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Introduction

In the theory of integrals on convex sets, a lot of materials is supplied
from the Dirichlet problem of potential theory and motivates the development
of the theory. And a simplicial consideration of cones of continuous or semi-
continuous functions, when reflected upon the potential theory, yields remarkable
results [2], [3], [6])-

In discussing the Dirichlet problem in harmonic spaces, our concern is
laid mainly on the problem of coincidence of the Choquet boundary with the
set of regular boundary points, and of the unicity of the methods which give
reasonable Dirichlet solutions. These problems, rooted on the Keldych’s
lemma of a classical potential theory that every regular boundary point is a
peak point of a harmonic function, were discussed by many authors [1], [3],
[41, [11], [12], [13], [14], [15], [18]. Recently, Biledtner-Hansen [2] gave a
decisive answer and it turns out that both problems are related deeply to the
negligibility of the set of irregular boundary points.

In the present paper, we shall deal with these problems in a resolutive
compactification of a harmonic space. The basic property of resolutive com-
pactifications of harmonic spaces in the sense of Constantinescu-Cornea was
given by J. Hyvonen [7] and the Wiener compactification, which posesses an
extremely heavy boundary, was introduced and discussed [7], [16]. We see that
the situation is quite simple in this heavy compactification, or more generally in
a saturated (semiregular) compactification. However in an arbitrary resolutive
compactification, it is considerably difficult to obtain a neat analogy to the case
of relatively compact open subsets.

Let X be a P-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [5], and X* be a resolutive compactification of X [7], [16].
We shall consider the set $ of functions which are continuous on X* and su-
perharmonic on X. The purpose of this paper is to derive several results on the
Dirichlet problem of X* from the known results of the cone § when § is



882 T. IKEGAMI

simplicial. The first two sections are prepared for the introduction of the fol-
lowing sections. Most of the results stated there are known and will be derived
from the theory of convex cones. In §3, we define a simplicial compactification.
Not all resolutive compactifications are simplicial. The characterization of sim-
plicial compactifications is given in Theorem 3.4. Hinted by [3], we define
weakly determining compactifications. Every saturated compactification is weak-
ly determining, and every weakly determining compactification is simplicial if
S contains a negative function. §4 deals with the Choquet boundary defined
by the cone S. Every Choquet boundary point is a regular boundary point
of the Dirichlet problem. The converse is also valid when X* is weakly de-
termining. 'The latter half of this section is devoted to the study of the Choquet
boundaries of compactifications which are quotient of the saturated one and the
Choquet boundaries of open subsets of X. The results are similar to those
obtained for regular boundary points [9], [10]. If we consider the compactifi-
cation G (the closure of G in X*) for an open subset G of X, the Choquet bound-
ary point lying in X coincides with the Choquet boundary point of Bliedtner-
Hansen [2] (Theorem 4.7). In the last section, we define Keldych operators of
X* and give a criterion for compactifications being of type K, i.e., compactifica-
tions possessing a unique Keldych operator.

1. The convex cone S

This section and the next serve a preliminary step for the further sections.
Whereas the results stated there are almost known or immediately derived from
the theory of conevx cones [2], [3], [17], we give the brief proofs for complete-
ness.

Let X be a P-harmonic space with countable base in the sense of Con-
stantinescu-Cornea, and let X* be a resolutive compactification of X and A=
X*\X [7], [16]. We denote by S the set of continuous functions on X* which
are superharmonic on X. & is an inf-stable convex cone. It is assumed that
S contains a bounded function s, such that inf ys,>0.

Let M be the set of non-negative Radon measures on X*. For u,ve M
we define p<v if p(s)<w(s) for every s€S, and p~v if u<v and v<u. We
also define for x& X*

L%/l:: = {/"Eﬂ’ /"‘(X) = O) .u'<£x} ’

where &, is the Dirac measure at x.
For an upper bounded function f and x& X* we define

f(x) = inf {s(x); s€ M, s> fon A} .

Proposition 1.1. [17] If n& M and f is an upper bounded function on A,
then ,u(f):inf {u(s); s€S, s> fon A}.



SimpLICIAL CONE OF SUPERHARMONIC FUNCTIONS 883

Proof. Let a=inf{u(s); €S, s>f on A}. Then u(f)<a<-+oo. Let
{s.} be a decreasing sequence of functions in & such that 5,> f on A and lim,u(s,)
=¢. It is not difficult to show that

s({xEX*; f(x)>fx)}) =0,
where f'=lim, 5s,. We have thus [L(f)z/.b(fl):—d, since f’ >f.

