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By introducing the notion of impulsive control of a diffusion process A.
Bensoussan—].L. Lions ([1]) showed that if the solutoin of a quasi-variational
inequality has sufficient regularity (twice differentiability and continuity), it
turns out to be a pay-off function. Furthermore they constructed the optimal
strategy out of the solution. But the regularity problems remained open. On
the other hand M. Robin ([7]) has set up an impulsive control problem of a
general Markov process with a Feller transition semi-group and has constructed
the optimal strategy out of the pay-off function which was characterized however
in terms of the semi-group rather than the generator of the basic Markov pro-
cess. As for the characterization by means of the quasi-variational inequality the
regularity of the solution was still assumed in order to identify the solution
with the pay-off function like that of Bensoussan-Lions. Regularity problems
of elliptic or parabolic quasi-variational inequalities have been studied by L.A.
Cafarelli—A. Friedman and others (cf. [2], [5]) under the condition that the
diffusion and drift coefficients have sufficient regularity. Cafarelli-Friedmans’
work, combined with Robin’s, establishes completely the relationship between
impulsive control problems and quasi-variational inequalities with respect to
nice diffusion processes.

Our objective is to extend this relationship to general symmetric Markov
processes associated with regular Dirichlet spaces. We prove that the pay-off
function is characterized by the weak (maximum) solution of the quasi-varia-
tional inequality defined cn the Dirichlet space (Theorem 2 in §2). Since we
assume only that the Dirichlet space is regular, Theorem 2 establishes the re-
lationship for a wide class of processes. It applies as well to symmetric diffu-
sion process with measurable coefficients and symmetric Markov processes with
non local generators (cf. [4]).

Our approach is more potential theoretic than others and accordingly the
regularity questions can be dispensed with. Indeed we use the potential theory
of Dirichlet spaces and Markov processes developed in [4]. The same method
has been used in [6] to establish the relationship between variational inequalities
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and optimal stoppings and in [8] to include stopping games.
We would like to express our hearty thanks to Professors M. Fukushima
and T. Sirao for valuable advice and also to Mr. S. Sato for useful discussions.

1. Quasi-variational inequalities on regular Dirichlet spaces

Let m(dx) be a non-negative everywhere dense Radon measure on a locally
compact Hausdorff space S with countable base. Suppose that (&, £) is a
regular Dirichlet space relative to L*(dm):

i) & is a dense linear subspace of L*(dm),
ii) & is a symmetric bilinear form on F X &,
iii) & is closed with respect to &-norm, where &(u, v)=E(u, v)+(%, v), (4, v)

denoting inner product of L*(dm),

iv) unit contraction operates, that is, if v=(0Vu)A1l, u€F, then vEF and

E(v, v)=E(u, u),

v) FNCS) is dense in F with &,-norm as well as in Cy(S) with uniform
norm, Cy(S) denoting the space of all continuous functions on S with
compact support.

DerFINITION 1.1. The capacity of a subset of .S is defined as follows: for
open set ACS
Cap(4) =

otherwise,

{inf {€(w,w); usL,} if Ly%¢,

where L,= {ueSF; u=1 m-a.e. on A} and for general set BCS
Cap(B)=inf {Cap(4): BC A4, A is open}.

DeFINITION 1.2. A subset B of S with Cap(B)=0 is called almost polar
and ‘“‘quasi-everywhere” or “q.e.” will mean “except for an almost polar set”.

Let S,=S U A be the one point compactification of S. When S is already
compact, A is regarded as an isolated point. Any function on S is extended
to a function on S UA by setting f(A)=0.

DerFINITION 1.3. A function f defined q.e. on S is said to be quasi-con-
tinuous (resp. quasi-continuous in the restricted sense) provided that for each
&€>0 there exists an open set GCS such that Cap(G)<<¢ and f|s_; (resp.
flsa-¢) is continuous.

It is known that each u€ < admits a quasi-continuous modification # in the
restricted sense in the case that (<, €) is a regular Dirichlet space: u=# m-a.e.
and # is quasi-continuous in the restricted sense (cf. [4]). Hereafter # denotes a
quasi-continuous modification of u€F. & denotes the subset of F consisting
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of all quasi-continuous functions in the restricted sense.
Let v(dx) be a given non-negative Radon measure of finite energy integral,
that is, there exists for each @>0 a unique function U,pEF such that

(11)  EyUyr,v) = Ss'v(x)v(dx) for each v€F N Cy(S) .

