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Let E be a CW-spectrum and G be an abelian group. Following Kainen
[11] we can construct a CW-spectrum E‘(G) which has a universal coefficient
sequence

0 — Ext(Ex(X), G) = E(G)*(X) — Hom (Ex(X), G) - 0.

In the previous paper [14] with the same title we investigated several properties
of E(G) But some of our results are restrictive as yet, e.g., Proposition 8 and
Theorem 4 in [14]. In this note we continue the investigations to develop
and improve our partial results.

First we discuss whether the correspondences G—»E(G) as well as G—EG
are functorial in G, as analogous discussions were done in [9] and [10]. Next,
under some finiteness assumption on E or G we show that E(G) and E (R)G are
homotopy equivalent where ZC RCQ (Theorem 1). This result is a satisfactory
improvement of [14, Proposition 8]. As an application of the main result of
Huber and Meier [10] we can then give a criterion for EG*(X) being Hausdorff
(Theorem 2). Moreover we discuss the uniqueness of E (G) again to improve
a partial result obtained in [14, Theorem 4]. When E is the sphere spectrum
S we have a complete result (Theorem 3), but for a general E we need still some
restriction although the finiteness assumptions on E and G can be eliminated in
our previous result (Theorem 4). Finally we show that the universal coefficient
sequence is pure under some restriction on £ or G, adopting an argument given
in [9].

In this note we shall work in the stable homotopy category of CIW-spectra
(see [1] or [13]).

The author wishes to thank Professors Huber and Meier for sending him
their preprint [10] by which he has been motivated to write this sequel.

1. Functoriality of EA'(G)
1.1. Let E be a CW-spectrum and G be an abelian group. Then there
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is a CW-spectrum E(G) so that E and E(G) are related by a universal coefficient
sequence

6

(1.1) 0 — Ext(E4,(X), G) —> E(G)*(X) ¢, Hom (Ex(X), G) — 0

(see [11] and [14]). Let us first recall the eonstruction of E(G) involving an
injective resolution of G. By the representability theorem there is a CW-
spectrum E’(I) and a natural equivalence 7;: E(I)*( )—Hom(Ey( ), I) for

every injective I. 'T'ake any injective resolution 0 -G — I L J—0 and denote
by ¥r: E(I)— E(J) the unique map induced by v». We define £(G) to be the
fiber of Jr, i.e.

£G) - By - ()

is a cofibering. The homotopy type of E(G) is independent of the choice of
an injective resolution.

Let us denote by S the sphere spectrum. By the exactness of function
spectra [13] there Is a cofibering

N F(E, R
F(E, $(6) — F(E $0) "2 D rE), $0) .

By the aid of Five lemma [I3] we obtain

Proposition 1. For any abelian group G the spectrum E(G) has the same
homotopy type as the function spectrum F(E, S(G)).

Given an abelian group G, each map f: W— E of CW- spectra determines
the unique map f=F(f, S(G)): F(E, S(G))— F(W, S(G)). Tbereby Proposi-

tion 1 contains the following functorial property.

Corollary 2. Fix an abelian group G. Then the correspondence E —>E(G) =
F(E, S(G)) is a contravariant exact functor.

We may now turn our attention to the spectrum S(G). The map 7. gives
rise to an isomorphism

(1.2) to: mo(S(G)) —S Hom (r(S), G)=G .
Lemma 3. The composition map

$(6)*(X) —> Hom (z4(X), G) ~%» Hom (z4(X), m(S(G)))

is just the homomorphism « assigning to a map f the induced homomorphism fy in
0-th homotopy groups.
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PrO(A)f. It is sufficient to show the equality £,=74(14()) for the identity map
13) of S(G). Take any element f of 7y(S(G)), i.e.,amap f: S— §(G). By the
naturality of 7; we have

to(f) = 7e(f)1s) = (Te(13a)f#)(Ls) = Te(130)(f) -
Because of Lemma 3 we may employ « instead of 7,. Thus there is a
natural exact sequence
n A
(1.3) 0= Ext(z4_(X), G) —> S(G)*(X) = Hom(7«(X), G) — 0