Proposition 1.2. [3], [17] If pE M and [ is an upper bounded, upper semi-
continuous function on A, then there exists ve M such that v(X)=0, v<p and v(f)
:u(f). Further

w(f) = sup {o(f); vE€ M, »(X) =0, v<p} .
Proof. [1°] consider the case where f is continuous. Since
Pu(p) = inf {u(s); s€S, s> on A}

is subadditive and positively homogeneous functional on the space C(A) of func-
tions finite and continuous on A, by the Hahn-Banach theorem, there exists a
linear functional F on C(A) such that

F(p)<Pu(p) for every pC(4),
F(f) = Pu(f) = u(f) (Prop. 1.1).

Since F is positive, F' defines a measure pu, & M such that py(X)=0 and p,(@)=

F(p) for every p=C(A). Itis easily seen that u,<p, thus ,u.(f"):P,L(f)zF(f)z

wm(f)<sup{v(f); ve M, »v(X)=0, v<p}. The converse inequality is obvious.
[2°] let f be upper bounded and upper semi-continuous.

A = reM; v(X) =0, v<u}
is compact in the vague topology of 9. Letting
G= {peC(A); f<pon A}
and considering »() as a function of », we have by [1°]:
sup {¥(f); vEA} = sup[inf {v(p); pEG}; vEM] =
inf[sup {v(@); vE Au}; pE G] = inf {u(P); p= G} =
inf[inf {u(s); s€ S, s>¢ on A}; pef]>
inf {u(s); s€S, s> fon A} = u(f) (Prop. 1.1).
The converse inequality is obvious.

A measure p& M is termed to be minimal if

veM, v(X)=0,v<p=v~p, ie., v(s) = u(s) for every s€S.
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Proposition 1.3. [3] The following assertions are equivalent :

1)  uis minimal,

2) w(d)=mut) for every —teS,

3) fveM, v(X)=0, v<pu and voiu, then there is —t &S such that p(t)=

w(t) and v(t) =+ u(2).

Proof. 1)= 2): let —t& S, then, by Prop. 1.2, there exists v& M, v(X)=
0, v<u, »({)=p(?). Since g is minimal we have y,(t)=v(t)=p,(f).

2) => 3): this is an immediate consequence of

{t; —t€S, u(d) = u@)} = {t, —t€S}.

3)=1): let veE M, »(X)=0, v<p and —t€S, w(f)=p(t). Then w(f)=
inf {p(s); s€S8, s>t on A} > inf {p(s); s€S, s>t on A} >»(¢)> pu(t) implies p~
v, i.e., u is minimal.

A function v is called concave (resp. convex) on X* if p(v) <v(x) (resp. ()
>v(x)) for every pe M, and xX*. A function is called affine on X* if it is
concave and convex on X*.

A
Let & be the set of functions lower bounded, lower semi-continuous and
A
concave on X*. & is a convex cone containing S.

For a convex cone & such that SC G & we have

Proposition 1.4. [3] For every upper bounded, upper semi-continuous function
f on A we have f(x)=f9(x) for every x&X*, where f9(x)=inf {v(x); vE G, v> f
on A},

Proof. We have, by Prop. 1.2, a measure »& ¥, such that u(f):f(x) v(f)

<inf{y(v); vEZ, v> fon A} <inf{ov(x); vE G, v> fon A} —=£9(x), since »(v)<
v(x) for every v . 'The converse inequality is obvious.

Corollary 1.5. [3] Let u, ve M and v(X)=0. Then v<p if and only if
v<p, where v<p means that v(v) < u(v) for every ve g.
g 1%

For supposing » < pu, we have for ve &
o(v) = sup {u(f); fEC(A), f<v on A}
< sup {»(f); fEC(A), f <v on A}
< sup {u(f); fEC(A), f<von A} (Prop. 1.1)
= sup {#(f’ﬁ‘), fel(A), f<von A} (Prop. 1.4)
< sup[inf {u(v'); o'€S, f<v’ on A}; fEC(A), f<v on A]
< u(2).

The converse is trivial.
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Corollary 1.6. [3] M,= ME for every x = X*, where MEZ={pEM;
M(X)=O, /“'éex} .

Corollary 1.7. [3]
(1) of pis G-minimal (i.e., if vE M, v(X)=0 and v< p, then v(v)=u(v) for
g

every vE Q), then p is minimal,
1) of peM, p(X)=0 is minimal, then p is G-minimal. In particular, for
xXEA, if &, is minimal then &, is G-minimal.

Proposition 1.8. [3]

(i) let v be upper bounded, upper semi-continuous and concave on A, i.e., u(v)
<o(x) for every pE M, and xA. If f is lower bounded, lower smei-continuous
on A and v< f, then there exists s€ S such that v<s< f on A.