Suppose that M is an operator defined on &F such that

(M.1) Mu is a Borel function for any u€ %,

(M.2) Muy(x)< Muy(x) Vx if u,(x) Suy(x) q.e.,

(M.3) Mu(x)=0 "x if u(x)=0 qg.e. and

(M 4) l,.lfal, Mu,(x) = Mu(x) Vx if u,(x) | u(x) q.e.
We consider the following quasi-variational inequality:

Ey(u, v—u) =y, 9—u) "O<Mu q.e.
a=Mi q.e.

(1.2) {

Theorem 1. The above quasi-variational inequality (QVI) (1.2) has the
maximum solution.

Put u,=U, and V,={veF; D=Mi, q.e}, then we have the unique
solution of the following variational inequality (VI) (1.3):

Ey(u, v—u)2<v, 0—) "vEV,
uelV,,

(1.3) {

because (1.3) is equivalent to

(14) {&,(u— U, u—Up)SE(v—Uyp, v—Uyp) "veV,

uel,

and V), is the closed convex subset of Hilbert space (<, £,). Let us denote the

solution by %,. In the same way we can inductively take the solution u, of
the VI:
Eu, v—u)=lv, D—i) Yoel,
(1.5) { (u, v—u)=<w > v
usl,,
V,= {ved; 2<Mi,_, qe} foreachn.
At first we note the properties of the solution %, of the VI (1.5).

Lemma. The above u, has the following properties
(1) Ugv—u,is an a-almost excessive function and the unique element which mini-
mizes its a-energy integral in the closed convex subset Uv—V, of (F, &,):



866 H. Nacart

(1.6)  C(Ugw—uty, Upp—u,)<E(Up—v, Up—ov) "veEl,

for each n,

(i) (1.7) w,<u,_, m-a.e. for eachn,
(iii) (1.8) %, =0 m-a.e. for each n and
(iv) {w,}is a E,-Cauchy sequence.

Proof. (i) Since #, is the solution of (1.5) it satisfies the following inequ-
ality:

(1.9)  Eyu,— Uy, v—u,) =00V,
Ifw=0, €4, then u,—weV,. Therefore it holds that

(1.10) E,(Ugv—u,, w)=0"w=0 m-ae., weTF .
that is U,v—u, is a-almost excessive because (1.10) is equivalent to

(1.11) #,=0, e *Tw,<u, m-ae., 't>0.

Here T, is the L?-Markov semigroup corresponding to Dirichlet form & (cf.
[4]). The latter half of (1) follows directly if V, in (1.4) is replaced by V,,.

(ii) Inquality (1.7) with n=1is obvious because U, v—u, is z-almost excessive
and U, v=u, Assume that it holds for n, then M#,< M, ,Yx. Therefore #,.,=
M, , q.e.. Since #,<Mi, , q.e. by definition we have @,V #, ,<Mi,_, q.e..
On the other hand Uy —u, V1, =(Uyp—u,) A(Uzv—u,4,) is a-almost excessive
because both U,v—u,,; and U,v—u, are a-almost excessive. So it follows that

(1.12) Ey(Ugp—u, NV thysr, Ugp—u, N thyi)) SE (U v —u,, Up—us,)
from Uyy—u,=2U,v—u,Vu,.,. By (i) of present Lemma we conclude that
U,V U, =1Uu,, that is, u,,, <u, m-a.e..

(iii) Since 6:;_2_0 q.e. we have M#,=0 "x. Furthermore #,<Mi,q.e. by
definition, so we have #, VO0=<M#, q.e.. Both U,v—u, and U,v being a-almost
excessive, Upy—u,VO=(Up—u)AU,v is «-almost excessive. Therefore it
follows that

(1.13)  Ey(Up—1, V0, Ugp—1,V 0) S Ey(Upw—uty, Upv—uy)

from U,v—u, VO U,v—u, m-a.e.. Itimplies that u,\/ 0=u,, that is %, =0 m-a.e..
We can inductively show #,=0 m-a.e. by similar argument.

(iv) Since Uyp—u,<Up—u, m-a.e., n=m, and Uyp—u,< U, m-a.e. for
each 7 by (ii) and (iii) it holds that

(1.14) E(Ur—ity, Upw—u,) SE LU —uty, Upp—u,) <E(Uyv, Uyp)

for each n<m. Therefore &,(U,v—u,, U,r—u,) monotonously increases to a
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finite number. Since w,=U,v—u, is a-almost excessive
Oégw(wn_wmv wn_wm) = 8a(wm wn)—zgm(wm wm)+8¢(wms wm)
SE (W Wy)—Eu(W,, w,), n=m .

