IMMERSION AND EMBEDDING PROBLEMS FOR COMPLEX FLAG MANIFOLDS

Tamio SUGAWARA

(Received November 22, 1976)
(Revised May 11, 1977)

Introduction

For a partition $n=n_{1}+n_{2}+\cdots+n_{r}$ of an integer n, let

$$
W=W\left(n_{1}, \cdots, n_{r}\right)=U(n) / U\left(n_{1}\right) \times \cdots \times U\left(n_{r}\right)
$$

be the complex (generalized) flag manifold. For example $W(k, n-k)=G_{k, n-k}$ is the complex Grassmann manifold and $W(1,1, \cdots, 1)=F(n)$ is the (usual) flag manifold $U(n) / T^{n}$ where T^{n} is a maximal torus in $U(n)$. Then we have the natural bundle projection $\pi: F(n) \rightarrow W$ and the induced map

$$
\pi^{*}: K(W) \rightarrow K(F(n))=Z\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right] / I^{+}
$$

is a monomorphism (see $\S 2$). We write $M \subset R^{n}$ the existence of an embedding and $M \subseteq R^{n}$ the existence of an immersion of the differentiable manifold M in the Euclidean space R^{n}.

The purpose of this paper is to prove the following non-immersion and non-embedding theorem for the complex flag manifolds.

Theorem 4.1. Let $2 m=\operatorname{dim} W=n^{2}-\left(n_{1}^{2}+\cdots+n_{r}^{2}\right)$. For a positive inetger k, if the element

$$
2^{m} \prod_{(i, j) \in A}\left\{1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}\right\}
$$

of $K(F(n))$ is not divisible by 2^{k+1}, then

$$
\text { (i) } W \nsubseteq R^{4 m-2 k}, \quad \text { (ii) } W \subseteq R^{4 m-2 k-1} \text {. }
$$

For the definition of the set A, see (3.1).
As an application of Theorem 4.1, we also prove the following non-existence theorem of immersions and embeddings for some complex Grassmann manifolds $G_{2, n-2}$ for odd integers n.

Theorem 6.1.* For each integer $u \geqq 0$, we put $\beta(u)=2 \alpha(u)-\nu_{2}(u+1)+1$. (For the definition of $\alpha(u)$ and $\nu_{2}(u+1)$, see p. 128) Then we have

$$
\text { (i) } \quad G_{2,2 n+1} \mp R^{8(2 u+1)-2 \beta(u)}, \quad \text { (ii) } \quad G_{2,2 u+1} \mp R^{8(2 u+1)-2 \beta(u)-1} .
$$

We give the first few examples of non-embeddabilities:

$$
\begin{array}{llll}
G_{2,1} \nsubseteq R^{8-2}, & G_{2,3} \nsubseteq R^{24-4}, & G_{2,5} \nsubseteq R^{40-6}, & G_{2,7} \nsubseteq R^{55-6}, \\
G_{2,9} \ddagger R^{22-6}, & G_{2,11} \nsubseteq R^{88-8}, & G_{2,13} \nsubseteq R^{104-6}, & G_{2,15} \ddagger R^{120-8} .
\end{array}
$$

Problems of immersions and embeddings for flag manifolds have been investigated by many topologists. Hoggar [10] showed that $G_{2, n-2} \nsubseteq R^{3 m}$ and that $G_{2, n-2} \ddagger R^{3 m-1}$ where $2 m=\operatorname{dim}_{R} G_{2, n-2}=4(n-2)$. He made use of the geometrical dimensions introduced by Atiyah [1]. Our results claim stronger facts that $G_{2, n-2} \nsubseteq R^{4 m-2 \beta}$ and that $G_{2, n-2} \ddagger R^{4 m-2 \beta-1}$ because $\beta / m \rightarrow 0$ as $n \rightarrow \infty$. Our method relies on a theorem of Nakaoka [13] which seems much close to the Atiyah-Hirzebruch's integrality theorem [3]. Tornehave [15] investigated the existence of immersion of flag manifolds $W\left(n_{1}, \cdots, n_{r} \subseteq R^{n^{2}-r}\right)$ using the theory of Lie algebras and Hirsch's theorem [7]. Kee Yuen Lam [12] also proved the same result making use of his new functor μ^{2}. Connell [6] discussed on the existence and the non-existence of immersions of some low dimensional flag manifolds. Among his results, there are