(ii) let v be bounded, lower semi-continuous and concave on A. If f is upper
bounded, upper semi-continuous and f <v, then there exists SE S (the closure of S in
C(A) in the topology of sup-norm) such that f <§<v on A.

We shall sketch the proof; the detail is refered to [3] Th. 1.5.

(i) is an immediate consequence of v=% on A. To prove (ii), we construct,
by induction, functions g,&C(A) and 5, such that f<g,<v and g,<g,n<
Sur1 <8, < g,+(1/2")s, on A. ~ Then §=lim, s, is the required one.

2. Simplicial cones

In this section we consider the case where & is a simplicial cone. Sim-
plicial cones were defined and investigated in a general context [2], [3]. Ac-
coding to it, we define: S is simplicial if M, has the unique minimal measure
w, (with respect to the preorder <) for every x&X*.

Proposition 2.1. [3] Let S be simplicial. If u is continuous and convex on
A (i.e., p(u)=>u(x) for every p€ M, and xE A), ther 4 is affine on X*.

Proof. We prove that u,(u)=#(x) for every x& X*, where p, is the unique
minimal measure of H,. By Prop. 1.2, we have

p4(t) = #(x) for every t€ — S and x&X* .
Since —u is concave on A, (i\u)=—u on A; for
——u(x),<_(—f—\u) (%) = sup {v(—u); ve M,} < —u(x) whenever xEA .
From this we have
o) = (C) = inf({ps(s); s€S, s> (—u) on A}

or equivalently,
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l‘z(u) = sup {l‘s(t); —t€S, t<uon A}
= sup {{(x); —tES, t<uon A} .

Applying Prop. 1.8 (i) to functions —u and —u+& for £>0. we may find —¢,
€S such that 0<u—#, <& on A. This implies that

4(x) = sup {f(x); —t€S, t<u on A} .

And, combining this with above, we have p (&)=%(x).
Let x&X* and pE M,.

(%) = inf {u(s); s€S, s>u on A}
> inf {u.(5); sS€S, s>u on A}
> po(u) = 4(x)
and
w(#) = inf {u(s); SES, s>u on A}
< inf {s(x); s€S, s>u on A} = A(x).

Thus, we have that u(#)=%(x) for every u€ .M, and xX*, i.e., 4 is affine on
X*,

Proposition 2.2. [3] Suppose that S is simplicial or more generally suppose
that 4 is affine on X* for every funciion u continuous and convex on A. If —t and
s are continuous and concave on A and t<s then for every §>0 there exists, —op,
\r which are continuous and concave on A satisfying t<p<<s and yr—p<Es,
on A.

Proof. Let
A= {€set+p—; —p, y&C(A) and concave on A such that t<p < <s}

and
B= {feCr);f>0}.

The sets A and B are non-empty convex subsets of the Banach space C(A) and
B is open. Suppose, for a moment, that AN B=(, then there exists a conti-
nuous linear functional A on C(A) such that A<<0 on 4 and A>0o0n B. This
functional defines a measure on A which will be denoted by the same A. By
Prop. 1.1, there exists s;&S such that #<s5;<s on A and h(s1)<7\,(f)—l—87x(so).
Since £ is affine on X* from our hypothesis, applying Prop. 1.8 (ii) to functions
—s; and —7 we may find —@&S such that —s,<—@<—% on A. Clearly,
—¢@ is continuous and concave on A. Summing up above considerations we
have

tSI?S¢S.ﬁSs on A
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and
A(521) —MP) <A (51) — ME) <EN(so) -

Thus, we are led to a contradiction, since & sp+@—s,E A and A(€ s,+p—s;) >0.
Hence, AN B=( which assures the required functions.

Theorem 2.3. Suppose that S is simplicial or more generally that 4 is affine
on X* if u is continuous and convex on A. If —q and ) are upper bounded, lower
semi-continuous and concave on A such that ¢ <+, then there exists a function u* &
C(X*) which is affine on X* and p<u*<+r on A. Moreover u*=H,, on X,
where H « denotes the Dirichlet solution of u* for X*.

Proof. Let f&C(A) such that < f <+ on A. By Prop. 1.8 (ii), there are
functions —v, we C(A), concave on A and p<v< f<w<+r on A. Using Prop.
2.2 successively, we have the sequences of functions {—v,}, {w,} which are con-
tinuous and concave on A and satisfying on A

vgvnsvn+1£wn+1£wnsw )
w,—0,<(1/2%)s, .
The function =lim,v,=lim,w, is clearly continuous and affine on A and p<u
<+. By assumption, both functions # and (—u) are upper semi-continuous and
N
affine on X*. But #=—(—u)=wu on A; for
() = sup {u(u); wE I} = u(x),
—(—u) (x) = —sup {p (—u); LEM} = —(—u(x)) = u(x) .