where 7ro(SA(G)) is identified with G via the map #,.
Let E be a ring spectrum and F be an (associative) right E-module spectrum
equipped with a structure map p: F A E—F. Then there is a unique map

it E AF(G) — F(G)

such that ep o(15 A 76) = €r,c(is A 1p@) Where epo: F A F(G)—S(G) is the
evaluation map. Thereby F (G) 1s an (associative) left E-module spectrum.
Using the structure maps p and 7, we can give Hom (Fy( ), G) and F(G)*( )
structures of left E*( )-modules. Thus we have two homomorphisms

wi: E¥(Y)@Hom (Fy(X), G) = Hom(F(Y A X), G)
i EX(V)QF(GYX(X) — F(G)(Y A X)
defined in the obvious way. By virtue of Lemma 3 we have
Proposition 4. Let E be a ring spectrum and F be a right E-module spectrum.
Then the universal coefficient sequence
76 T¢
0 — Ext(Fy_,(X), G)—> F(G)*(X) — Hom (F«(X), G) -0
is an exact sequence of left E*( )-modules.
Proof. As is easily seen, the induced homotopy homomorphism « is a map
of left E*( )-modules, i.e., the following square
1R« A
EX(Y)QF(G)*(X) — E*(Y)@Hom(F«(X), mo(S(G)))

1oy « 1] )
F(GX(Y pX) —Hom(Fy(Y 5 X), 7(S(G)))

is commutative. By a routine computation the result is immediate.

1.2. Take any homomorphism ¢: G—>H of abelian groups, then there
is a (non-unique) map ¢: S(G)— §(H ) making the diagram below commutative
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0 — Ext(zs1(X), G) —%> $(G)*(X) e, Hom (74(X), G) = 0
b« . 1‘13* . ld)*
0 = Ext(z4_(X), H) — S(H)*(X) —— Hom (z4(X), H) - 0.
Thus the correspondence G-—>SA(G) is quasi-functorial in G [11].
¢

Lemma 5. If0-G— H —Y—> K —0 s a short exact sequence, then there
exist maps ¢: S(G)—S(H) and r: S(H)—S(K) which give us a cofibering

§6) -2 Sy s $(K).

Proof. Choose an injective resolution 0—H—I-— J,—0 and consider
commutative exact diagram

0 0
Voo
0--G—->H—-K->0
v
1 =1
Voo
0->K—-J,— J,—0
l
0 0

in which there appear three injective resolutions of G, H and K. By applying
Verdier’s lemma [6] we obtain a cofibering as desired.

Denote by &;  the composition map
A A A t§
S(HY(S(G)) — Hom (7o($(G)), H) «— Hom(G, H).

It is epic, in fact we observe that

(1'4) kG,H(qg) = ¢*(1c) =,

by making use of the equality t;=7,(15). But Ker k; y==Ext(z_ ,(S(G)), H)
= Ext(Hom(Z,, G), H)=Ext(G, Z,@ H). By an easy computation we verify
that

(1.5) kg y is an isomorphism if and only if either G is 2-torsion free or H is
2-divisible.

This implies

Proposmon 6 If G is 2-torsion free or if H is 2-divisible, then =
F(E, ¢): E(G)—»E(H ) is uniquely determined for each ¢: G—H.
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Let us denote by 7: 3!S— S the Hopf map, i.e., the non-zero element of
7 (S). A CW-spectrum E is said to be good if 7 p1;: Z'E—E is trivial [9].
For a good E we have the following functorial property.

Proposition 7. Assume that a fixed CW-spectrum E is good. Then the
composite G — S(G)—E(G)=F(E, S(G)) is a covariant exact functor.

