with respect to λ. Since a function of bounded variation
is expressed as the difference of two nondecrasing functions, we can choose
with the aid of Helly's choice theorem a subsequence {ΈZλjX} which is con-
vergent on [0, 71]. Since Q is a countable set, we apply the usual diagonal pro-
cedure to extract a subsequence {aλJtX} such that

lΰnSλ J, I(ί) = HI(ί)

for x^Q and ί^[0, T], and we see that Bx( ) is a function of bounded varia-
tion in [0, T], Moreover

(3.10) \Bx(t)-By(t)\^Const\\x-y\\

for x, y^iQ and ί^[0, Γ], where the constant on the right side is the constant
independent of t. It then follows from (3.10) that for each ίe[0, Γ], the
mapping x-+Bx(t) can be extended to a continuous linear functional on H.
Therefore the Riesz theorem asserts that for each te[0, T] there exists an
element τ(t)^H such that

Bx(t) = (τ(t), x) for
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Since the total variations on [0, T] of τλ( ) are uniformly bounded for λ, it
immediately follows that τ( ) is a function of bounded variation on [0, T] and
τ(0)=0.

For simplicity in notation we denote the subsequence as mentioned above
by{τλ}.

We then put

for ίe[0, T] andg<=C([0, T]; H).

Lemma 3.9. For any g<Ξ C([0, T] H) the limit

t,λ(g)
λ->0

exists and the limit functional Ft is a bounded linear functional on C([0, Γ ] ; H).

Proof. By the relation dlκ>λuλ(t)=—τλ(t) and the integration by parts we
obtain

for # e W\(0, T\ H). Hence Lemma 3.8 implies that the limit lim Ft λ(g) exists
and

(3.11) ψnFUg) = (r(t), g(t))-\'(r(ή, -fg(s))ds
λ->o Jo\ ds I

Since

\Ft(g)\ = lim \Ft_λ(g)I ^Const-Sup | |^(ί)| | ,

Ft is extended to a linear functional on C([0, 71]; H) and the limit limί1, λ(g) —
Ft{g) exists for any £ e C[0, Γ] i/). λ"̂ °

In what follows, we write F( )=FT( ).
For a function ^GC([0, T]; /ί) we introduce the scalar-valued integral

(3.12) [\g(s), dτ(s)) = lim Σ (^(«), τ(«+i)—τ(«)),

where {ί?} is a sequence of partions of [0, t] such that

and
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lim Max |«+i—*ϊ | = 0 .
«->o» A = l,2,3,-,«-l

It is easy to verify that the limit on the right side of (3.12) exists and does not

depend on the choice of {tn

k}.

L e m m a 3.10. We have

Ft{g) = t W ) . dτ(s))
Jo

for ίe[Eθ, T] andgGC([0, T]; H).

Proof. Using Lemma 3.9, (3.12) and applying the integration by parts,

we obtain the conclusion of the lemma.

L e m m a 3.11. The sequence \—uλ(t)\ converges weakly in H to —u(t)
ydt ) at

for a.e t€Ξ[O9 T], Further, the sequence {3Φλw} converges to dΦu in the weak

star topology of L^O, T; V*).

Proof. In view of Lemma 3.5 we see that {Jλuλ} converges pointwise to

u(t) with respect to the strong topology of H.

Since HJ^AWIIF *S uniformly bounded for λ and t by Lemma 3.2, we see

with the aid of the assumption A-l that there is a null sequence λy-*0 for

which

9Φλywλ/ -> dφu

in the weak-star topology of Loo(0, T; V*).

Hereafter we denote this subsequence by {dΦλuλ(t)}.

Multiplying both side of equation (3.1) by α e F , integrating the resultant

relation over [0, t], and using Lemma 3.5, (3.11), (2.2) and then the above-

mentioned fact we infer that the limit l imί—u λ(t), a) exists for any £G(0, T).
λ-*o \dt I

On the other hand, \ — u λ \ converges to — u in the weak topology of L2(0, T H).
ydt ) dt

Thus, noting that V is dense in H, we conclude that < —u λ(t) \ converges in H
y ydt )

t o — u{t) for a.ettΞ[0y T].
dt

We put

Xo = I ί^ [0 , T] t is a Lebesgue point of — u
I dt

and weak-lim —u λ(t) = —u( t)\ .
λ-*> dt dt )
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Lemma 3.12.

1) The one-sided weak derivatives w—w( ) and w—u( ) exist every-

where in the intervals [0, T), (0, T] and are weakly right- and weakly left-continuous

in H, respectively. Moreover w—u and w—u are respectively right- and

dt dt

left- continuous in the strong topology of V*. (with necessary modifications at 0

and T).
2) Let τ( ) be the weak limit of functions τλ( ) as λ->0. Then

= b+w-^u(t)-\\dφu(s)-f(s,u(s)))ds
dt Jodt

for any t^[0, T] (with necessary modifications at 0 and T).

Proof. Applying Lemmas 3.5, 3.9, and 3.11 and using the relation (3.1),

we have

(3.13) ( r ( t ^ j s

~(ίu{t)' *w)+(*' s(θ))-\\dφu(s), g(s))ds

for any tt=X0 and any ;eC([0 , Γ]; V)ΓlW\([0, T]; H). Since the total

variation of T is finite, the limit

lim τ(s) = τ(t-0)

exists for any *e[0, T]. By (2.2) and Lemma 3.2 and function t-+\ (f(s, u(s))y

Jo

ά)ds is continuous over [0, T] for any element a of V. Since ||3φ#(s)||r* are

uniformly bounded on [0, T] with respect to s, the function /->l (dφu(s), a)ds
Jo

is continuous in [0, T]. Letting a = g(t) in (3.13) we see that for any Ze(0, T]

the limite

lim (j-u
\d

exists. Therefore w—u(t) exists for any ί^(0, T]. Noting that —u belongs
dt dt

to Loo(0 ,Γ; H) and using the relation (3.12) with g(t) = ay we get

\([f dφu(s)dsy a)\ ^ C o n s t | | α | |
Jo
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for α 6 F and ί G l " 0 . Since V and Xo are dense respectively in H and (0, T],

the integral \ dφu(s)ds belongs to H for any t^[0, T]. Therefore we have
Jo

^u(t)+\(f(s, u(s))-dφu(s))ds
at Jo

for /e(0, Γ]. Since the function £-»( l dφu(s)ds, a) is continuous for
Jo

and the function ί—>l dφu(s)ds is bounded in if, I dφu(s)ds is weakly contin-
Jo Jo

uous in H. Since τ(t—0) is left-continuous in H, we see that w—u is weakly

left-continuous in H on (0, T]. d t

By the same argument as in the above, we conclude that w—u is weakly right

continuous in H on [0, T] and the relation

τ(f+ 0) - b-w-^u(t)+\\f(s, u(s))-dφu(s))ds
at Jo

holds for *e[0, T).

Moreover ||θφz/(5')||κ* is uniformly bounded, and so w—u and zo—ware
dt dt

strongly right- and left- continuous in V*> respectively.

Lemma 3.13. Let F be the linear functional on C([0, T]; H) stated in

Definition 2.1. Then we have:

1) (b, *(0))-(ξ«(

-\T(dφu(s), v(s))ds + \T(f(s, u(s)), v(s))ώ = F(v)
Jo Jo

for any υ(=W\(0, T; H) n C([0, T]; V).

2) F(v—u)£0 for any » G C ( [ 0 , T]; K).