AN
Also, #=H,=—(—u) in X; since for a&X the harmonic measure A, (with re-
spect to X*) is obviously contained in ¥, and # is affine on X* we have

H,(a) = Hi(a) = 7"a(ﬁ) = ﬁ(a) ’
and in the same way
A
—(—u)=H,.
Thus, u*=1% fulfils the requirements of the theorem.

Corollary 2.4. If S is simplicial then SN (—S8)=0.

3. The simplicial compactification

A resolutive compactification X* is called simplicial if S is simplicial,
i.e.,, M, has the unique minimal measure p, for every x& X*.

It is known that if we consider the closure G of a relatively compact open
subset G as a compactification, then G is simplicial [2]. However, as is shown



888 T. IKEGAMI

in the following example, not every resolutive compactification is simplicial:
ExampLE 3.1. Let
X = {(w, %) € R*; 1 <xi+x} <SP\[{(w, %) € R 61 +x3 =37 U {(2,0)} U {(#,0)}]

and consider the harmonic structure on X defined by the solutions of the Laplace
equation. We compactify X so that the ideal boundary consists of three points
{a,b,c}, where

a= {(x, x,)ER*; x}+x5 = 1},
b = {(x), x,) ER?; xi+x5 = 3%} U {(2, 0)} U {(4, 0)} ,
¢ = {(x, x,) ER?; xi+x5 = 5%} .

Then X* is resolutive and S separates points of A. But & is not simplicial. For,
consider the function F continuous and concave on the interval [0, log5], linear
on each interval [0, log2], [log2, log4], [log4, log5] and constant on [log2,
log4k s(xy, x,)=F[log(xi+x3)*]leS. If S is simplicial, then by Prop. 2.1,

—(—s¢) is affine on X*, moreover it is constant, thus
mo(s) = min[s(a), s(c)]

Suppose that p,=I1E,+m&,+n&,, where I,m,n are non-negative; if s(b)>s(a)>
$(c)=0, then 0= p,(s)=Is(a)+ms(b) implies [=m=0. In the same way, if s(b)>
s(c)>s(a)=0, then m=n=0, thus p;=0. This is however impossible since for
the positive constant function u, ws(u)=1u(b)>0.

Proposition 3.2. If S separates points of A, i.e., for every distinct points x,y
E A there exist s, 5, S such that s,(x)s,(y) F5,(y)s(x), then a measure p, p(X)=0
is minimal if and only if ,u(f)—-,u(f) for every feC(A).

It is sufficient to prove the “only if”’ part. By Prop. 1.2,
w(f) = sup {v(f); vE M, »(X) =0, v<p} .

The minimality means p(s)=v(s) for every s&S and u(s,—s,)=v(s,—s,) for every
1, €8, and finally p=v, which induces p( f )=pu(f) since the vector lattice S—
& is dense in C(A) in the topology of sup norm.

Now we shall give a criterion of a simplicial compactification.

Theorem 3.3. [2],[3] Suppose that S separates points of A and let G
be a convex cone of lower bounded and lower semi-continuous concave functions on
A, containing all function continuous and concave on A. Then the following asser-
tions are equivalent :

1) X*is simplicial,
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2) 4@ 1is affine on X* if ue — G,
3) for every —u,vE G which are upper bounded and u<v on A there exists
h continuous and affine on X* such that u<h<v on A.

Proof. 1)=2): if ue€ —G& and pE M, for xX*, by Prop. 1.2, we have
AEM, MX)=0, A<p and w(#)=n(x). Since #(x)=sup {v(¥); vE M.} =p.(u),
where p, is the unique minimal measure of ¥,, the inequalities

1) < p(#) = inf {p(s); s€S, s>u on A}
< inf {u(s); s€S, s>u on A} = () = A1) < us(w)

(the last inequality is the consequence of Cor. 1.5 since u, <) induce

w(l) = pfu) = A(x) .

2) = 3): this is proved in Th.2.3.

3)=1): let u, p’E M, be minimal for x& X*. For t—S, by Prop.1.2,
we have A& M, M(X)=0, A< g such that u(f)=n(t). Since x is minimal A= p.
We prove that f(x)zp(t); for

{(x) = inf {s(x); SES, s>t on A}
> inf {u(s); s€S, s>t on A}
— u(f) > inf {u(h); he C(X*), affine on X*, h>t on A}
= inf {A(x); he C(X*), affine on X*, h>t on A}
> inf {o(x), vE S, v>1 on A}
= #8(x) = #(x) (Prop. 1.4).

