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Introduction

In their powerful consecutive works [5]-[7], [9], [12], Donsker and Varadhan
have developed the theory of large deviations for Markov processes. Applying
their fundamental theorems, they also obtained several remarkable results [8],
[10], [11], [13] concerning the large-time asymptotics for certain Markov pro-
cesses. Although each theorem in their works on general theory involves the
probabilities of large deviations for a single Markov process, it is quite natural
in some applications (see [11], [19], [16]) to consider those for a family of sto-
chastic processes. In the present paper we study the theory of large deviations
for a certain family of stochastic processes converging to a Markov process,
which corrseponds to the general theory in [12]. As its applications we prove
some theorems on the Chung type laws of iterated logarithm, generalizing some
reuslts in [10].

Let X be a Polish space and let Q [resp. Q%] denote the space of X-valued
right-continuous functions on (— oo, 4 o0) [resp. [0, 4 c0)] without discontinui-
ties of the second kind, endowed with the Skorohod type topology. Let 6,
denote the shift operator on Q, i.e., §,0=w(t++). For any >0 define p,: Q*—
Q by (pw) (5)=0w(s), 0=5s<t, and (p,w) (s+1)=(p,0) (5), —oo<<s<<oo. We can
define for any >0 and 0 Q™

(1) Riu(A) = Ri(w, ) = % g: XA(0, pro) ds, ACQ .

Let Ms(Q2) denote the space of all probability measures Q on € such that Q007!
=, —oo<t<< oo, ie., the space of all stationary processes on X. Note that R,
(0, *)EMs(Q). For any Q€ M (Q) we denote the one-dimensional marginal of
Q by ¢[Q].

Let {x(f)} be a homogeneous Markov process on X. In [12] Donsker and
Varadhan give the definition of the entropy function H(Q), O € JMs(Q2), associated
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with the Markov process {x(¢)} and prove that, under suitable hypotheses, H(-)
governs the rate at which Prob {R,(x(+), )€ A4}—0 as t— oo for suitable 4 C ¥
(Q) (see Theorems 1.1 and 1.2).

In principle, our main results (Theorems 2.1 and 2.2) can be stated as
follows: Let {x(f)} be as above. Suppose we are given a family of Markov
processes {Z*(#)}, £>0, on some space X and a mapping » from X onto X. Let

@) x%(2) = =[2(2)], 1=0.

Suppose that the family of porcesses {x°(¢)} converges in law on Q* to {x(#)}
as € 0. (Precisely, we should mention about the starting points of the pro-
cesses {X*(¢)} and {x(z)}, but we do not go into details here; see (A7), (A3) and
(B°) in Section 2.) Then we have

3) fim % log Prob {R,(x'(+), )€ 4} = —inf H(Q)
t-poo Q€&
10

for any weakly closed set A C Hy(Q) such that {g[Q]; Q= 4} is tight, and

4) lim % log Prob {R,(+*(-), -) €4}  —inf H(Q)
»>00 QE.
240

for any weakly open set AC M (Q). (In the trivial case that Z(¢)=ux(t) for
every €0 we recover the results in [12].)

Such theorems are precisely stated in Section 2 and the proofs of them
are given in Sections 3 and 4.

In Sectoin 5 some examples of {x°(¢)}, €>0, are given. We give here
two typical ones in the simplest forms to illustrate the feature of our results.

ExampLE 1 (Example 5.2). Consider the process of the form
t
5) X(t) = So F(Y(5))ds .

Here {Y(z)} is a “strongly” ergodic Markov process on an auxiliary space S,
and F(y) is a suitable function on S satisfying the centering condition :

© [, F0) Py =0,

where P denotes the invariant probability measure of {Y(¢)}. Let x*(f)=€X
(/€% and y*(¢)= Y(2/&?) so that (x°(¢), y°(¢)) forms a Makrov process on R'X .S for
each €>0. It is known [22] that {x*(¢)} converges to a Brownian motion {x(¢)}
as €| 0. For the family {x*(¢)}, €>0, the assertions (3) and (4) hold with H(Q)
being the entropy function for {x(¢)}. In this example we take

X =R X=XxS, n(x, y) = x and Z%(£) = (x°(2), ¥°(2)) -
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ExampLE 2 (Example 5.3). Let a(x) be a periodic measurable function on
R' such that 0<v=a(x)<v~'<oco for some constant »>0. Let {X(¢)} be the
diffusion process associated with

=1Ll d)

and let x°(#)=&EX(¢/€%). It is known [15] that there exists a Brownian motion
{x(#)} such that {x°(#)} converges in law on Q* to {x(¢)} ; the limiting Brownian
motion is called the homogenized process for the family {x%(t)}, or simply, for
{X(®)}. The assertions (3) and (4) hold for {x*(t)}, €>0, with the entropy func-
tion H(Q) for the homogenized process {x(t)}. Here we take X=X=R!, z(x)
=ux and X°(¢)=x%(¢).

Note that lim,,, lim,,., f(&, t)éﬁr?l,%, f(&, ) for any function f(§, £), £>0,
£>0. Thus if we define J%(4)=Tm,,.. - L log Prob {R,(x"(-), -)&4} and J'(4)
—lim,,. L log Prob {Ri(x*(-), -) 4}, then we have, from (3) and (4), as & } 0
®) TH(A)S —inf H(Q)-+o(1) for 4 as in (3),

9) JH(A)z—inf H(Q)+o(1) for A as in (4).

This means that probabilities of large deviations for {x*(f)} with £>0 fixed
can be also controled by the entropy function H(Q), but only approximately.
(Of course, the error terms o(1) in (8) and (9) are not uniform for 4 C Hs(2).)

Let ¥(Q) be a bounded (weakly) continuous function on Hs(Q2). In case
that X is compact, we have as a corollary to (3) and (4)

.1 e
10 lim — log E {e¥ &N} =  su W(Q)—Hi
1) limolog oS (T(O)—H(O)].

As the above argument, we have from (10)

lim [ L log E {e™™®.} — lim lim i log E{#}

240 ty0 f 830 tpoo
0P o [¥(Q)—H(Q)] .
Let
(11) Li(w, A) — % S: Xa(wls)) ds, ACX .

In [9], Donsker and Varadhan define the I-function I(u), p€ M(X) (the space
of probability measures on X) for a Markov process {x(¢)} and prove that I(u)
governs the rate at which Prob {L,(x(-), )€ A4} —0 as t— oo for suitable 4 C ¥
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(X) as H(Q) did for R,(x(+), -). Such results for L,(x(+), ) are the corollaries
to those for Ry(x(+), +) since ¢[R;(w, *)]=L(w, +) and I(p)=infy; ;e1-x H(Q) as
was pointed out in [12]. Similarly, we have as corollaries to (3) and (4)

(12) fim % log Prob {L,(x¥(-), -)€ 4} = —inf I(x)
t-»00 Le.

ggo0

for any weakly compact set 4 C H(X), and

(13) PTI'B % log Prob {L,(x°(+), -)€A4} = —ggf I(u)
240

for any weakly open set 4C H(X). In some applications the results for L,(x*
(+), *), like (12) and (13), will be convenient. In fact, we will give the applica-
tions of (12) and (13) in Section 6.

In Section 6, the Chung type laws of iterated logarithm are proved for a
certain class of homogenizable (see (H) in Section 6) processes on R?. For
example, we prove that for the process {X(#)} in Example 1

. (log log t\¥? Var
(14) 1%3 <_gt_g> osgsp;t[X(s)] = 75 a.s.,
where a>0 denotes the variance of the limiting Brownian motion {x(#)} in
Example 1. (See Theorem 6.8 and Remark 6.1.)

In the proof of (14) we apply (12) and (13) to the family of processes x*(¢)
=&X(t/€?), €>0. 1In [16], Jain has proved (14) in the case that X(z) (¢=0, 1, ---)
are the sums of independent identically distributed random variables in the
domain of attraction of the normal distribution, by using large deviation
theorems for a family of Markov chains converging to a Brownian motion,
which are also developed by himself. Thus our results like (14) in Section 6
can be considered as analogues of the results by Jain for continuous time pro-
cesses, but it is the advantage of our results that {X(#)} in (14) is not necessarily
Markovian itself. Further, we note that in [10] theorems like (12) and (13) for
the family of the processes x%(t)=&X(#/€?) have been already used implicitly
in case that {X(?)} is itself a Brownian motion. But in that case {x%(¢)} is the
same in law as {X(¢)} for every £>0 and so theorems on large deviations for
the single process {X(#)} were sufficient. (See Remark 6.2 for some other results
in [10] and [16].)

Finally, we make a brief comment on another application to the problem of
the Wiener sausage (see [17], [8]). For 6>0, t=0 and 0w €Q* (with X=R")
consider the set C}(w)={yER*; |w(s)—y| <8 for some s<[0, £]}. Let {X(¢)}
be a d-dimensional Brownian motion. It is proved in [8] that for any »>0

d — .
(15) lim ¢ 747 log E{e™" %"} = —k(y)
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with k(v) = inf [v|{f>0} |+ I(fdx)], where |-| denotes the d-dimensional

£20,{fdz=1
volume and I(fdx) denotes the I-function for the Brownian motion {X(1)}.
Formula (15) is also known ([11], [19]) for a certain class of processes with
independent increments. By using the results of the present paper, we can
prove (15) when {X(#)} is a homogenizable diffusion process with periodic coef-
ficients (for example, the process {X(#)} in Example 2). The details of this
part will appear elsewhere.

1. Notations and preliminaries

In the present paper we will use the following notations. Let (E, &) be any
measurable space and let & bte any sub o-field of £&. We denote by B(&Z) the
set of all bounded &F-measurable functions on E and by (<) the set of all
probability measures on (E, <F). If E is a Polish space, then we denote by C(E)
the set of all bounded continuous functions on E and by $B(E) the topological o-
filed in E. In that case we write B(E) and JH(E) for B(B(E)) and M (B(E)),
respectively, and we assume that S} (E) is endowed with the weak topology so
that SH(E) is itself a Polish space.