3) 2ξ
at

+ [T(f(sy u(s)), ξ-u{s))ds for any te= [0, Γ]
Jo ds

{with necessary modifications at 0 and T).

Proof. Assertion 1) follows from (3.11), (3.13) and Lemma 3.12. Since

{Jλuλ(t)} converges to u(t) and Φ( ) is lower semicontinuous, we have

λ(λ(λ))^((t)) = φ(u(t)).
λ->0
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Hence Assertion 3) is obtained by using (3.2), Lemma 3.11 and 1) of Lemma
3.12 and the lower semicontinuity of Φ( ) Finally, Assertion 2) is obtained
by applying Lemma 3.5 and 3.9 to the inequality

Fλ{v-ux)= \ {dlκ>λuλ(
s)> v(s)—tφ))ds

Jo

^ \TIKιλ{v(s))ds = 0 .
Jo

Lemma 3.14. The function u satisfies the initial condition 6) stated in
Definition 2.1.

Proof. It is obvious that u(0)=a. Taking any αGΪΓand puttingg( ) = a
in (3.13), we get

Hence

(3.14) τ(0 + 0) = b-w-ή-u(ϋ).
dt

On the other hand, in virtue of Lemma 3.8, we have

(τ(ί), x—a) = Km (τλ(ί), x—a)

= Km ('(ΘI^Λiφ), «?-i^(f))&+lim Γ(8/Afλι^(5), u^-άjds .
λ->0 Jo λ->0 Jo

for x^K and ίG[0, T1]. Hence, using the relation (dIKmλuλ(s), x—uλ(s))^0 and
Lemma 3.4, we get

(τ(ί), x—a)^Const Sup ||ί<(ί)—a\\ .

From this it follows that

(τ(0+0), x - α ) ^ 0 for any XΪΞK .

Combining this with (3.14) we have

b—w-—uφ)^dlκa.
dt

We now give the proof of Theorem 1.
Let b be any element of H. We put PLb—b0. From Lemma 3.12, 3.13

and 3.14 we have a solution u0 of (2.3) with the initial-value b replaced by bQ.
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We denote by FQ the linear functional associated with u0. First we shall find a
solution u of (2.3) and the associated function F.
We put u(t)=uo{t) and define F( ) as the linear functional F0( )+{b—bOy δo )
where δ0 is the Dire measure. Then

F(v) = F0(v)+(b-b0> v(0))

o
s, u(s))-dφu(s), v(s))ds

for any v e= W}(0, Γ; # ) Π C([0, Γ] V).
Since δ—ό0 belongs to L, we have

F ( ^ _ w ) = FQ(v-u)+(b~bQy v(0)-u(0))^0

for any ̂ G C ( [ 0 , Γ]; i^). But W=M0 and u0 is the solution of (2.3); it is clear
that the energy inequality of (2.3) holds for u.
Noting that b — bo^dlκa, and that dlκa is a convex cone, we have

b-io-^uφ) = bo-w-^uo(O)+bo-b(ΞdIκa.
at at

From the above-mentioned it is concluded that the function u is the solution
of (2.3), and the proof of Theorem 1 is complete.

We next prove the Theorem V stated in Remark.
Under the conditions of Remark we get

AλPj = (ί+xxjy'xjpj

where λ, is the eigenvalue of A associated with pj.
Let yi(t)=(Uχ(t)—a, pj) be the function as defined in the proof of Lemma 3.4.
Then, by the method employed the proof of Lemma 3.4 and by the equation
(3.4), we have

} ^ = (/(•, uλ( ))-Aλa, pj)

= 0, J - yί(O) = 0.
at

Using a method similar to the proof of Lemma 3.4 we get

lW^Xil+ΛXj^yiiήl

I (/(0, a), Pj) I +1 (f(t, uλ(t))> PJ) I +1 (A«, Pj) I

+\'j(~sf(s,uλ(s)),pj)\ds.
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From this together with BesseΓs inequality we obtain

^ Σ l λ - ^ W I ^ H / ί o , fl)|p+ sup \\f(t, uλ(t))\\2

+\\Aλa\\2+\'\φ(s,uλ(s))\fds.
Jo as

Thus condition (2.2) and Lemma 3.2 together imply

= Σ Iλ-^O

Condition A-l, 3) is clearly satisfied in the present case and conditions A-l 2),
4) are needed in the proof of Lemma 3.4. Consequently, we can obtain the
desired conclusion of Remark by following each step of the proof of Theorem 1.

4. Energy conserving solutions

In this section we discuss the existence of energy conserving solutions
which belong to Wl(0, T H) f] C([0, T]; V). Throughout this section we
assume that all of the conditions listed in the assumption A-2 are satisfied.
We begin by preparing some lemmas concerning the closed set bdy{K).

Lemma 4.1. Let R be any positive number. For any x, y ^bdy(K)f)
B(0y R) there exists a positive constant NR, depending only on R, such that

and

\(n(x)+n(y), x-y)\^NR\\x-y\\>.

Proof. From the assumption A-2 it follows that the function n(x) from
bdy(K) Π B(0, R) to H is Lipschitz continuous. We denote the Lipschitz con-
stant by NR. From the convexity of K we see that for x, y^bdy(K) Γ)B(0, R)

(4.1) (n(y), x-y)^O^(n(x), x-y).

Thus

(4 2) ί
1 (n(y), x-y)^(n(x)-n(y), y-x).

The first part of the lemma is then proved by combining (4.1), (4.2) and the
Lipschitz continuity of n(x). Next, (4.1) yields

(4.3) {n{y\ x-y)^(n(x)+n{y), x-y)^(n(x), x-y).

Thus the remaining part of the lemma is easily proved by the first part
and (4.3).
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In what follows we assume Nx*z 1 and set

Kξ = {XZΞKΠB(O, R); dist(*,

Lemma 4.2. Let z be any point of Kξ. Then there is one and only one
point x belonging to bdy(K) such that

dist (jar, bdy(K)) = \\x—z\\ and x—z^dlκx .

Proof. Piu α=dist(^, bdy(K)) and x+n(x)=c(x) for x^bdy^K). By the
definition of KQ thereexists an element x^bdy(K) such that \\XI—Z\\<NR1

+1.

Let x2 be the point of intersection of bdy(K) and the segment connecting the
point £(#i) and z. Inductively, we denote a sequence {xn}n=i in such a way
that xn+ϊ is the point of intersection of bdy(K) and the segment connecting the
point c(xn) and z for each n. Then we know the following inequalitis

Thus \\xΛ—z\\^\\xx+1—z\\^a, and we have

lim ||*,-a|| = β^a , lim ||c(*,)-ar|| =

Put xn~z=βn(xn)
JrSn. Then

(β+l)n(xn)+Sn = c(xn)-z.

Since \\βn(xn)+Sn\\ and | |(^+lM^»)+^nll t e n ( i respectively to β and (β+l)
as n->ooy we get

Thus

(4.4)

On the other hand

Ik —#JI2 = β{n{xn)-n(xm), xn—xm)+(Sn—Sm, xn-xm)

for m, n sufficiently large. Since

β(n(xn)~n(xm), xn-xm)^βNR+ι\\xn-xm\\2 and βNx+ι<l

we have

Hence we see (4.4) that {xn}Z-o is a Cauchy sequence. We put
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l im xn = Xoo .

