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Introduction. In the recent paper [4], Hormander has clarified Egorov’s
work [3] on sub-elliptic operators, by improving several points. The purpose
of the present paper is to show that the method in [4] is applicable to certain
pseudodifferential operators with multiple characteristics of odd order. Rubinstein
[13], Wenston [15], [16], Popivanov [12], Menikoff [6] and Popivanov-Popov [17]
independently treated some class of differential (or pseudodifferential) operators
with double (or multiple, see [17]) characteristics satisfying the conditions similar
to those given by Nirenberg-Treves [10] for operators of principal type.

It should be noted that, roughly speaking, operators considered in those
papers can be reduced micro-locally to D,,l—i—ixl"D,,2 (k integer), which was studied
by Mizohata [8]. On the other hand, the operator considered in the present
paper can not be reduced only to Mizohata type everywhere in the sense of micro-
local. At some point it will be reduced even to Egorov type D, +i(x,’D,,+
x,’x,"|D,|), where |D,| denotes the square root of D?+D:+D;} and s, a, b
are integers.

The plan of this paper is as follows. In Section 1 we state the assumptions
and result. In Section 2 we reduce the proof of main theorem to “sub-elliptic
estimate” for a localized operator whose symbol has a parameter 0<<A =1 (see
(2.37) and (3.4)). To prove this estimate, in Section 3 we show that we can use the
same method as in [4]. The most part of Section 3 is devoted to show that the
symbol of the localized operator satisfies inequalities similar to those in [4, Sec-
tion 4]. In final section we prove the non-hypoellipticity of some operator in
order to show the importance of the notion of modified-null-bicharacteristic
curve, which is introduced in Section 1.

1. Assumptions and result

We say that p(x, £) € B=(R?X R}) belongs to S™ when p(x, £) is positively
homogeneous of degree m in |£|=1/2. (Clearly S™ is the subset of S"=S7,.
We refer the definition of S7, to Kumano-go [5, p. 50].) For a conic set UC
R; X R} and ¢(x, £)eC~(U) with positive homogeneous of degree m in |£|>1/2
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we write g(x, £)e S™(U).
Let p,(x, £) belong to S' and be real principal type, that is, be real valued
and satisfy

(L.1) dpy(x, £)%0 on T =pr'(0)N {|&=1/2}.

Let I be an odd integer >3 and let a(x, £)€S'~! be complex valued and satisfy

(1.2) Rea%+0 onT
and moreover
(1.3) H, Rea=0 onT,

where H, denotes the Hamilton vector field of p,.
Then under certain conditions among p,, Re @ and Im a we shall discuss
the hypoellipticity for a pseudodifferential operator L of order ! which has the form

(1.4) L= P(x,D)+A(x,D,) in R,
o(P)= (&),  o(d)=a(xE).

Here o(P) denotes the symbol of pseudodifferential operator P(x, D,).
First we assume that

(1.5) for any (x,, &) ET there exist a conic neighborhood
U of (x,, &) and gy(x, &) S%U) such that
(1.6) H,q=1in U
and for j=1, .-, 1—2
(1.7) Hj a=0 on TNU.

To state the second condition corresponding to (A) in Egorov [3], or (¥) in
Nirenberg-Treves [10], we define the modified-null-bicharacteristic curve of p,
through (%, &) €T by the curve

(1.8) [T, T1>t — (x(2), £(2)),
where (x(2), £()) is the solution to
(1.9) dxldt = dy(p,+'VRe a)
dtjdt = —d (p+'VRe a), (%(0), £0)) = (%, &),

and ‘v/Re a denotes a unique real / power root of Re a. It follows from (1.3)
that if (x,, £&)ET, then (x(¢), £(f))€T. The right hand side of (1.9) are not
homogeneous in &, so that the behavior of modified-null-bicharacteristic curve is
not so. But we can define it on [— T, T for some 7' >0 uniformly if (%, &) =T

varies in a compact conic set (|£,| >1), because d;'V'Re a and |&|7'd,'VRe a
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are O(|E|~""). Second condition is that

for any (%, &) T with |&,| sufficiently large,
if Im a(x(t,), £(t,)) >0 for some t,&[—T, T1,
(1.10) then Im a(x(t), £(t))=0 for all & (%, T7,
where (x(t), £(¢)) is the modified-null-bicharacteristic
curve of p; through (x,, &).

For a multi-index I=(3,, -+, 7,) whose components 7; are 1 or 2, we use the
following notations: |I| =k, b(I)="‘the number of j such that {;=2", §={I; b(I)
<I—1}, w(D)=(—1)| I1/((—K(I)). For a p>0 we put Ju={I€F; u(l)<u}.
Set Q= {u(l); I€d}. Then we can write Q= {u;; j=1,2, ---} with an appro-
priate increasing sequence of rational numbers. For any (x,&)ET, u(x, &) denotes
the rational u ;& Q, such that p,(x, £)=0 for some I € 9,; and p,(x, £)=0 for any
I€Yy;_, where

(1'11) Pl(x’ E):H,-ngz ”'Hik_gpik(x) E),
H,=H,, H=H,, and p,(x, £)=Im a(x, £). The third condition corresponding
to (B) in Egorov [3] is that

(1.12) {for all (x, )T there exists some p&Q, such

that p(x, ) S p<<oo .