Thus, #(x)=u(f)=7#)=w(t). In the same way, f(x)=p'(). Hence, u(t)=u'(2)
for every t€ — &, i.e., u=p'.

ReMARK. We can prove Theorem 3.3 for any convex cone & of lower
bounded, lower semi-continuous concave functions on A containing the re-
strictions on A of all functions of §. Let

2"y 4 is affine on X* if u is upper semi-continuous and convex on A,

2"y 4 is affine on X* if uc — S, where S denotes the uniform closure of S in

c(a),

2"y % is affine on X* if u is the restriction on A of a function of — S,

3) for every —t,s€S and t<s on A, there exists h continuous and affine

on X* such that t<h<s.

By Th.3.3, 1)=2’); obviously 2')=2) and 2')=>2")=2""), but it is easily
proved that 2”/)=>2"). From the proof of Th.2.3, we get also 2”/)=3) and
3")=1). Thus, we have conclusively:

N=2)=2)=2")e2")=3)=3)=1).
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Theorem 3.4. The propositions 1), 2), 2'), 2""), 2" ), 3), and 3') are equivalent.

In [7], J. Hyvonen defined the oder relation in the resolutive compactifica-
tions of X. Let X* and X** be resolutive compactifications of X. We call X*
is a quotient of X** and denote it by 'X* < X** if there is a continuous mapping
w of X** onto X* such that z(a)=a for every acX. The mapping 7 is
called canonical.

A resolutive compactification X* is termed to be saturated (or semi-
regular) if all Dirichlet solutions Hy s, of FEC(X*) can be extended conti-
nuously on X*. X* is saturated if and only if X* is homeomorphic to X",
where X9 js the Q-compactification of X [7] and

OX*) = {F|X; FEC(X*)} U {Hpia; FEC(X™)} .

As in [8], [9], we can prove that X" is the smallest saturated compactifica-
tion possessing X* as a quotient, i.e., if X** is saturated and X*<X** then
XXM X**  Furthermore, if X*<X**< X" then the smallest saturated
compactification of X** is XX je., X9** is homeomorphic to X9X*™,

We introduce here the harmonic boundary T' of X*:
I' = N {T,; p is a potential on X},

where T',={xEA; lim, p=0}. The harmonic boundary T' plays an important
role in the theory of resolutive compactifications [7], [16]. It is known that if
X* < X** then #(T**)=T"%, where T"* (resp. I'**) denotes the harmonic boun-
dary of X*(resp. X**) and # is the canonical mapping of X** onto X*. Further,
all points of T'9™" (the harmonic boundary of X?*") are regular with respect to
the Dirichlet problem for X9**. The Dirichlet solutions H , are solved for data
functions f defined only on T [7].

Proposition 3.5. If X* < X** < XX then T* is homeomorphic to T*¥*,

Proof. It is sufficient to show that the canonical mapping 7 of X%** onto
X* is one-to-one on T'¥*".  For p=C(T'%*™) and €>0 we may find, by the
same argument as in [8], a function f&C(T*) such that supy|H,—H{ | <¢,
where H (resp. H{) is the Dirichlet solution of f (resp. @) for X* (resp. X9*"),
From this it is easy to construct fy& C(I'*) such that H; =HJ. Suppose that
Xy, %,€TY and z(X,)=n(%,)=x. Then X,=2%,, for if X,4X,, then there exists
PE () and f,& C(T") such that o(%,)F@(%,) and Hf=H;. We have then
Hf . .=H;,=H{. Since all points of T'%*" are regular, @p=fyom on I'?*",
Thus we have led to a contradictoin: @(X,)=f,[z(X,)]|=f,[z(Z,)]=p(ZX.).

Theorem 3.6. A saturated compactification X* is simplicial and the minimal
measure ., 1s
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As if xeX
&, if xeT’
v if x€A\T",

B =

where A, is the harmonic measure of x and v is the measure such that v(f)=H ,(x)
Jor every f €C(A).

Proof. We note that {H,; feC(A)}CS. Forte—S, H=—H_pESN
(—S), i.e., Hy is affine on X*; and #=H, on X*, for s€S, t<s on A implies ¢<
H,<H,<s, thus, by Th.3.4, X* is simplicial.

If x€X, then A,€H, and A, (X*\T')=0 [7], which means £, (f)=Hj(x)=
H(x)=2x,(2), since f=tonT. ForxET, E,(ﬁ=8,(t). And finally, for x& A\T,
»E M, »(X*\T')=0 and »(f)=v(t). By Prop.1.3, A, &, and » are minimal.