Then xoo—z=βn(xoo). We now show that β=a. Assume to the contrary that
a = β. Then we can choose %λ such that

X^bdy(K) and ||^—z\\<β.

Using the same method as in the above argument we find a boundary point
fin of K such that

ffoo-* = βn{xj) and

On the other hand, Since (w(#oo), #00—#oo)̂ S0, we have

(4.5) Hxoo-tfooll2 = β(n{xj)—n(x»). x-%«>)

But βNR+1<\> and so xeo=Xeo. Thus we must have β=β, which is a con-
tradiction. Thus /3oo=dist(#, bdy(K)). Finally, we can prove the uniqueness
of the point #«, by using the same method as in the derivation (4.5).

For any 0 < δ < l we define

Kξ = { J C G £ ( 0 , R); dist(x, bdyiK^SNgU} .

Let z belong to K§ and define

the point x as in Lemma 4.2 if zEΞK

PK* if

Lemma 4.3. For zlt z2^Kf we have

\\r{zι)-r{z2)\\^2{\-hγι\\zι-z2\\ .

Proof. Let zly

Then r{zi)—zi=dist (zi9 bdy(K))n(r(Zi)) for 1= 1, 2. On the other hand

|dist(^, bdy(K)-dist(z2,

and so we have

M»ι)-r{*t)m2\\x1-zt\\+$Nji1N]l+]i\\r(*ι)-'ί*ύ\\.

Hence

Next let zL^K and

2, bdy(K))n(r(z2)) and dist(s, bdy(K))+di$t(z,bdy(K))
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^11^—z2\\. Hence the application of the same method as above implies the
desired estimate.

Finally, the assertion of the lemma is clear for the case in which both zx and z2

belong to H—K.

We now cosider the following equation:

τ,χUx=f(-,uλ)
I /ΊΊ—

(4.6)
1̂ (0) = aείVnK, — «λ(0) = beΞH.

dt

Lemma 4.4. For any λ > 0 the initial value problem (4.6) has a unique
solution uλ such that

tfλ(ΞC([0, Γ]; ΓJnC^O, Γ];#)nC2([0, 21; V*).

Moreover we have for any t e [0, T],

(4.7) | |HA(0II2+II -j- wλ(0ll2+^,λ(^λ(0)+(^λ(0» wλ(0)

(4.8)

and

(4.9) II- !-*

α)+2 ( (/(ί, uλ(s)), 4 - «Λ
Jo as

Proof. Since D(A) is dence in D(A1/2) and since D(,41/2) is dense in H, there

exist sequences {#, }7=i in ΰ(^l) and {i;}7-i in D(A1/2) such that

Let w0 be a solution of the initial value problem
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We then define a sequence {w, }7=o of ' Approximate" solutions in an inductive
manner by

(4.10)
df '

at
= b}, j= 1,2,3, — ,

where 2?(f, x)=f(t, x)—dIKtλ x.
By (2.2) and the Lipscbitz continuity of dIKtλ we have

(4.11)

\\E(t,x)-E(t,y)\\^h,(t)\\x-y\\,

where hλ(ΐ)=h(t)-\-X x. Using the well-known result for the linear hyperbolic
equation repeatedly, we get solutions of (4.10) in such a way that

uj e Wi(0, T V) Π Wi(0, T; H)

for all nonnegative integers/. Now (4.10) implies the relations

for y = l , 2, 3, •••. Taking the inner product of (Uj—Uj^) and both sides of
dt

the above equality and then intergating the resulting equation with respect to
ty we have

(4.12)

where

From (4.11), (4.12) and the positivity of A it follows that

_d_
dt

Hence GronwalΓs inequality ([2; p. 157]) yields
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Combining this with the estimate

we have

where C'K=\T hλ(s)ds and £y = S^+CiWa^-a^W .
Jo

Therefore we obtain

ll^fo(O-«i-iW)N

where M=Max ||i^(ί)—«i(OII

Since 6j-.iiSiConst(j—i—2)~2 and Ci^Const independing of λ we see

Σ Sβy-KCί

Then we obtain

Thus we conclude that ] Uj(t)\ is uniformly convergent on [0, T], Moreover
I dt j

from the above result and lim dj=a it follows that {Uj(i)} converges to some
y>oo

function uλ(i) on [0, T] and the convergence is uniform for t^[0, T], It thus
follows from (4.12) and the above result that

lim AW U:(t) = A1*2 uλ(t) uniformly on [0, T] .

Since A1/2uλ is continuous and V=D(A1/2)i we infer that Aux^C([0, T]; V*).

Further, /( , uλ( )) e C([0, Γ] H), and so «λ( ) e C2([0, Γ] 7*), Therefore ι*λ

is the solution of (4.6). Multiplying both sides of (4.10) by ui and integrating
the resultant equality over [0, t] we have
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2-1 II-£•«/*) \\2+2-HAuj(t), Uj(t))+IκJuj(t))
at

+ \\dlκ,λ Uj-^-dl^ uj(s), -j-Uj(s))ds = 2-mbj
Jo as

Combining the above results, we obtain (4.9) and (4.7). Assertion (4.8) is

verified in the same way as in Lemma 3.4.

We here employ the complexification H of H and the extension A in H of

A as mentioned in Section 1. Let {C(t)} and {£(£)} be the cosine function

generated by Z ) ( = \ / — 1 A1/2) and the associated sine function, respectively.

Recall that C(t)x as wall as S(t)x belong to H for t^O and x^H. Moreover,

we have

[\\\2-ιiU(t)±U(-t)}\\\£\\x\\,
( ' } \\\\2-1iU(t)±U(t)}D-1\\\^\\A-^\\\\x\\ for

Now let R' be the square root of the right side of (4.7) and put R=R'T+

\\a\\. Then the solution uλ(t) of (4.6) takes its values in B(0,R) for λ > 0 and

Suppose for the moment that the initial value a belong to bdy{K). For

δ(Ξ(0, 1) a n d λ > 0 , set

Tltλ = Sup {t^T: uλ(s)(=K$ for any O^s^t} .

Then the energy estimate (4.7) ensures that there is a positive number Tx such

that

T^T^hN &xR''1 for any λ>0 .

We then consider the equation (4.7) on the interval [0, 7\]. First we recall

that dIKtλ(uλ(t)) is represented as

(4.14) 9/^x (̂0 = ^(0^(0).

where rλ(t) = r(uλ(ή) and /λ(ί) = \\dlκ,λ uλ(t)\\ .

Further, the solutions u3 of (4.10), which belong to Wl(0, T; V) Π Wl(0, T; H),

are expressed as

-i* S(t-s){dlκ*uj-,(s)-f(s, uj-ύ))} ds .
Jo
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Noting that

converges to /λ(ί) w(rλ(ί)) asj-^oo, we have

(4.15) uλ(t) = a(t)+W(t, uλ)~Γ S(t-s) lλ(s) n(rλ(s)) ds ,
Jo

where a(t) = C(t)a+S(t)b and

W(t,uλ)=\tS(t-s)f(s,uλ(s))ds.
Jo

Similarly, we obtain

(4.16) -j- u,(t) = A- a{t)+-L W(t, « λ)-Γ C(t~s) /λ(s)«(rA(*)) &

by computing the derivatives of Uj and taking the limit as 7-^00.

Lemma 4.5. The sequence {ί/λ}λ>o contains a subsequence {uλj} convergent

uniformly in the strong topology of H to a continuous function u(t) on [0, Z\].