In what follows we denote the norm in Sobolev space H® by |[|-||,. We
write |[+[|=]|+[l,.

Theorem 1.1. Let (1.1)~(1.3) hold and let L(x,D,) in (1.4) satisfy (1.5)-

(1.7), (1.10) and (1.12). Then for any compact set K of R" there exists a constant
C such that

(1.13) el sz 1P ]l = Cc(|| Lutl |+ el ]), € CF(K)
where o(P’) = (pu(%, &), o = (I—1)/lp, ¢’ = a+1/1.

ReMark 1. It follows from (1.13) that P is hypoelliptic. See Oleinik-
Radkevich [11] and Morimoto [9, Theorem 2.2]. Theorem 2.2 of [9] is stated
only for differential operators but its proof is also applicable to pseudo-differ-
ential operators.

REMARK 2. In differential operators we have the following example:
D+ D, i+ D, +i(xfx,(D,;+D,2)+2iD,5(D,;+D,5)) in R} .

All conditions of Theorem 1.1 are satisfied. Specially, the condition (1.10) is
satisfied at (0, &) with £,=(0, 0, &) as follows; the sign of Im a changes from —
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to + along the modified-null-bicharacteristic curve of p, through (0, &). At
the point (0, &) this example must be reduced to Egorov type. Note that
Egorov’s operator of principal type is not the differential operator but the
pseudodifferential operator. (See the introduction of [3].) For this example
we have ¢=1/25.

RemARk 3. The condition (1.10) is delicated and necesasry in general for the
hypoellipticity of P. Indeed, the operator with replaced Re a=§;+£3 in the
above example by (£,—&,)*+£} satisfies all conditions except (1.10), which is
violated at (0, &,) with £,=(0, 0, &) and £;>0. Furthermore, we have

Proposition 1.2. Differential operator L
(1.14) L= D;+(D,,—D,)+D,
+i(xixyD,;+D,)+*iD, (D,;+D.3)) in R:,
is not hypoelliptic at the origin.

2. Reduction to localized operator

Let A(x)eCF(RY) be 1 for |x|<1/2 and vanish for |x|>1. Set h(x)=
h(x/€) for a small €>0. For a f(x,£)&S™ and v=(x,, &) ER"x S"~* we introduce
a pseudodifferential operator F,,, with a parameter 0<A <1 and a small £€>0
as follows:

(2.1 Fy.:(y, D)
=2 e B Ot rg, Ectamhun)in)dn
veSs,, dy = (2n)""dy,
where 9 denotes the Fourier transform of ©. Obviously, for a fixed £€>0,

{N"a(Fy.,) (9, 1); 0<A=1} is a bounded set of S§,. Furthermore we obtain
for a sufficiently small £>0

(2.2) (Fy,ep0) (A7 (2 —%0))
= e~ s o, (x—x)f(%, D,)hy(ND,—EoJu(x) ,
where #(£) = NOME—AE)) exp (ix(n 2 E—E)).

Lemma 2.1. For any compact set K CR" there exists a constant Cg such
that (1.13) holds if and only if for any v=(x, £))ER*X S""! one can find positives
&=E4(1=1,2,3, §<&,<&;) and a constant Cy so that for any O<A=1 the
following estimate holds;

2.3) AT Hyy ol APy g 2l
SC([I(Py,eatAy,ep )2l H11Py,e5a 2l
AT o)), vES,,
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where Hy 5, Py, ,, P’y ., and A, . , are defined by (2.1) with f replaced by 1, p,}, p,' !
and a, respectively.

Proof. In view of (2.2) it is not difficult to see the necessity of (2.3). We
only show the sufficiency. The proof is the same way as in [4, p. 143], except
the appearance of the second term in left hand side of (1.13) or (2.3). Note
that for any £(|&,| =1) and any small £>0 and any real s

(2.4) CY|k(AD,)ol| < [I(Es+AD,) h(AD,)o]|
<C||h(\D,)ll, vES,,

holds for some C=C,, since C'< |EA+E| *<C onsupp h(§). Substituting
() =hey ()N 0 "2E,) exp (ix(A " 'p+0"%,)) for uE C5(K) and some &> &;
into (2.3), we obtain by means of (2.2) and (2.4)

