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0. Introduction

We call (M, o) a Riemannian manifold with a pole iff M is a Riemannian
manifold and exp0: T0M-*M is a global diffeomorphism. We define the
radial curvatures at x^M as the sectional curvatures of all the 2-dimensional
planes in TXM which are tangent to the unique geodesic joining the pole o to x,
and write r{x) for the distance function from o. Suppose now our (M, o) satisfies
the following conditions:

(0.1) There exist C°° functions k, K: [0, oo) -> [0, <χ>) such that

1. — K(r(x))^ύl the radial curvatures at x^k{r{x)),

2. [°sK(s)ds< oo y
Jo

3. [~sk(s)ds£l.
Jo

In this paper, we shall prove the following theorem.

Main Theorem. Let (M} o) be an n-dimensional complete Kάhler manifold
with a pole o satisfying condition (0.1) (n^2). Moreover assume that there exists
a C°° function H: [0, oo] -^ [0, oo) such that

(0.2) ΓsH(s)ds< oo ,
Jo

and

(0.3) —H{r{x)) ̂  tha Ricci curvature at x^H(r(x)).

Then there exists a positive constant γ0 depending only on K(s) such that if

[ sk(s)ds<7Oi
Jo

M is biholomophic to Cn.

It was conjectured by Greene and Wu that if M is an n-dimensional com-
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plete, simply connected Ka'hler manifold satisying

—A(\-\-r(x))~2~*^the sectional curvatures at x^O ,

then M should be biholomorphic to Cn. This conjecture was verified by Siu and
Yau (cf. [10]). In [3], Greene and Wu generalized the above result to the case:

sectional curvatures at x^O ,

where K is the function of (0.1) and moreover non-increasing on [α, oo) for some
β>0. In view of the above results and several facts of [3], it has been con-
jectured if a complete Kahler manifold with a pole (M, o) satisfies condition (0.1),
then M should be biholomorphic to CM. In fact, Mok, Siu, and Yau have shown
(M, ό) is biholomorpbic to Cn in the case:

Λ?))"2"ε^the sectional curvatures at x^Az(\+r(x))~2~z,

where Az is a sufficiently small constant depending only on £(cf. [7]). Recently
Kasue has proved Main Theorem under the stronger condition than (0.3):

—A(ί+r(x))~2~8^thG Ricci curvature at x^A(ί+r(x))~2-8,

where A is a constant independent of δ, then M is biholomophic to Cn.

Combining the argument in [7], [10], and Kasue's unpublished result cited
above; the proof of our Main Theorem follows from the following observation:

1. We construct a bounded solotion to the equation:

Au(x) = Θ{r{x))

where θ is a C°° function such that there exists a C°° function

h: [0, oo)->[0, oo)

satisfying \θ(x)\^h(r(x)) and sh{s)ds<°o .
Jo

2. We construct a bounded non-vanishing holomorphic w-form on M more
directly than [7].

We would like to express sincere thanks to our adviser Prof. T. Ochiai, to
Dr. A. Kasue for his kindness to show us his unpublised result cited above, and
to Prof. J. Kazdan who informed us Lemma 2.1 and its corollary which simplify
considerably our original proof of Proposition 2.6.

1. Preliminaires

Let (My ό) be an w-dimensional complete Kahler manifold with a pole



COMPLETE KAHLER MANIFOLDS 263

satisfying condition (0.1) (n^2). We recall several known results which will
be used later.

Fact 1.1 (cf. [4], p. 678, Fact 2.1). Define C°° functions f(t)y F(t) by

(1.2) f"+kf=Oy /(0) = 0, /'(0) = l ,

(1.3) F"-KF = 0, F(0) = 0, F'{0) = 1 .

Then there exist constants μ and λ satisfying the following inequalities:

(1.4) μ^f\t)^\ and μt^f(t)^t,

(1.5) l^F'(t)^X and

(1.6)

(1.7)

Using the results of ([4], p. 679, Lemma 2.1) and ([3], Th.C), one can
obtain the following inequalities by simple computation.

Fact 1.8. Let f(t) and F(t) be as in Fact 1.1. Set

Then

(1.9) (log s) (r(x)) is plurisubharmonic on M,

(1.10) s2(r(x)) is a C°° strictly plurisubharmonic function on M

and

L(log(ί+sp) (r(x)))>min. { ^ζ , ***( ] (r(x))Cl,
v s\ -r M v w- \2(ί+sp)2f2 (l+sp)f) V κ JJ

(1.11) for arbitrary ρ>0,

(1.12)

and

where Ω, is the Kahler form of the given Kάhler metic G and L is the Levi-form.
Note that M is, in particular, a Stein manifold.