Let X be a complete separable metric space with metric d. Let I denote

either of (— oo, +-00), [0, + <) and [0, T'] (T>0) and let D(I—X) denote the
space of all X-valued right continuous functions on I without discontinuities of
the second kind. We now recall the definition of the topology on D(/—X) of the
Skorohod type (see [3], [18], [25]). For {w,} cD(I[—X) and o €D(I—>X) {w,}
is said to converge to o in D(I—X) and we write w,~>w in D(/—X) if there
exists a sequence {\,} of strictly increasing continuous mappings from I onto
itself such that

(1.1) up [d(,(un(t)), @(8)+ IXa(t)— 2110 a5 n—>o0

for every finite >0, where I,=IN[—T, T]. It is known that D(J—X) with
the above convergence is a Polish space. In the following we will write, for
simplicity, Q, Q* and D[0, T] (T'>0) for D((— o0, 4 o0)—>X), D([0, + o0 )—X)
and D([0, T1—=X), respectively. For —oo<s<t=<- oo, we denote by &} the
o-field in Q generated by {w(c); o E[s, t]N(—oo, +o0)}. It is known that
B(Q)=F72 and we can naturally identify B(Q*) and B(D[0, T]) with F and
F%, respectively.  On the other hand, we have natural inclusion relations:

(1.2) Q) (T L) H(FY)

which are defined by the restriction mappings uMW's p|g¢ for p€H(Q) and p
MW g9, for p& JU(FL), respectively. Thus we can think as

(1.3) Q) CHOH) C HDIO, T)) .

In the present paper we repeatedly use such relations without any specifications.
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We define the shift operator 6, on Q by f,o=w(t++). We also use the same
notation @, for the shift operator on Q" if £=0. Let JHs(Q) denote the set of all
pE M(Q) which are stationary, i.e., pof7'=p for all teR.. JH(Q) is a closed

subspace of H(Q).
In the rest of this section we will recall the results of Donsker and Varadhan

[12] for the comparison to our results and for later use. We will mainly follow
the notations in [12]. Let {P,} be a homogeneous Markov process with sample
space Q*. We will always impose the following hypothesis.

(A) xMP, is a continuous mapping from X to SH(QY).
We now define the entropy H(Q) of Q& Ms(Q) with respect to {P,} by

(14) H(Q) = [ 1) 0(do),

where

(1.5) W)= sup_ [S cde,,,—logSe° dP,]
d=B(F))

with Q, denoting the regular conditional probability distribution of Q given F5~.
It is known that H(Q) is a lower semicontinuous affine functional on <Hs(Q) with
values in [0, +o0]. We also define for t>>0 and Q&€ Hs(Q)

w6  BeQ)= sup [ @do—{ (og | e*aP.e) 0.
de B(F;)

Later we will use the following relation [12; Theorem 3.6]:
(17) H(Q) = lim A(t, Q)¢ = sup Als, O)f .
For any £>0 define p,: Q*—Q by

(1.8) (i) (5) = w(s) for 0=s<t,
(Pro) (s+2) = (pio) (5) forall s&(—o0, +o0),

and for any B B(Q) define

t
(1.9) R,.(B) = % So X5(0, proo) d .
This gives the mapping oW R, , from Q% into JHs(Q) which is F?-measurable
for each t>>0. Thus we can define
(1.10) T, .(4) =Po€Q™: R, ,€4) for AcB(M(Q)).
The one dimensional marginal of any Q& JH(Q) is denoted by ¢[Q], which
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defines the mapping ¢: M(Q)—M(X), i.e., q[O0]=0(w(0)E ). Further, the
family {¢[Q]; Q< 4} is denoted by g[A4] for any A C Hs(2).
The following theorem gives the asymptotic upper bound for T , as t—oo.

Theorem 1.1 ([12; Lemma 4.4]). Suppose (A) is satisfied. Let A be a
closed subset of Ms(Q) such that q[A] is a tight family of H(X). Then

— 1 .
= <
(1.11) lim — log sup T, ,(4)= —inf H(Q).

Next we will be concerned with the lower bound for T ,. Let p(z, x, dy)
denote the transition probability of {P,}. We will impose the following hypo-
thesis.

(B) (i) There exists a o-finite measure a on X and a function p(x, y)
on XXX such that p(1, x, dy)=p(x, y) a(dy) and p(x,y)>0 for a-almost all
yeX for all xeX.

(it) (1, x, B) is continuous in xE X for every B& B(X).

Theorem 1.2 ([12; Theorem 5.5]). Suppose (A) and (B) are satisfied.
Let Q& My(Q) be such that H(Q)< oo and let N be a neighborhood of Q in Ms(Q).
Let K, be a compact set in X such that o(K,)>0 and let K be any compact set
in X. Then

(1.12) m% log inf P,(R; ,EN, o(t)€K,)=—H(Q).
tyoo IeK
In particular, if G is an open set in Ms(Q) and K is any compact set in X, then
.1 . .
(1.13) %12—; log 522 I‘,,,(G)g—g H(Q).

RemARk 1.1. The bound (1.12) follows immediately from the proof of
Theorem 5.5 in [12]. What is stated in Theorem 5.5 in [12] is (1.13), while
(1.12) asserts a little more than it. Later, in the proof of Theorem 2.2 below,
we will use (1.12) rather than (1.13).

We now recall the definition of the I-function for {P,} defined in [9] and its
relation to the entropy function H(Q).
Let {T},} denote the semigroup on C(X) corresponding to {P,} and let

_ u
(1.14) () = sup jx 1og( - ) (¥) p (dx), pEHX),
where C(X), denotes the set of all uC(X) such that inf,cyu(x)>0. It is
easy to see that I,(u) is subadditive in £>0 for each p& H(X), and so we can
define



540 H. Oxura

(1.15) Ip) = 1‘131% I(s) = sup %1,(,5), nEHX) .

Following [9] (see Remark 1.2 below), we call I(x) the I-function for {P,}. It
is easy to see that I(u) is a convex, lower semicontinuous function on H(X)

with values in [0, 4-co].
It was shown in [12; Theorem 6.1] that for any p < H(X)

(1.16) I(u)=_ inf H(Q),

Q:lQl=p
which we will refer to as the contraction principle.

ReMARk 1.2. Let L be the infinitesimal generator of {7}} having (L) as
its domain. 'Then we can easily obtain

— Lu
(1.17) Hw)= sup L( - )(x) w(d), pe HX),

where D(L),=D(L)NC(X),, provided D(L), is rich enough in the sense that,
in (1.14), C(X), can be replaced by 9(L),. In [9], the I-function I(u) for
{P,} was defined by (1.17).

2. Main results

In this section we will state our main results without proof. Recall that {P,}
is a homogeneous Markov process with sample space Q*=D([0, c0)—X) and that
H(Q) denotes the entropy of Q& Ms(Q) with respect to {P.}. Suppose we are
given a family of homogeneous Markov processes Me=({%%} 150, {P%}5e3), 60,
on a measurable space X and a measurable mapping  from X onto X. Here %
is a mapping from the underlying probability space & to X such that Z}(&) is
jointly measurable in (¢, 8)E[0, o)X . Further, suppose that there exists a
family {4} 5, of measurable mappings of Q into itself such that X208,=2%¢,, s>
0,t=0. We write X°(¢, &) for %}(&) and let

(2.1) (2, &) = n(Z(t, &), =0,

Although we do not assume any sample properties of the process {%(¢, &)} itself,
we assume that for each £>0

(2.2) %*(-, 8)€Qt P> —as. forevery x2eX.
Define a family {P;};ez, &>0, of measures on Q% by
(2.3) P(B) = P%(&: x*(+, 8)€B), BE HQ").

RemARK 2.1.  Throughout the paper, z and even X may depend on £>0.
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In fact, in Section 6, we will meet the case that = actually depends on £>0.
We make a hypothesis.
(A}) Ifg, | 0and z(%,)—»>x<X, then

24 P';""—->P, in MQ*Y) as n—oo.

REMARK 2.2. It is easy to see that (A}) implies (A). Thus (A]) as well
as (A) implies the Feller property of {P,} and hence that P, has no fixed dis-
continuities for any x€X. Therefore, by [18; Theorem 3] we can replace (2.4)
by

(24) P’ —P, in (D0, T]) as n—oco for every T'<oco .
Recall R, , is defined by (1.9) and define
(2.5) t7(4) = Pi(w: R, ,EA) for AEB(H(Q)).

We are interested in the asymptotic behavior of T'f ; as #—oo and € | 0 simul-
taneously.

First, we will be concerned with the upper bound for ' 3. In addition
to (A1), we will impose the following hypothesis.

(A3) For any £>0 and any compact set KC X, {P>; Xz 'K} is tight as
a family of measures on D[0, 1].

Theorem 2.1. Suppose (A}) and (A3) are satisfied. Let A be a closed
subset of Ms(Q) such that q[A] is a tight family in M(X). Then

(2.6) fim L log sup T%.5(4)< —inf H(Q) .
ae t Fe¥ es4

The proof will be given in Section 3.

Remark 2.3. If X is compact, then the hypothesis that g[A4] is tight in
Theorem 2.1 is automatically satisfied.

Next we are concerned with the lower bound for T';,3. We assume that (A])
and (B) are satisfied. Recall that p(z, x, dy) denotes the transition probability of
{P.} and a(dy) denotes the reference measure in (B). Let §°(¢, %, d¥) denote
the transition probability of {P3}. We will impose either of the following two
hypotheses.

(B®) There exists a compact set K; C X such that @(K;)>0 and that if &, |
0 and #(%,)—>x< X, then
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(2.7) lim p*(1, %,, = 'K))=p(1, x, K,) .

7y

(C) There exists a relatively compact open set G, C X such that ¢(G,)>0.

RemARK 2.4. Hypothesis (C) is automatically satisfied if X is locally com-
pact.

