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0. Introduction

The first important study for the (non-)existence of perfect £-codes in
the Hamming schemes H(n, q) with arbitrary q was made by E. Bannai [1],
In his paper, Bannai determined the asymptotic locations of the zeros of Lloyd's

polynomials as β=\/(n—e) (q—l)/q^> <*>. (See 1.3.). Derived from this,
he proved that, for each e, there exists a number βQ(e) such that if β^βQ(e),
then there is no nontrivial perfect £-code in H(n, q) for q>2. In this paper,
we will use Bannai's idea and explictly calculate such numbers βQ(e) for e=6
and 8. Namely, we will prove that we can take βQ(6) = l5 and β0(8)=l8 under
the assumption that q^30. The remaining cases β<βQ(e) (and #>30) are
also treated. Since the cases #<30 are already determined (see 1.2.), we then

get the following theorem.

Theorem A. There exists no nontrivial perfect e-code in Hamming schemes

H(n> ?) for e=6 or 8 with q arbitrary.

As explained in section 1.2., the nonexistence of nontrivial perfect £-codes
in H(ny q) for all £>3 was almost completed by Best [2]. He used Bannai's

idea [1] to prove this nonexistence for e=7 and £>9. The cases £=3, 4, and
5 were previously solved by Reuvers [7]. Thus theorem A fills the gap (of
e=6 and 8) and we get:

Theorem B (see 1.1.2 and 1.2). For e>3, the only perfect e-codes in
H(n, q) are the trivial codes (of size 1 or 2) and the binary Golay code (q=2, n=23,
e=3).

We conclude this section with the following open problem.
For e= 1 or 2, the existence or classification of perfect £-codes still remains

open. As far as the author knows, for e=2, only the ternary Golay code (?=3,
71=11, e=2) is known. For e=l, there are many of them known [12], and
the classification seems very difficult.
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1. Definitions, previously known results, and important theorems

DEFINITION 1.1.1. The Hamming schemes H(ny q) are defined as follows.
Let Q be a set of cardinality q^2,

V=Q", the set of all ^-tuples over Q, and

dH: Vx V-* N\J {0} be the Hamming distance defined by dH(x, y)= \ {i:

\<i<n, Xi^Fy } I for all w-tuples #=(#!, xz, •••, xn) and y=(yl9 •••, yn)
in V.

Then (V,dff) forms a metric space and is equipped with the structure of associ-
ation scheme. We call it the Hamming scheme and denote it by H(n, q). A
subset C of V is called a perfect e-code (in H(n, q)) if the set of closed £-balls

dH(x, c)<0}, as c runs through C, forms a partition of V.

1.1.2. For any Hamming scheme H(n, q), there is a trivial perfect £-code;
namely, the code of size 1. Besides this kind of code, the only perfect e-codes
known for e^2 have the following parameters.

( i ) q=2, n=2e+l, e is arbitrary (binary repetition codes, code size=2);
(ii) q= 2, w=23, e=3 (binary Golay code); and
(iii) q— 3, w— 11, e—2 (ternary Golay code).

Codes ( i ), (ii), and (iii) are unique up to isomorphism. In this paper, we will
call the codes of size I or 2 trivial. Thus, when «<£, the code is automatically
trivial.

1.2. There are many papers concerning the nonexistence of perfect e-codes
in H(n, q). Here is a list of the major results.

No unknown perfect £-code exists when:

( i ) q=ps where/) is a prime and *?>2, Tietavainen-van Lint(cf. [6], [9], [10]);

(ii) q=pιp2 and *>>3 (cf. Tietavainen [11]);
(iii) *=3, 4, or 5, Reuvers [7];
(iv) e=7 or e^9, Best [2].
Also
(v) For each #>3 with #>3 arbitrary, there are only finitely many non-

trivial perfect β-codes, Bannai [1],

In this paper, we prove the nonexistence of perfect β-codes for e=6 or 8
under the assumption that ^>30. Thus, with the results ( i ), (ii), (iii), and

(iv), the nonexistence of unknown perfect £-codes is settled for e>3 with q
arbitrary, which proves theorem B.

1.3. Important theorems.

Theorem 1.3.1 (Generalized) Lloyd's Theorem (cf. [3], [4], [5]). Suppose
there exists a perfect e-code in H(n, q). Then the Lloyd's polynomial
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has e distinct integral zeros in the interval [1, n\.

REMARK. In the remaining part of this paper, we will use the following
expression for φe(x) instead of the one in theorem 1.3.1. (cf. [8] p. 38).