Proof. We show that the homomorphism
F(B, ): {S(G), S(H)} — {E(G), E(H)}

factors through k; ;. Recall that F(E, ) is given by the composition

{8(G), S} =5 (B AE(G), S(H)} — {E(G), EH)}

where e;=e; ;1 E 5 E(G)—>$(G) is the evaluation map. So it is enough to show
that there is a homomorphism A making the diagram below commutative

0 — Ext(z_($(G)), H) —% {$(G), S(H)} ko, Hom (G, H) — 0
Jeery &
Ext(zi(E p E(G)), H)—2> {E A E(G), S(H)}

Consider the commutative diagram

7 AE \B(G) ~ = (S(G)) —2> Hom(m(S), G)
n* , n* -,-_ (,7*)*
o E A E(G) —>mS(G)) —> Hom(m(S), G).

The left arrow 7* is trivial by our hypothesis on £, and the central one 7* is
monic by use of the right square. This implies that the upper arrow e« is
trivial. The existence of A is now immediate. Therefore the correspondence
G——>E(G) is a functor which is exact by Lemma 5.

1.3. For each abelian group G we denote by SG the Moore spectrum of
type G. Then there is a universal coefficient sequence in the form of a natural

exact sequence

(1.6) 0= Ext(G, myn(X)) = {SG, X} —> Hom (G, m4(X)) = 0

where « is just the induced homotopy homomorphism [8]. In particular we
have a short exact sequence

0 — Ext(G, m,(SH)) — {SG, SH} —> Hom(G, H) — 0.,
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Given a homomorphism ¢: G— H, there is a (non-unique) map S¢: SG—SH
inducing S¢ = ¢: 7,(SG)—>n,(SH). Since =,(SH)=HQ®Z, we have an

analogous result to Proposition 6.

Proposition 8. Assume that G is 2-torsion free or that H 1is 2-divisible.

Then 1z A S¢p: EG—EH is uniquely determined for each ¢: G—H (see [10,
Proposition 3.2]).

By choosing suitably free resolutions in the dual way to the proof of Lemma
5 we can show that there is a cofibering

(1.7) s 3% sy S sk
¢ ¥

if 0—G——H ——>K—0 is a short exact sequence.
Corresponding to [9, Appendix] we obtain

Proposition 9. Assume that a fixed CW-spectrum E is good. Then the
composite G — SG — EG 1is a covariant exact functor.

Proof. The homomorphism 1; A —: {SG, SH} — {EG, EH} is just the
composition
Epr (==
{SG, SHY -5 {SG, F(E, EH)} —> {EG, EH}

where &y: SH— F(E, EH) is the dual of 1;,. So we consider the following
commutative diagram

0 — Ext(G, m(SH)) — {SG, SH} —> Hom(G, H) — 0
(EH*)* 6}1*
Ext(G, m(F(E, EH))) — {SG, F(E, EH)} .

In the commutative square

wo(SH) <2 7(F(E, EH))
n* ¢ N
m(SH) —2> z,(F(E, EH))

the left arrow »* is epic, but the right one 7* is trivial by our hypothesis on E.
Hence the lower arrow &y« is trivial, too. 'This claims that &;«: {SG, SH} —
{SG, F(E, EH)} factors through «. Our result is now obvious.

2. Important properties of E‘(G)

2.1. Let us denote by R a subring of the rationals Q and /¢ be the set of
primes which are invertible in R. A CW-spectrum E is called an R-spectrum if
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p+1z: E—E is a homotopy equivalence for each pel¢. Notice that £ is an
R-spectrum if and only if z4(E) is an R-module. An R-spectrum E is said to
be of finite type if m4(E) is of finite type as an R-module.