Theorem 2.2. Suppose (Al) and (B) are satisfied. Further, suppose either
(B®) or (C) is satisfied. Let A be an open subset of Ms(Q) and let K be a com-
pact set in X. Then
2.8) lim Llog inf T%:(4)z—inf H(Q).
Qs

oo Fiu(iHrexr

The proof will be given in Section 4.

ReMARK 2.5. Consider the trivial case that X=X, z(x)=x and P;=P, for
every €£>0. Then (A) implies (A}) and (A3), and also (B) implies (B®). Thus
Theorems 2.1 and 2.2 are generalizations of Theorems 1.1 and 1.2, respectively.

ReEMARK 2.6. Let C([0, 1]>X) [resp. C([0, o)—X)] denote the space of all
continuous functions from [0, 1] [resp. [0, c0)] to X with the topology of uniform
convergence on [0, 1] [resp. on every finite interval 7C[0, o©)]. Suppose that

(2.9) P%(C[0, c0)—>X)) =1 for all ZEX and all £>0.

Then it is not difficult to see that (A}) is satisfied if and only if (A]) with QF
replaced by O([0, co)—X) is satisfied (in that case P, is necessarily supported
on C([0, 0)—X), and that (Aj}) is satisfied if and only if (A3) with D0, 1]
replaced by C([0, 1]—X) is satisfied. This is because C([0, o)—X) and C([0, 1]
— X)) are closed subspaces of Q* and DJ[0, 1], respectively.

The following is a corollary to Theorems 2.1 and 2.2; the proof is established
by the argument in [27; Section 3].

Corollary 2.1. Suppose that (A3), (A3) and (B) are satisfied and that X is
compact. Let ¥ be a real-valued bounded continuous function on Ms(Q). Then
uniformly for XX

(2.10) lim llog Ei["®o] = sup [W(Q)—H(Q)],
or Qe Hs(@)

where E°; denotes the expectation with respect to P*..

In some applications (see, for example, Section 6), it will be convenient to
restate the above results in a special case. For t>0 and 0w €Q" define Ly(o, *)E

M(X) by
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@.11) Ly(o, B) = % g: Xa(o(s)) ds, BE B(X)

and for any Borel set 4 C H(X) define
(2.12) 0.:(4) = P(w: Lo, -)EA4),t>0, X, 6>0.
We make a hypothesis.
(A?) Ife, | 0and z(X,)—»x< X, then for any :>0
(2.13) P (o2 w(t) Edy)—p(t, , dy) in H(X) .

(This is the same as saying that if &, | 0 and #(%,)—»x<X, then Pe;"n —P, in
the sense of convergence of all finite dimensional distributions, which is ob-
viously weaker than (Af).)

Recall that I(u) denotes the I-function for {P.} (see (1.15)).

Theorem 2.3. Suppose (Aj) is satisfied. Let A be a compact subset of
MX). Then

(2.14) fim L log sup 0% 7(4)< —inf I(x).
Dot rey hea

This is a corollary to Theorem 2.1 if (A]) and (A3) are assumed since L,
(w, *)=¢[R, ] and since the contraction principle (1.16) holds. But we can
prove Theorem 2.3 if only (Ajf) is assumed, by a slight modification of the proof
of Theorem 2.1. The details will be given in Section 3.

The following is an immediate corollary to Theorem 2.2.

Theorem 2.4. Suppose (A3), (B) and either of (B) and (C) are satisfied.
Let A be an open subset of HM(X). Then for any compact set KX

(2.15) limLlog inf O :(d)Zinf I(n).
g’;;" 4 7 jehHek ped

3. Upper bounds

In this section we will prove Theorems 2.1 and 2.3. We follow the proof in
[12] with necessary modification. Throughout the section, we will drop the “‘€”
from the notations %*(¢, @) and x°(¢, &).

Let T>0 and let ®=B(F%). In this section we use the following nota-
tions.

3.1) (%) = log SQ ™ PL(dw), £>0, =X
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(.2) &(3) = D(a(+, 3)—F(H(O, &), €0, FED .
Lemma 3.1. For any t>0, any XX and any >0 we have

(3.3) [ e {% S: &(0.5) ds} PLaa)<1.

Proof. Since g % dP%—1 for every X X, the proof is the same as that of
Lemma 4.1 in [12]. Q.E.D.

The mapping z: X—X induces one from FH(X) into H(X), in a natural

manner; for this we use the same notation, 7z, i.e.,
(34) k= Xox™! for Ae MX).
Let [|®]|.=sup | D(w)].
©wEQ
Lemma 3.2. Let A be a Borel subset of Ms(Q). Then we have
t e
(35) [, exp {£ ], 2 Q(dw)} }5(40)

<exp Q2l@llt L WP, {5 a0

T X :rXera1
for every t>0, every € X and every €>0.
Proof. Since x(+, 8,6)=x(++t, 8)=0,[x(+, &)], we have
1 t
t

&%(0.5) ds

sy
o

L, @05, o ds— L s, ) as

l

z (| .o ol —[ Farz,
Q X

t
where X, 3 = %S X. (%(s, ®)) ds€ M(X). Thus we have, from Lemma 3.1,
0

[, e [, @) 0] T2(a0)

< exp {2/|®[|~ +— sup S N},
)\EA
where A= {}\ ;; R, .54} CHMX). Since
. ¢
whyz = | X. (3, @) ds = [R5

we have zACg[4], and hence (3.5). Q.E.D.
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Let Cr=A{®(w)=f(w(t), -, w(t,)); 0=t,<---<t,<T, feC(X"), n=1, 2,
...}, where X" denotes the n-fold product of X and let D,— {® S _e®dP,
=1 for every x& X}.

Lemma 3.3. For every T>0 and Q € Ms(Q) we have

(3.6) A(T,0) = sup [[ @ 0~ (og | e*aPr) Q(do)]

Cr

= sup S@dQ,

Dy

where H(t, Q) is given in (1.6).

Proof. The first equality follows from (1.6) by a standard argument. The
second one is immediate since ®P(w)—log S e®*dP, belongs to 9, for any
oel;. Q.E.D.

Lemma 34. Let @9, and let (%) be given by (3.1). Let A be a tight
Sfamily in M(X). Assuming (A?), we have

3.7) fim sup S} (%) Mdx)=0.

g30 X:mAeA

Proof. Let A=z"'A. Given 8>0, there exists a compact set K< X such
that zAMK*)=X(z"'K°)< 8 for every A& A. Thus we have

I= §upg; dtax

Aek

=< _sup ¢ ('x’)—{—sup S $rdx

“Eﬂ‘

L+I.

Noting that ¢*(%) < ||®||, we have [,=<8||®||.. We next choose &, | 0 and %,
7z~ 'K such that

l_irTol I, = lim ¢*(%,) .

ey #-y00

We can assume 7z(%,) converges to some x&K. By (Aj) we have
(3.8) lim §*(%,) = log S ¢® dP,

which is non positive since ®€9,. Thus we have lim 1 Shm 1,<3||®||. for
e
arbitrary §>0. ¥ Q.E.D.

In the following we set



546 H. Oxura
(3.9) J(4) = im %log sup T 3(4) for Ae B(H(Q)).
&3 Fex

Further, for any finite family {4}, of subsets of H(Q) we set

(3.10) F({4;} ) = inf sup sup inf g D(w) O(do) -

1577 T>0 @E!D QE4;

Lemam 3.5. Let A be a Borel subset of Ms(Q) such that q[A] is a tight
Sfamily in SU(X). Assuming (Av), we have

3.11) JA)=—F({4;}-1)
for any finite Borel covering {4} of A in HMs(Q).
Proof. It follows from (3.5) that for any @ €9,
1,5(4)
t Fd) exp (L i
< exp LUPll+5  sup | Fayeexpi—Lint | ) Qo))

X :mXer14l

Since g[A] is tight, we have, from Lemma 3.4,
e 1
< —inf —
J)s—inf L €(0) Q(do)
and thus

J(A)< —sup sup inf - S D(w) O(dw) .

>0 (I)EQ QEA.

Since this holds for any Borel set 4 C Hs(Q) such that g[A4] is tight, we have,
using the relation J(BUC)=max {J(B), J(C)},

J(A)= max (AN 4;)

<— inf sup sup inf ig D(w) O(dw)

T asisi 1'>o v P, 0cd04; T
for any Borel covering {4}, of A. This proves (3.11). Q.E.D.

Lemma 3.6. Let A be a compact set in Ms(Q). For any 8>>0 there exists
a finite open covering {G,}}.. of A in Ms(Q) such that

(3.12) F({G}}j-1)Z inf H(Q)—8.
In particular, for any compact set A in HMs(Q) we have
(3.13) sup F({A}} )2 inf H(Q)
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where the supremum is taken over all finite Borel coverings {A;}}., of A.

This lemma is deduced from (1.7) and Lemma 3.3. The proof is the
same as in [12; Lemma 4.3] only except that we use Lemma 3.3 in place of
Lemma 3.7 in [12], and so omitted.

Corollary 3.1. Suppose (Av) is satisfied. Then for any compact set AC
Ms(Q)

(3.14) ](A)é—ggH(Q) .

This immediately follows from Lemmas 3.5 and 3.6.

Proof of Theorem 2.1. First we choose &, | 0 so that

J(4) = lim 1 log sup T¥z(4) .
ool ieX
In the rest we fix {&,} and write P"; and T 7 for Pe;f and T'7*; respectively. Since
g[A] is tight there exists for any n, a compact set K, CX such that u(K,)=1—
1/n for all p=¢[A]. We can show, by a standard argument, that (Af) and (A3)

k

imply that {P%; ¥e»"'K,, k=1, 2, ---} 1is tight in H(D[O, 1]) for each =.
Therefore, given 7, | 0, there exist compact sets C, CD[0, 1] such that P(C,)=
1—x, for all Fex"'K, and all k. Here and after we think of C, as a subset of Q
(i.e., C,e91). Thus we can show as in the proof of Lemma 4.4 in [12; p. 197]

that for all &, all X=X and all »>0
(3.15) S exp ("X (0(0)) Xes(w)} PL(dw) <1+, —1) .
Let ®(w)=vXy,(w(0)) Xc:(w) and write §*(Z) for $%(%) defined by (3.1) with £=¢,.