Hence w, is a £€,-cauchy sequence, so #, is also.

Proof of Theorem 1. As the result of (ii) and (iv) of Lemma there exists
u such that &,(u,—u, u,—u)—>0 and #, | % q.e.. We can now prove that this
function u is a solution of the quasi-variational inequality (1.2). We at first
note that it follows that

E(Upp—u,, Upp—u,)<E(Up—v, Uyp—2) "o <M = lim M, q.e.
from (1.6) because #, | # q.e. implies M#, | M#é. Therefore it holds that
(1.15) E(Up—u, Up—u)<E,(Up—o, Uypy—v), "0 Mi q.e.

since &,(u,—u, u,—u)—0. On the other hand, since #<#,<M4,_, q.e. for each
n we have

(1.16) #=<lim M#, = M q.e..

(1.15) with (1.16) is equivalent to the QVI (1.2).
Now we are going to prove that the above solution # of QVI (1.2) is the
maximum. Take another solution w of the QVI

Jé’a(w, v—w) =, D—W) "0 Mb q.e.
(w=Mw q.e.

In the same way as Lemma we can see U,yy—w is a-excessive, so U,p=w.

Therefore M(}:;gﬁ) q.e.. That is weV,. Since Uyp—u,Vo=(Uyp—u)A
(Uv—w) is a-almost excessive and U,v—u, Vw=<U,»—u, it holds that

(1.17) E(Up—u,NVw, Ugp—u, V) SE (U —uy, Up—uy) .

Hence we have u;=w by similar argument as (iii) of Lemma. In the same way
we can inductively see u,=w for each z, which implies u=w.

2. Impulsive control of symmetric Markov processes

Let X={Q, B, 8, P,, X,, 0;} be an m-symmetric standard Markov process
of function space type with the state space S. We assume that its Dirichlet space
(¥, &) is regular. We are now going to repeat Robin’s construction of controlled
process (cf. [7]) with a little modification and set up an impulsive control pro-
blem.
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Consider the infiinte product space Q.,=QXQ X QX -+ and define its sub-
ofields by

2.1) B =II;(B,)®

where II, is the projection from Q. to the z-th product (Q)". 3" is similarly
defined. For o=(w,, @, ***) EQN., we let

22)  (On) (5) = (Grean(s), +ooeeee » O1004(5))
= (y(t+s5), eereees , wu(t+5)) .

We note that, if o(w) is a B"-measurable function on .., then o(w)=2d"(cw;, ws, ***,
w,), & being a (B)®"-measurable function on (Q)". Such an identification of o
and & will be made below without mentioning explicitly. It is further noticed
that P, for each x&.S can be regarded as a probability measure on (Q., B').

A family of subsets {I',},cs of S is called admissible if the following condi-
tion (T') is satisfied:

(1) if x,—~x,x,xES and y, €T, , then there exist yET, and {y,,} C {y,}
such that y, —y.

A sequence v={(7;, £;)7-1} of the pairs of random variables 7; and &; on Q.. is
called an admissible control if the following conditions (v.1)~(v.3) are satisfied for
a given admissible {I',}:

(v.1) 7, is a Bi-stopping time such that 7;< 7, for each 7 and lim 7;= o0

(v.2) E;is T'y, wp-valued B;-measurable random variable for each 7

(v.3) for each N with Cap(/V)=0 there exists NON with Cap(N)=0 such
that Pi(§;,€N)=0, x&S—N for each 7, where P! is a probability
measure on (Q., B’) specified below.

The set of all admissible controls are denoted by V. Let us define, for yE.S, an
element 8,0 by

(2.3)  8,(t) =y "t=0

and denote by &;, the probability measure on (Q, B) which is concentrated on 3,.