We now study whether the CW-spectra ﬁ'(G) and ﬁ(R)G are homotopy equi-
valent. Assume that an R-spectrum E is of finite type or that an R-module G
is finitely generated. Let us first recall our partial result [14] in the special case
when G is free. In this case we write P instead of G, i.e., Pzg R. The

canonical injections 7,: R— P give rise to the mag Vil \/lCT(R)-»E(P) which

is unique by Proposition 6. According to [14, Lemma 7] the map Vi, is a
homotopy equivalence under our assumption. Consequently the composite
map

(2.1) ts,p: E(R)P < VE(R) — E(P)

is a homotopy equivalence, too.
Notice that the map ¢; » has a factorization

F(E,
F(E, S(R))P———> F(E, S(R)P) & b5 F(E, S(P))
whose decomposed maps are both homotopy equivalences. By applying Five
lemma we obtain that the canonical map

(2.2) j: F(E, $(R))G — F(E, S(R)G)

is a homotopy equivalence under our finiteness assumption on £ or G.
We here give the following interesting result.

Theorem 1. Let E be an R-spectrum and G be an R-module. Assume that
E is of finite type or that G is finitely generated. Then E(G) and E(G)R have the
same homotopy type.

Proof. Take a free resolution 0——>P1—(1)—>P0—1L G—0 of R-modules, and
consider the diagram

. . 1 .
S(R)P, 1n 59 S(R)P, Lasy S(R)G

ls,p, s, P,

S(P) —— S(P, —> S(G
(P) 3 ()T()

involving two cofiberings in (1.7) and Lemma 5. In order to show that the
square is commutative, we use the map «: S(PO)"(S(R)Pl)—>H0m(7to(S(R)P1),
7o(S(P,)) which is an isomorphism. After z,(S(R)P,) and 7o(S(Py)) are
identified with P, and P, respectively, we compute that
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w(Peisp) = barles p) = dx(lp) = $*(1p)) = ¢*(ts,p,)
= IC(LS’PO']. ASH),

which claims (ﬁ'LS,pl:Ls’po'l AS¢. By (2.1) the vertical maps ¢ p, are both
homotopy equivalences. By use of Five lemma we obtain a homotopy
equivalence

S(R)G — S(G)
in the special case E=S.
For a general E we use (2.2) to obtain that the composite map

F(E, S(R)G) —— F(E, $(R)G) — F(E, $(G))
is a homotopy equivalence.

If E is an R-spectrum of finite type, then it has a nice property that there
is a homotopy equivalence

N\
(2.3) hy: E — ER — E(R)(R)

(see [14, Theorem 2]). Putting two important results, Theorem 1 and (2.3),
together we obtain a natural exact sequence

(2.4) 0 — Ext(B(R)x-(X), G) = EG*(X) — Hom (E(R)*(X), G) = 0

if E is an R-spectrum of finite type. Applying the main result of Huber and
Meier [10, Theorem 1.1] we can extend our criterion [14, Theorem 3] for
E*(X) being Hausdorff.

Theorem 2 ([10]). Assume that E is an R-spectrum of finite type. Then
EG*(X) is Hausdorff if and only if Pext (E(R)%-,(X), G)=0.

2.2. For a CW-spectrum E we denote by E(— oo, n] (=E(— 0, n-+1)) the
(n+1)-coconnective Postnikov cofber of E and by E(n, ) (=E[n+1, o)) the
n-connective Postnikov fiber of E (see [3]). Thus E(—co, n] is an (n41)-
coconnective CW-spectrum such that there is a map j,: E—E(— oo, n] which
induces an isomorphism j,«; 7,(E)— =, (E(— e, n]) for each »<n, and E(n, o)
an n-connective CW-spectrum such that there is a map ,: E(n, oo)—E which
induces an isomorphism i,; 7,(E(n, o))—>,(E) for each r>=n. Notice that

the sequence
I o
E(n, ©0) — E —— E(— 0, n]

is a cofibering.
By routine computations we have
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Lemma 10. i) The map j, induces a homotopy equivalence
B(— o0, 2]G _){ ( , 1) if Tor(w,(E), G) =0
EG(—oo,n+1]  if m(E)RG =0.
i)  The map i, induces a homotopy equivalence
=~ ( EG(n, oo ] =
E(n, )G _}{ (n, o) 7:f Tor(z,(E), G) =0
EG(n+1, )  if 7, (E) QG =0.
Lemma 11. i) The map i, induces a homotopy equivalence

= [ EG)[—n, ) if Ext(r,(E), G) =0
E(=ce, nl(®) "’{ B(G)[—n—1, )  if Hom(m,m(E), G)=0.

ii) The map i, induces a homotopy equivalence

= E(G)(—oo, —n) if Ext(m,(E), G) =0
E, w)(G)%{ B(G)(—c0, —n—1)  if Hom(m,w(E), G) = 0.