Proof. Put

pit) = Γ Us) ds for t^O and λ>0 .
Jo

Then pλ( )> λ > 0 , are uniformly bounded functions on [0, T{\ by (4.8). Ap-
plying Helly's theorem, we find the subsequence {pχj( )} such that

(4.17) UmA /(ί) = p(ί) for ίe[0, ΓJ-Q.

where ρ(t) is a left-continuous, increasing function on [0, Tλ] and Qo is some
countable set in [0, T{\. Now in view of (4.15) we get

(4.18) uXl{t)-uH{t) = {W(t, uλJ)-W(t, uH)}

- J[ S(t-s) {n(rλJ(s))-n(rH(s))} /A/(,) ds

- £ S(t-s) n(rXi(s)) -j-(pλj(s)-pφ)) ds

By 3) of the assumption A—2 and Lemma 4.3 we have

(4.19) H/,1152 Const ^ 4,(*)lk,(s)-MH(*)|| ds .
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Also we infer from (2.2) that

(4.20) HΛĤ Const J [ ^ ) | k , W - ^ ) | | ds.

Using P\j(O)=P\k(0)=0 and applying an integration by parts in I3 we have

I3 = £ C(t-s) M(rλί(*)) (pλj(s)-Pλi(s)) ds

~ί S{t~s) it w(rλ

The first term /4 is estimated as

and 3) of the assumption A-2, Lemma 4.3 and (4.7) together imply

Therefore the norm of I3 is bounded by

ωjJt) = Const j ^ I p»y(ί) -PΛ»(*) I *

Combining (4.18), (4.19), (4.20) and the above estimate gives

Hence GrownalΓs lemma yields

(4.21) |k/ί)-ffe,(«)ll£ω,.*(t)

+ ί' ωw(ί){*(*)+/»/*)> exp Γ {A(?)+/λ/?)}^ ds .
JO Js

We now show by use of (4.21) that {uλj} converges. First (4.17) impies that

(4.22) lim ωy k(t) = 0 uniformly on [0, ΓJ .

Since f * {h(s)+lλ.(s)} ds^Const, it follows from (4.21) and (4.22) that
Jo

lim uλf(t) = u(t) uniformly on [0, TJ .

In what follows we write uλ and X for uλ. and λ ; , respectively.
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Lemma 4.6. We have

u(t)ZEKf)V for ίe[0,ΓJ

and

lim n{φ)) = n(r(t))
λ->o

where r(f)—r(u(t)) and the convergence is uniform on [0, 7\] with respect to t.

Proof. The assertion of the lemma follows immediately from (4.7), 3) of
the assumption A-2, Lemmas 4.3 and 4.7.

L e m m a 4.7. < uλ(t) > converges strongly in H to u{i) for a.e t G [0, TJ.
I dt ) dt

Proof. In view of (4.16) we write

(4.23) -A" M*W = 4r β 4at atat at at

Γ C{t-s) in(rλ(s))-n(r(s))} lλ(s)ds-\' C(t-s) n(r(s)) lλ(s) ds
Jo Jo

Then Lemma 4.6 yields

(4.24) lim HΛII = 0
λ->0

and Lemma 4.5 ensures that

(4.25) lim ^ W(t, «0 = (' C(ts)f(s, u(s))ds .

On the other hand, V=D(Aίβ) is dense in H, and so there exist exists a sequence
of functions igj} in C\([0, ΓJ H) Π C([0, ΓJ F) such that

(4.26) Sug |lΛ(<)-»(r(ί))ll ^ J-1

In order to estimate I2 we write

72 = - £ q ί - ί ) {«(r(ί))-ft(ί)} 4(ί) ds

-\'c(t-s)gj(s) A-Pχ(s) sd = I3+It.Jo as

Then the first term I3 is estimated as

(4.27) HΛII^Const/y for j = 1,2,3, — .
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The second term It is transformed to the following from by integration by parts
andA(0)=0;

Λ = -g,{t) pA(ί)+(' C(t-s) J-gfc) p,(s) ds
Jo as

-\'s(t-s)D>gj(s)ps(s)ds.
Jo

The application of (4.17) then implies

lim It = -gj(t) p(ί)+J] C(t-s)J-gj(s) p(s) ds

Hence we infer from (4.26) that

(4.28) || (' C(t-s) n(r(s)) dp(s)+lim U
JO λM>

for any j ^ l .
Using (4.23), (4.24), (4.25), (4.27) and (4.28) and letting j->oo we see that the

lim uλ(t) exists for any ίG(0, TJ—Qo and the assertion of the lemma is now
λ-*°° dt

obtained by combining Lemma 4.5 and the above-mentioned estimates.

Lemma 4.8. We have
<t) = <t)+ W(t, ι ι)- Γ S(t-s) n(r(s)) dp(s)

Jo

/or/e[0, ΓJ and

-j- u(t) = A
at at

for a.et(Ξ[Oy ΓJ

Proof. The assertion of the lemma is readily shown by (4.15), (4.16),
Lemma 4.5, Lemma 4.7 and together with the argument employed in the proof.

Lemma 4.9. We have

lim A* uλ(t) = A1*2 u(t) in C([0, ΓJ H).

In particular, A1/2 u belongs to C([0, ΓJ H).
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Proof. By virtue of (4.15) we have

(4.29) A^uφ)—Alftuφ)

= \[s'(t-s) {n(r>ip(s))-n(rφ))}lλί(s)ds

S'(t-s) n(rλί(s)) -j- (ptp(s)~Py(

-\ S'(t-s) {f(s, iiu(s))-f(s, it (*))> ds

where S'(t) = 2"1 χ / = ϊ <U(t)- U(-t)} .

Using the same method as in the derivation of (4.19) and (4.20), we obtain

ll/jll+ll/jll^Const j ^ {h(s)+lλp(s)}\\Uίιp(s)-uλί(s)\\ds.

Hence we infer from Lemma 4.5 that

(4.30) lim

uniformly on [0, ΓJ.
Next, we write

= j ^ S'(t-s) {n(%(s))-n(r(s))} {^(s)-!^)} ds

S\t-s) n(r{s)) -j- {Pλp{s)-Pλi(s)} ds

As to the first term I4 we see from Lemmas 3.4 and 4.6 that

(4.31) lim | |/J| = 0 uniformly in [0, TΛ .
λp,λg+Q

The second term I5 is written as

75 = J[ S'(t-s) {n(r(s))-gj(s)} -j- {pKp(s)-Pλί(s)} ds

S'(t-s) gi(s) -L{pλt(s)-p^s)} ds = /6+77

where g} is the function in C\[0, Γx] 77) fl C([0, ΓJ V) satisfying (4.26).
For the term 76 we have

(4.32) Sup ||76||:gConst//.



CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS 35

By integration by parts and (4.17) we have

lim ||/7 | | = 0 uniformly on [0, ΓJ .

Combining this with (4.29), (4.30), (4.31) and (4.32) and letting j-^oo, we ob-
tain the assertion of the lemma.

rt

Lemma 4.10. The function t->\ U(t—s) n(r(s)) dρ{s) has both of the left
Jo

and right limits on (0, ΓJ and [0, Tλ). Moreover this function is left continuous

on (0, ΓJ.