For a given v=1{(7;, £;)7-1} €V, we are interested in the process X,(w;)
governed by P, up to time 7,(w;). X;(w,) is stopped at time 7, and then our
interest is switched to the process X, (,)+/(@,), £=0, governed by P, up to
time 7,(w;, w,) and so forth. To formulate such a process, we construct proba-
bility measures P} on (Qw., B"), n=1, 2, -+, as follows:

First let

P; =P, on (Qu, B

We can construct a probability measure P} on (Q., ) such that
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P:=P; on B (CH)

2.4
(2:4) {Pf(az‘,}rlBl_@.}.l) = &X-r,@Pf;(B) Pi-as. on {r<-+ oo}

for each B€ %% Then the process X: 1((w,), t=0, is Markovian with respect to
(B 41, PZ) under the condition B:. We define the probability measure P;** on
(Qw, B"*) inductively by 1
P;*'=P; on B;(CPB")
P (0741.,B| B ) = Esx, @ *+* BEsx, (o) @P¢,(B)

Pr-as. on {r,<-oo}

(2.5) {

where Be $"+,

We are now in a position to formulate our main theorem. Consider the
Dirichlet space (&, &) associated with the process X. We suppose that a non-
negative Radon measure »(dx) of finite energy integral and non-negative con-
tinuous function k(x, £), x, EE.S, are given which are to define a pay-off function.
It is known that a non-negative continuous additive functional 4,(») on X cor-
responds to »(dx):

26) B[ eia]=Up qe
0
(cf. [4]).  Let for o=(ay, @y, ) €0

Afe), 0=t=T7
(2-7) 4, = é«rl‘f‘At—rl(erlwz); T<I=T,
4T,,_1+At—7._1(0'r,_1wn)) Tn—l<t§7n

and
(28)  yd@) = Xdws+r) if tE[Th Thsr) -
We can now define the pay-off function u*(x) by
(29)  w(x) = inf J.(v)
(2.10) J.(2) = lim J(0)
@11) Jie) = Bal{ " dA 3] e kX (i), E)]
We then introduce the operator M by
(212) Mg(x) = gressinf {9(y)+k(x, )}
= supfe: Cap{y&Ty; () +k(x, y)<c} = 0}

for pF. The fact that this operator M satisfies (M.1)~(M.4) will be shown
later (§3). Recall that Theorem 1 then guarantees the existence of the maximum
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solution of the QVI (1.2) associated with the present data (<, £), » and M.

Theorem 2. The pay-off function u*(x) defined by (2.9) is a quasi-con-
tinuous modification of the maximum solution u of the QVI (1.2) corresponding
to the above (<, €), v and M.

ReMARK. We note that if »(dx)=f(x)dm with a Borel function f in L*(dm),
J#(v) is written as

(213) Jxo) = B{ e fydt+ 2 e X, (o), £2)]

In the next section we study the operator M defined by (2.12). All as-
sumptions and notations in section 2 are assumed thruogh the following sections.

3. Operator M

DerFINITION 3.1. A sequence {F,} of closed sets such that F, 1 and Cap
(S-F;) | 0, k—>co is called a neston S. A nest {F,} is said to be (m)-regular
if for each & m(U(x) N F,)=0 for any x€F, and any open neighborhood U(x)
of x.

Let O be a countable family of quasi-continuous function in the restricted
sense on S. Then it is known that there exists a regular nest {F;} on .S such
that u| 5, y4 is continuous for each % for any function u€ Q.

Lemma 3.1. For any function & Me is a Borel function and has the
following representation :

(3.1) Mep(x)=lim inf {p(y)+k(x, )}

nyoo rel‘; NFy

where {F,} is a regular nest and T'; is a subset of S which satisfies (T").
Proof. It holds that by definition
Cap {yE€T.; $(9)+k(x, y)<Mp(x)—&} =0

for any £>0. Take a regular nest {F,} such that ¢|r, y4 is continuous for each
n. Put
N2 = {y€ET,; there exists a open neighborhood U, such that
Cap(U,NF,NT,) = 0}
and define
r:=r.n(u ,,U.v)c
VYEN,
by above U,. Then it is obvious that T'; satisfies (T") because ( U U,)’ is closed.
. YENY

Since ¢(+) and k(x, -) are continuous on I'; N F,, it follows that
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() +h(x, )= Mp(x)—€ 'yETINF,
from
Cap{yE€TiNF,; p(y)+k(x, y)<Mp(x)—€ =0
Therefore
Jim inf{p(3)-A(s )} 2 M)

In order to get converse inequality put

¢=1lim inf ;[q5(y)+k(x, N},

nyoo yEII N F

then
Cap{yET.; ¢(y)+k(x, y)<c} = Cap{T.N(UF,); p(y)+k(x y)<c}
< 31 Cap{y€T.NF,; ¢(y)+h(x, )<}
= 1 Cap{yETINF,; $(3)+k(x, )<} .