1y (x—xo)s(N2D,— &) | D, | "=+ul|
by (x—2x0) P’ (x, D) | D | dhl(VDx'—éo)u”
S C(||hy(x—2x,) (P(x, D,)+A(x, D,))h(A*D,— & )ul|
+|1Ay(x—26) P' (2, D )hs(N’D,— Eo)u”
+ 1B (VD,~E&) | D, "> ull)

where h;=h,,. Here we used the fact that, for a fixed £>0, {\"?[k(\y), 2 (AD,)];
0<A\=1} is a bounded set of of S%,. Since [P, h,(A?D,—&)] can be estimated
by the second term of the left hand side, the proof is completed from the follow-
ing proposition and usual finite covering argument over K x S"7%,

Proposition 2.2. Let h(§)ECF(R") be 1 in a neighborhood of 0 and let &,
belong to S*\.  Then one can find some \r;(£)ES° (j=1,2) such that

(2.5) ;(E)F0, supp \»;Csome conic neighborhood of &, and for any N we have
for some constant C >0

Cl WD, Jul
<[ oD, Byl dnt-lall
SC(NDJulP+lull-n),  uES,
Proof. Putr=|&|, 0=E&/|E|. Then

(LoD, Bl ax
- Sdegzdxs:hwre—f-o)z \4r0) |2/n dr .

It is easy to see that supp A(A%0—&)) is evaluated from above and below by
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{(6,7,2); 6€supp ¥;,NS** and C7'=<’<C}}

for some r,€85° satisfying (2.5) and some C;>0 (j=1,2). Therefore the in-
tegral is bounded by constant times
ax,

O

where we used (r/C)”?<1/A<(Cr)* and C=C;. This gives the desired
estimate.

C/')I/Z

RemARK. The content of this proposition is briefly stated in [4, p. 143].

Since (2.3) is valid for €T, in view of Lemma 2.1 we now fix a yET.
Let a function f,(y, 7)€ B~(R; X R;) with a parameter 0<A <1 satisfy

(2.6) 18307/(3> 1) | = Caph'***!

for anya, B, where C,; is a constant independent of . Define a pseudodifferential
operator Fy(y,D,) by

@7 Foo={e"fi idn,  ves.

If f\(y, ») equals f(Ay, Ay) for some f(x, &)= B=(R; X R}), then we say that the
operator F)(y, D,) has an original symbol f(x, £). Under this notation, (2.3) for
a fixed v becomes

AT H ol |+ P
(2.8) SC(IA Py a2V 4,, )|
FATED|P gl [+, vES,

where the original symbols of H,,, P,,, P',, and A4, are h,(x, £)=h(x)h(E),
hg(pl,y)', hy(p14)' " and hea, respectively. Here p, o(x,&)=p\(x+x,, & —i—go), ay(x, &)
=a(x-x,, E+§o).

Lemma 2.3. If (2.8) is valid and X is a C* canonical transformation keeping
0 fixed which is defined near 0, then (2.8) remains valid with some other &; and C if
P,,, A,, and P',, arereplaced by P,,, A,, and P, ,, respecitvely, whose original
symbols are hy(p, ,°X)', ho(ay°X) and hy(p, y°X)' ™, respectively.

As pointed out in [4, the proof of Lemma 3.2] it suffices to prove the lemma
when X has a generating function S(x, £), that is, X; (%, d,S(x, £))+— (deS(x, £), £).
The proof is based on several propositions on Fourier integral operators with
phase function S,(y, 7)=x"2S(\y, An).

DEFINITION 2.4.  For any fy(y, n)€3~ with (2.6) and for any S(x, £)eC~
(R X Rf) satisfying
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(2.9) det 8,0:5(0, 0)==0, (d.S(0, 0), 4:S(0, 0)) = (0, 0)

we define the Fourier integral operator Fg,(y, D,) with a parameter 0<A =<1 by

(210) Foo = [0 k0, G, M)y, 0ES

where Sy(y, 7)=X\"2S(\y, M) and ky(y, n)=k(\y, ). Here we assume that
k(x, £)eC% is 1 in a neighborhood of 0 and det 9,0;S(x, £)%0 on supp k. We
define the conjugate Fourier integral operator F'§, with a parameter 0<)A <1 by

@11)  F,D,)0 ={ (e 5Dk (3, A0, )e0)d dn,  0ES,

We call fy(y, 7) the symbol of Fs(y, D,) (F¥,(y, D,)), and morover if f,(y, n)=
f(Oy, Ay) for some f&.B”, then we call f(x, &) the original symbol of F,(F%,).
We write Fg,=I,, F¥,=I%, if f=1.

Put

(2.12) dgS(x, &, &) = S:deS(x, E+0(—£))do
d,S(%, %, £) = Sd,S(i’+9(x—9~c), £)d0

Put £=d;S(x, £, £) and E=d,S(%, x, £). Then the inverses

(2.13) x = $(%; £ &) and &= (£; %, x)

exist, respectively, in a neighborhood of 0 on account of (2.9) if supp % is suf-
ficiently small.