$$
\begin{array}{lll}
\text { (i) } & G_{2,2} \subseteq R^{14}, & \text { (ii) } G_{2,2} \nsubseteq R^{12}, \\
\text { (iii) } & G_{2,3} \subseteq R^{23}, & \text { (iv) } G_{2,3} \ddagger R^{19} .
\end{array}
$$

The last statement (iv) agrees with a consequence of our result.
This paper is arranged as follows. In $\S 1$, we recall the immersion and embedding theorem of Nakaoka [13]. The structure of K-rings and tangent bundles of W and $F(n)$ are discussed in $\S \S 2-3$. $\S 4$ is devoted to the proof of the main theorem (Theorem 4.1). Here we make use of Atiyah's γ-operations and the fact that the tangent bundle $\tau(W)$ has its splitting on $F(n)$. §5 is on some preliminaries for $\S 6$, where we discuss non-immersion and non-embedding of some complex Grassmann manifolds $G_{2, n-2}$. Calculations used here are quite elementry although a little bit complicated.

I should like to express my gratitude to Professors Tatsuji Kudo (my thesis advisor), Hiroshi Toda and Minoru Nakaoka for their kind advices and criticism. I am indebted to K. Shibata who read the manuscript. I am also indebted to T. Kobayashi, M. Kamata and H. Minami for their valuable discussions and suggestions.

1. Immersion and embedding of almost complex manifolds

For a complex vector bundle ξ over a finite CW-complex X, let $\gamma^{i}(\xi) \in K(X)$

* More complete results are obtained in [18].
denote the Atiyah class of ξ [2]. The map $\gamma_{t}: \operatorname{Vect}_{c}(X) \rightarrow 1+K(X)[t]^{+}$ defined by $\gamma_{t}(\xi)=\sum_{i \geq 0} \gamma^{i}(\xi) t^{i}$ is multiplicative: $\gamma_{t}(\xi \oplus \eta)=\gamma_{t}(\xi) \gamma_{t}(\eta)$. We define the dual Atiyah class $\bar{\gamma}^{i}(\xi) \in K(X)$ by $\bar{\gamma}^{0}(\xi)=1$ and $\sum_{i \neq j=k} \gamma^{i}(\xi) \bar{\gamma}^{j}(\xi)=0$ for $k>0$. Then $\bar{\gamma}_{t}(\xi)=\sum_{i \geq 0} \bar{\gamma}^{i}(\xi) t^{i}$ is the inverse element of $\gamma_{t}(\xi)$ in the multiplicative group $1+K(X)[t]^{+}$.

If M is an almost complex manifold of $2 m$-dimension, that is, its tangent bundle $\tau(M)$ has a structure of m-dimensional complex vector bundle, then we write $\gamma^{i}(M)$ (resp. $\bar{\gamma}^{i}(M)$) for $\gamma^{i}(\tau(M)-m)$ (resp. $\bar{\gamma}^{i}(\tau(M)-m)$). We see that $\bar{\gamma}^{i}(M)=0$ if $i>m$. The following theorem due to Nakaoka [13, Theorem 8] is the starting point of our investigations.

Theorem 1.1. Let M be a closed almost complex manifold of real dimension $2 m$ such that $K(M)$ has no elements of finite order. Then if M can be embedded (resp. immersed) in $R^{4 m-2 k}$, the element $\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}(M) \in K(M)$ is divisible by 2^{k+1} (resp. 2^{k}).