Hence ¢=<Mg¢p(x). Now (3.1) has been proved. On the other hand, since
inf {p(y)+k(x, y)} is a lower semi-continuous function according to the
I‘;‘,nF n

following lemma, we have the conclusion that M ¢(x) is a Borel function.
Lemma 3.2. For any ¢
M,p(x) = _inf {p(y)+s(x, y)}
pr NFy
is a lower semi-continuous function and has a measurable selection for each n.

This lemma is a trivial modification of Theorem A in §5, Chap. 2 of [3].
Because T} N F, also satisfies (") and ¢(+) and k(x, +) are continuous on F,.

Lemma 3.3. The operator M defined by (2.12) satisfies (M.1)~(M 4).

Proof. (M.1) has been proved in Lemma 3.1. (M.2) and (M.3) are ob-
vious. As to (M.4) it is easily seen that

}‘112 Mu,(x) = Mu(x) .
On the other hand
Mu,(x) su,(y)+k(x, y) "VETINF,,
so we have
lim Mu,(x)=u(y)+k(x, y) 'yETINF,

for each m. Then it holds that
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lim Mu,(x)<lim ipr}.f” {u(y)+k(x, y)}
= Mu(x) .

4. Optimal stoppings of Markov processes

We prepare for the proof of Theorem 2 some lemmas on optimal stoppings
of Markov processes with which regular Diiichlet spaces are assoicated.

Let 4, be a given Borel function and s, be the unique solution of the follow-
ing variational inequality:

41) {6’,,(.?,,, v—s,) 2y, -3, "veF, V<, q.e.

(* S, €Y, §,=, q.e.

for each =.

Lemma 4.1. Suppose that ,(x) | y(x) =0 "x, then E,(s,—s, s,—s)—>0
where s is the unique solution of

Eus, v—98) 2y, D—5) vET, V=4 q.e.
2 |
s€TF, §5r q.e.

Proof. In a similar way as the proof of Theorem 1 we can easily show
that s,=5,41, 5,=0 and Up—s, is an a-almost excessive function for each #
(cf. Lemma in §1) Therefore we have

Ep(Upy—$4y Ugp—3,) SEQUp—5p, Up—5,)SE((Up, Upy) n<m.

So there exists s, <F such that &,(s,—s,, s,—$) = 0. Furthermore s, satisfies
43) {&,(Uav-—so, Uyw—s50) S EH(Up—v, Upp—o) "0 <lim 4, = 4 q.e.
( $=+r q.e.

which is equivalent to (4.2). Hence we conclude s,=s because of uniqueness
of the solution of (4.2).

Lemma 4.2. Put

t”(x) = inf Ex[STe_ﬁsdAs—l_e_M n¢(X'f)] q.¢.
T 0

where $=F, then t, is a quasi-continuous modification of the solution s, of the
variational inequality (4.1) for each n in which r, is considered M,p. Further-
more there exists an optimal stopping time.

Proof. Since U,v—s, is a-almost excessive by similar argument as Lem-
ma 1.1 there corresponds a non-negative Radon measure u, of finite energy
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integral such that
EUap—s00) = {ldn)(x) 0eg .
Therefore it follows that

S,L,,(dx) (5,(6)— D(%)) =0 YO M, qe., 9EF
(4.4)

5, =M, q.e., s, €F
from (4.1) with ¥»,=M,¢. Put
(45) L, = {x€ UFy; 5,(x)<M,p(x)} ,

where {F,} is a regular nest corresponding to the family of quasi-continuous
functions {3,}. Take an arbitrary point x,&L,, then x,&F, for some k. On
the other hand, Since M,¢(x) is a lower semi-continuous function there exists a
sequence of continuous functions c}(x) such that ¢}(x) t M,p(x), j— oo, "x.
Therefore ¢} (%,)s > s,(,) for sufficiently large j,, which implies that there exists a
neighborhood U(x,) of x, such that

s (x)<cj(x) VaEF, N U(x,) .
Accordingly there exists a neighborhood V(x,) and v,&% N Cy(S) such that

V(%) Ulao)
Supp 2,C U(x,), v,(x)>0 on V(x,)
and
8.(0)-F 0, (¥) < Mi(x)
because the Dilichlet space (<, €) is regular. Therefore
— {ma(dx)o, (1) 20

which implies p,(V(%))=0. Since xy&L, is arbitrary we conclude that
(46) (L) =0.