Then we have from (3.15), ¢*(%)<log [1+4»,(e*—1)] and thus, using Lemma 3.1
with T=1, we get

(3.16) S exp {»S; X ((5)) Xes(0:0) ds} Ph(dw)<exp {¢ log [1+7,(e'— )]} .

Let A>0 be fixed. We can see as in [12; pp. 197-198] that (3.16) with v=xn?
and n,=exp (—An?) implies

(3.17) th% log sup T 3(A N 45)<log 2—x,
PRt e

where 4,={0€ Ms(Q); O(C;)=1/t+2/n for all n}. Let A= N50A4;. Then
A. is compact and hence so is AN A.. Thus, by Lemma 3.6, for any §>0
there exists a finite open covering {G,}i., of AN4. in Ms(Q) such that
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F{G}i.)= iffa H(Q)—8. Let G=U}.; G;. Since {G;}}., is also an open
QEAn

covering of ANG and since g[AN G] is tight in H(X), we have, from Lemma
3.5, JJ[ANG)=<—F({G,}}.1) and hence

(3.18) JANG)=— inf H(Q)+5.

On the other hand, by Lemma 4.5 in [12], there exists a #, such that #=¢, implies
ANA,cG. Thus we have

T% (4) =T% (AN A4)+T% (AN 45)
ST :(ANG)+Tiz:(4ANA4S).

Therefore, from (3.17) and (3.18), we have

J(A4) < max { J(ANG), log 2—A},
=< max {— grelﬁH(Q)—i—S, log 2—A},

and hence, letting §—0 and A—>co, we have the theorem. Q.E.D.

Proof of Theorem 2.3. We prove (2.14) under the hypothesis (Ag) by
modifying the above argument. Let 4 be a compact subset of “#(X). Since
0% 7(4)=T% 7(¢7'4), we have to prove

(3.19) Jg ' A)=— inf I(p).

For any finite family {B;}}., of subsets of <H(X) define

(3.20) F'({Bj}}-1)=inf sup sup inf Sx log( ;f )(x),u(dx) .

1S/s1 >0 ¥e0X) | pEBj 1]

Then we can prove
(3.21) sup F'({B;}}-1)= :Ielﬁ I(w),

where the supremum is taken over all finite Borel coverings {B;}}.; of 4 in
M(X). This is the analogue of (3.13) for I(x) and deduced from (1.14) and
(1.15). On the other hand, we have for any B;C M(X), j=1, -, ],

(3.22) F'({B;}}-1)<F({g'B;}}-1)

which follows from the fact that if #=C(X), and if ¢[Q]=p, then ®(w)=log

u(w(2)) n =\ 1o u . 5 erefore. we have
We@,adjq>(w)9<dw) jlg<Ttu>(),u,(d). Therefore, we have,

from Lemma 3.5,

J(gA)=—F({g"'Bj}j-1)= —F'({Bj}j-1)
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for any Borel covering {B;}}.; of 4 in JH(X), which combined with (3.21) proves
(3.19). Q.E.D.

4. Lower bounds

In this section we give the proof of Theorem 2.2 and, in the course of the
proof, we also get an auxiliary estimate (Corollary 4.1), which will be used in
Section 6. As in the previous section, we will drop the “&” from X%(¢, &)
and x°(¢, ®).

We need some lemmas. The first one is elementary.

Lemma 4.1. Let T=0,5s>0 and t>0. Let || y,llgor denote the total vari-
ation of any signed measure p on Q relative to Fy. Then we have

1 n(t) 2s ZT
(+1) lIR:,0— n(t) Z;': Rs.o(i-x)sw”gg é_t—_l—T ’
where n(t)=[t/s]+1 and we have
(4'2) “Rs,m_Rs—l.m“gg‘ §_ ZTS_{_Z
if s>1.

The proof is omitted.
Note that, by the definition of R, ,, we can think of @MW\ R, , as a mapping
from D[0, t] to Ms(Q2) for each ¢>0.

Lemma 4.2. The mapping oMW R, from D0, t] into Ms(Q) is con-
tinuous for each t>0.

Proof. Let w,~>® in D[0, ¢] as n—>co. Then it is easy to see that p,w,—
pio in Q as n—>oo, where p, is defined by (1.8). Let FEC(Q) be arbitrary.
Then, since 6,: Q—Q is continuous for every s& R', we have

1 1(t
lim _S F(B, p; w,) ds = _t_j F(6, p, ) ds,
0

ny f Jo
which completes the proof. Q.E.D.

The following two lemmas will give the main estimates which reduce the
desired estimate (2.8) to the known one (1.12). In both lemmas (A}) will be
assumed. As for (B°) and (C), they will correspond to the respective lemmas.

Lemma 4.3. Suppose that (A3) is satisfied and that there exists a compact
set K, CX satisfying (2.7). Let Q& My(Q) and let N be a neighborhood of Q in
Ms(Q). Then there exist an s,>>0 and a neighborhood N' of Q in Ms(QY) such that
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for any compact set KC X and any s=s,

(4.3) limLlog inf T%:(N)
e Ferlx

>Liog inf PAR,.EN, w(s)EK,).
s

TERY K,
Proof. First we note that there exist §>0, 7>0 and ®,€C(D[0, T) with
sup |®P)(w)| =1 (I=1, 2, -+, m) such that
(44)  NE)=1{0'€My(0); max |S @, dQ’—S ®,d0| <8} CN.

Taking account of Lemma 4.1, we choose s,>0 such that (272)/s,<<8/4
and fix any s=s, and then we take #,>>0 such that 2s/t,+-2T/s<<5/4. Then
it follows from (4.1) and (4.4) that for any £=¢,

{03 Row€N} 2 {03 Rug pw €N (53), o) €Ky i = 1, n(t)}

where n(¢)=[t/s]4+1. Here we have used the convexity of N <18) Thus, by
the Markovian property of {P~}, we have 4

inf T%(\N)={ inf P';(Rs,weN(%a), () EK YO,

FTer Fer g/

where K'=K UK,. Since lim,,, n(t)/t=1/s, we have

(4.5) lim L log inf T5:(N)=Llog 1,
g‘;? z Ter K §

where I,— lim inf Pe;(RweN(%S), o(s)EK,). There exist &, | 0 and Z,

gyo0 7e1z_1K’

exz"'K’ such that
- 3
L=limP (RM,EN(ZS>, w()EK)),

where P"=P ;"”. Since K’ is compact, we can assume 7z(X,) converges to some
x€K’ so that P"—P, in M(Q*) by (A}). Using (4.2), we have
I, = lim PY(R,.,,€N(8/2), w(s)EK,)

= %l_%} E”[X(R ‘;)EN(S/Z))ﬁE”(]') -’?(-"—1» ('I)), ! 1)] ’

s-1,2Cs,

where E” denotes the expectation with respect to P;" . We now claim that
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(4.6) 11_2} E"[15™(1, %(s—1, &), z'K)—p(1, »(s—1, &), K})|] =0,
which will be proved later. Assuming (4.6), we have
1z lim | (o) Pdo),

where F(w)=X(z,_, ,en/2) (1, w(s—1), K;). It follows from Lemma 4.2 that
F(w) as a function on D[0, s—1] is lower semicontinuous. Therefore, we have

L= S Fle) Py(de) = PRy, €N(5/2), o(s)EK))

since P"—P, in M(D[0, s—1]) (see Remark 2.2). Using (4.2) again, we have
I,=P,R, .EN(8/4), o(s)EK,), proving (4.3) with N'=N(5/4).

It only remains to prove (4.6). Let ,u,"(B):Pe;" (o(s—1)EB) for Be B(X).
Since p"—p(s—1, x, +) in HM(X) by (A1), {p"} is tigh"t, that is, for any >0 there
exists a compact set L CX such that sup, p"(L)<7%. Thus, denoting the expec-
tation in (4.6) by I,, we have

(47) Izézﬂ”(lf)"{"__ sup Iﬁe'(ly 5'7, 75-1 1)—1)(1: ”(x); Kl)l E]1+]2 .

Fer-1z
We choose %,Ez"'L so that
(48) i J, = lim (1, %, 7K —p(1, 7(%,), K]
Since L is compact, we can assume 7z(%,) converges to some x&X. Note that
(2.7) implies that xA—p(1, %, K)) is continuous. Thus from (2.7) we have
liTnJZ = }.lm 'ie"(ly xm 75_1 1)_—?(1) X, K])I =0.

Therefore, we have im ,<lim J,<2q, proving (4.6). Q.E.D.

In the following lemma we give an estimate which is stronger than what we
need for the proof of Theorem 2.2. This is because we need it (or rather its
corollary) for the application in Section 6.

For any open set GC X define

(4.9) mH(w) = inf {t20; ()G or o(t—)&EG}, 0EQ*

with the convention w(0—)=w(0). It is easy to see that 7¢ is lower semicon-
tinuous on Q™.

Lemma 4.4. Suppose that (A}) is satisfied and that there exists a relatively
compact open set G,CX. Let Q& Ms(Q) and let N be a neighborhood of Q in Mg
(Q). Then there exist an 5,>>0 and a neighborhood N’ of Q in Ms(QY) such that for
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any open set G C X, any compact set KC X and any s=s,

(4.10) lim—log_inf P} (R,.&N, 1<14(a)

a1y fer lx

> Liog inf P(R..EN', s<t(0), o()EG)).