Note that the element in Theorem 1.1 is rewritten as

$$
\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}(M)=2^{m} \sum_{i=0}^{m} \bar{\gamma}^{i}(M)\left(\frac{1}{2}\right)^{i}=2^{m} \bar{\gamma}_{1 / 2}(M)
$$

where $\bar{\gamma}_{1 / 2}(M)$ is regarded as the element of $K(M) \otimes Z\left[\frac{1}{2}\right]$. If N is another almost complex manifold of dimension $2 n$, it holds that

$$
2^{m+n} \bar{\gamma}_{1 / 2}(M \times N)=2^{m} \bar{\gamma}_{1 / 2}(M) \otimes 2^{n} \bar{\gamma}_{1 / 2}(N)
$$

The following theorem is a generalization of Theorem 9 of Nakaoka [13] and the proof relies on Sanderson-Schwarzenberger [14, Theorem 1].

Theorem 1.2. Let M be the same as in Theorem 1.1. For a positive integer k, if the element $\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}(M)$ is not divisible by 2^{k+1}, then

$$
\text { (i) } M \nsubseteq R^{4 m-2 k}, \quad \text { (ii) } \quad M \mp R^{4 m-2 k-1} \text {. }
$$

Before we prove Theorem 1.2, we put a remark on the exponent of 2 in the binomial coefficient $\binom{a}{b}$. Let $\nu_{2}(n)$ denote the exponent of 2 in n and $\alpha(n)$ the number of 1 's in the diadic expansion of n. Since the equality $\nu_{2}(n!)=n-\alpha(n)$ holds by the elementary number theory, we have the following

Lemma 1.3. $\quad \nu_{2}\left(\binom{a}{b}\right)=\alpha(b)+\alpha(a-b)-\alpha(a)$.
Proof of Theorem 1.2. (i) Straightfoward from Theorem 1.1. (ii) Suppose
$M \subseteq R^{4 m-2 k-1}$. We fix an integer $s=2^{t}>m$. By James [11] it holds that $C P^{s} \subset R^{4 s-1}$ and therefore by Sandeson-Schwarzenberger [14, Lemma] it holds that $M \times C P^{s} \subset R^{4 m+4 s-2 k-2}$. Thus by Theorem 1.1 the element

$$
2^{m+s} \bar{\gamma}_{1 / 2}\left(M \times C P^{s}\right)=2^{m} \bar{\gamma}_{1 / 2}(M) \otimes 2^{s} \bar{\gamma}_{1 / 2}\left(C P^{s}\right)
$$

is divisible by 2^{k+1}. On the other hand, the isomorphism $\tau\left(C P^{s}\right) \oplus 1_{C} \cong(s+1) \eta$ implies $\gamma_{t}\left(C P^{s}\right)=(1+t x)^{s+1}$ and $\bar{\gamma}_{t}\left(C P^{s}\right)=(1+t x)^{-s-1}$ where η is the canonical line bundle over $C P^{s}$ and $x=\eta-1_{c} \in K\left(C P^{s}\right)$. Therefore we have

$$
2^{s} \bar{\gamma}_{1 / 2}\left(C P^{s}\right)=2^{s}(1+x / 2)^{-s-1}\left(\bmod x^{s+1}\right)=\sum_{i=0}^{s}(-1)^{i}\binom{s+i}{i} 2^{s-i} x^{i}
$$

Since $\binom{s+i}{i} 2^{s-i}(0 \leqq i<s)$ are divisible by 4 and $\binom{2 s}{s}$ is divisible by 2 but not by 4 (see Lemma 1.3), $2^{s} \bar{\gamma}_{1 / 2}\left(C P^{s}\right)$ is divisible by 2 but not by 4 . Hence $2^{m} \bar{\gamma}_{1 / 2}(M)$ must be divisible by 2^{k+1}. This leads to a contradiction.