Next, we have
(#7)  S(x)=M,p(x) q.e.

On the other hand let S—N be a defining set of the additive tunctional 4, (cf.
[1]) and put 7,=inf {t; X,eL;N {S—N}}, then

48) P,X,€L:n(S—N)) =1 xe(”glF,,) N(S—N)
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for the benifit of lower semi-continuity of M,¢ and quasi-continuity of s,.

From (4.6), (4.7) and (4.8) in addition to the fact that there corresponds a
non-negative additive functional A% to the a-almost excessive function U,v—s,
such that

Up—s, — E,[j:e-“dA:] gee.
our present lemma follows in the same way as Theorem in [6].
Lemma 4.3. Put
#9)  #(x) = igfE,[g;e‘“‘dAs—l—e““’M(p(XT)] ,

then t(x) is a quasi-continuous modification of the solution of the variational in-
equality (4.2) in which +r is considered as M¢(x).

Proof. Let s(x) be the solution of (4.2) with Y=M¢p, then Up—s is
a-almost excessive and there corresponds a non-negative continuous additive
functional A? such that

(410) Up(9)—s(x) = B[ edAf) qee.
On the other hand we have
(4.11) §(x)<Me(x) qe..
From (4.10) and (4.11) it follows that
5(9) = Bl[ e "ad )~ E[| Al

T

EJf\ e-*d4)—E, [STe“"dA?]+E,,[e“’”§(XT)]
0

0

IA

0
T

E,[\ e®dA,+e " Mp(X,)] q.e.,

0

|
EJ| ead e rs(X))
|

A

for any stopping time 7. Therefore it holds that
(4.12) 3(x)=t(x) q.e..
Now it is clear that
t(x) Sinf E,[S:e"’”dA,—i—e"’" B(X)] = 5,(x) qee..
Since &,(s,—$, ;—s) — 0 by lemma 4.1 we obtain 3,(x) | §(x) q.e.. Hence

(4.13) t(x)=5(x) q.e.
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(4.12) and (4.13) give our conclusion.

5. Proof of Theorem 2

Now we are going to prove Theorem 2. Let us introduce the set V, of
admissible controls which have # jump times at most:

(5.1 V,= {vEl; Tu(e) = =}
for each n. Put

(52)  uk(x) = inf B[] "o dd, 43 e R (o), £)]
and

(53) (@) = inf B,[{ e, +e""Mu, (X,)]
T 0

for each n where wy(x)= (}:;(x).

Theorem 2 is a consequence of the following two propositions.

Proposition 5.1. w,(x) is a quasi-continuous modification of the solution u,
of the variational inequality (1.5).

Proposition 5.2. It holds that
(5.4)  w,(x) = uf(x) q.e..

Proposition 5.1 is a direct consequence of Lemma 4.3. For the proof of
Proposition 5.2 we prepare the following two lemmas.

Lemma 5.3. It holds that

(5.5) w,(x)= lllgl’ '",,i"r:lo,w;"n“'h(x) q.e.
where

(5.6)  wl.(¥) = inf E,[S;e'“‘dAs+e‘“’M,,”w;:;‘l...,,l(XT)] n=23
and

(57)  wh(®) = inf E,[S:e““d/ls—{—e""’Mklff:;(XT)] .

Proof. Because of Lemma 4.1 it follows that

(5.8)  wi (%) | w(x)q.e., k1 oo

from Mklil:;(x) VM IZ;(x) Vx, ky § oo, in the same way as the the proof of
Lemma 4.3. Let us assume that
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(5.9 w,_(x)= }im
1K iad
Then it follows that

llm Wi x(%) q.e-.

(510) lim wf,.4,(x) = inf E,,[g e dA,+e " Mui ., (X.)]
from M, wi}..s (%) § Mw} ) .s (%) "%, k, 1 oo, in the same way as above. On the
other hand it holds that

(5.11) Muw,_,(x) = lim -

+ lim ka’l (%) T
kypoo 1

k1t

by our assumption and the property of M. Making use of Lemma 4.1 we
obtain our present lemma from (5.10) and (5.11).