RemARks. 1. Later (§4) we shall see that in a saturated compactification
X* the Choquet boundary of X* for S is T.
2. It is obvious that A, =&, for x&X and v=+¢, for xA\T".

Hinted by the notion of weakly determining sets [3], we shall define that
a resolutive compactification X* is of type (WD) if for every s€ S, there exists
an upper directed family {h} of functions continuous and affine on X* such
that

sup, k,(x) = lim, H, for every xT".

Porposition 3.7. Every saturated compactification is of type (WD) and a
compactification of type (WD) is simplicial if S comtains strictly negative functions.

Proof. The first half is an immediate consequence of H,=—H_y&SN
(=38).

To prove the second half, in view of Th.3.4, it is sufficient to prove that for
every —t,s€S with t<s on A, there exists % continuous and affine on X*
such that £<A<son A. Then, for some >0, t<t—ns;<s on A, where s, is a
strictly negative function in S. Since t<t—ns,<H,—nH, <H,<son X, #(x)<
lim, H, for every x€ A, and therefore we have a function 4 continuous and affine
on X* such that t<A<son T and t<A<son A.

4. The Choquet boundary

In the following, we suppose that S separates points of I'. We define
the Chogquet boundary

Chs X* = {xeX*; MU, = {&}}.

First we shall show
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Proposition 4.1.
Chs X*CA,sCT,
where A denotes the set of regulaf; boundary points.
To prove Prop. 4.1, we prepate

Lemma 4.2. Given s€S and x€ A, there exists x& M, with A(A\I")=0
such that \(s)=lim, H.

Proof. We consider the saturated compactification X9** defined in the
preceding section. Since H, has the continuous extension on X?** (we denote
this extension by the same H,), we may find a point X&z~'(x) N X?*" such that
lim, H.=H (X), where 7 is the canonical mapping of X9*" onto X*. The
mapping of C(A), f—H /(%) define sa positive Radon measure A on T". Since A(s")
=H(%)<lim, H,<s'(x) for every s’ €S, nE HM,.

Proof of Prop. 4.1. By Lemma 4.2, for every s&€§ we obtain A& M,
satisfying M(A\I')=0 and A(s)=lim, H,. If x&ChsX* then, since A=E,, s(x)=
A(s)=lim, H,<Iim, H,<s(x), i.e., lim, H,=s(x) for every s&€S and, since S— S
is uniformly dense in C(T"), lim, H ,=f(x) for every f€C(A). This implies that
%€ AgCT, since T is the carrier of harmonic measures [7].

The following proposition shows a role of the harmonic boundary in the
theory. We define

HE = {w€ M,y p(X*\T) = 0} .

Proposition 4.3. For every us M, there exists ve M¥ such that v<pu. In
particular, we have

Chs X* = {x&X*; Mt = {€,}} .

Proof. Since Pu(f)=inf {u(s); s€S, s> fon T’} defines a subadditive and
positively homogeneous functional on C(T"), there exists a positive Radon measure
v on I satisfying »(f)<Pu(f) for every f&C(I'). We can derive readily that
ve M, v<wp. If M¥={c,} and ue M, then &, < u<E,, this implies that w(f)
=f(x) for every f €C(T"), and finally, x&T, p=E¢,.

Proposition 4.4. [3] If X* is of type (WD) then, Chs X*=A .

Proof. Suppose that xEA,; and ve MF. By definition, for every s€S
there exists an upper directed family {4} of functions continuous and affine on
X* such that lim, H,=sup, k,(x) for every x&I'. On the other hand, we may
find a minimal measure p € H¥ so that u <v. Since &, <son T" we have k#,<s
on A. Therefore s(x)=lim, H,=sup, k,(x)< sup {t(x); t€—3S, t<s on A} <
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A
sup{u(t); te —S, t<s on A}=—inf{u(s');s'€S, s'>—s on A}=—pu(—s).

AN
Since p is minimal, by Prop.1.3 u(—s)=pu(—s), therefore s(x) < pu(s) <v(s)<s(x),
i.e., v(s)=s(x) for every s&€S. Finally, since S is total in C(T"), we have v=¢,
and xeChs X*.

Theorem 4.5. Suppose that X* < X** < XX and let n be the canonical
mapping of X** onto X* and S, be the set of functions continuous in X** and super-
harmonic in X. Then Chs X* Crn (Chs, X*¥).