2. K-ring of flag manifolds

Let ($n_{1}, n_{2}, \cdots, n_{r}$) be a partition of an interg $n: n=n_{1}+n_{2}+\cdots+n_{r}$ and let

$$
W=W\left(n_{1}, n_{2}, \cdots, n_{r}\right)=U(n) / U\left(n_{1}\right) \times U\left(n_{2}\right) \times \cdots \times U\left(n_{r}\right)
$$

be a complex flag manifold. For example for $(1,1, \cdots, 1)$ we have the usual flag manifold $F(n)=U(n) / T^{n}$ where T^{n} is a maximal torus of $U(n)$. For $(k, n-k)$ we have the complex Grassamann manifold $G_{k, n-k}$ of all k-planes in C^{n} and for $(1, n-1), W$ is just the complex projective space $C P^{n-1}$.

In this paragraph, we determine the ring structure of $K(F(n))$ and $K(W)$ explicitly. Generally for a compact Lie group G and its closed subgroup H, the ring homomorphism $\alpha: R(H) \rightarrow K(G / H)$ is constructed by Atiyah-Hirzebruch [4] as follows. For an isomorphism class $x=[V] \in R(H)$ of an H-vector space $V, \alpha(x)$ is the isomorphism class of vector bundle $V \rightarrow G \times{ }_{H} V \rightarrow G / H$ associated with the natural principal H-bundle over G / H. If V is moreover a G-vector space, that is, x is in the image of $i^{*}: R(G) \rightarrow R(H)$, the bundle map $\alpha: G \times_{H} V \rightarrow$ $G / H \times V$ difined by $\alpha\left(g \times{ }_{H} v\right)=(g H, g v)$ is an isomorphism and hence $\alpha(x)=$ $(\operatorname{dim} V) 1_{c}$. Therefore α is factored through the natural projection p :

The following theorem is due to Hodgkin [9, Corollary of Lemma 9.2].
Theorem 2.1. Let G be a compact connected Lie group with $\pi_{1}(G)$ free and
let H be a closed connected subgroup of G with maximal rank. Then the ring homomorphism $\bar{\alpha}: R(H) \otimes_{R(G)} Z \rightarrow K(G / H)$ is an isomorphism.

We use these facts for $G=U(n)$ and $H=T^{n}$ or $\prod_{j} U\left(n_{j}\right)$. First we will investigate the case $F(n)$ and then the general case $W\left(n_{1}, n_{2}, \cdots, n_{r}\right)$. As is well known we have

$$
\begin{aligned}
& R\left(T^{n}\right)=Z\left[\alpha_{1}, \alpha_{1}^{-1}, \alpha_{2}, \alpha_{2}^{-1}, \cdots, \alpha_{n}, \alpha_{n}^{-1}\right] \\
& R(U(n))=Z\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \lambda_{n}^{-1}\right]
\end{aligned}
$$

and λ_{i} is mapped on the i-th elementary symmetric polynomial of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ by the monomorphism $i^{*}: R(U(n)) \rightarrow R\left(T^{n}\right)$. Let ξ_{i} be the image of α_{i} by the ring homomorpism $\alpha: R\left(T^{n}\right) \rightarrow K(F(n))$, then $\xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n}$ is the vector bundle associated with the principal T^{n} bundle $T^{n} \rightarrow U(n) \rightarrow F(n)$. Let $\sigma^{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ denote the k-th elementary symmetric polynomial in variables $x_{1}, x_{2}, \cdots, x_{n}$. The element $\sigma^{k}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ has the same dimension as $\binom{n}{k} 1_{c}$ and they coincide with each other in ${\underset{j}{r}}_{\dot{1}} R\left(U\left(n_{j}\right)\right) \otimes_{R(U(n)} Z$. Therefore $\sigma^{k}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)=\binom{n}{k}$ holds in $K(F(n))$. In particuler $\xi_{1} \xi_{2} \cdots \xi_{n}=1$ holds and we have $\xi_{j}^{-1}=\prod_{k \neq j} \xi_{k}$. Therefore the ring $K(F(n))$ is isomorphic to the quotient ring of $Z\left[\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right]$ factored by the ideal generated by

$$
\left\{\sigma^{k}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)-\binom{n}{k} ; k>0\right\} .
$$