§ rEKy G,
Proof. First we take a neighborhood N(38) of O in Hg(Q) of the form (4.4)
such that N(§)CN. Then, noting that
{w; t<7§(w)}3 {w; S<T§(0(;_1)sa)), 1= 1’ R n(t)} ’

where n(t)=[t/s]+41, we can show as in the proof of Lemma 4.3 that there exists
an s5,>>0 such that for all s=s,

(4.11) hm—i—log inf PY(R,.EN, t<7§§(w))2—log I,

3o Fexr 1k
where

I, = lim inf P%(R,,EN(8/2), s<7¥(w), o(s)EG))

BV0 Fenlks
with K'=KUG,. We can choose &, | 0 and %,E~"'K’ such that
I, = 1im P'(R, ,=N(3/2), s<7¥(w), o(s)EG)),

where P" P +. Since K’ is compact, we can assume =(%,) converges to some
xeK' so that P”—>P,, in H(Q"), and hence in SH(D[0, s]). Thus, noting that
{w; R, .€N(8/2), s<7E(), w(s)EG,} as a subset of D[0, 5] is open, we have

I,=P,(R, . €N(5/2), s<7¥0), o(s) EG,),
proving (4.10). QED.

Recall that L/(w, <) is defined by (2.11). The following will be used in
Section 6.

Corollary 4.1. Suppose that (A3) is satisfied and that there exists a relatively
compact open set G,CX. Let pn€ M(X) and let V be a neighborhood of w in
M(X). Then there exist an s,>0 and a neighborhood V' of n in JU(X) such that
for any open set GC X, any compact set KC X and any s=s,

(4.12) hmilog inf PL(Lw, -)EV, t<7¥(w))

-1
NO Fer K

>Liog inf P(L(w, ")EV", s<tk(0), o(s)EG)).

s *eKyG
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Proof. First we note that there exist §>0 and f;€C(X) with sup,<x| fi(%)|
<1, I=1, ---, m, such that

V(E)= '€ MX); max| | fraw'—{ frdul <8y <V .

Then ¢~'V(38) is of the form (4.4) with ®(w)=f(w(0)). As in the proof of
Lemma 4.4, we can prove (4.10) with N=¢ 'V and N'=q 'V(8/2), which
means (4.12) since Ly(w, *)=¢[R;.)- Q.E.D.

Proof of Theorem 2.2. Let 4 be an open set in Hs(Q) and let Q=4 be
arbitrary. We always assume (A}) and (B), and besides we first assume (BF).
Then by Lemma 4.3 we have, for sufficiently large s>0,

(4.13) I=lim % log inf T z(d)
é'{; Fer K

= L log inf P(R, .€N, a(s)€K),
s reK!

where N is a neighborhood of QO in Hs(Q) such that NCA4 and K’ and K, are
compact sets in X such that @(K;)>0. Letting s—oo, we have, from Theorem
1.2, I=—H(Q). Since Q&4 is arbitrary, we have (2.8). Next we assume (C)
in place of (Bf). Let G;CX be a relatively compact open set with a(G;)>0.
Then there eixsts a compact set K,C G, such that @(K,;)>0. Thus (4.13) with
K=K, follows from Lemma 4.4 with G=X. This suffices as above. Q.E.D.

5. Examples

In this section we will give some examples of {P%} and {P,} satisfying our
hypotheses. In all the examples below, we will take R? or T9=R?|Z* (d-dimen-
sional torus) as X so that (C) will be automatically satisfied. Further, P% will
be supported on ([0, =])—>X) and so Remark 2.6 will be useful.

ExampLE 5.1. This example is a special case of the transport process
(see [22], [2] and [21]). Let S be a Polish space. We will take X=R?, X=R?
X S and z(x, y)=x, (x, y)ER*X S. Let ¢(y)=0 be a bounded continuous func-
tion on S and let %(y, dz) be a probability kernel on (S, B(S)) such that k(y, 4)
is continuous in y for every A€ $(S). Define a bounded operator Q on C(S) by

(5.1) Of (%) = 9(») Ss A=) —A )] k(3 d3) .

Let F(x, y)=(F%, ), -**, F%(«, ¥)) be a bounded continuous function on R?x S
with values in R? such that each F(x, y) has its x-derivatives of all orders which
are bounded on R?XxS. For each £>0 define
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e_ 1l o1 & 0
(5.2) L= 5 O+ 3 Fi(xy) ;.

This is the infinitesimal generator of a Markov process {(x*(¢), ¥°(¢))}. Indeed,
{(#*(?), ¥°(2))} can be constructed as follows. (It is only for simplicity that O
is assumed to be independent of x&R?. In general, Q may depend on x&R*
in a suitable manner as in the references cited above.)

It is easy to see that Q is itself the infinitesimal generator of a Feller Markov
process on S which we refer to as Q-process. The Q-process is a pure jump
process and we normalize it so that its sample paths are right continuous. Let
{Y”(#)} denote the Q-process starting from Y?(0)=y&.S and let y*(t)=Y’(¢/&?),
t=0, £>0. Let x*(¢) be the unique solution of the following ordinary differ-
ential equation

53) 20 — L pe, v,

x(0) = x=R?.
Then it is easy to see that for each £>0 the family of processes {(x°(¢), ¥*(¢))} con-
stitutes a Feller Markov process generated by L°. It is shown in [22] that
under certain hypotheses the process {x°(¢)} converges to a diffusion process on
R?as £} 0. Such a limit theorem corresponds to (A}).
We now specify the hypotheses on L°® and the limiting diffusion process.
We assume that there exist constants ¢, and g, such that

(54) 0<g,=q(y)= <

and that there exists a reference probability measure ¢(dz) on S such that
k(y, d=2)=Fk(y, 2) ¢(dz) with density k(y, =) satisfying

(5.5) 0<k=k(y, 2)sk,<oo,

where &, and k&, are constants. Let P(Z, y, dz) denote the transition probability
of the Q-process. We can see that (5.4) and (5.5) imply that there exists a
unique invariant probability measure P(dz) such that

5.6 su P(t,y, A)—P(A)| <e™¢
(5.6) yeS’Apeﬁ(S)l (.5, 4)—P(A)|

for sufficiently large >0 for some constant ¢>0. Thus we can define the
recurrent potential kernel

(.7) Gy 4) = [ [P(t,3, 4)—P(4)] dt, y=5, A€ H(S)
0
so that the Fredholm alternative for Q holds in the sense that the equation

(5-8) —02(y) =f),yES
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has a bounded continuous solution g(y) if and only if f(y) is a bounded con-
tinuous function such that

(5.9) [/ Pay) = 0.

If this is the case, then any solution g(y) of (5.8) is given by
(5.10) gy) = Ss f(2) Gy(y, dz)+a constant .

We assume that Fi(x, y), i=1, -+, d, satisfy the centering condition
(5.11) Sst(x,y) P(dy) = O for all k&R, i — 1, -, d,
so that the equations

(5.12) —OXi(x,y) = Fi(x,y),i=1, -, d,

have the bounded continuous solutions X'(x, y), =1, -+, d, such that their x-
derivatives of all orders are bounded on R?xX S. Let

(5.13) ai(w) = [X‘Fi+fo"] (%,9) Pdy) ,
be) = {153 251 (v,5) Pay)
and let

(5.14) =

P OPL e O

2 =1 =1 ox'

Since a'(x) and bi(x) are bounded smooth functions having bounded deriva-
tives, the martingale problem for L is well-posed and the associated family of
solutions {P.} constitutes a diffusion process on R?. Here P, are probability
measures on C([0, co)—>R?) as usual. (See [26].)

Let P;, denote the measure on C([0, co)—R?) induced by the process {x*(#)}
defined by (5.3) for the initial value (x°(0), y%(0))=(x, y)=R*x S. We now see
that (A7) and (A3) are satisfied for {P; ,}, €>0, and {P,} (see Remark 2.6). We
can show as in [22] that if &, | 0 and x,—x& R* and if y,E.S are arbitrary, then

'6’

(5.15) P, —P, in HC([0, oo)—>R%) as n—>oo,

which implies (Aj). Though in [22] (5.15) is proved only in the case that
(% Ys)=(%,y), We can establish (5.15) by a minor modification of the proof in
[22]. We omit the details. On the other hand, (A3) immediatley follows from
(5.3).

As for (B), this is satisfied if L is uniformly elliptic, i.e., there exists a con-
stant »>>0 such that
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(5.16) 1 aii()E Eizp |E| E=(E, -, E)E R, xER" .

i,7=1

Indeed, (B) (i) follows from the fact [14] that the fundamental solution for
8/0t—L is strictly poistive, and (B) (ii), which is the strong Feller property of
{P.}, is known [26; Theorem 7.2.4].

ExampLE 5.2. This is a special case of Example 5.1. Let {Y’(z)} be the
O-process in Example 5.1 starting from y&.S and let

(5.17) X*3(1) = x—f—S: F(Y(s)) ds,

where F(y)=(FY»), -+, F¥(»)) is a bounded continuous function on S with values
in R satisfying the centering condition

(5.18) Ss Fi(y) Bdy) =0,i=1, --,d.

For each €>0 and each (x, y)€R?X S define
(5.19) x(t) = EX(t/E%), 120,
$(t) = Y*(t/), 120.

Then it is easy to see that (x°(z), ¥°(¢)) is a Markov process starting from (x, y)E
R?x S generated by

d
i=

e Lo 1< i,y 0
(5.20) L= 50+ 2 F0) 5

This is a special case of (5.2) (F(x, y)=F(y)). In this case L becomes

3P

1 0" with
2 ii=1 0x'0x’

(5.21) L=

(5.22) @i = | WFI+XF] () P@y),
where X!(y),i=1, :--, d, are the solutions of
(5.23) —0Xi(y) = Fi(y),i=1, -, d.

Thus the diffusion process {P,} in this case is a Brownian motion with covari-
ance matrix (a'/).

As before, (A7) and (A?) are satisfied for {x°(¢)}, £>0, and {P,}. Moreover,
if (a¥) is positive definite, then (B) is satisfied. In this connection, we note

that for each £=(&, -+, &)= R (£+0)

(5.24) é Fi(-) B0
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implies that

(5.25) i B EI>0.

d
=1
To see this, using (5.22) and (5.23), and denoting 3}¢.; Xi(y) & by X¥(), we
observe
(5.26) S aTEE = Ss [—2x* Ox¢] (y) P(dy)

§,7=1

= [0ty —2x¢ 0%4] (5) P(dy)

= [, [, @~ ()R, 2) pld)] Play)

Suppose 33¢,;.1 @ E'£/=0. 'Then there exists a y&S such that X(+)=X¥(y)
p-a.e. Thus we have 33¢., Fi(+) E=—0x*(-)=0, which contradicts (5.24).
Consequently, (B) is satisfied if (5.24) holds for any (&%, ---, £4)==0.