Proof. We put

\tU(t~s)n(r(s))dp(s)
Jo

= Γ U(t-s)in(r(s))-gj(s)} dp(s)+\' U(t-s)gj(s)dp(s)
Jo Jo

where^ is a function satisfying (4.26). Since each is a contraction mappn map-
ping on H, (4.26) yields

By integration by parts we have

h = gj(t) P{t)+ Γ U(t-s) Dgj(s) p(s) ds- \' U(t-s) J-gj(s) p(s) ds .
Jo Jo as

Noting that p has both the left and right limits we infer that I2 has both the
left and right limits as well. Thus the function stated in the lemma possesses
the left and right limits. Further, since p is left-continuous, we see that the
function is left-continuous on (0, T{\.

Lemma 4.11. The one-sided derivatives u and u are left and right
continuous on (0, Γx] and [0,7Ί), respectively.

Proof. The derivatives —a{ ) and —W( ,u) are continuous, and so the
dt k dt

assertion follows from Lemma 4.8 and 4.10.

Lemma 4.12. The function u satisfies all conditions stated in Definition 2.2
on [0, ΓJ.

Proof. The proof is obtained by applying Lemma 3.7, 4.5, 4.6, 4.7, 4.9,
4.11 and (4.9).
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In what follows we simply write dβ(to)=O when dp( )=0 in some neigh-
borhood of t0.

Lemma 4.13. // u(t0) belongs to K, then dβ(tQ)=O.

Proof. Lemma 4.5 implies that there exists a positive constant δ such
that

inf dist(u(t), bdy(K))
t(Ξlto-8,to+8i

^2->dist(u(to),bdy(K)),

and that if δ is sufficiently small, then uλ(t) belong to K for all t^[t0— δ,
From the definitions of /λ and pλ in (4.14) and the proof of Lemma 4.5 we have
lλ(t)=0 and pχ(t)=pχ(t0) respectively for any t^[t0—δ, ί o +δ]. Letting λ tend to
0 implies that

pit) = p(t0) for any te[ίo-δ, to+S],

which means that dρ(to)=O.

We here recall the definitions of the mapping n and numbers R' and R;

0 if

R' = {the right side of (4.7)}V2 and R = Λ 'Γ+ | |β | | .

Lemma 4.14. We have the relations

u(t) = a(t)+W(t, «)-Γ S(t-s) n(u(s)) dp(s),
Jo

^ , ( ί ) +
at at

/or Λ»y fe(0, ΓJ ^ A ^ Γ j ^ Γ α/zrf Γ^MinίδΛ^^! Λ'"1, T}. Moreover we
have the energy estimates

(4.34) | ^

(4.35) \\itu{t)\\2+{Au{t), u(ή) = ||6||2+(^α, a)+2 [ (f(s,u(s)), j-u{s)) ds
at JO as

for ίe[0, ΓJ] (with necessary modification* at 0 and TΊ).

Proof. The integral repesentations of u(t) and —u(t) are readily obtained

from Lemma 4.8, 4.13 and (4.33). The energy estimates (3.43) and (4.35) fol-
lows from (4.7), (4.9), Lemmas 4.5, 4.7, 4.9 and 4.11.
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L e m m a 4.15. Let the initial values a and b be given respectively in V Π K

and H. Then there exists a solution u of (2.4) on some interval [0, T{] such that

T[^T and

u(t)^Kfor O^t<Tί, andu(T{)^bdy(K) else Tί = T9 and such that u belongs to

WL(0y T{ H) Π C*([0, T] V) and conserves the energy. Moreover u and u are

represented as in Lemma 4.14. with ρ=0.

Proof. From the well-known result for linear hyperbolic equations and

(4.33) the proof is easily obtained.

DEFINITION 4.1. We say a function M G C ( [ 0 , T\\ V) is a mild solution of

(2.4) on [0, T] if the following conditions are satisfied;

1) For any fe[0, Γ], u(t) belongs to Ky

2) u satisfies the equality 4) stated in Definition 2.2,

3) u and u are represented as in Lemma 4.14, where p is a left con-
dt

tinuous and nondecreasing function on [0, T]y p(0)=Q, and dp(t)=O provided

Since a mild solution is specified by a function p as above, we denote a

mild solution by (u> ρ)> where p is a function as mentioned in 3) of Definition

4.1.

The next lemma is redaily obtained from Lemma 4.14 and 4.15.

L e m m a 4.16. Let the initial values a and b be given respectively in Vf]K

and H. Then there exists a mild solution u of (2.4) on some interval [0, TJ where

ί 21! in Lemma 4.14 if a^bdy(K),
1 ~~ 1 T in Lemma 4.15 if a<=K.

L e m m a 4.17. Let (uly ρλ) be a mild solution of (2.4) on [0, TΊ] satisfying

u(0)=a, —u(0)=b, (u2, p2) a mild solution of (2.4) on [0, T2] with f(s, u) replaced

d d~
by f2(s, u) = f(s+Tly u), and suppose that u2 satisfies ff8(O)=κ1(7\), —u2(0)= ux

Set d t d t

if 0 ^

and

\Pι{t) if 0̂ *52

*/
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Then (u3i p3) is also a mild solution of (2.4) on [0, Tx-\-T^ satisfying u3(0)=a, —u3

dt
(ϋ)=b. Moreover u3 enjoys the energy equality (4.35) on [0, Tx-\-T^. Thus this
solution u3 satisfies the energy inequality (4.34) on [0, 7\-|-T2].

Proof. By the definition of mild solution we have

u&- 2\) = C(t- Tt) u^TJ+Sit- 7\) j-um
at

+ \"Tl S(t-Γ,-*)/^, u£s)) ds- \"Tl S(t-7\-i) ήiu^s)) dp2(s)
Jo Jo

for Γ ^ f ^

Using the integral representations of Wj and Mj and the group property of
{£/(*)}, we get dt

^(t-Ά) = C(t)a+S(t)b+\Tl S(t-s)f(s, «,(,)) <b
Jo

- Γ 1 S(t-s) n(Uι{s)) dPι(s)+\' S(t-s)f(s, uz(s-7\)) ds
Jo J T X

- (' S(t-s) n(iψ- TO) rfft(ί- Tx).
Jτx

Hence by the definitions of u3 and p3 we get

u3(t) = a{t) + W(t, u3)-\'o S(t-s) ii(u3(s)) dP3(s)

for te [0, 7\+ Γ2]. Similary, we get

for t^[09 TΊ+TJ. Since ux and u2 satisfy the energy equality it is easy to show

that the energy equality is valid for u3. Using this energy equality and apply-
ing the same method as in Lemma 4.4, we have the inequality (3.44).

Lemma 4.18. Let a^VΓ\K and b^H. Then there exists a mild solution

(u, p) o/(2.4) on [0, T] satisfying u(0)=a7 —u(0)=b.
dt

Proof. First assume that a^bdy(K). We use the notation (u, p,a, β,g)
to denote the mild solution of the problem

-^u+Au+dIκuΞBg(t, u),
dtr

at
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By Lemma 4.16 there exists a mild solution (uly ρly a, byf) on [0, 2\], where

Tx = Supit^T; dist(z^), bdy(K))^SN^+1 and

for O

If Ti=Ty then the proof is complete. Hence suppose that TxtίT. From the
diίinition of R' and (4.34) we have u(t)<=B(Ry 0) for f e[0, ΓJ. Then |k(*) | |<Λ
for O^s^ Tx and d i s t ^ ^ ) , bdyiK^SN^ by the definition of 2V Thus it
follows from (4.34) that T^SNRU R'~\ NOW Lemma 4.15 ensures that there

exists a mild solution (u2y p2y u^T^ AUl{Tx)yf{- + Tly •)) on [0, T2] where
at

T2 = Min{Γ-Γί, T{ Γ{ in Lemma 4.15} .