For the convenience of the later use we adopt the generators $\gamma_{i}=\xi_{i}-1$. Then we can choose the elements

$$
\left\{\sigma^{k}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right), k>0\right\}
$$

as a new generator system of the ideal. Hence we have the following

Proposition 2.2.

$$
K(F(n))=Z\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right] / I^{+}
$$

where I^{+}is the ideal generated by $\left\{\sigma^{k}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) ; k>0\right\}$.
We repeat the same procedure for $W=W\left(n_{1}, n_{2}, \cdots, n_{r}\right)$. For a partition $\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ of n, we define a sequence of integers ($m_{0}, m_{1}, \cdots, m_{r}$) inductively as follows:

$$
m_{0}=0, \quad m_{j}=m_{j-1}+n_{j} \quad(1 \leqq i \leqq r)
$$

For the representation ring of $\prod_{j} U\left(n_{j}\right)$ we have

$$
R\left(\Pi_{j} U\left(n_{j}\right)\right)={\underset{j=1}{r}}_{\otimes_{j}} R\left(U\left(n_{j}\right)\right)=\bigotimes_{j=1}^{\gamma} Z\left[\lambda_{1}^{(j)}, \lambda_{2}^{(j)}, \cdots, \lambda_{n_{j}-1}^{(j)}, \lambda_{n_{j}}^{(j)},\left(\lambda_{n_{j}}^{(j)}\right)^{-1}\right]
$$

and $i^{*}: R\left(\prod_{j} U\left(n_{j}\right)\right) \rightarrow R\left(T^{n}\right)$ maps $\lambda_{p}^{(j)}$ on the p-th fundamental symmetric polynomial in variables $\left\{\alpha_{i}: m_{j-1}<i \leqq m_{j}\right\}$. We denote $\sigma_{p}^{(j)}$ for the image of $\lambda_{p}^{(j)}$ by the map $\alpha: R\left(\prod_{j} U\left(n_{j}\right)\right) \rightarrow K(W)$. Since the element

$$
\sum_{i_{1}+\cdots+i_{r}=k}^{r} \lambda_{i_{1}}^{(1)} \lambda_{i_{2}}^{(2)} \cdots \lambda_{i_{r}}^{(r)} \in \bigotimes_{j=1}^{r} R\left(U\left(n_{j}\right)\right)
$$

has the same dimension as $\binom{n}{k} 1_{c}$, they conicide with each other in ${\underset{j}{ }{ }_{j=1}} R\left(U\left(n_{j}\right)\right) \otimes_{R(U(n))} Z$. Therefore $\sum_{i_{1}+\cdots+i_{r}=k} \sigma_{i_{1}}^{(1)} \sigma_{i_{2}}^{(2)} \cdots \sigma_{i_{r}}^{(r)}=\binom{n}{k}$ holds in $K(W)$. In particular $\sigma_{n_{1}}^{(1)} \sigma_{n_{2}}^{(2)} \cdots \sigma_{n_{r}}^{(r)}=1$ holds and we obtain $\left(\sigma_{n_{j}}^{(j)}\right)^{-1}=\prod_{k \neq j} \sigma_{n_{k}}^{(k)}$. Therefore the ring $K(W)$ is isomorphic to the quotient ring of

$$
{\underset{j=1}{\ominus}}^{\dot{\otimes}}\left[\sigma_{1}^{(j)}, \sigma_{2}^{(j)}, \cdots, \sigma_{n_{j}}^{(j)}\right]
$$

factored by the ideal generated by the elements

$$
\left\{\sum_{i_{1}+\cdots+i_{r}=k} \sigma_{i_{1}}^{(1)} \sigma_{i_{2}}^{(2)} \cdots \sigma_{i_{r}}^{(r)}-\binom{n}{k} ; k>0\right\} .
$$