We call a differential operator on an open set U of R2n
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A -

uniformity elliptic iff there is a positive number η (which is called as uniform
ellipticity of A) such that for any x^U and for any tangent vector I G Tx(R2n),

Fact 1.13 (cf. [3], p. 56, Th.C and p. 80). The exponential map

exp0: T0{M)->M

is a quasi isometry and the real operator

is uniformity elliptic with respect to the coordinates

expo'- T0(M)-*M. Here

ReG=Σijgijdxidxj,

(giJ) is the inverse of (gu),

1*1 =det{gii).

From now on, we call the global coordinates exp0: T0(M)->M as the natural
coordinates.

Fact L14 (cf. [4], p. 678, Th.l). Let E-^M be a holomorphic line bundle
with a hermίtian fibre metric h. Suppose the Chernform ω= — (\/— l/2τr)39 log h
of the hermίtian line bundk {Ey h} satisfies the condition

(1.15) ||ω

where v(t) is a non-negative C°° function on [0, oo) satisfying

(1.16) [°sv(s)ds<oo .
Jo

Then there exists a positive number v0 such that if σ is a non-zero holomorphic
section of E over M satisfying

(1.17) \\σ

on M for some constant O and some 0<z/<z>0, then σ is nowhere zero on M.

Fact 1.18 (Hϋrmander's φ-L2) method) (cf. [2], AI-53). Let M be a
Stein manifold and E-+M a holomorphic line bundle with a hermitian fibre metric
h. Let φ be a plurisubharmonic function on M. Assume that there exists a positive
continuous function c{x) on M satisfying
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(1.19)

where Rk{M) is the Ricciform of (M, G) and c^E, h) is the Chernform of {E, h}.

If an E-valued O°°(0, p)-form σ on M satisfies (p ̂  1)

(1.20) dσ = 0 and
JM C

then there exists uniquely an E-valued C°°(0, pA) form ψ on M such that

(1.21) Bψ = σ aud
M C

The definition of < , >Λ is as follows:

if we write locally σ as σjβj on Uj where σ ; is a (0, pyform and e} is a local

holomorphic section of E, then <σ, σ>A(^) is defined as

where <( , > is the inner-product of (0, ̂ >)-form induced by the metric of M.

Fact 1.22 (cf. [6], p. 67 (7.9)). Let A be a uniformlly elliptic operator on

R2n(n^2). Then there exists the Green's function GA of A on R2n satisfying the

following inequality:

(1.23) - ^ 3 ^ G Λ { x t y) ίS
\χy\ \χ—y\

2n 2

where c(n, η) is a positive constant depending only on n and η {uniform ellipticity

of A).

Fact 1.24 (Moser's submean value inequality: cf. [8], p. 462, T h . l ) . Let

A be a uniformlly elliptic operator on B(2R)={x^R2n: \x\<2R}. Assume

v^Wι\B{2R)) satisfies

(1.25) ( Σ o V'-^M^<0
V J Jβ(2R) tJ dx{ dXj ~

for any φ ̂ 0 in W{B(2R)). Then

(1.26)

where c(n, η) is a constant as in (1.22).

Fact 1.27 (Moser's Harnack inequality: cf. [9], p. 578, Th. l ) . Let V be

as in (1.24) and u a positive C°° function defined on B(2R) such that Au=0 on B{2R).

Then
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(1.28) sup u^c(n9 η) inf u
nan ucib

where c(n, η) is a constant as in (1.22). In particular', from (1.28), one can easily
obtain the following "Liouville theorem": Assume A is a uniformlly elliptic operator
on R2n. If a positive C°°-function u on R2n satisfies Au=O, then u is a constant.

2. The solution of Poisson's equation

Lemma 2.1. Leth(\x\)£Ξ C°°(R2n) depend only on r=\x\ for xG R2n(n ^ 2),

and Δ 0 = Σ ί ( ) the usual Laplacian on R2n. If h(s) satisfies
^ oxi *

J oo

sh(s)ds< oo y
o

then there exists a solution to the equation Aov=h such that

(2.2) »(*) = - ϊ ( -Λ
2(n—l)ω2n-iJte»\x—

ω2»-i w the volume of the unit sphere of R2tt.

Proof. It is easy to see that the integral in the right hand side of (2.2) is
finite. Then it is well known that AQv=h. And moreover the solution to
Aov=h is unique up to harmonic fuctions. But then both v and h depend only
on r, so the equation A0=h becomes an O.D.E.

h = Aov = v r r ^ ^ Jvr f r ^ .
r rn

This can be integrated explicitly, just by integrating

r2n-\(r) = [s2n-1h(s)ds,
Jo

and we obtain

Therefore

έ S > ( ^ ^ ) • Q E D
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From (2.3), the following is obvious.