Theorem 1.3.2 (E. Bannai [1], 1977, prop. 15). Let the zeros of φe(x) be

a{ = a+βξ +^i (ί = ±1, ±2, -, ±[y] and i= 0 if e is odd)

/ 1 / i i \ (n—e)(q—l) , e+l
where a==— (αH ----- h#«)=- - — - -+— TT- >

e q 2

β = ~
ξj—the zeros of the Hermite polynomial He(x) defined by

Theorem 1.3.3 (E. Bannai [1], 1977, prop. 16). There exists a number
βQ (depending only on e) such that if β^β0, then no perfect e-code exists in H(n, q)
for q>2 and n>e.

Lloyd's theorem is the starting point for studying perfect codes. In the
following sections, we will use Lloyd's theorem and the ideas given by E. Bannai
in the proofs of theorems 1.3.2 and 1.3.3. to prove theorem A. In particular,
we will prove that we can take

/30 = 15 if e = 6 and

β0 = 18 if e = 8

under the assumption that q^30.

2. βQ= 15 when e= 6 and q ̂  30.

2.1. We begin with some discussion of Hermite polynomials and their
zeros. For every positive integer n, we define the Hermite polynomials Hn(x)
by
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*•<*>=<-'Mί)£ W-ί))
This family of polynomials has the following recurrence relation.

with HQ(X) = I and H^x) = x .

By using the recurrence relation, we can easily obtain

H6(x) = *e-

Let the zeros of H6(x) be £_3, £_2, £-1, ξi, £2, and ξ3 in increasing order. Then,
by applying the Cardano formula, we can get

0.3803274<|? <0.3803276 ,

3.5689847<f ϊ<3.5689849 , and

11.050687 <f§<11.050689.

Notice that ξ~—ξ_i for ί=l, 2, or 3.

2.2. Following theorem 1.3.2., we express the roots α, (i=±l, ±2, ±3)
of <p6(x) as follows.

= a+βξi+\i where a = ~ - + and
2

?

We also know that λ, -> f 1 ]( ~ ) as /3-> °o .

By Lloyd's theorem, we know if there exists any perfect 6-code, then

(tf2+tf_2)—(<x3+a-3) = (λ2+λ_2)—(X3+λ_3) is an integer.

We also have

( o \ /ε^ &2\
1 \ J j 3 o 2 \ JJQ ^3 ^ _φ

Calculation shows

2.3276406<l -\ ll <2.4939015 if we assume q^ 30.

Therefore if we can get /30 such that, when /3>/30 and

2<(λ2+λ_2)-(λ3+λ_3)<3 ,

then the nonexistence problem will be proved for /3>/30.
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Suppose, for i=±2 and ±3,

« 9 \ /c &2\ \
1——)( — );£). Here5(fl;£)means{tfe/2: |#—α| <£}.

q /\ 6 / /

Then (X2+X_2)—(X3+X_3)e5( (1 )( 2);4θ). It is easy to see that if
V \ q J V 3 / /

we choose £—0.08191, then

2<(X2+X_2)-(X3+X_3)<3 .

Lemma 2.3.1. lfβ> 15 andq^W, then λ eΰff 1— AY^nliV 0.08191^)
\\ q /\ 6 / /

for i= ±2 and ±3.

Corollary 2.3.2. 77 r̂£ w wo perfect 6-code in H(n, q) if β^ 15 αwJ #>30.

Proof of Lemma 2.3.1. It is enough to show that φ6(x)lf changes its

sign at x=a+βξi+(l-— Y^^Vθ.08191 forz=-±2 ±3. To begin with,
\ q / \ 6 /

we rewrite φ6(x) by the substitutions

2 a — 1"

Thus φ6(x) can be written in terms of q, β, ξy and X. Let =2 Akβ
k where

5 A=o
Ak's are expressions in 5, ξ , and X. Then, by straightforward calculation, we

have Ak=0 for Λ>7. If we further substitute X by l - ~ - ± £ in

the expressions A5 and ^44, then we get

τ -
144
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1 4 2 1 6 144 259 1 24+104

720 ? 9* 93 ' H520 768

\

/ '