Proposition 2.5. If supp k in (2.10) and (2.11) is sufficiently small, then
I, I, and I%, I, are pseudodifferential operators whose symbols are

(2.14) [0y, 2+ y+9)a945
and
(2.15) [{e7rtert5, 343, mavas

respectively, where r\(y, 7, ¥) and r¥(n, ¥, 7) are given by

(216)  (k(s, E(E, )| det | D.0SE+O(x—1), DOI™)  _ 4oz

and

217)  (k(x, E)k(x, B) | det S:axaﬁs(x’ E+H0(E—5Hao|™) W(EE E),

respectively. Here (x, %, £, )=\, 7, n, 7)-
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Proof is directly calculated by means of the change of variable; & =d S(%,x,E)
and ¥=d;S(x, £, £) respectively.

Corollary 2.6. The operators Fs, and F¥, for any f, with (2.6) are L,-bounded
uniformly with respect to 0<A<1. If & is small enough, then I3 I%, and I ¥, 1,
are elliptic on supp h(\y, \n), that is, the estimates

(2.18) 1H, y0ll SC(ILs T2l 2 2l1)
(2.19) IH, 2l = (IS Isoll+2[o]l), vE€S,
hold for some constants C, and C,.

Proof. The symbols of F¥, F;, and Fg, F¥, are given by the versions of
(2.14) and (2.15), respectively, which belong to a bounded set of S o uniformly
on account of (2.6). The boundedness of F¥, Fs, and Fg, F¥, show the first

statement. Note that for any p(x, &, %, £) € B~(R*)
@20) 0.~ p(x, &, % Eraza = 3 2ulx,0,0, E)/a!—i—NlBIE:NS:(] _gyv-1

OS—SSe“;Epp(x, 02, %, £)dzdEdd)B!
holds for any positive integer N, where po(x,£,%,&)=0;D%p(x,£,%,£). Here
O‘—SS denotes the oscillatory integral (see [5, p. 42]). Applicatinos of (2.20) to
(2.14) and (2.15) yield (2.18) and (2.19), respectively.

Proposition 2.7. Let F,(y,D,) be the pseudodifferential operator with original
symbol f(x,E)€ B~. Let G, and G, be Fourier integral operators whose original
symbols are f(x,d S(x,£)) and f(d:S(x,E), &), respectively. Then N"*(F,Is,—Gs,)
and NI, F,—Gs,) are Ly-bounded operators uniformly with respect to 0<a=<1.

Proof. It is easy to check that the equations
Fylg o= Se"sﬁ"")r)‘(y, 2)0(n)dn
and
Iy Fyo— Sefsw-%(y, Do(n)dn,
for
@221)  n,m)= os_gge-"?f fx, E+d.S(x, 2%, EYR(x+-%, E)dydi
and

@222) 70,0 = 0= ([T r+ deS(x, £18,8), B)k(x, £+ Braras,
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respectively, where (x,%,&,E)=\(y,,7,7%). Applications of (2.20) to (2.21) and
(2.22) complete the proof.

Corollary 2.8. For f(x,£)eCtv with support contained a sufficiently small
neighborhood of 0, set f(x,E)=(foX) (x,&), where X is defined by
(x) de(x, E)) - (ng(x, E)s ‘E) .
Then NYFyIs,—Is,F,) is Ly-bounded uniformly for 0<A<1. Furthermore, if
F(x,E)=(p:(x,E))'ho(x, £) then for f=(p,'he)oX, the estimate
(2.23) (I — I F)ollSCOVIIF, Il |+ M5 Fyo0ll), 0€S,

holds for some constant C, where the original symbols of F,’ and F’A' are (p,) ‘hy
and ((p)' *her)oX for some &' > €.

Proof. The first part follows from Proposition 2.7. The second part is
obtained by checking the second terms of the expansions of (2.21) and (2.22).

REMARK. It is clear that N~%(I%, F,—F,I%,) is L,-bounded operator uni-
formly for 0<A=1. Indeed, this follows from ||F, Is,— I, F,||=||I%F¥—F¥I%,||
and the fact that N"2(F,—F¥) and N %(F,—F¥) are L,-bounded.

Proof of Lemma 2.3. Taking I as v in (2.8) and noting Corollary 2.8,
we obtain (2.8) for operators transformed, by using the fact that for any small
£>0 the eatimate

CHy ol = s\ H ol [+ NIl < C(I1H e g0l +Nl0ll), vES,
holds for some 0<<&'<<€<€” and some constant C, which follows from (2.19).
Now we take a canonical transformation X such that p, yoX=E£, and g, yoX
=x,;, where ¢, y is defined from g, given in (1.5) by the same way as in p, . Dar-

boux theorem (see [7, Proposition 3.1)] shows that (1.6) guarantees the existence
of such a X. Application of Lemma 2.3 gives

Lemma 2.9. The estimate (2.8) is valid if for some & and &' (&'>€&>0) the
estimate
(2.24) AT By (V' AD Yol D (A, AD, )l
< C(IDLANY DDy 59, D)ol
D} ol I+ A= o]
if vE€S vanishes for |y,| >¢,

holds for some C, where the symbol of A, \(y, D,/ is @(y;, My's Ap")h(AY’, A7').
Here @(x, £')=(ayoX) (%, 0, &').
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Proof. Condition (1.7) leads us to the
(2'25) a-po(x, ‘S) = a-po(x, 0) El)-l_b(x’ E)E{—l

for some b near origin since H,, is transformed to 9. Therefore, substituting
he(y1, MDD, e (My', D)o (€<€”7<€") for v of (2.24) with replaced @ by ayoX
(x,€) and changing variable (y,,7;) into (Ay;, A"'n) we get the estimate (2.8)
canonically transformed.