Combining Theorem 1 with Lemmas 10 and 11 we obtain

Proposition 12. Assume that an R-spectrum E is of finite W/@zat an R-
module G is finitely generated. If Ext(z,(E), G)=0, then E(— oo, n](G) has
the same homotopy type as E(R) [—n, )G and m)(G) does the same as
E(R)(— o, —n)G.

For the BU-, EO- c2d BSp- spectrum K, KO and KSp we have determined
in [14, Theorem 5] (or see [2]) that

, /N
(2.5) K(G)=KG and KSp(G)= KOG.
Applying Proposition 12 we get
N /\
(2.6) K]0, 0)(G) = K(—o°, 0]G, KSp[0, )(G) = KO(—o=, 0]G and so on.
2.3. Let 7: F(W, I7(G))—>F( v, W(G)) be the homotopy equivalence

induced by the switching map T: WA V—V 5 W. Putting V'=F and W= E(G),

7 yields the map
VA

£e60 £ = B(G)(G)
which is the dual of e, ;T where e, ;: E AE'(G)—)S(G) denotes the evaluation

map. Observe that the composition

& e A/\ Ty A
(2.7) {W, E} —5 {W, E(G)(G)} — {E(G), W(G)}
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is just the map F( , S(G)).
Proposition 13.  If an R-spectrum E is of finite type, then the map

F(, $(R)): {W, E} > {E(R), W(R)} N
is an isomorphism for each W, and equivalently the canonical map &g z: E —>EA3(R)(R)

is a homotopy equivalence (cf., (2.3)). PN
Proof. Take a homotopy equivalence %z: E —E(R)(R) of (2.3) and intro-

duce the composite map

Ao
ps: F(W, E) — F(W, E(R)(R)) — F(ER), W(R)),

given by use of kg, which is functorial with respect to W. We modify the map
pr a bit as it induces the map F( , S(R)). Since pg: {W, E}—{E(R), W(R)}
1s an 1somorphlsm, we can find a map f: E— E such that pg(f)=14pr. The
map f: E(R)—~E(R) gives rise to a split epic fy: 74(E (R))—m(E(R)) since
fepe(1)=pe(F*(1))=14. But the R-module 74(E(R)) is of finite type, so
% 15 isomorphic. This means that the map f is a homotopy equivalence.
Consider the composite map

F(W, E) -5 F(B(R), W(R)) (é_vi_/qz ) F(E(R), W(R)).

Obiously the induced isomorphism

{(w, B} L2 (B(R), W(R)} i—{E(R) W(R)}

conicides with the map F( , S(R)).

We next define a generallzatlon FG x: {WG, EH} — {E(R)G W(R)H 4
of the isomorphism F( , S(R)) The evaluation map ez g: AE(R)——)S(R)
gives us a homomorphism

ep: {WG, EH} — {W A E(R)G, S(R)H}

defined in the obvious way. On the other hand, if W is an R-spectrum of finite
type or if H is a finitely generated R-module, then the map j: F(W, S(R))H -
F(w, S(R)H ) induces an isomorphism

{E(R)G, W(R)H} — {W A E(R)G, S(R)H}

by (2.2). We compose the above two to obtain a generalization F;; , under the
finiteness restriction on W or H.

Proposition 14. Assume that W is an R-spectrum of finite type or that H is
a finitely generated R-module. If an R-spectrum E is of finite type, then the map
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Fsu: {WG, EH} — {E(R)G, W(R)H}
1s an isomorphism.