_256 128

= ̂ Iλ(48λ4-280λ2 +259) ,
5 you

u 11520 v ' ' 1024

By using

3.5689847<£|<3.5689849, 11.050687<g|<11.050689,

g>30, £ = 0.08191, and

Γ 0.3204127 if λ = (l - 2 N/5~ -

1.090357 if λ = (l-—
\ Q

we get

Aβ = 0 if ξ = ξ±2 or ξ±3

ί 0.0102545 if ? = |±2,

10.0638226 if ? = ?±3;

0.08778691 if ξ = ξ±2,

0.67601801 if ξ = ξ±3;

1 o l <

When β^s 15, we get

0.267625

3.784096

0.1045

1.5095

0.026

0.416

0.008

0.049

if ξ = ξ±2,

if f = f±»;
if ξ = ξ±2,

if | = ξ±3;

if f = f±2,
jf g __ ε .

if ξ = ξ±2,

if e = e«.
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Therefore Φ=A6β*+A5β
5^ ----- }-A0 (and hence φ6(x)) changes its sign at

2.^5 |̂f^±o.08191 for i = ±2, ±3 .

And lemma 2.3.1. is proved.

3. The cases j9<15, e=6, and

Lemma 3.1. Suppose there exist perfect e-codes in H(n, q).

Then(llqγ-k(j}(n-e). (n-l-k)ζΞZ for 0<k<e-l.

Proof. Let the Lloyd's ploynomial φe(x)=aex
e+ -{-a0.

Then ae = (—qfle\ and

φe(x)/ae = Σ bk

x(χ-V)-(χ-k) where ft

for

By Lloyd's theorem, if there exist perfect £-codes, then φe(x)/ae^Z[x]. This
implies

for

Since 5— 1 and q are relatively prime, we get

for 0<&<*-1 .

3.2. Suppose there exist perfect 6-codes, then by lemma 3.1.1., we have

(1) 6(n-6)lq e Z ,

(2) 15(n-6) («-

(3) 20(«-6) (n-S) (n-4)/^ e Z,

(4) 15(«-6) («-5) («-4) (w-3)/^4 e Z,

(5) 6(w-6) (»-5) (»-4) (β-3) (n-2)l<? e Z, and

(6) (n-6) (n-5) (n-4) (n-3) (»-2) (n-l)/β» e Z .

Assume that β<l5, ί>30, and w>7. Then we have

Lemma 3.2.1. If there exist perfect 6-codes in H(n, q), then q=2s3'5 for
some positive integers s and t.
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Proof. First, we show that, for any prime number p^ 7, p/fq. Suppose
there is a prime number p > 7 such that pk \ q and pk+1Jfq for some k > 1 . Then,
by (1) 6(n-6)/q<=Z, we have £*|(n-6). By (6), (n-6) (n-l)lq*ςΞZ, and
the assumption that />>7, we get />6* | (n— 6). This implies

6(n—6)jq = /*A > 75> 1400 for some positive integer A.

But, β=V(n—6) (?— 1)/9<15 and #>30 imply '

(rc-6)/ί<225(2/2-l)<225(30/29)<233 and hence 6(n-6)/ί<1400.

Contradiction.
Second, we show that 5kjfq for &>2.

Suppose 5* I q and S**1^ for some k^ 2. Then, by (1), 5* | (n— 6) and, by (5),
55*|(fl_6). This implies

6(n—6)lq = 54&A>58>1400 for some positive integer h. Again,

a contradiction.

Therefore, if there exist perfect 6-codes, then

q = 2*3*5 for some positive integers s and t. (cf. section 1.2.)

Lemma 3.2.2 (See [13] also.), q cannot be 2S3'5 if there exist perfect 6-

codes.

Proof. Suppose q— 2S3'5 for some positive integers s and t. Then
6(n—6)lq^Z implies

n— 6 = 2S~13/~15A for some positive integer h.

From (5), we get 55 1 (n— 6). Hence

n— 6 = 2s~13ί~155& for some positive integer k.

Since 6(n— 6)/#=54&<1400 (see the proof in the previous lemma), we get
fe=lor2. Thus

(Λ-6) - 2S-13'-155 or 2'3'-155 .

Case 1. Let (n—6) = 2S~13/-155 and ί>2. Then expression (3) becomes
20(n— 6)(n~ 5)(n— 4) __ V~lk^ ~ where k and A are positive integers

q3 33ίA not divisible by 3.
Contradiction.

Case 2. Let n-6 = 2S3/~155 with j>l or 2S-13'-155 with
Then expression (2) becomes
15(«— 6)(n— 5) _ (2s or 2S~1)Λ^_^ for some odd integers k and A.

#2 22sA Contradiction again.