Proposition 2.10. Let g,(y, n)€C*” with a parameter 0<AX1 satisfy for
any o, B
(2:26) 105088, = Cag( ||+ A=) 180\ 491

where 0<8=1 and m integer. Assume that, for some hy(y', v)=h(N\Y', \7'), g\
satifies for some c,>0

(2.27) lgal Zeo( [ [ A72)"2 on {|y,| <1} X supp h, .
Then we get
(2.28) D5 A(y"s D)ol lk(y", D)ol

=C(IG\(, Dyoll+loll),  if vES vanishes |y,|>1.

Proof is omitted. (for example, see [5, p. 77]).

Applying this proposition with m=1 and §=(I—1)/l to »{+X"2""Va(y,, 1y,
A" YAy, A1), we obtain (2.24) if Im @(0)=#0. From now on we assume Im &(0)
=0. Let w(¥,&") be a [ power root of (@h,) (x, £’) such that «(0) is real (since
Re a(0)+0 by (1.2)).

Then we obtain the factorization

Elt-ah, = (Eito) z‘. (—w) gl

: k-1 . 4
Set an(y, 7') =¥ Ay ) and set £, (3, m)= 23 (—A o)/t (B=(1—1)]).
Since 1, ,(y, n) satisfies (2.27) with m=I[—1 and 8=(I—1)/], we get (2.24) if we

show for some C

(2.29) Ao p (' Dy )l SC(I(D,, 4+ 1" eon(y, Dy))oll+l2ll) 5
if &8 vanishes |y,|>€.

For brevity we denote @(x, &)k (x’, £') by @(x, ') in what follows. Note
that Re 4 is independent of x, on account of (1.3) because H, and T" were trans-
formed to 9, and &,=0, respectively, by the X. Using the expansion (14z)¥
=1+2/l+0(2)%, we obtain
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(2.30) o(x, £') = (Re @)"(14+-Im @/ Re @)!
= r(x’, §')+iq(x, £ +O(1x | + & | )g(x, E")

if we set r=(Re @), g=Im d[l(Re @)’~V"'. Hence (2.29) follows if we show
that for some C

(2.31) AN ke A3y Dyl N2lg(ys DyrYhe (", D)ol
= C(ID,, A1y’ Dy)+ig(y, D,))oll+l12ll),
if v&S§ vanishes for |y,| >¢,

where ¢\(3, 7)=¢(y1, My's A\n") and 7\(y’, n')=r(Ay’, An'). Indeed, if we take
hy/(x', E") such that hy(x’, £')=1 on supp A, and substitute k.-, into (2.31),
then we get (2.29) with replaced v by &, ,v since the part corresponding to third
term of the left hand side of (2.30) can be estimated by the second term of the
right hand side of (2.31) when € is small enough. (Note that £&”<¢).

Let ®(x, £') be the solution to

(2.32) 8, d+r(x',dy®) =0, DO, )=t

Without loss of generality we assume that the @ exists on {|x;| <&} X supp k(x’,
). Put ®\(y,7)=N"2OA\"y, y', Myp"). Then @, of course exists on {|y,| <€}
X supp ke ,(y',n"). If we regard y, as a parameter, in the same way as in (2.10)
and (2.11), we can define the Fourier integral operator and the conjugate Fourier
integral operator with phase function ®,(y,7") and the symbol f,(y, »") satisfying

(269 18508/ /] < Cop 1"

by

(2.33) Fou(y) = Se”‘"a”""’kA(y’, 1) 7)o (3, 2")dn’
and

(2.34) Fio(y) = SSe“""""*‘y"?"’"’kx(?', )

f)\(yly ylv 77')'0(3’1» y’)dy’d"?' )

when v €S vanishes for |y,| >¢&. Here 9(y,, ") denotes the Fourier transform
of v(y) with respect to y’. Set

(2.35) (9 7) = ym+Oa(y, 7') -

Let X, denote a canonical transformation with generating function W¥,, that is,
Xa; (1, 4,953, 1)) (d,¥A(y, 1), 7). Note that X, and X, are defined for {] y,|
<&} Xsupp ko \(y', ') if & is small enough. Set §y(y, n')=qoXi(y, 7'). It is
easy to check that

(2.36) B> ') = 91 W3, 0'), AR 1, Y35 2) M)
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where Yn(y, 7')=v(Ay"; A¥'y;, An’) and Y(x'; x,, &) is defined as the inverse of
x'=dp®(x,, -, E').