ReMARK 5.1. In Examples 5.1 and 5.2 the Q-process can be replaced by
another ergodic Markov process for which the Fredholm alternative holds.
For example, we can take a Brownian motion on a torus (S=T") in place of
the O-process.

RemMARK 5.2. InExamples 5.1 and 5.2 we have taken z(x, y)=2x and X*(f)=(x*
(2), ¥°(8))=(EX™*(/€%), Y’(¢/€%)). But we can also take 7,(x, y)=E&x (see Remark
2.1) and 2°(t)=(X"’(¢/€%), Y’(¢/€%). We will meet the latter case in the proof
of Theorem 6.8.

ExampLE 5.3.  We consider the homogenization problem for a diffusion pro-
cess with random stationary coefficients. This problem has been discussed in
[23], [24], [20], etc. We follow the results by Osada [20]. We begin with the
abstract framework, which covers the cases of periodic ([1]) and almost periodic
coefficients (see [23]); in particular, Example 2 in Introduction is a special case
of this example.

Let (Q, g , IS) be a probability space and let {7}, xR, be a d-dimensional
stationary ergodic flow on Q. Let Lz(ﬂ) be the real L:-space on (Q, &, 15) and
let {U,} denote the strongly continuous unitary group on L’(ﬂ) induced by {7},
ie., U, f(6)=f(T.6), x€R?, 6O, fe (). For eachi=1, ---, d, let D; denote
the infinitesimal generator of {U,} in the i-th direction with domain 9(D)), i.e.,

2 (Uef) (@)

where the differentiation is in the L¥(O)-sense. Let H YDY=n4.1 DD)).
Let 4(&) and b'(#), ¢, j=1, -+, d, be real valued measurable functions. We

(5.27) D, f(&) =
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assume that there exist constants »>>0 and M >0, and functions é’eH 1(Q) ,]
=1, -+, d, such that

(i) 31 49a)E Ezv|E| for all £ = (&), -, ) S R and |4(8)| S M.

(i) 6"(4») z: D; é¥(4) and |&(&)| <M.
(iii) Z} D, b‘ = 0 in the generalized sense, i.e.,

S D3 b (&) D;p(6) P(db) = O for all p=HYD).

Q i=1

Consider the formal differential operator

s_ 1 & 0
(5.28) A° = 3 ”21 o x,é)

where a'(x, &)=4"(T,6) and bi(x, (b):b’(T :®). It is known (see [20] and
Remark 5.3 below) that for P-almost all & there exists a unique fundamental
solution p‘s(t, x,y) for 8/8t—/13’ (in the weak sense) having the following global
estimates:

(5.29) Cig(n 8, %,3)= p%(t, %,9)<C, 2(72 1, %, 9)

for all (¢, x, ) E(0, +0) X R? X R?, where g(t, x, y)=(2xt)"*? exp{— |x—y|*|t}
and C), C;, 7, and 7, are positive constants depending only on », M and d.
Further, for any 7'>0

(5:30)  [p%t % 9)—p ¢, &', y) | SK(le—a'|*+ | y—y' |+ |t—2'| )

for all (¢, x,y), (¢', ', y")E(T, +o0) X R*xX R?, where K and « are positive con-
stants depending only on T, », M and d.

Let @, O be such that P(Qg)=1 and that (5.29) and (5.30) hold for every
&Eﬂo. For any Aeﬂo we can construct diffusion measures P% on C([0, oo)—
R’) having p‘:’(t, x, y) as their transition density functions relative to the Lebesgue
measure. We refer to {P‘i’} as A'f’-diﬂ’usion process.

Let £>0 and let P2* denote the measure on C([0, oo)—R?) induced from

x/e by
(5.31) *'(t, 0) = Ew(t[€%), t=0, 0= C([0, °)—=RY).

Then {Pf”} forms the diffusion process associated with

7200 (@ (00) ) e 5 (0)

ét is shown in [20] that there exists &, CQ, with 15(01)1-1 such that for all
s,

(5.32) A%

M
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(5.33) P3P in H(C([0, o)>R%) as & | 0,

where P, is the Wiener measure with the covariance matrix (¢*/) defined below
starting at the origin. We now define

530 ¢ = 3 [ (e @ G0 EEs),

1
2 =1

where 8% denotes Kronecker’s delta and x]r’.fELz(Q) are the unique solutions of
the equations (5.35)-(5.37) below (see Proposition 3.1 in [20]):

535 {,[—5 2 e+ 3 5w s [0 as) —o,
k=1, -+, d for all p = H(D).
(536) {,[WD;01(@PW0) = [, WADi10PWS),  ijik=1,4,

for all pH l(ﬁ)

(5.37) [, W@ =0, ik=1-d.
Let
1 d .. 82
5.38 L =— ij
-39 2 "'!2=1 T o 0w

and let {P,} denote the diffusoin process (Brownian motion) generated by L.
We refer to {P,} as the homogenized process for the family {Pf"}, or simply,
for the family {P3}.

We now verify that (Al), (A3) and (B) are satisfied for {P%*} and {P,} for
P-almost all 6O (see Remark 2.6). First, we note that for any &eﬂo and any
£>0 the coefficients of 4%* satisfy (1) (iif) with the same v and M as those for

A*, so that the fundamental solution p"’ *(t, x,) of 0/ot— A°* satisfies (5.29) and
(5.30) with the same constants as before. Thus there exists a constant >0
such that

(5.39) sup , E% [lo(t)—o(s)|*]=C |t—s]3 ¢, s=0,
xE R4, >0, oeb o

where Ef" denotes the expectation with respect to Pf’". This implies that for
any R<oo

(5.40) {P2%; |x| <R, £>0, 6Oy is tight.

Next note that (5.33) and the estimates (5.29) and (5.30) for p"l’\"(t, x,9)
imply that
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5.41 21,0, x) = p(1, 0, x) uniformly on R as € } 0,
( P ? y

where p(%, %, y) denotes the transition density function of {P,}. Let feCO(R%)
and take &, | 0. Let &eﬂl be fixed and define

W'(%) = E¥[f(o(t)] and u(®)=E[f(o(t)], «ER°,

where E, denotes the expectation with respect to P,. It follows from the
estimates (5.29) and (5.30) for p's"(t, x, y) that the family {u"(x)} is uniformly
equicontinuous on R?. On other hand, (5.33) implies that for any g C(R?)

(5.42) y P51, 0, x)g(x)u’ (x)dx — g p(1, 0, R)g@pu(x)dx  as m— oo .

It is easy to see that #"—u uniformly on every compact subset of R? as n—>oco.
Hence, taking x,—x€ R’ we have «"(x,)—>u(x) as n— oo, which means that

(5.43) Pim(w(f)edy) > Po()Edy)  in H(R?).

This implies that every finite dimensional distribution of P‘,':’f" converges to
that of P,. Thus (Al)and (A?%) are immediate from (5.40). As for (B), this is
satisfied since (¢*) is positive definite (see [23; Remark 3]).

Remark 5.3. In [20] some restrictions on the coeflicients of A° have been
imposed in addition to (i)—(iii) in Example 5.3. In fact, 4/=4’/ and the smooth-
ness of a“/(x, &) and b'(x, &) in x have been assumed in [20]. However, Osada
has recently proved that such restrictions can be removed (private communica-
tion). See also [15] for the case where the coefficients are periodic but are not
necessarily smooth nor even continuous.

REMARK 5.4. Let (&) be a measurable function such that 0<<m, <M(¢)=<
m,<<oco for some constants m, and m, and let m(x, &)=m(T,6). Consider the
formal operator Ba’=m(x, (b)'lA'A". In [20] the homogenization problem for the
diffusion process associated with B* is also discussed, and it is shown that the
homogenized process for B®-diffusion process is the Brownian motion generated
by (f#dP)'L. Let B®*=m(x/€, 6)*A>*. Tt can be verified that our hy-
potheses are satisfied for B®*_diffusion processes by an argument similar to that
in Example 5.3.

ExampLE 5.4. We will make new examples by projecting the processes on
R? in the previous examples onto the torus 7. Let # denote the canonical
mapping from R? onto T?=R*%/Z°. Let ({x(t)}, {P.}) be a non-degenerate
Brownian motion on R’ Then {#(%(#))};»o forms a Brownian motion on 7',
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which we denote by ({£(2)}, {15;}) (€ T?. Let z be a measurable mapping
from a measurable space X to R? and let ({Z*(¢)}, {P%}), £€>0, be a family of
Markov processes on X satisfying (2.2). Suppose (A}) and (A5) are satisfied
for the family of processes {z(X*(t))}, £>0, and {P,}. Then (A}) and (A3)
are also satisfied for the family {#oz(Z(¢))}, £€>0, of processes on T¢ and
{P;}. To see this, let #, denote the mapping from D(I—R) to D(I—T*?)
induced by #: R*— T“, where I=[0, o) or [0, 1]. Since # is uniformly
continuous, it is easy to see that #, is continuous. Therefore, p,—u in
M(D([0, oo)—R?)) implies p,— 7 in H(D([0, co)—T?%)), and if ACH(D([0, 1]
—R?)) is tight, then {a; pEA} is tight in H(D([0, 1] T?)), where i denotes
the measure induced by 74 from any w. This proves the above assertion.
Further, we can easily see that (B) is satisfied for {Ps}.