Let z/3 and ρ3 he the functions defined in Lemma 4.17. Then Lemma 4.17 im-
plies that (u3, p3, a, b,f) gives a mild solution of (2.4) on [0, Tx+T^. If 2\+Γ 2

= 2\ then the proof is complete. Suppose then that Γ 1 +Γ 2 <T I . From (4.35)
and the definition of R it follows \\u3(s)\\<R for O ^ s ^ 2\+ T2. Since dist^T^
bdy(K))=8NRli we have Γ2^δΛ^^i.i i?'"1. Lemma 4.16 again implies that there
exists a mild solution

), 4^(Γ 1 +Γ 2 ) ,/( . + Γ1+Γ2)) on [0, ΓJ, where
at

T3 = Supit^T-i^+T,); dist(u4(s)y bdy(K))<SNR+1

and ||z/4(s)||<i? for any O^s^t} .

We then put

.υt(t-Ά+τt) if :

and

if

Then Lemma 4.17 states that (u5f ρ5, a, b,f) is a mild solution of (2.4) on [0, 7\+
T2+T3]. If Γ 1+2 1

2+2 13=Γ, then the proof is complete. Suppose then that
T 1 + Γ 2 + Γ 3 < J Γ . Then T3^8NR1

+1 R'~\ Repeating this argument we get a
sequence of mild solutions (fc2y-i> p2j-i> a> b,f) on [0, Tλ-\-T2-\ h?y], where T1,-

Since each Γt is larger than SNR\I R''1 there must exist j 0 such that T^T^
-\-Tjo=T. In this case the assertion is proved.

Next let a belong to K. Using the similarly aboev method we can prove this
lemma.
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Lemma 4.19. A mild solution (u, p) on [0, T] is an energy conserving solution

on [0, T\.

Proof. Put

Y(t) = C(ty+S(t)b+[' S(t-s)f(s, «(*)) ds ,
Jo

{) fγ(t) for
at

Then ^-zeL2(0,T;H),Y<=WL(0,T;V), and
dt

(4.36) ±*+AY = f{;u).

Moreover, by Definition 4.1,

(4.37) u(t) = Y(t)- Γ S(ί-s) n(u{s)) dP(s)
Jo

and

(4.38) *-u(t) = «(«)-(' C(ί-*) *(«(*)) </p(*)
iί Jo

For any v e C f̂O, Γ] if) fl C([0, Γ] F) we infer from (4.36) that

(4.39) Γ (*(*), -^(ί)) Λ - Γ {A Y(s)-f(s, u(s)), υ(s)) ds
Jo ds Jo

= (z(T), v(T))-(z(0), v(0)).

By switching the order of integration and integration by parts, we have

(4.40) £ ( [ C(t-s) n(u(s)) dp(s), Λ,(θ) dt

C(t-s) n(u(s)), ~<t)dt) dP(s)

= (JoC(T-s)n(u(s))dp(s),v(T)j

- Γ (*(«(*)), v(s)) dp(s)-\T\T (&S(t-s) n(u(s)), v(t)) dtdP(s),
JO Jo J s

where the parenthesis of the integrand of the last term stands for the paring
between V* and V. The relation ΣP=—A and Fubini's theorem together yield
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(4.41) \T\T (D2S(t-s)n(φ)), v{t))dtdP (s)
JO JO Js

{-AS(t-s)n(u(s))dP(s), v{t))dt.
o \Jo

Combining (4.37) through (4.41) we have

( 4 . 4 2 ) $ o ( J £ ) £
= (jt(

n(T)> v(τ))-(b> v(0))+\\n(u(s)), v(s))dP(s).

Thus, putting

F(v) = \T(n(u(s)), v(s))dp(s) for ^ C ( [ 0 , T]; H)
Jo

we infer that u is the energy conserving solution on [0, Γ].

Proof of Theorem 2. The proof is easily obtained from Lemma 4.18 and
4.19.

5. The representation of the linear functional F

Throughout this section we assume all of the conditions listed in the as-
sumption A-2. In what follows we put

R = {the right side of (4.7)}1/2- Γ+IMI .

In this section we give the proof of Theorem 3.
We first list some notations which will be used throughout this section.
Let £0 be a positive number such that 0 < 2 8 0 < . N ~ R \ \ . For simplicity

suppose that dist(ay bdy(K))<60. Let fo}fβ, be an increasing sequence satisfy-
ing the following conditions:

1) so=O,Sn=T,
2) For ; = 1, 2, ••-, ΛΓ-1, dist(u(s)y bdy(K)y=2β0 and dist(u(sj), bdy(K))

<2S0 for Sj.^SjKSj ify is odd; and dist(u(s)f bdy(K))=S0 and dist(u(s), bdy(K))
>£ 0 for Sj-^sKSj iίj is even.
We put Ij=[sh si+1] for ί=0, 1, •••, iV— 1 and define

(n(r(t)) if
(5 1) n'(t) =\

( <rjn(r(s2j+1))+(l—σj)n(r(s2j+2)) if

where σ,—(£—s2/+1)(%+2—%+i)-1 and r( ) is the mapping defined before Lemma
4.3.
Further we define
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M'i+\ Λ.//-#MIΛΛ//-#MI—ifi \i) z= ΎiQ\t)\\n$\t)\\

and

1 if O^s<t—6

(t—s)ε~1 if t—ε^t

0 if

Lemma 5.1. For anyv^C([Oy T]; H) there exists

Proof. From condition 5) stated in Definition 2.1 it follows that for any
'ttO, Γ];#)nC([0, T];V)

f U{$)'ίs V®)+W'> «(s))-dφu(s), v(s))}ds

From condition 3) of Definition 2.1 we infer that

(5.2) limF{Xt,tv) = -tζ-u(t), υ(t)))+(b, v(0))
8>o \ at /

. Φ))-Qφu(s), v(s))}ds .

Now let v be any element of C([0, Γ] ; ί ί ) . Then there exists a sequence
Γ/tOeC^O, T]; H)f]C([0, Γ] ; F) such that

Supτ\\Tj(v)(t)-v(t)\\Sj-1 for any y = l , 2, —.

Since

for small 0<€1<€2 and

\F(Xt,tv)-F(XettTj(v))\^\\F\\IJ for £ > 0 ,

we get

t l\mJF(Xh,tv)-F(XίIιtv)\^
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Therefore lim F(Xe tv) exists by (5.2).

We then put p(0)=0 and

p(t) = lim F(XtJn') fcr any ΐ e(0, T] .
ε->o

Lemma 5.2. p is a left continuous nondecreasίng function on [0, T].

Moreover if u(to)^K dβ(to)=O.

Proof. For any 0<tx<t2^ T we get

\P(t2)-p(t1)\ rgH

+ljm \F(Xs>tTj(nf))-F(Xnttn
f)\.

Hence condition 5) of Definition 2.1 yields

, u(s))-dφu(s), Tj(n') ds

U{t)

at

and so condition 3) of Definition 2.1 implies that

lim Ip{t2)-p(h) I £2\\F\\IJ.