Lemma 2.11.  Assume that for some & >0 and some constant C, the estimate

(2.37) A2k (3", Dy )oll+A"2Ga(35 Dy)he, Ay Dy)oll
=C(lI(Dy, +ix"*G\(y, Dy))ell+-ll))

holds if v E S vanishes for | y,| >&. Then (2.3) holds for some €>0 and C.

Proof. Fix y, as a parameter and let ®,(y,,y’, ') correspodn to S,(y, ) in
Definition 2.4. By the remark after Corollary 2.8, we see that the A "*(I§ ¢,—q,/%,)
as an operator on L,(R}™) has a uniform bound with respect to |y;| <€ and 0<
A=1, therefore it has a uniform bound as an operator on L,([—§&, €] X R}"") by
integrating with respect to y,.

Note that

D, Ifv = I§D, v—(0, D)8
— I4D, 0+ 2P Tho,
if v€8 vanishes for |y,|>¢€,

where ,(y, 7" )=7\(y', dy®x(y, 7). In fact this follows from 3, @\(y, )=
—\"2r\(y’, d,®\(y, 1")). The adjoint form of Proposition 2.7 shows that the
second term equals I A"?R, modulo L,-bounded operator. Hence, substitution
I for v of (2.37) gives (2.31) because for %, \(y,7’,7’) defined from A, (x',£’) in
the same way as (2.36), there exists some &’ such that %, ,=1 on supp &.(Ay’, Ay’)
X {|y,| <&}, provided that 0<<A <, for some sufficiently small A,.

In the rest of this section we investigate the properties of §,(y, ") derived
from the assumptions. It follows from (2.36) that for any «, B’ and some Cyg
independent of A

(2.38) |85 052:(y, ') | < Caph™**"!
on Q= {{nl<&, [yI+In'|<ert.
The second property is that

(2.39) g:(y, ) does not change sign fromto—for
' ¥, increasing if A is small enough.

This follows from (1.10). In fact, since it follows from (2.25) that
d. g(Re ayoX)") (%, 0, &) = d, ¢(Re ayoX)'") (%, 0, ')

we obtain the property (2.39) because the modified-null-bicharacteristic curve
is invariant under canonical transformations X and X,. The invariance of
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Poisson brackets for canonical transformations and (2.25) give the following;

for any (y, 7')E€Q.={|y:1 <& |y'|+ 7'l <ex~}
(2.40) there exists a €Y, such that §,,(y, »")*+0 if

A is small enough.

Here 7, ,(y, #’) is defined in the same way as p,(x, &) of (1.11) with p,=%, and
p:=\"2g,(y, %'). Indeed, note that (1.12) is invariant under canonical transfor-
mations and in changing p,(i=1,2) to f;p; for non-vanising functions f;(i=1,2).
By means of (2.25) and the definition of 4, we see that for any (y, ") EQ, there
exist a I €4, and ¢, >0 such that

IP?,A(}’; 77r)l 2617\,’2”"(”/' ,

where p? , is defined by setting p,=», and p,=n"%g\(y, 7’). If p,, denotes p7 ,
with replaced 5, by ,+A"%r,(y’, ), we obtain

|p1,>‘__p?,)‘l éclh—28+2!v(l)/l
for some constant C,; determined by the derivatives of » and q. Consequently,
the invariance of Poisson brackets under X, gives (2.40).
3. Proof of Theorem 1.1

In order to prove Theorem 1.1, as observed in the preceding section, it
suffices to show (2.37). For the sake of simplicity, we denote A~%g,(y, n") by
g(x, £'). Suppose that 2\ is small enough. By means of a constant scale
change in the variables, we may assume from (2.38)—(2.40) that g(x, £") satisfies
the following conditions: For any «, 8 and some constant Cy, (independent of
)

(3.1) | DEDEg(x, ') | SCoph***1-2 in Q= {|x,| <1, |(*, &) <N}

(3.2) g(x, £") does not change sign from+-to—for x, increasing.

3.3) For any (x, £')€Q there exist some u &€ Q, and some ¢,>0 such that
y

Eg 7\,2_2"(””1]71(96', Z.fl)| gco>0

IEy.

provided that p,=£,, p,=q(x, £'). Then (2.37) is stated as follows; for some C

(34 A 2B, AD Yul|4- (1D h(Ax', AD")ul|
= C(I(D,,+1q(x, D"))ull+]lull) ,
if u€S vanishes for |x,|>1/2,

where k is C§ with support in a ball of radius 1/2.
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The proof of (3.4) for ¢(x, £) with (3.1)—(3.3) is the same as in showing
[4,(6.1) and (6.30)] except the difference of “weight”. (See [4,(4.1) and (4.3)].)
To prove [4,(6.1) and (6.30)] it was important to obtain inequalities for ¢ in
[4, Section 4]. So we sketch the argument corresponding to [4, Section 4].
Put

(3.5) M(x, £') = max | p(x, E')/p V"
Ie4u

Here p is a large parameter, whose role is the same as in [4, Section 4] (see [4,
p- 149]). By (3.1) and (3.3) we have

(36) Clh'%/"p‘("l)/néM(x, E’)écz)\'—zs/p .