Case 3. When (if— 6) = 2°3°55 and ?=-21315 , we can easily see expression (2)
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becomes
15(«-6)(«-5)_

ί2

Thus the lemma is proved.

Proposition 3.3. There is no nontrivial perfect 6-code in H(n, q).

Proof. It is a direct consequence of 1.2 ( i) and (ii), corollary 2.3.2., lemma
3.2.1., and lemma 3.2.2.

4. The nonexistence of perfect 8-codes

The discussion for the case e=8 is basically similar and parallel to that
for e=6.

4.1. Again we start with the Hermite polynomial

By applying the Cardano formula, the zeros ξg (ί=±l, ±2, ±3, ±4) of HB(x)
are located as follows.

0.2906070<^<0.2906071,

2.6781945<£1<2.6781946,

7.8539270<£i<7.8539271,

17.177271 <£!< 17.177272, and

£-,= -& for ;=1,2,3,4.

4.2. The zeros of φ&(x) can be expressed as

α< = a+βξi+Λg (i = ±1, ±2, ±3, ±4) where

~2~ q ~2'

1±2, and

If there exist perfect 8-codes, then

_!)—(«3+α_3) = (Xi+X-j)—(\3+\-3)&Z where

-)p= )̂ a s y δ - o o , and

2.3530329<(l-Aj fMz !̂j<2.5211067 , assuming that ?>30.
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Suppose λ f e f i l — = ; f o r i=±l, ± 3 .

Then

If we choose 6-0.088258, then 2<(λ1+λ_1)-(λ3+λ_3)<3. Now, by fixing
£ =0.088258, we are ready for obtaining β0.

Lemma 4.3.1. //^^IS^d^^SO^A^λ^β^l-AVZzϋV, 0.088258)

for ^=±1 and ±3.

Corollary 4.3.2. There is no perfect 8-code in H(n, q) if /9> 18 and

Proof of lemma 4.3.1. We will show that φs(x) changes its sign at

for i=±\ and ±3.

First, we rewrite <p*(x) by the substitutions

x = (a+βξ+\ =)β2q+~+βξ+\ and w-8 = .
2 q-1

eo

Then <pι(x) is rewritten in terms of q, β, ξ, and λ. Let φ^x)^ !/98==Σ
A = 0

where ^4A's are expressions in q, ξ, and λ. Also substitute λ by ( 1 -- )( ~^
\ j / \

in the expressions ^47 and ̂ 6.
Then, by straightforward calculation, we get

^t = 0 for

A7 = (l-2/?) (-

A6 = (l-

- 1680f 2+840)- 105|4+910|2-59s1

+280£4- 1680ξ2+ 84θ+£2[28f 6-420|4+ 1260?2-420]

A5 = (840-560|2+56?4)?λ3+(l-2/g)(-1680+56^2)?λ2

-70(7+ 104/5- 104/?

2)£λ+ 140(7+ 12/9

- 126|5λ+28(l -2/q) (29+132/q- 132/52)?

_28(l-2/?)(13+24/ί-24/ί

2)£3 ,
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At = 70λ4(3-6£2+£4)+(l-2/3)λ
3(-560+560f2)

+35λ2[-(7+104/g-104/?

2)+(42+72/?-72/5

2)f2-9£4]

+28(1 -2/2)λ[(29+ 132/2- 132/<f)-(39+72/?-72/?

2)£2]

+[-35.875+(l-l/ί)(l/g)(574+7308/?-7308/?

2)]

-7[64.75+(l-l/(7)(l/?)(150+480/<7-480/?

2)]£2+123.375£4,

A, = 56£λ5(-3+?2)+280fλ4(l-2/3)+140£λ3(7+ 12/j- 12/β»-3f)

-84£λ2(l-2/?)(13+24/?-24/?

2)-14fλ[64.75

+(l-l/?)(l/?)(150+480/g-480/?

2)]+493.5f3λ+(375.5

+281/g-216/?2-9456/3

3+14400/?

4-5760/?

5)£)

Λ = 28λ6(-l+f2)+56λ5(l-2/?)+35λ4(7+12/3-12/?

2-9?2)

-28λ3(l-2/?)(13+24/9-24/3

2)-7λ2[64.75+(l-l/?)(l/3)(150

+480/g-480/52)]+740.25?2λ2+λ(375.5+281/ϊ-216/g2

-9456/ί

3+14400/ί

4-5760/?

5)+98.4375+236.25/?