This means that p is left continuous.
Next there exists a sufficiently small £ 3 >0 and any O ^ ί ^ ^ ^ Γ M(^)—S3(XStt2(s)
—Xe,tΊ(ή)n'(ή belongs to K for any se(0, Γ) condition 5) of Definition 2.1
gives

F((Xe,t2-Xitty)^0 for 0<^<ί 2^Γ.

Letting £->0, we see that p is nondecreasing over [0, T], If u(t0) ̂ K for some
fo>O, there must exist tu t2^[0, T] and SQ>0 such that ί 1 <
^)±^o(X.. ί l -κ.. ί l )W»'Weϋ: for je [0, T]. But W ( . )±£ o (% ε > ί 2 -%
C([0, ϊ 1 ] ; K) by (5.1), and so condition of Definition 2.1 implies that

F((Xiftl-XStt2)n') = 0 .

Thus
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Pfe)-p(Ί) = ^ n F((X9ft2-X2ιty) = 0 .

This means that

(5.3) dβ(tQ) == 0 for any point ίo>O with u(to)^K.

Proof of Theorem 3.
For a small £ 3>0 let dist(u(tQ), bdy(K))>63. We assume that r(t0)—

S3n(r(t0))-\-χ/S3(4 NR+1)~1/2e(t) is an exterior point of K, where e(t0) denotes a
vector satisfying (e(t0), n(r(to)))=O, \\e(to)\\ = l. Since r(to)—ε3n(r(to)) is an interior
point of K there exists a number mt3(t0) such that

1) r(tQ)^€3n(r(t0))+m93(t0)e(t0)Gbdy(K)

2) \/?3"(4iVi?+1)-
1/2^m83>0.

Since r(ίo)6ΰ(O, i?+l), Lemma 4.1 implies that

which gives

IίNR+ιε3^ϊl29 then we have

This is a contadiction. Hence it is concluded {r(t0)—£3n(r(t0))-\-\/~ε3~(4 NR+1)~1/2

e(t0)} belongs to K. Therefore there exists an £ 4 >0 such that for any £e(0, £4)
and any ίe[0, Γ],

1 )" 1 / 2 φ)} belongs to ίΓ,

where e( ) is a function in C([0, Γ ] ; ί ί ) with («(ί), w'(ί)) = 0 and
Thus from condition 5) of Definition 2.1 it follows that

Letting £-^ 0 we get F(e)=0.

Let e' €Ξ C([0, Γ] if) and let {e'(t), n'(ί))=0. Then

(5.4) F(O = ik'll^Vllβ'll) = o.

For any D E C ( [ 0 , T]; H) we write

t>(ί) = (v(t), n'(t))n'(t)+e'(t)=av{t)n'(t)+e'(t).

Then (5.4) yields

(5.5) F(v) =
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Let {t?}f=o be any sequence satisfying

2) \tfa-tf\g2Tlm for ; = 1, 2, 3,

Then F(v) can be decomposed as

(5.6) F(v) "

First we consider 72. Since

= aj(tTHF(Xt,tΐ+1n')-F(X9ιtTmln')}

+F((Xttt?+ 1 -χtt7){av-av{t7))n'),

we have

p ( 8 , ( ? _ 1 8 ,

where ωm= Sup \aJt)—aJs) I. Thus it follows
|(«l£2Γ/»>

(5.7) Em|/1-Σα,(ίf
ε->o , =i

Next, (5.5) implies that

(5.8) Em I/!-*,(())/>(*!

Finally, using condition 5) of Definition 2.1 and noting that —u{ ) is left con-
tinuous we have for 7 = 1 , 2, •••

lim Km (F(ί-Xt^)Tj(v)) = 0 .

Combining ||Tj(v)—v\\^ljj and the above we see

(5.9) lim lim F((ί—Xe,tζ)v) = 0 .

Noting limω^^O, Combining (5.6), (5.7), (5.8) and (5.9) and then letting m

go to oo, we get the desired integarl representation of the functional F:



46 K. MARUO

This, togher with (5.3), implies that for any v(=C([0, T]; H),

(5.10) F(v) = \\v(s),n(u(s)))dp(s).

In aprticular, for any σEC([0, T]), we obtain an integral representation of the
type

F(σri) = \T

σ(s)dp(s).
Jo

On the other hand if θ is left continuous, non decreasing, of bounded varia-
tion, (9(0)=0, and

[Tσ(s)dθ(s) = 0 for any σ€=C([0, T]),
Jo

then it follows that θ(t)=O for any t^[0, T]. This means that the function
p is uniquely determined by the solution u.

In view of this, we denote by pu the function p associated with u in the
following.

6. {ίt }-energy conserving solutions

In this section we discuss the relation of the energy conserving solution to
the mild solution and study the existence and uniqueness of {t{} -energy con-
serving solutions. Throughout this section we assume all of the conditions
listed in the assumption A-2.

L e m m a 6.1. An energy conserving solution of (2.4) is a mild solution of

(2.4). More precisely, if u is an energy conserving solution, (u, ρu) is a mild solu-

tion.

Proof. Let u be an energy conserving solution of (2.4) and set

Ϋ{t) = Y(t)-^S(t-s)n(u(s))dPtt(s),

where Y( ) is the function defined in the proof of Lemma 4.19 and ρu the
function provided by Therem 3. Using (4.36) and applying the same method
as in the verifications of Γ4.40) and (4.41), we have

) , v(s))dPu(s)
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for any ϋGC^O, T];H)f] C[([0, T]; V). Put Ϋ—w=w. The above relation
and (4.42) together yield

(6.1) [TH—ΪO(S),—C(S)\--(AΪO(S), v(s))\ ds-(—w(T), v(T)\ = 0.

For each ^GC([0, T] H) we denote by v the solution of the problem

= g, 0<t<T,

(6.2)

= " dt

From (6.1) and (6.2) it follows that

and

\T (w(s), g(s))ds = 0 .
Jo

Since C\[0, Γ]0; H)) is dense in L2(0, Γ; i ί ) , we infer that w(s)=>0 for α β
5G[0, Γ]. Since F and w are continuous, the proof is complete.

We are now in a position to give the proof of Theorem 4.
Let My, y=0, 1, •••, be the sets as mentioned in Definition 2.3. For each

energy conserving solution u let ρu be the associated function provided by
Theorem 3.

L e m m a 6.2. All of My, j=l, 2, •••, are not empty.

Proof. We put

(6.3) inf pw(ίi) = (Xi.

Then one can choose a sequence {UJ} of energy conserving solutions such that

lim ρu (tΛ = aλ.

The application of Helly's theorem to {ρUJ} implis that there exists a convergent
subsequence {ρu } such that

for f e [0 , Γ H &

where px is an increasing left continuous function and p 1 (0)=0 and Q1 is some
countable set in [0, T]. Let Q{ be some countable sets in [0, T] for z"=l, 2, •••.
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For simplicity in notation we denote the subsequence {UJ.} by {Uj}. Applying
lemma 6.1 to Uj and using the same method as in Section 4, we infer that there
exists a subsequence {UJ.} such that

lim Uj.(t) = u(t) uniformly on [0, T] ,

j j for t^[0,T]-O1,Si-*09 at at

lim A1/2uUJi(t) = A1/2u(t) for any t <Ξ [0, T] .