Here and in what follows the constants are independent of A and p.
The definition of M=M(0) means in particular that

(3.7) |Dig(O)|<pMi*,  j<u—1,

and where (3.1) is valid we have by (3.6)

3.8) |Di gl <OM)pM™*

since p/~?/MW+I-F& 1 if ) is small enough, where ¢ is some positive. If we set
F(t,y',n") = q(t|M, y'(pM)", n'(pM)"*)[pM

then the application of [4, Lemma 7.1] to F(¢,y’, 7") shows that

(39)  IDEDE(F(x, &)—EDq(x1, 0)[0F;) | < CappMPst!(pM)”I*"+#112
if M| <1, |(', € <C(pM)",

where g is determined from ¢ by a sympletic orthogonal transformation.
Let &=)\" with 0<«<1/p (which is different from & in the preceding
section). Then

(3.10) E(pM)*>1.

As in [4], using this & we consider the following two cases.
Case I. Assume that

(3.11) |d,eDig(0)| S€pM™,  j<p’.

where p'=(l—2) (p—1)/2(I—1),. In view of (3.1), (3.6) and (3.10) we get for
some ¢>0

311y |deDig(x, £ SON)EpM™I, >4, (v, E)EQ.

Then it is easy to check that the argument corresponding to Case I in [4, Section
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4] follows with & and k/2 replaced by [u—1] and p'.

Case II.  Assume now that (3.11) is not fulfilled. Choose s<p" so that with
q¥=0ig|ox]

(3.12) dopq®(0) = a

(3.13) dypq?(0)<aM’~*  for j<<p'

Then (3.1) and the fact that (3.11) is not valid give

(3.14) EpM ' <as<CA\'"2.

In view of (3.11)" we have then for every j

(3.13) | D] g(xy, 0)[0,| =C,aM’~* = C;,pM""'4,, |xM|<1,

where A,=a/pM**'. The equality of (3.13)" holds when j=s. From (3.9) we
can therefore obtain an estimate of the form [4, (4.10)] with B,=A,=B;="---=
(pM)~¥# and K=M. However, A,B,=a/M*"(pM)/?® so [4, Lemma 4.1] is
not applicable if a>M**(pM)¥?, 1In that case we shall replace the orthogonal
sympletic transformation which led from g to § by a non-linear canonical trans-
formation.

Thus assume for the moment that (3.12), (3.13) and
(3.14) M (pM)B<a<CA72
are fulfilled. Let 5=aX*®-Y. Then the function
', &) = (¢X(0, bx’, bE")—q*(0, 0, 0))/ab
is in a bounded subset of C=(U) (U={|(x’, £')| <C™'}) since [(bx’, bE")|<N7.

Hence there exists some canonical transformation X belonging to a bounded set
in C* for 0<A =1 such that

QoX(x', £') = &
in a neighborhood of 0. If we put
Xy(x', &) = bX(b7'x’, b7'E")
a(x, &) = q(x1, Xo(x", £))
then we obtain

(3.15) g®(x, £') = a&,+3*(0, 0)
when x, =0, |(x', )| <cb.

By the same way as in [4] we get
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(3.16) |@(0/0m,) (8]0, 7(0) | < C, M+ M
for any 7, j satisfying
J1-2 and (-H14i(s+1) (—DiI—j—1)<p .
If we introduce
(3.17) B, = M**'/a,

noting incidentally that pA,B,=1 as required in [4, Lemma 4.1], this means
that we have bounds for the derivatives of g(x,/M, x,/B,, 0)/pM at 0.

As stated in [4, p. 156], when we detive (3.16), we can replace the canonical
transformation X,(x’, ') by another X,(x’, £') which is linear in all variatles
except X, provided that the integral curve of the Hamilton field of g (0, x’, £')
by new X, is also the x, axis x,—at, x,=---=£,=0. We denote X, by X, in
what follows.

By the analogous calculation as in showing [4, (4.23] and (4.23)'] we obtain
when |x,M| <1, |[(x',&")| <cb

(3.18) | DE DEg(x, E')| < CopaM®b='" 1 if |a'+B'| %0
(3.18)’ | DE D2gi(x, E')| < C/gn~2p7 1%+ for any o', B’ .

In particular (3.18)" is a much better estimate than (3.16) if j=/—1 or (i414j
(s+1)) ((—1)/(I—j—1)> u, and it is not only valid at 0. Hence (3.16) leads us
to uniform bounds for §(x,/M, x,/B,, 0)/pM and all of its derivatives when
|x,] <1 and |x,| <1.