Corollary 2.4. Ifh^O, the function v{x) of (2.2) satisfies

(2.5)

Proposition 2.6. Let θ be a C™ function on M and assume that there exists
a C°° function h: [0, oo)-»[0, oo) such that

(2.7) \θ(x)\^h(r(x)) and [sh(s)ds< oo .
Jo

Then there exists a bounded C°° function u on M satisfying

(2.8) Au = θ.

Proof. Using the natural coordinates, set

X \ X

By (1.13), A is uniformity elliptic on R2n(=T0M). Let GA be the Green's
function of A on R2n as in (1.22). Then

is a bounded solution of (2.8). In fact, by (1.13) and the assumption on 0, we
obtain

where CΊ is a constant. By (1.23),

(*. y) WW\Θ) {y)dy \ ̂  C2\R2H J ^ ^ 2 dy,

but from (2.1) and (2.4), the right hand side is bounded by a constant independent
of*. Q.E.D.

Using a local holomorphic coordinates (zu •••', zn), the Ricci tensor R is locally
expressed as

where G^^^G^dz^d^ and | G \ =<feί(GΛ|). Set

(2.9) * - Σ
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where (GP*) is the inverse of (GΛβ) Note that 2φ is the scalar curvature of
Re G. The following is obvious from (0.3) and (2.6).

Corollary 2.10. There exists a bounded C°° function u on M satisfying

(2.11) Au=φ.

Sou is unique up to constants,

3. Construction of non-vanishing bounded holomorphic /i-form

The following is obvious.

Lemma 3.1. Let E^M be a hermίtian vector bundle with a fibre metric h.
Assume that σ is a non-zero holomorphic section of E over M such that

(3.2) Δ | c r L ^ 0 on BG(R)-V

where BG(R)={χ(=M: r(x)<R}, and V=(x<=M: \<τ\h(x)=0}. Then

(3.3) \<r\h^W'\

and

for any φ^O, φ^3)(BG(R)) with respect to the natural coordinates.

Let v be a real valued C°° function on M. Then we define a fibre metric
I I v on the canonical line bundle KM of M by

(3.5) I | ί = I \%χe-°

where | | KM is the fibre metric on KM induced by G.
The next lemma immediately follows from Poincarέ-Lelong's formula.

Lemma 3.6. Let u be the function of (2.11). Then for any holomorphic
n-form ξ>

(3.7) Δlog|£| 2 l ί = 0 onM-V

where V= {x G M: ξ(x)=0}. In particular

(3.8) A\ξ\2u^0 onM-V.

Proposition 3.9. For any positive number v, there exists a non-zero holo-
morphic n-form ξ on M such that

(3.10) I ξ I KM(x) ^
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where C is a constant and μ is as in (1.1).

Proof. Let {U> (zly •••, zn)} be a local holomorphic coordinates around o
and assume BG(£)GU. We choose ρ^W{R) satisfying

p(r)=ί if M s ^ - ' f ,

p(r) = 0 if \r\^€,

and

Set

a = v log(l+s2), <p — 2n log 5

where s is the function in (1.8), and we choose a fibre metric | \Λ on J^M. By-
direct computation using (1.1), we obtain

where c is a positive continuous function on M.
Set

then, by (1.18), we obtain a C°°(w, 0)-form on M with

(3.11) dη=ϋg

and

(3.12) ( h | ^ - ^ ( \dg\le—<oo.

Because of the singularity of φ at 0, we must have η(o)=0. So

(3.13) ? = * - ,

is a non-zero holomorphic rc-form and satisfies

ξ(o) = dz^—^fe. and 8^ = 0.

Since g has a compact support,

I ' S J κ*

In the following, C, denotes a constant independent of ξ. Let w be the function
(2.11). Then

mi- i c I 2 Λ I £ I 2
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From (3.1), (3.8), and (1.24),

Here by (1.12), we obtain

3UL/ I ̂  j 2tί ~~ ^ 4 \ •*• I /

Because u is bounded

Q.E.D.

The following lemma is proved in Moser's paper (cf. [9]).

Lemma 3.14. There exists a positive number δ0 such that if u is a harmonic
function on M satisfying

(3.15) u(x)^C1(r(x)+C2Y for some 0 < δ < δ 0

where C, are constants, then

(3.16) u = u(o) identically.

Proposition 3.17. There exists a positive number 7X such that if

S oo

skφdsKΎi,
o

then there exists a holomorphic n-form ξ on M satisfying

where C is a constant.

Proof. Choose any 7 i < l so that

where v0 is the number of (1.14), and take v>0 so that

Vl-OΊ ' 1—7i

Let ξ be the holomorphic n-form of (3.10). If I sk(s)ds<yu then
Jo



COMPLETE KAHLER MANIFOLDS 271

therefore ξ is nowhere zero on M by (1.14). Hence log\ζ\κM

 ι s well-defined
everywhere M and

Δ(log|f|iJΓ-2ιι) = 0 onilί.