_ We can take for {%°(¢)} the Markov process generated by L° in Example
5.2, or the diffusion process associated with A% in Example 5.3. Further, we
note that the above procedure can be applied to the Markov process generated
by Lf in Example 5.1 provided F(x, y) in (5.2) is periodic in x& R? with period
one. In that case coefficients a/(x) and b'(x) of L in (5.14) are also periodic,
so that if {x(¢)} denotes the L-diffusion process, then {#(x(¢))} forms a Markov
process on T

Finally, note that we can repeat a similar argument by taking a one-dimen-
sional projection xW—<&, x>, x& R? instead of the above #, where £ R? (£30)
and <+, +> denotes the Euclidean inner product. We omit the details.

6. Application to the Chung type laws of iterated logarithm

In this section we will apply the results in Section 2 to the laws of iterated
logarithm of the Chung type [4] (see also [10], [16]) for a certain class of sto-
chastic processes, which contains the processes in Examples 5.2 and 5.3.

We start with a general setting. Let X=R? and let X be a measurable
space. Suppose we are given a measurable mapping 7 from X onto X, and a
Markov process ({%(£)} 120, {P} z<%) on X such that
(6.1)  x(:)==(Z(-))EQ* (=D([0, =)—>X)) P;-as. forevery ZcX.

Let P; denote the distribution of {x(+)} on Q* under P;. For any £>0 define
(6.2) x°(t) = Ex(t[€?) = Ex[X(t/€)], t=0

and denote by Pj the distribution of {x°(-)} on Q* under P;. Note that x*(0)=
&x(%) Pr-as., ie., Pj(w(0)=E&r(X))=1. We assume that the family of the
processes P;, ¥ X, on R? is homogenizable in the following sense:

(H) Ifé¢, | 0and if %,&X-are such that &,7(%,)—>xE R’ then
(6.3) P»—P, in MQ") as n— oo,
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where P, denotes the d-dimensional Wiener measure with covariance matrix (a'/)
starting from xE R”.

Then (A]) is satisfied for {Pz} and {P.}; we take ZX(f)= Z(#/&?) and
7o(X)=En(X) in the context of Section 2. (See Remark 2.1.)

Let M be the space of all measures p on X such that p(X)=1, endowed
with the vague topology. Let O} 7(4) be defined by (2.12) for any Borel set
AC M(X). Since JM(X) is continuously included in M, we can also define
O} :(4) for any Borel subset ACM so that Qf 7(4)=0% (4N MX)). Let
I(p) be the I-function for {P.} (see (1.15)). We can also define I(u) for any
wE M so that I(p) is homogeneous of degree one and lower semicontinuous on

M.

Lemma 6.1. Suppose that (H) is satisfied and that if &, | 0 and if X,€X are
such that |&,x(%,)| — oo, then for each t>>0

(6.4) lim P(lo@)|<R)=0 forall R<co.
Then for any vaguely closed set A M

(6.5) fim L log sup Q%:(4)=< — inf I(x).
ty ey pEA
240

Proof. Let X'=X U {co} be the one-point compactification of X. We
also adjoin an extra point & to X so that {P;} is a Markov process on
X'=XU{X} such that P.(%(f)=33, t=0)=1. Define P% and P. by
Pi(w(t)=00,t=20)=1 and P..(w(t)=c0, #=0)=1 so that {Ps} 3<% is compatible
with (6.2) by the convention co=E&#(3) and that {P,},cx- is a Markov process
on X’. Note that M can be naturally identified with 9(X") as a topological
space. Thus O 3(4) defined above can be identified with those defined for the
extended {P;};cx. Moreover, I(u) as a function on M can be identified with
I(p) defined for {P.},cx. This can be easily seen from (1.14), (1.15) and the
fact that p(t, oo, dy)=3.(dy) for all £>0. Thus (6.5) follows immediately from
Theorem 2.3 if (Ap) is satisfied for {P:};cz- and {P,},cx’; note that in (Ag) we
take 7,(%)=&n(¥) (see Remark 2.1). Let &, | 0 and let X,X’ be such that
&n(%,)—>xin X'. We have to show that

(6.6) Pi(o(t)Edy) — p(t, x,dy) in HX).

This follows from (H) if x&X. On the other hand, if x=occ, then (6.6) means
that

Pr(o(t)Edy) - 8.(dy) in HX),
which follows immediately from (6.4). QE.D.
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Let
6.7) &(t) — (li’.gi"_g’) " >0
and for £>0 and w €Q* define

(6.8) L(w, B) = % S: Xo(eDo(s)ds, BeB(X).

Theorem 6.1. Suppose (H) and (6.4) are satisfied. Then for any T X
(6.9) a9y {L(w, -} cC P;-as.,

where the closure is with respect to the vague topology and
(6.10) C={peM; (p)=1}.

Proof. We follow the proof in [10; Theorem 2.8]. Let G be a neigh-
borhood of C in M and let N be an open neighborhood of C such that CCN C
NcG. Set 6=infueycI(u). Since I(n) is lower semicontinuous and N° is
compact in M, we have >1. Choose 8’ and k& so that 1<<0'<<8, 0<k<1 and
k0'>1. Let t,=exp (n*), n=1, 2, ---. Noting that

L(x(+), B) = Liogroa:(+**(-), B), BCX,
we have
Pi(Ly(w, )EN') = Qifig 13(N°) -
By Lemma 6.1 we have
Qiceros 1. 5(IN°) = exp {—(loglog £)0'}
for sufficiently large £>0. Thus for sufficiently large n, we have
P:(L, (0, -)EN)<exp {—kf' logn} = n~*’

so that D1, P;(L,”(w, -)EN‘)<oo. By the Borel-Cantelli lemma we have for
Pz-almost all o

(6.11) L, (w, -)&N° for only finitely many 7 .

Take w such that (6.11) holds. Then we can show, as in the proof of Theorem
2.8 in [10], that there exists a 7>>0 such that L(w, -)EG for all t=T. Since
G is arbitrary, we have (6.9). Q.E.D.

Recall 7§(w) is defined by (4.9) for any open set GCX and any 0 €Q".
Let B(x; R)={yeX; |x—y| <R}, x&€X, R>0 and write B(R) for B(0; R).

Theorem 6.2. Suppose that (H) is satisfied and that (a*) in (H) is positive
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definite.  Further, suppose that P;, satisfies
(6.12) Pz (5 Gy s (@) St) = O(t[R?)

as t{R*—0 and t/R—>oco. Let p& M(X) be such that p(B(a))=1 for some a>0
and I(u)<1. Let a’>a and let N be a (weak) neighborhood of n in M(X).
Define

E, = {o; Li(w, ")EN, t5¢Gy : wrean(@)>1} .
Then, for P; -almost all w, there exists a sequence t,— o such that o EE, .

Proof. We follow the proof of Theorem 2.15 in [10]. Let N, be a weak
neighborhood of u such that N,CN,CN. Let #=1I(u) (<1) and choose 8’, k
and k' such that §<0'<1, k’'0'<<l and k'>k>1. Let t,=exp (n*) and let
&,=¢&(t,), n=1, 2, ---. Using the notation

1

n_—tn—-l

L, _.i(w B) =

[ aleno(ods,
we have
1Ly, @ )= Lo @, )| S2tmsfty = 0
as n—>oo, where ||+|| denotes the variation norm. Thus, for sufficiently large #,
(6.13) {o; Li,_ (0, *)EN} CHo; Ly (o, -)EN} .
Let x,=n(%,) and let B'(R)=DB(x,; R), R>0. Define
F,=A{w; L, (0 *)EN, T8 ey >t T 1) >t}

Then, noting (6.13), we have h?n F,,CliﬂTn E,. Thus, it suffices to show
(6.14) Pz, (li”—m F)=1.

Let &, be the o-field gener~ated by the process {%(¢)} up to time #,. Then,
using Markovian property of {P;}, we have
(6.15) P (1) EF, Fymt) = X, (%(*) P, _p(2(-)EH,),

where An—l = {O); Tﬁ’(ale,,) (‘0) > tn—-l} and H,, = {0’; T*B"(a’/e,,) (‘0) >ty — 1ty
Li ¢, .t 0, )EN}. Here we have used the notation

1

Lo, B) =1 L Xa(E(t)eo(at)) s .

Thus we get
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(6.16) P ((+)EF, | F 1) Z X, _(*(- ),
where I,=inf;c5 Pz(H,) with B,=z"'B’(a/¢,). By the definition of P3, we have

I, =~ln__f P’;"(Tg(!,,xo $a) > Sm Ls,,(w: ')ENI) ’

FeB,

where s,=&}(t,—1,-;). Choose r and 7’ such that a<r<r'<<a’ and let K=B(r)
and G=B(r"). Using the notation 7(¥)=&x(ZX), we have for sufficiently large n

B, = n7'B(&,x; a)Cne'K and GCB(E,x,; a').
Noting the above relations, we get

lim 1+ log Z,=lim _: log inf PYLi(w, -)EN, t5>1).
tpo ~ -1

iy ¢
" 40 2en, K

Since (A}) is satisfied for {P3} and {P.}, it follows from Corollary 4.1 that there
exists an s, and a neighborhood IV, of y such that for all s>,

lim - log 7, L log inf P(L o, )EN,, 75>5, o(s) G,
ze

npyoo s” K}

where G,=B(r). Letting s—co, we can show that

(6.17) lim L~ log I, = —I(x) .

7y Su

This follows from Corollary 4.3 in [16], which is a modification of Theorem
8.1in [9]. Since I(x)=60<6' and since s,/k logn—1 as n—>oo, we have, for
sufficiently large »,

I, = exp {—s,0'}

6.18 ‘o
(6.18) =exp {—k'0'logn} = n¥? .

It follows from (6.16) and (6.18) that there exists an 7, such that
(6.19) 3P, (x(-)EFIF, )= 3 Xy, (x(- )Y P,
’l:’lo ’l:ﬂo

We can deduce (6.14) from (6.19) by the argument in [10; p. 731] if we show
that

(6.20) %‘. P; (A7) <oo.
Note that

P; (47) = P;o(’r}f(,c Caleys ) St) -
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Since t,6%,1=exp (—n* )k log (n+1)—0 and ¢,£,,,—> oo as n—>co, we have, from
(6.12),
P; (A47) = O(2,&5.1) = O(exp (—n*"")k log (n+1))
as n— oo, which proves (6.20). This completes the proof. Q.E.D.