Proof. For a free R-module P we consider the following commutative
diagram

o, ByoP “B5 A BR), SR} @P
N
{W, EP} ———> {W A E(R), S(R)P} —> {W A E(R), S(P)} .
€ry ls, P«

The upper arrow e, ®1 is an isomorphism by Proposition 13, and two vertical
arrows are both isomorphisms for any finite W (use (2.1) and the proof of
[14,Lemma 7 i1)]). This implies that the lower one ey is an isomorphism
for a general W. Now a routine argument shows that ez: {WG, EH} —
{W A E(R)G, S(R)H} is an isomorphism for any G and H, and hence so is the
map F. c.u

For simplicity we write S instead of $(Z). When W—E=S, Fj; 4 is equal
to the map 13 A —: {SG, SH}—{SG, SH}. So we have

Corollary 15. The map
130 —: {SG, SH} — {SG, SH}

is an isomorphism for any G and H.

3. Uniqueness of E‘(G)

3.1. We here discuss the uniqueness of £(G) as it was done in [14, Theorem
4]. Our attention is first turned to the special case E=S. In this case we
have the following satisfactory result.

Theorem 3. If a CW-spectrum F has a natural exact sequence

(%) 0 - Ext(rs(X), G) — F¥(X) — Hom (z(X), G) — 0
for a fixed abelian group G, then F has the same homotopy type as SA(G)

Proof. By the same argument as Lemma 3 we may regard 7 as the induced
homotopy homomorphism «, after G is identified with =,(F) via the isomor-

phism £, ;: 7ro(F)—T—> Hom(z\(S), G)==G. Then there is a map
h: S(G)— F

whose induced homomorphism /: n—o(SA(G))aG is equal to the isomorphism
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t; of (1.2). Using the commutative square
7-i(8(G)) = Hom(m(S), m(S(G))
e =
7A(F) —— Hom(z\(S), 7(F))

we verify that A,: 7z_1(§(G))-—>7r_1(F) is also an isomorphism. Applying the
natural exact sequences (%) and (1.3) we can see that

I*: FY(F) —> FY$(G)) and k*: S(G)'(F) — S(G)Y(S(G))

are both isomorphisms. A routine argument shows that % is a homotopy
equivalence.

3.2. In a general case E we next attempt to weaken some restrictions in
our previous result [14, Theorem 4].

Theorem 4. Let G be a fixed abelian group and D be the maximal divisible
subgroup. Assume that a CW-spectrum E satisfies Hom (tz(E), G/D)=0 where
try(E) denotes the torsion subgroup of nwy(E). If two CW-spectra E and F are
related by a natural exact sequence

0 — Ext(E5(X), G) > F*X) —» Hom(E(X), G) =0,
then F has the same homotopy type as E(G)

Proof. Since the short exact sequence 0—D—G— G/D—0 is split we
may choose a map f: F— E(D) so that it induces the composition
T =1
F*(X) — Hom(Ey(X), G) - Hom(E«(X), D) «— E(D)*(X).
Denoting by F, the fiber of f, the cofibering

Fo—F—Ls BD)
is split as fy: F*(X)—>E'(D)*(X) is epic. With an application of 33 lemma
as in [14, Theorem 4] we get a natural exact sequence

0 — Ext(E4_,(X), G/D) — F*%(X) - Hom (E«(X), G/D) — 0.

Evidently Hom(Q, G/D)=0, i.e., G/D is reduced (see [7]). Therefore we have
to show that F and E(G/D) have the same homotopy type for the reduced G/D.
We may now assume that G is a reduced group with Hom (tz (&), G)=0.

Take a free resolution O—»Pl—(z)-» Pﬁ—\k» G—0 and proceed our proof as in
[14, Theorem 4]. By Lemma 5 the resolution gives us a cofibering
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By -2 Bey Yo o).