Using the natural coordinates, set A=\/ \g | Δ and

Then A is uniformity elliptic and Av=0. By (3.10)

where O is a constant. From (3.14), v is a constant. Since u is unifoimlly
bounded on M} we get the conclusion. Q.E.D.

4. Construction of a biholomorphic map

Let 7*(M) be the holomorphic cotangent bundle of M and w a real C°°
function on M. We define the fibre metric (( , }}„ on T*(M) by

(4.1) < ( , L = = < , > -

where < , > is the fibre metric on Γ*(M) induced by G.

L e m m a 4.2. TTter* ^xύff α bounded real C°° function p on M such that for

any holomorphic l-form σ on M,

(4.3) log\\σ\\P is subharmonic on M— V

where ||σ||p

2=«σ, σ))p and V= { J C G I : σ(x)=0}.

Proof. From (2.6), there exists a bounded real C°° function p on M such
that

the Ricci curvature at

Using Bochner's identity

where σ* is the dual of σ and VP is the covariant derivative with respect to the
metric (( , ))p, we get the conclusion. Q.E.D.

We refer the proof of the following lemma to ([3], p. 43, Th.B).

Lemma 4.4. Assume that v is a non-negative C°° function on M satisfying
Δs ^O. Then
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(4.5) ( Av^C(n,-Kyμ9a)R-2[ v
JBG(«R) JBO(R)

where 0<αr<l and 0(n9 λ, μ, a) is a constant depending only on ny λ, μ, a.

Proposition 4.6. For any positive number v, there exist holomorphic functions

fiy •••>/» on Msuch that

(4.7) /,(o) = 0and df^o) = dz{,

(4.8)

(4.9)

where C f «r^ constants and (zu •••, :srΛ) αr^ ίA^ holomorphic coordinates at o of

(3.9).

Proof. Take positive numbers #, b so that BG(a)<^BG(b)cU. Let % be a
C°° function on [0, <χ>) such that

(4.10, m [ ς-

and

Set vi(x)=X(r(x))zi on [/, and Vi(x)=0 on M—U.

Let I be the holomorphic w-form in (3.17), and set

(4.11) β = loglflϊ^ and ψ = (2n+2)log ί .

We define a fibre metric on the trivial line bundle E=Mx C by

(4.12) Av = *β-

From (1.11),

where £ is a positive continuous function on M. From (1.18), there exists a
C°° function u{ on M such that

(4.13) dUi = S^

and

Because of the singularity of e"ψ at o,
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Therefore if we set

then

(4.15) Bfi = 0, fi{ό) = 0, and dffa) = dz{.

Since v{ has a compact support, (4.14) implies

f [Ml < o o .

Using the natural coordinates, we set A=\/\g\ Δ. Then from (1.13), A is uni-
formlly elliptic.
By (3.1) and (1.24),

(4.17) sun ifΛ^OswM I/, I

(by (4.16) and by (1.12))

where C, are constants. Let p be the function of (4.2). Then by (3.1) and
(1.24), we obtain

(4.18) sup IWMlgCrfxyi , \WM

(since p is bounded)

[ Π|/, |2

JBgίr(

(observe Δ==2Π)

H Δ|/ |2

Bgirix))

\f{\* (from (4.4))
)

J 2r(x)
( l+0 2 ( V + " + 1 ) / μ - 1 Λ (from (4.17))

o

^C7(l+r(Λ;))2<v+''+1/μ-"-1)

where C, are constants. Recall that p is bounded, then we obtain

. Q.E.D.

The proofs of the following lemma and proposition are the same as those of
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([7], p. 214, Lemma 3 and p. 215, Proposition).

Lemma 4.19 There exists a positive number T 2 ^7i where Ti is the con-
stant of (3.17) such that if

\~sk(s)ds<72,Jo

there exists holomorphic functions fu •••,/„ on M satisfying the following conditions:

(4.20) df^-^dfn = ξ

where ξ is the holomorphic n-form of (3.9), and if we define holomorphic vector
fields {Xάi^i^n on M as

(4.21)

then

(4.22)

where C, are constants.

We define a holomorphic map F: M->Cn by

F =(/»-, fu):M-+C

Proposition 4.23. There exists a positive number 7 0=^2 where y2 ώ the
number in (4.19) such that if

I
JoJo

holomorphic map F defined above is a proper map.

Now we give the proof of our Main Theorem.

Proof of the Main Theorem. If [°sk(s)ds<yQy then from (4.20) and (4.23),
Jo

F is a covering map. Since On is simply connected, F is biholomorphic. Q.E.D.

REMARK. Moreover if the sectional curvature of M does not change the
sign, we can conclude that M is flat by using Mok-Siu-Yau's argument in ([10],
p. 211).
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