+840(l/g2)(l+6/?-6/<f)-201.8125|2,

,̂ = 8?λ7-126fλ5+493.5fλ3-403.625?λ , and

4, = λ8-21λβ+123.375λ4-201.8125λ2+43.06640625 .

Now, by using 0.2906070<£2<0.2906071 , 7.8539270<fi<7.8539271 ,

1.2065 if ί = l ,

L23058 if * = 3 ,

we get

^8 = 0 if ξ = ξ±1 or ξ±3;

A, = ±e[8£(£ -2ie*+ 105 -̂105)] if ξ = f±1 or f±,

r 1.2
?>30, £ = 0.088258, and |λ, |<J

I 0.̂

IΛI>{

f
IΛI<{

IΛI<{

M l ^" I
4 I "^ I

IΛK
\A2\<

I Λ I <
\AO\<

29.0211

180.544

100.80861

2619.7319

2578

7291

1794

6452

3300

3000

1000

700

if ξ = ξ±ι,

if ξ = ξ±3;
if ξ = ξ±ι,

if ? = ?±3;
if ξ = ξ±l,
if ξ = ξ±3;
if f = f±ι,

if f = e±β;
if 1 = f ±1 <

if f = f±ι <

if £ = £±ι'<

if f = ξ +ι <

= ?±1 or ξ±3;

= ±1 or f±3;

= ξ±1 or |±3;
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When/3>18, \A7\ > \A6\/β+ \A,\jβ2+^ + \A0\/β7. Therefore
φs(x)8l/(f=ABβ

B+A7β
7-\ ----- [-A& and hence φs(x), changes its sign at

x = α+^+(l-2/j)=±0.088258 for i = ±1 and ±3 .

This completes the proof of lemma 4.3.1.

4.4. The remaining cases /3<18, ?>30, and e=8.
By lemma 3.1.1., we have the following.

If there exist perfect 8-codes in H(n, q), then

(1) 8(n-8)lq e Z ,

(2) 28(»-8) (n-7)/?

2 eZ,

(3) 56(n-8) (n-7) (n-όj/tf3 e=Z,

(4) 70(«-8) (n-7) (n-6) (n-5)/q* e Z ,

(5) 56(n-8) (n-7) (n-6) (n-5) (»-4)/g5 e Z,

(6) 28(n-8) (n-7) (n-6) (n-5) (n-4) (n-3)/?

6 e Z ,

(7) 8(n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2)/q7 e 2Γ ,

(8) (n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-lj/^e 2Γ .

Assume /3<18, ?>30, and n>9.

Then / 3 = = - ^ < 1 8 and ?>30 imply that

(n-8)/?<324(30/29)<336 and 8(n-8)/?<2688 .

Lemma 4.4.1. Suppose there exist perfect 8-codes in H(n, q). Then q
=2s3'5/0r some positive integers s and t.

Proof. First, let p be a prime number >7 such that pk\q and />*
for some &> 1. Then, by (1), p* \ (n-8) and, by (7), ρ7k \ (n-8). So we get

8(n—8)lq = /)6*A>76>2688 for some positive integer A.

This contradicts 8(n— 8)lq<2688. Therefore, if p is a prime dividing 5, £ is
5, 3, or 2.

Second, we want to show that 52^q.
Suppose 5*\q and 5k+1^q for some &>2. Then by (1) and (5), we have
55* \ (n— 8). But then we will get

8(n—8)lq = 54kh^5B>2688 for some positive integer h.

Again, a contradiction.
Therefore, without loss of generality, we can say

q = 2$y5 for some positive integers s and ί, if there is any perfect 8-code.
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Lemma 4.4.2 (See [13].). q cannot be 2*3*5 if there exist perfect 8-code in
H(n, q).

Proof. Assume that q=2s3*5 for some positive integers s and t. Then
by (1) and (5), 551 (»-8). Therefore

8(n—8)/<7 = 54k for some positive integer k.

Since 8(«-8)/?<2688, k= 1, 2, 3, or 4 and

n-S = 2'-33<55, 2s-23ίS5, 2*-33<+155 , or Z -^'S5.

But this is impossible if we compare the powers of 3 in the denominator and
in the numerator of expression (3).

Proposition 4.5. There is no nontrivial perfect S-code in H(n, q).

Proof. It is an immediate consequence of 1.2. (i) and (ii), corollary 4.3.2.,
lemma 4.4.1., and lemma 4.4.2.

Thus theorem A is proved.
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