Lemma 54. Let X=(0, B, B, P., X,) be a m-symmetric Markov process
associated with a regular Dirichlet space (F, €) and

H(Mé; x) = inf E,[STe-“‘MﬂLe—”qu(XT)] e,
7 0
then it holds that

E,[Sfe‘“‘dﬂs—{—e‘“'M¢(X,) | B )=ze H(M¢; X,)

for any stopping time o, T such that o <. Here A, is an additive functional of X
corresponding to the Radon measure v(dx) of finite energy integral.

Proof. At first we note that H(M¢; x)€F, U,v(x)—H(M; x) is ct-almost
excessive and H(M¢; x)<Me(x) q.e. by Lemma 4.3. Therefore e~* {U,»(X,)
—H(M¢; X))} is a (P,, B,) supermartingale for q.e. x. Hence

EJe " {Un(X,)—H(M¢; X)} | B,]
< e {Uyp(X,)—HM¢p; X,)} P,—as.

g-e. .
So we have

Ez[s e dA+e"HM¢p; X,)| B)ze"H(M¢; X,) .
Accordingly it follows that

E,[Sfe‘“‘dﬂ,—ke‘“’M(p(X,) | B,]=e*H(M¢; X.)
from H(M¢; x)=<M¢p(x) q.c.
Proof of Proposition 5.2. Let vEV,, v={(Ts, Et)i=1.2,-m Ta+1=°}, then

Ji0) = B[ e dA A 3 X (o), )]
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E[S e AA, A B TR X (), E) e e dALD, w0
= B e aA A B e X (), E) e[| oA

z Bil| e dd A B e k(X (0], E)+e MU, (@,)]

0

= B[ e A A e X 0), E)

+BA[" a4, ., (0., w)te T MUMX. ()| 25]]

‘n—1

z B[ e A A E e R, E) e HMU; X, )
= Bl el A R e T, £) e (X, )

> E},[S“e-“dAs+e-“nk(X,l, E)+e*w, (X))

> E! [S e dA,+e M, (X.)]|Zw,(¥) qe.

In order to get the converse inequality take a sequence {#;};.,,., of
stopping times such that ; minimizes

E| e *dA,+ Myl (X)].
Furthermore take a sequence of functions y,(x), j=1,2, ---,n such that

My aod3 (%) = w7 (Vi (%))4-R(x, yiy(%))
Put
t1 =i+ Fpi1-i0-,_ @), T = Ty(wn)
and
& = Yipy (X 00) -
Then 0= {(%;, £)iz1.0,.. F:i11=0} EV,

and

() = B[ e M, 0 (X))

= B[ " dA e e, (00 (X7 )R (X7 )]

- E,‘,[S:e‘“‘dAs+e“"Alk(X¢l, Y (X))
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A

—f—e"‘"AlEgl[j:"_le""dAs-|—e'“;~-lM,,”_,w,:’;Z...kl(X:,,_1)]
— B e mdd A3 k(X £)
= uf(x) q.e..
Therefore making use of Lemma 5.3 we conclude that
w,(x) = uf(x) q.e..

Proof of Theorem 2. By Propositions 5.1 and 5.2 u} is a quasi-continu-
ous modification of the solution u, of the variational inequality (1.5) for each
n. Since u, converges to the maximum solution % of the QVI (1.2) in &,-norm:
Eo(tty—u, u,—u)—0, n—oco we have

uf(x) = u(x) q.e.,n—>o0
taking a sub-sequence if necessary. On the other hand it holds that
wf(x) { u¥(x) qe.,n—>o0
by the next lemma. This completes the proof of Theorem 2.
Lemma 5.5. It holds that uf(x) | u*(x) g.e., N—oo.

Proof. For each £>0 there exists v=ov(x)= {(1;, £;):=1} €V such that

w*(x) =lim E;’[Sne"mdés—l'ﬁ e k(X E)]—¢€
%00 0 i=1
So for any N it holds that
TN N
w2z BN e ad A B e (X, E)] -
0 =1

Put 0¥={(7;, £))iz1.2,..n» Tv1=00}, then ¥ €V,. Therefore from

Eiv+1[57N+le_msdés+J§1e_mq-ik(Xqi’ E')]guﬁ(x)
=1

0
and ufi(x) =u*(x) it follows that
k(o) ()| SES|” e vdd ] 2e
Since 7y—> 0 as /N —>oco we obtain
11\712010 ufi(x) = u*(x) q.e..

ufi(x) =u.1(x) q.e. is obvious.
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