Since b>> (pM)¥? we can apply [4, Lemma 7.1] to

F(t, %y, y) = (Mp)~'q(t/M, x,| By, "' (pM)"**, §'(pM)"*")

where x”/=(x;, -+, %,) and y=(x",&’). 'Therefore, by the same way as in getting
[4, (4.25)] we obtain

(3.19) IDEDE(G(x, f’)—fzaa(xh %, 0)/0F,)
éCMB,HPBgz(pM)—m’w’l/zs
when |2, | M<1, |(x", ") | <(pM)"2, |x,| <1/B,.

As in [4], we obtain [4, (4.26)] and [4, (4.27)] with replaced the right hand
side by Cb=?2\*!. Hence it follows from (3.12) that (B,/M)dg(x,/M, 0)/0&, is
essentially a normallized polinomial in x; of degree [1'] and 8g(x,/ M, x,, 0)/3E, is
almost independent of x,.

From (3.19) and these inequalities we obtain with B;=M, 4;=B;=(pM)~V?
when j>2
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(3.20) | DEDSG(x, E')| S CoppMA®B?, if |x,M|<1, |x,B,| <1,
|£,4,| <N, |(x”, EU) l <(P]u)l/28 ’

where N is a fixed but arbitrary constant. If we write M{(x, £')=M(x,, X,(x', £")),
it follows in view of [4, Lemma 4.1], where we take 4,=1/M and K=M, that
(3.21) M(x, EV<CyM if |x,M| <1, |x,B,|<1,

e <N, (3", £")] <(pM)".
when (3.14) is fulfilled but not (3.14)" we get the same conclusion with B, re-
placed by (pM)~¥?® and X, equal to orthogonal sympletic transformation such
that q(x, f')=9(xn xb(x,7 E’))

The argument corresponding to the rest of [4, Section 4] can be done by the
same way if we let (3.1)—(3.3), (3.16), (3.18), (3.18)’, (3.19), (3.20), (3.21), [—1],
w'y X, and (pM)Y? correspond to [4, (4.1)—(4.3), (4.21), (4.23), (4.23)", (4.25),
(4.28), (4.29), k, k[2, X, and \/pM] respectively.

Because we have got the result corresponding to [4, Section 4] we can

easily prove (3.4) by the same way as in [4, Section 6], if we take the above cor-
respondence. The detail is left to the reader.

4. Proof of Proposition 1.2

The method of the proof is a version of [2] (, see also [15]). Suppose that
L is hypoelliptic at the origin. Then, as well-known, there exist a positive
integer s, a constant C and some neighborhood U of 0 such that

(4.1) lull<CIALll,  ueC3(U),

where the symbol of A is (|£,|°4 [£"|3+1). Hence for any large N there exists
a C such that

(1) llul| SCy(IA Lull 41| |2 Vell4- 1| | x| "A'Lull),  uES.
If we take the canonical change of variables (x, ) into

4.2) (A2, Mo/, N EANTEY), NTTUEHATE)),
O<A=1, 7=13),

with a fixed &,=(&y, 0, &) satisfying
En®+2E' =0 and £;,>0,
then it follows from (4.1)" that
(4-3) llel| < CROV MLyl |22V Y| Ro(x, N Dy)ull), €S,

where
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LJ\ = LI(A'ZTD x)+i7\~Tx12x2§034+ 2 )\'T(Z—j)Rj(x ’ XZTD x) ’
Ll(g) = 5501451+4'§033(2§3— Ez) ’
Rix &)= 33 awp(M&%"  (j=0,1,2)

6 +BIS K I

(aaﬂj(X) = O()\.t), C;O) .
Here M and N,(j=0, 1, 2) are some integers depending on s. Since £;;>0 we

can take w(x) such that
Ly(0,w)+ix %805t = 0

4.4)
[Im w| =c,|x|*, ¢,>0.

Put u,(x)=(exp i\ ""w(x)) ﬁ v,(x, A)A", where v; will be determined later such

that they are polinomials of x whose coefficients have the same property as dqg;-
Then we have

N .
Lyu, = exp ix""w ZZ(LI(D,)—}—A(x, 0,w))v;_,+Fi(x))A™,
=
(F,=0).
Here A(x, £)= ) dap#’E” and F,(x) is a linear combination of the functions
|o=1

Ve *+*,Vj-3 and their derivatives. By means of Cauchy-Kowalewska theorem,
solve the transport equations

(L(D,)+A(x, 8,))0;+Fji(x) = O(1%]| )

under the condition v4(0, A)=1 and v;(0, \)=0 (j=1), successively. Then the
analytic solution obtained, which is defined in a certain neighborhood o of the
origin, is to be multiplied by a cut off function ¢p&EC5(w) which equals 1 in
another neighborhood of the origin. The multiplication does not affect (4.5)
because (1—¢)z;=0O(|x|¥). Substituting u,(x)ES into (4.3) and changing
variables x into A4 give us the contradiction if 2N >M and if A tends to 0.
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