In the following, we fix the %, in Theorem 6.2. Recall C is defined in
(6.10).

Theorem 6.3. Under the same hypotheses as in Theorem 6.2 it holds that
(6.21) N U {L(o, ")} DC P; -as.

>0 t=1

This theorem can be deduced from Theorem 6.2 as in [10] and so the

proof is omitted.
Combining Theorems 6.1 and 6.3, we have the following.

Theorem 6.4. Suppose all the hypotheses in Theorems 6.1 and 6.3 are
satisfied. Then

(6.22) nu {L(w, *)} =C P;-as.

>0t

This has an immediate corollary.

Corollary 6.1. If ® is a lower semicontinuous function on M in the vague
topology, then

(6.23) im &(L(w, +))= sup ®() Piqas.,
t-yoo re

and if ® is an upper semicontinuous function on M in the vague topology, then

(6.24) im ®(L,(o, +))< sup ®(u) Ps,-as.
t-poo veo

In the following, if L:% 2 o1 a7 0%[0x'0x’, where (a') is a positive

definite symmetric matrix, then A, denotes the smallest eigenvalue of —L for
the d-dimensional ball of unit radius with the Dirichlet condition.

Theorem 6.5. Suppose that (H) is satisfied with (a'’) being positive definite.
Further, suppose that (6.4) and (6.12) are satisfied. Then for any 1>0 there
exists a constant R, such that

— t \ 1/2
(6.25) fm L x[o,,]((“’gl%f) o) Jds =k Pias.,

tpoo t

and that ky=1 if and only if =/, .
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We now state the Chung type law of iterated logarithm for the process P3,
before proving Theorem 6.5.

Theorem 6.6. Suppose all the hypotheses in Theorem 6.5 are satisfied.
Then

1/2

. (log log ¢ —
(6.26) tim (8 28%)" sup o) = V&, Pras.

This can be deduced from Theorems 6.2 and 6.5. See [16; Example 6.4]
for the details.

ReEMARK 6.1. In this section we can take a norm |+ | in R? arbitrarily, but
it must be fixed throughout. Note that the definition of the “ball” depends
on the choice of the norm, and hence so does A;. If, in particular, d=1 and

L:%d"/dx{ then A, =ax?8.

ReEMARK 6.2. By a similar argument, we can also prove the analogue of
(6.26) for a suitable process {x(¢)} such that {r(A)x(¢/\)} converges to a sym-
metric stable process as A—0, where 7(A) is some regularly varying function
as A} 0 of index 1/a with a being the index of the limiting stable process.
In that case (log log ¢/t)* in (6.26) should be replaced by r(log log t/t). We
note that the analogous results for a symmetric stable process and for sums of
independent identically distributed random variables in the domain of attraction
of a stable distribution have been already known [10], [16].

Proof of Theorem 6.5. Let ®,(u)= w(B(})) and ®j(u)= u(B(l), [>0.
By applying (6.24) to @, and (6.23) to @, we can prove (6.25) with

ky = sup @y(u) = sup ®j(p);
reo rec

the second equality follows from the fact that any p&C is absolutely continuous
with respect to the Lebesgue measure (see below). It only remains to prove

(6.27) k;=1 ifand onlyif I=/),.

It is known [6; Theorem 5] that I(u)<<oo if and only if w is absolutely continu-
ous with respect to the Lebesgue measure dx and

[

i=1

g

2
| dx<<oo,
ox!

where @=+/dy/dx and 8/0x’ is in the generalized sense. Moreover, in that
case we have
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_1 5 i1 09 0p
(6.28) I(p) = 2 SR“' ;§1a 0x* Ox? .

Therefore, if A(/) denotes the smallest eigenvalue of —L for the ball B(/) with
the Dirichlet condition, then we have

(6.29) MD) = inf {I(n); pEMR?), w(BD) = 1},
which is the classical variational formula for A(l). Further, it is well known that
(6.30) AMD= N1/ = N2

Now let [=+/,, so that A([)<1. Let @ be the normalized (f@’dx=1) eigen-
function corresponding to A(/) and let uy(dx)=ep(x)’dx. Then we have, from
(6.28),

L) = | (~Lo)pax =2)=1,
so thatu,C. Therefore, we have
Bz )= gav=1,
B(D

which means k,=1. On the other hand, let /<\/x,. Since ®,(u) is upper
semicontinuous and since C is compact, there exists a u&C such that

ky = @(p) =u(B() -

Thus, if k=1, then (6.29) implies AM{)=<I(x). But since Ml)=n,/F>1, we
have I(p)>1, which contradicts the fact that p & C. Hence we get k<1,
proving (6.27). Q.E.D.

In the following we prove the Chung type laws of iterated logarithm for
the processes in Examples 5.2 and 5.3.

Theorem 6.7. Let (ﬂ, &, 15), {P%} and L be as in Example 5.3.  Then for
P-almost all 5O

t>oo

N 1/2 -
(6.31) P(e: lim {%t"g’} Sup [o()]= V) =1
for all x€ R°.

Proof. It suffices to check (6.4) and (6.12). But (6.4) is the same as
saying that if &, | 0 and if |x,|—>oco, then for each t>0

lim P2*(|o(f)| <R) =0 forall R<eco

in the notation in Example 5.3, which is immediate from the estimate (5.29)
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for pc’"(t, x,y). Next note that

P8 mSt) = Pi( sup Jo(s)— x|>R)sT]i(§G&1%/)z“>
where f(t, R[2) = sup P %|w(s)—x| = R/2). Hence (6.12) is also immediate
from (5.29). il Q.E.D.

Theorem 6.8. Let {Y’(t)} be the Q-process on a Polish space S in Example
5.2 starting at yE S, and let F(y)=(FYy), ---, F¥(y)) be a bounded continuous
function on S with values in R* satisfying the centering condition (5.18). Let

= %2 a'’*[0x'0x’ be defined by (5.21) and assume that (a'’) is positive definite.
Then for all ye S

(6.32) lim (I"g log t) sggtlS:F(Y’(s))dslz Vv, as.
Proof. Let
63  X(O)=at | PO, 120, (x3)SRxS.

Then (X*(t), Y’(t)) forms a Markov process on R?X S starting at (x, y)ER?
x S. For any £>0 define

x%(t) = EX™(t/&%)

6.34
(6:34) () = V(e

Then (x°(2), ¥*(z)) forms the Markov process generated by L® in (5.20) starting
at (Ex,y) (see Remark 5.2). Let P;, denote the measure on Q% induced by
the process {x*(+)} in (6.34) and let P, , denote that by {X*’(-)}. It suffices
to check (6.4) and (6.12) for {P:,}, {P,,} and =(x,y)=x. We claim that
there exist C>0 and &>0 such that for any €<(0, &) and any >0

(6.35) SZU}P P;_J,('Tﬁ(“ 0=t =C(t+€).

We assume (6.35) for a while. If &, 0, |§,x,] >c0, and y,ES are arbitrary,
then for any :>0 and any R>0

[ Py, (o) = R)
= l”l—rn Pi:.y,,( I w(t)—enxnl = Rn) (Rn = |8nxn | _R)
< m PiyE(|o(t/RE)— /R, | 2 1)

— e /
é 1”12 Px:,fn"(T;E(z”x”/R,, )] é t/Rﬁ)
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< lim C(t/R;+¢,/R,) = 0,

which proves (6.4), and we have

Pz,y("'g(x;R) < 1) < PR (tham: n=t/R?)
= O(¢/R*4-O(1/R)
= O(t|R?)

as t/R?—0 and ¢/R—> oo, proving (6.12).
It remains to prove (6.35). Recall that

1 1 d ; 6
!—'__ —— 4 —_— .
L= 50+ 2F0),;

We first note that for any bounded smooth function @(x) on R¢ having bounded
derivatives of all orders we can find for each €20 a function ¢*(x, y) such that

(6.36) sup|p(x, y)—(x)| = C&(1+€),
(6.37) sup|L°p(x, y)—Lp(x)| = C€
for some constant C independent of €£>0. Such estimates are given in [22],

but we give here the proof in our special case for the convenience of the reader.
For simplicity, let d=1. We find @°(x, y) in the form

(6.38) P'(%, y) = P(*)+EV(%, y)+Eul®, ¥) »

where (¥, ) and 4, ) are bounded functions on R?X S. Observe that
L'g(x, 3) = —[QW(x, 9)+F 3]
(639) + [l )+ FO) oA (, )]
+EF(3) 2, 3)

Let X(y) be the solution of —QX=F (see (5.23)) and let yn(x, y)=¢@'(x)X(y) so
that Qyr,-+F@'=0. Then, noting that

[, F0) Znten 5)P@y) = § ()2 0)P@y) = Lo(),

we can see that

vl 3) = [ 1) 2o, ) Lo (@Gl d2)
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solves —Q%:Faﬁ yn—Lo (see (5.10)), so that
X

L'g!(x, 3)—Lp(®) = EF(y) (. 3)

Since, Yr, 4Jr, and 631]:-2 are bounded, we obtain (6.36) and (6.37).
x

Let P, denote the probability measure governing the process (x°(¢), ¥*(t))
in (6.34) starting from (€x,y), and E;, denote the expectation with respect to
P;,. Since (x%(t), y°(¢)) is a Markov process generated by L*,

t
P'(*"(2), Y1) — P (€%, ) — So Li@*(x*(s), ¥°(5))ds
is a martingale under P ,, so that

B2 o't AT), A = 96w )+ B[ L), vt
where 7=7%(,; p(*°(+)). It follows from (6.36) and (6.37) that
E: ot )]
<plen+208(1-+6)+1( sup | Lp(E)]+Ce).
If we take @(+) so that (€)= |E—&x|? for E€ B(gx; 1) and =0, then we have
P; (t=<1)<20(1+8)&+( 3 a'+-Ce,
which proves (6.35). QE.D.
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