Proof. Since, by Prop.3.5, I'* is homeomorphic to I'** we identify these

harmonic boundaries and denote it by I". Making a proper identification we
have SC§,, thus M*¥SiC M¥S and MFS={¢,} implies M¥S:1={¢,}, which
means Chs X* Cz(Chs, X*¥*).

Next, for an open subset G(#X) of X* we consider the harmonic space X
=GNX. The closure X, of X, in X* is a resolutive compactification [10]. We
write A(Xy)=X,\X,=(ANG)UJG, where 3G=(G\G)N X, and S,= {s; conti-

nuous on X, superharmonic in X,}.
Theorem 4.6.
(Chs, X)) NGNAC(Chs X*)NG.

Proof. Assume that x&(Chs, X,)NGNA. For feC(A) and s€S, such
that s> f on A, we define

{f on GNA
sup s on dG .

The function @ is upper semi-continuous on A(X,). From Prop. 1.2 and our
assumption,

PSo(x) = inf {s'(x); s'E Sy, s’ =@ on A(Xy)}
= sup {(g); H(ENACKD) = 0, » <6} = (o)

Hence, for evrey €>0 we may find s’ €S, such that s'>@ on A(X,) and s'(x) <
@(x)+E=f(x)+&. The function

B {s on X*\ X,
"7 linf(s, ') on X,

isin S and 5,> fon A. Thus we have
fE)<f) <si(#)<s' () < flx)+-¢ -
This implies that f(x)=f(x) for every f € C(A), and finally x& Chs X*.
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Two parts of Choquet boundaries (Chs, X)) NGN A and (Cks X*)NG do
not coincid in general. This is seen in the example of [10] (p. 182), which is
the example showing the same situation for regularity.

In [2], Bliedtner and Hansen considered the Choquet boundary of an open
subset G of X and showed that every point of the Choquet boundary has a
local property. More precisely, let
S(X,) = {v€C(GN X); superharmonic in X, and | v | < p for a potential p on X},
550 (x) = inf {o(x); vES(X,), v> fon GN X},

MA(S(X,)) = {; positive Radon measure on G N X, pu(v) < v(x) for allv e S(X,)} ,
Chsixp(GNX) = {x€GNX; M(S(X)) = {e.}}
Then, if x&Chgx,)(GNX) and U is a relatively compact open neighborhood of

x, then x&€ Chggyyy (G N U) and vice-versa ([12], Prop.3.11)
We remark that if tAS(Xo)(x)zt(x) for every t& — P, where P is the set of finite
continuous potentials on X, then x& Chgx,,(GN X). For, letting p & M, (S(X,)),

we have
t(x) = 1550 (x) = inf {o(x); v€S(X,), v=>t on GN X}
> inf {u(v); v€S(X,), v=>t on GN X}
> u(t) > t(x) .
By the approximation theorem, u(f)=f(x) for every f € C,(G N X).

Theorem 4.7.
(ChSo Xo) NoG = Chs(xo) (G' nx).

Proof. First, assume that x&(Chs, X;) NG, t —P. The function

{t on 0G
P = ~
0 onGNA

is upper semi-continuous and <0 on A(X,). By Prop. 1.2, we have

() = p(x) = PSi(x) = inf {5(x); s€ Sy, 5= on A(Xo}

inf {inf(s, —?) (x); s€S,, s> on A(X,)}
inf {o(x); veS(X,), v=>t on 8G}

= inf {o(x); vES(X,), v=t on GN X}

— 50 (x) .

>
>

Thus we have #5%0 (x)=t(x) for every t& — P, and, by the preceding remark,

xEChs(xo)(G' NX).
Next, suppose that xeChs(Xo)(G NX). Let D=GNU, where U is a relati-
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vely compact open neighborhood of x. By a local property of the Choquet boun-
dary point, x&Chg) (D). For te — S, and s€ S, such that s>¢, the function

{t on A(G)ND
sups onGNAU

is upper semi-continuous and upper bounded on 3D. Then $5P (x)=e(x), thus
for every £€>0 we may find v €.S(D) such that v>¢ on 0D and

o(x) < PSP (x)+-& = p(x)+E = t(x)+E.
The function
{ s on G\D
" linf(v,5) onUNG
isin S, and 5;,>¢ on A(X,). Hence,
1So(x) < s,(%) < v(x) < (%) +E

which means that #So(x)=1(x) for every t& —S,, and, by Prop. 1.3, we can con-
clude that x&(Chs,X,) N 0G.

ReEMARK. The regular boundary points enjoy the same properties stated
in Theorem 4.5, Theorem 4.6 and Theorem 4.7 [9], [10]. It is remarkable
and interesting to point out this similarity of the Choquet boundary and the
set of regular boundary points.