Evidently Hom(EQ4(X), P,)=Hom(EQ/Z +«(X), P,)=0 for i=1, 2 and also
Hom (EQ4(X), G)=0 as G is reduced. We then obtain maps

i F(SQ, E(Py) — F(SO, F) and : F(SO|Z, E(P,)) > F(SQ|Z, F)

which make the diagrams below commutative

0 = Bxt(BQu 1 (X), Py) ~25 Ext(EQs,(X), P) -5 Ext(EQs 1(X), G) — 0

~ ~ ~

v F*(X0) — 0

Px g
—_—

0> E@P)¥X0) —>  E(P)%X0)

and

Ext(EQ|Zx1(X), P) 25 Ext(BQ|Z51(X), Py) V% Bt (BQZs,(X), G)— 0

o~ =

e~ X = ;
Bepyxom 5 R0z S PHx0p)

By easy diagram chases we observe that two bottom sequences in the above

diagrams are exact. In particular, the compositec maps V- and V- are both

trivial where F(SQ, $) and F(SQ/Z, ¢) are abbreviated as ¢’s. Then there are

two maps

i (SO, B(G) ~ F(SQ, F), i F(SO/Z, £(G)) — F(SQ/Z, F)
such that /i-yp=vr and f-yp=1. As is easily seen, the map / is a homotopy
equivalence. On the other hand, our assumption means that Hom (7 «(£Q/Z),
G)=0 since the map Hom (Tor (z4_,(E), Q/Z), G)—Hom (7 (EQ|Z), G) is an
isomorphism for any reduced G. Thereby the cocflicients sequence
b Jr

B 0 EP)HS0/Z) 25 BP)¥50/2) s FH(S0/Z) 0
is short exact. By means of [15, Lemma A] (see [5]) we find that the map 7% is
a homotopy equivalence, too.

Corresponding to the injective resolution 0—Z—Q— Q/Z—0 there is a
cofibering

s — 50 -1 507 .

It is casy to sce that the maps +, ¥ and +’s are compatible with j’s.
Consequently we have the following diagram
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F(SQJZ, B(Py) —r, _ F(SQ/Z, F)

N 4
F(SQ/Z, E(G))

j
F(SQ, EG)) _
P ;
F(SQ, E(Py) —\p_—’ F(SQ, F)

in which all but the right square are commutative, and the maps % and % are
homotopy equivalences. The map ) induces a monomorphism

V*: FX(F(SQ/|Z, E(G))Q) — F*(F(SQ|Z, E(Py)Q)
because ry: 7Q4(F(SQ|Z, E(Py)))—nQ«(F(SQ|Z, E(G))) is epic by (3.1).

Hence we get immediately that the right square is commutative like the rest.
Thereby we have a homotopy equivalence

h: E(G)—F
by applying Five lemma.

Note that Hom (24, G)=0 if Tor (4, G)=0. The above theorem asserts
that the finiteness restrictions on G and E may be eliminated in [14, Theorem 4].

4. Purity of the universal coefficient sequence

4.1. We now study whether the universal coefficient sequence (1.1) is
pure as Huber and Meier [10] tried. But our method owes to Mislin [12]
rather than Hilton and Deleanu [9, Theorem 3.2]. Consider first the universal
coefficient sequence of the form

4.1) 0= Eu(X)QZ, = EZx(X)— Tor(Ex_(X), Z,)—>0.
According to Araki and Toda [4, Theorem 2.7] (or [9]) we have that
(4.2) the universal coefficient sequence (4.1) is split if g==2 mod 4 or if E is good.

An abelian group G is said to be 2-high if the homomorphism Tor (G, Z,)
—Tor (G, Z,), induced by the projection Z,— Z,, is epic [9]. If a 2-high group
G is finitely generated, then it doesn’t contain Z, as a direct summand. Any
2-high group is certainly the union of all finitely generated 2-high subgroups.
Even if E is not good, we still have the following nice result by adopting the
argument in [9, Theorem 4.3].
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(4.3) If E,(X) is 2-high, then the exact sequence (4.1) is split in the n-th and
(n+1)-th dimensions.