It is easy to show if u(t)^K then pj = Const near t. It is also clear that u
satisfies the enregy equality (4.35) as well a as the energy inequality (4.34).
Hence Lemma 4.19 states that u is an energy conserving solution. Since
pUjΊ(t)^puj.(t1) for t<tx and so p^t)^^ for a e *e[0, ^). Now the left con-
tinuity of pi yields ρx{t^)tίθίι Combining this with the fact that u is an energy
conserving solution, we get p ^ ) — a x . Thus M1 is not an empty set. Suppose
then that Mif l^Sz'^y, are not empty, and put

(6.4) JLnf pw(tj+1) = aj+1.

Using the same method as in the case j^ l , we can show that there exists a
sequence {uk} in Ms such that

lim uk(t) = u(t) uniformly for t e [0, T],

Inn puk(tj+ι) = aJ+ι, and

Inn pUk(t) = Pu(t) for t<Ξ[0, T]-Qj+1,

First we see in the same as way as the above that u belongs to Mo. Since
Mj(ZMly we have ρUk{t^)^=aλ for Λ=l, 2, 3, . Now the left continuity of ρu

yields a^pufa). Hence aι=ρu(t1) by the definition of Mx. Thus u^Mλ. We
next assume u^M{ (0^z<;) . Since M ; .cM ί + 1 , we have pUk(ti+1)=ai+1 for all
k. Hence, in the same way as the above, we see from the left continuity of ρu

and the defini ion of Mi+1 that ai+1==ρu(ti+1) and M G M , +1. By induction we
conclude that u^Mj. Therefore we can apply the same method as in the case
y—1 to get u&Mj+l9 and the proof is complete.

Lemma 6.3. For u^Mjy j ί>2, we have

Pu{tk) = ak = Min PJtΛ) for k = 1, 2, , j .
uexk-i

The proof follows directly from the definition of My.

Proof of Theorem 4.
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CO

First we show that Π M ; is nonempty. We can choose a sequence
y = i

such that uk^Mk for k=l> 2, •••. For simplicity in notation we denote ρUft by

pk. Then Lemma 6.3 yields

lim pk{tj) = a,..

Applying Helly's theorem to {pk}, we get a (pki} subsequence such that

limpki(t) = p(t) for

where p is left continuous and ζ)oo is some countable set in [0, Z1]. For brevity

in notation we write p, for pkr Following the argument of Section 4 we see that

lim Ui(t) = u(t) uniformly on [0, T]

lim A^uAt) = A^u(t) for any t e [0, T] ,

lim —Ui(t) = — «(ί) α e ίe[0, Γ ] ,

and that the limit function u is the energy conserving solution. Further, by

the method employed in the proof of Lemma 6.2 we can show u^Mj for
CO

y = l, 2, •••. Thus Γ\Mj is nonempty.
3 - 1 eo co

Second we demonstrate that Γ\M4 is a singletion set. Let u, w& Π M . . Then
y=i y=i

we have ρu(ti)—Pu>(ti) for any i = l , 2, •••. Therefore it follows from the left

continuity of ρui ρw and the desnseness of -fa} that pu(t)=pw(t) for any / ^ [ 0 , T].

We then put ρu=pw~P'

We now assume that there exists a number T, T and a subse subset {?*}Γ-i of

(r, T] such that

u(t) = w(ί) for any O ^ ί ^ r ,

and

If τ>0, then we have

and if τ = 0 , then we understand as^-w(0)= —w(Q)=b. Recalling {U(t)} is a

group, we have

(6.5) u(t+τ) = ^
at

['S(t-~s)n(u(s+τ))dp(s+τ)+\'S(t-s)f(s+r, u(s+r))ds
o Jo
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1) Case of u(τ)^K. The third term on the right side of (6.5) vanishes
for t small. Hence u(t+τ)=zv(t-{-τ) for those values of tf which contradicts
the definition of T.

2) Case of u(τ) ebdy(K). From (6.5) we have

\'h(s+τ) \\u(s+τ)-w(s+τ)\\ds
Jo
\
Jo

for positive sufficiently small t. Applying GronwalΓs inequality, we obtain

(6.6) | | M ( ί+τ)-«;( ί+τ) | |

^ J W l + C exp C) \'\\u(s+r)-zo(s+r)\\dp(s+r),
Jo

where C=[Th(s)ds.
Jo

Now we consider the case such that Λ^+^l + O exp C)(p(τ+0)—-p(τ))<l/2.
We put

T2 — Min {TΊ as in lemma 4.18, the Maximum of number of

ΐ satisfying ΛΓ^fl + C exp C)(p{t+τ)-p{τ))^\β} .

Let f2e(0, T2] be such that Max \\u(t+τ)—w(t+τ\\)=\\u(t2+τ)—w(t2+τ)\\.
T h e n w e s e e f r o m (6 .6) t h a t ° ' ^

Thus we have u(t+τ)=w(t-\-r) for any 0^t^*T2. This is also a contradiction.
Next suppose Λ^+1(l + C exp C)(p(τ+0)—p(τ))^l/2. Since u is a mild solu-
tion of (2.4) by Lemma 6.1 it follows from (6.5) that

In view of the energy equality stated in Definition 2.2 we have

This equality and the relation p(τ-)-O)—p(τ)>0 together yield
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Hence

(6.7) (g«(τ), n(u(τ))) = ~(ξ«(τ), «(«(τ

Further, assume that there exists a sequence {s, }Γ-i in (T, T ] such that

lim Si=τ and uίs^^bdyίK) for any i.

Then Lemma 3.1 implies that

which contradicts (6.7). Hence there would exist ΐ3>0 such that

u(t+τ)eK for any 0^t^t3.

But we see with the aid of the result of linear hyperbolic equation that

u(t+τ) = w(t+τ) for 0^t^t3.

This contradictions the definition of T.
Thus u(t)=w(t) for any O^t^ T.

CO

It is concluded that fΊ Λfy is a singleton set.
y=i

7. Examples

EXAMPLE 1. Let H=L2(0, 1), F = ̂ ( 0 , 1 ) - {«eIΓϊ(0, 1); iί(0) =
=0} and define the function φ: F->[0, oo] by

We then introduce the closed linear subspace of H

L = {/6=L2(0, 1); Γ/(*)sin(2iBjr*)<fe = 0
Joo

for any m = 0, 1, 2, •••, N(N<oo)}y

and the closed convex subset of i ϊ

Then

{
«=o

for σ w e ( - o o , oo)}
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and conditions 1), 2) and 4) of the assumption A-l are easily verified. More-
over the application of Sobolev's imbedding theorem implies that for any M , Ϊ ; G F

Sup \u(x)-v(x)\^Const(\\u-v\\v\\u-v\\Y^.

On the other hand it is seen that

dφu = ~^~u+u3.
dx2

Combining the above two facts we conclused that the operator satisfies condi-
tion 3) of the assumption A-l, too. Thus all of the conditions listed in the
assumption A-l are satisfied.

EXAMPLE 2. Let Ωci? n be a domain with smooth boundary and consider
the Hubert space H=L2(Ω). Let {pj}7=i be an orthonomal base of H and
{α; }7=i a set of positive numbers such that

^ 1 for any j = 1, 2,

We then define the closed convex set K by

The set K may be regarded as an "infinit dimensional elliptic"
Then, defining

L{x) = Σ 2aj(xy pj)pj for any x&bdy(K),

we have

n{x) = I I L ^ H " 1 ^ ) for any xEίbdy(K).

Moreover we infer that

\\n{x)-n{y)\\^NR\\x-y\\ for x, y<=bdy(K)nB(0, R).

Thus it is concluded that all of the conditions given in the assumption A-2 are
satisfied.
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