5. Keldych operators

In a relatively compact open set U, the unicity of Keldych operators, that
is operators forming reasonable Dirichlet solutions, depends on the set of ir-
regular boundary points. This was established by J. Luke$ [13], in virtue of
a theorem of Bliedtner-Hansen [2]. In the case of arbitrary open set the author
proved that modifying the definition of Keldych operators, the same result
holds for normalized Dirichlet solutions [11]. In a resolutive compactification,
while we can not expect too much we obtain several results which are of some
interest.

Throughout this section, when we consider a simplicial cone &, p, always
denotes the unique minimal measure of H,.

A Keldych operator L is defined to be a mapping of C(A) into the space
of haimonic functions on X such that

1) for every ac X, .L/(a) defines a positive Radon measure », on A,

2) L,<son X for every s&€S.

It is clear that the Dirichlet solutions H, form a Keldych operator, and
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H (a)=x,(f), where A, is the harmonic measure. And if X* is simplicial then
L(a)=p,(f) is a Keldych operator, for, by Prop. 2.1, f(x)=p,(2) is affine for
every t& —S, hence p,(£)=#(a)=r,(%) is harmonic on X.

Lemma 5.1. [13] Let v, be a measure associated with a Keldych operator L.
Then for every ac X, v,<\,. And,if S is simplicial, p,<v,.

Proof. L,<s for every s&€S. This implies v,& M, Since L, is har-
monic, bounded above and lim £, <s on A, we have .£,<H,. Thus v,<\,.

We denote by L. the set of x& A such that
lal_gl Li(a) = f(x)  for every fEC(A).
Propositton 5.2. [13] If S separates points of A,
Chs X*C LregCTAreg -

Proof. As in the proof of Lemma 4.2, for every s&€S we may construct a
measure vE M, such that v(s)=lim, /. Thus, if & Chs X* then s(x)=lim, L
for every s€ S and, since S—S=C(A), f(x)=lim, L, for every f € C(A); that is,
XE L og.

Next, we suppose that x&_L,.,. Then, by Lemma 5.1,

$(x) = lim v,(s) <lim A,(5) = lim H (a)<s(x),
which means s(x)=1lim H (a) and similarly, s(x)=Ilim H(a). Therefore we con-
clude that xE A .

A set ECA is called polar if there exists a non-negative superharmonic
function v on X such that lim v(a)=+ o for every x€E. E is polar if and
ayx

only if H,,=0, where X, is the characteristic function of E.

A resolutive compactification is called to be of type K if it has a unique
Keldych operator, i.e., .L;=H,.

In the sequel, we assume that S separates points of A.

Proposition 5.3. If A\ChsX* is polar then X* is of type K.

Proof. Suppose that L is a Keldych operator. Let v be a non-negative
superharmonic function on X such that lim, v=+ o for every x€ A\ChsX*.
For f&C(A) and £€>0, we consider the superharmonic function w=H ;—_L,+
&v. It is readily derived that lim w>0 on A; in fact, for x&€ChsX* lim, H,=
lim, L;=f(x), and for x€ A\ChsX* lim, w=+ oo, since |H,| and |.L,| are
dominated by some function in S. Hence, H,— [;+&v>0 and H,>.[,.
Similarly we have L, > H .
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Theorem 5.4. Let
1) A\ChsX* is negligible, i.e., A, (A\Chs X*)=0 for every ac X,

i) A\ChsX* is polar,

i) X* is of type K,

V) No(£)=n,(2) for every ac X and t€ — .

Then we have 1)=>ii)=>1ii). Further, if X* is metrizable and simplicial then
ili)=> iv)=>1).

Proof. From the definition of polar sets and Prop. 5.3, i) & ii)=>iii) are
derived immediately. Suppose that X* is metrizable and simplicial. Then iii)
= iv); for in this case we have A, = p, and A, (f)=H3(@)=p,(t)=A,(t). To prove
the last part of the theorem, we consider a countable family {s,} of S which is
total in C(A). Then,

- A
ChS X* = “Dl{xEA; su(x%) = —(—s,) (»)} .

Hence, if A\ChsX* is not negligible, then there exists a= X and s,€S such
A AN
that A, ({xEA; 5,(x) > —(—s,) (x)})>0. Therefore, A, (—s,) <N (—s,).

Corollary 5.5. Let X* be metrizable and simplicial compactification of type
K, and X* < X** < X9XM, Then X** is of type K.

This is an immediate consequence of Th.4.5 and Th.5.4.

RemMARK. The set of Keldych operators forms a convex set. A, (f)=H 4(a)
is an extreme point of this set and, if X* is simplicial, p,(f) is also extreme.
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