A short exact sequence 0—A4—B—>C—0 is called 2-kigh pure if the induced
homomorphism AQRZ,—~B®Z, is monic for any ¢%2 mod 4. Evidently an
exact sequence 0—A4—->B—>C—0 is 2-high pure if and only if the induced
homomorphisms 4QG—BRG are monic for all 2-high G.

Assume that there is a natural exact sequence

(#%) 0= Ext(Ex(X), G) —— F¥(X) —> Hom(Ex(X), G) — 0.

Of course we may introduce £(G) as F if necessary. Consider the commutative
square

7®1
Ext(Ex_(X), G)®Z, —> F¥X)QZ,

Ext(EZs(X), G) — F*"(XZ,).

The upper arrow 7®1 is monic if and only if the left vertical arrow is monic.
The latter condition is equivalent to say that the sequence

0 — Ext(Tor (Ex_(X), Z,), G) = Ext (EZ x(X), G) = Ext (Ex(X)®Z,, G) = 0
induced by (4.1) is exact. Hence we obtain

(4.4) the natural exact sequence (xx) is always 2-high pure, and it is pure whenever
the exact sequence (4.1) with g=2 is split.

Moreover we notice
(4.5) the purity of the natural exact sequence (xx) doesn’t depend on the choice of F.

4.2. We here compute the group {S(G), S(H)}.

Lemma 16. If either G or H is 2-high, then

{S(G), S(H)} =Hom (G, H)DExt(G, HRZ).
Proof. First assume that G is 2-high. Then the exact sequence
0 = 7,(S(G)QZ, = mo(S(G)Z,) — Tor(z_(S(G)), Z,) = 0
is split by (4.3). Because of (4.4) the exact sequence
0 - Ext (z_y(S(6)), H) - S(H)(S(G)) —~ Hom (m(S(G)), H) = 0

is pure. Ext (n_l(SA(G)), H) is bounded, and hence it is algebraically compact
(see [7]). So the pure exact sequence is split.
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We next assume that H is 2-high. By use of Corollary 15 and Theorem 1
we get an isomorphism {SG, SH} — {S(G), S(H)}. So we use the exact
sequence

0 — Ext(G, = (SH)) — SH°(SG) — Hom (G, n(SH)) — 0.
Consider the commutative square

Ext (G, m(SH))®Z, -~ SHY(SG)®Z,

Ext(G, n(SHZ))) — SHZY(SG).
The left vertical arrow is monic since the exact sequence
0— 7 (SH)RZ, — = (SHZ ) — Tor (= (SH), Z,) = 0

is split by (4.3). Thus the above exact sequence is pure. Thereby it is split
as Ext (G, =,(SH)) is bounded.

We now show the purity of the exact sequence (*#*) under some restriction
on cither E or G.

Theorem 5. Assume that there is a natural exact sequence
0 = Ext(E4_(X), G) = F*(X) — Hom (E«(X), G) - 0.

If the CW-spectrum E is good or if the abelian group G is 2-high, then the above
exact sequence is pure. (Cf., [10, Corollary 3.4]).

Proof. When E is good, the purity follows from (4.2) and (4.4) Assume
that G is 2-high, then {S(G), S(GRZ))} is a Z,-module by Lemma 16. So

we have a commutative square

Ext(E4_(X), G)RZ, 781 EGH*X)®Z,

=

Ext(Es_(X), G®Z,,) 5> B(GRZ)*(X).

The upper arrow 7,®1 is monic, and hence the universal coefficient sequence

0 — Ext (Ex(X), G) —%> B(G)*(X) —%> Hom (E4(X), G) — 0
is pure. By virtue of (4.5) we get the purity of our exact sequence.

Huber and Meier [10] gave several conditions under which each pure exact
sequence of the form (##) is split. In particular, we have

Corollary 18 ([10]). Assume that E is good or that G is 2-high. If
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Pext (Q/Z, tG)=0, e.g., the torsion subgroup tG is algebraically compact, then a
natural exact sequence

0 — Ext(Ex_(X), G) = F¥(X) - Hom (E«(X), G) - 0
is spht.
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