CORRECTION TO

"A CONSTRUCTION FOR IRREGULAR DISCRIMINANTS"

Maurice CRAIG

This Journal, vol. 14 (1977), 365-402
(Received January 23, 1978)
$365-11 \quad \cdots$ the ideal $\left(A_{i}, \frac{1}{2}\left(B_{i}+\sqrt{ } \bar{D}\right)\right) \cdots$
$390+11 \cdots$ once it is determined that the square-free part of $D(t)$ has degree at least three.
391-12 \cdots we observe that $\left(A_{i}(t), B_{i}(t)\right)$ divides R_{i} hence T. By (77), it must therefore divide $\left(A_{i}(3), B_{i}(3)\right)$, which equals 1 by Part 7. $400+8 \quad \nu=17555^{2}+462 \cdot 389^{2}$

It may also be remarked that both (33) and the solution discussed in Note A can be obtained by the chord and tangent process applied to the intersections of the plane cubic curve (27) with the line $\lambda=0$.