Again we change the generators as follows. The homomorphism $\pi^{*}: K(W) \rightarrow K(F(n))$ induced by the projection of the fibre bundle $\prod_{j} F\left(n_{j}\right) \rightarrow$ $F(n) \rightarrow W$ is a monomorphism. In fact, since the odd dimensional parts of the cohomology groups $H^{2 i+1}(F(n), Z)$ and $H^{2 i+1}(W, Z)$ vanish (Bott [16; Theorem A]), the induced homomorphism $\pi^{*}: H^{*}(W, Z) \rightarrow H^{*}(F(n), Z)$ is monic because the Serre spectral sequence of the above fibre bundle collapses (Serre [17]). Moreover, the Atiyah-Hirzebruch spectral sequence of W also collapses and hence the Chern character $c h: K(W) \rightarrow H^{*}(W, Q)$ is monic [4]. Therefore, the commutative diagram

leads that the homomorphism $\pi^{*}: K(W) \rightarrow K(F(n))$ is monic. We define the element $c_{p}^{(i)}$ such that $\pi^{*}\left(c_{p}^{(j)}\right)$ is the p-th elementary symmetric polynomial in $\left\{\gamma_{i} ; m_{j-1}<i \leqq m_{j}\right\}$. Then $\sigma_{p}^{(j)}$ and $\boldsymbol{c}_{p}^{(j)}$ differ in $Z\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right]$ only by an element of the submodule generated by $\left\{c_{k}^{(j)} ; k<p\right\}$ or, the same, by $\left\{\sigma_{k}^{(j)} ; k<p\right\}$. Hence we can adopt $c_{p}^{(j)}$ as ring generators of $K(W)$.

Proposition 2.3.

$$
K(W)=\bigotimes_{j=1}^{\gamma} Z\left[c_{1}^{(j)}, c_{2}^{(j)}, \cdots, c_{n_{i}}^{(j)}\right] / J^{+}
$$

where J^{+}is the ideal generated by

$$
\left\{\sum_{i_{1}+\cdots+i_{r}=k} c_{i_{1}}^{(1)} c_{i_{2}}^{(2)} \cdots c_{i_{r}}^{(r)} ; k>0\right\}
$$

3. Tangent bundles of $\boldsymbol{F}(\boldsymbol{n})$ and \boldsymbol{W}

The tangent bundles of $F(n)$ and $W=W\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ are investigated by such authors as Hirzebruch [8, §13] and Kee Yuen Lam [12] as follows:

Proposition 3.1.

(1) Let $\xi_{1} \oplus \cdots \oplus \xi_{n}$ be the vector bundle associated with the principal bundle $T^{n} \rightarrow U(n) \rightarrow F(n)$, then we have

$$
\tau(F(n)) \cong \sum_{i>j} \xi_{i} \otimes \xi_{j}^{*}
$$

(2) Let $\zeta_{1} \oplus \cdots \oplus \zeta_{r}$ be the vector bundle associated with the principal bundle $U\left(n_{1}\right) \times \cdots \times U\left(n_{r}\right) \rightarrow U(n) \rightarrow W$, then we have

$$
\tau(W) \cong \sum_{\alpha>\beta} \zeta_{\alpha} \otimes \zeta_{\beta}^{*}
$$

With a partition ($n_{1}, n_{2}, \cdots, n_{n}$) of an integer n, we associate an increasing sequence ($m_{0}, m_{1}, \cdots, m_{r}$) defined as follows:

$$
m_{0}=0, \quad m_{i}=m_{i-1}+n_{i}(0<i \leqq r) .
$$

Let $\pi: F(n) \rightarrow W$ be the natural projection. Since $\pi^{*}: K(W) \rightarrow K(F(n))$ is a monomorphism and it holds that $\pi^{*}\left(\zeta_{\infty}\right)=\sum_{m_{\alpha-1}<i \leq m_{\alpha}} \xi_{i}$, we have the splitting

$$
\begin{equation*}
\pi^{*}(\tau(W))=\sum_{(i, j) \in A} \xi_{i} \otimes \xi_{j}^{*} \tag{3.1}
\end{equation*}
$$

where $B=\bigcup_{\alpha=1}^{r}\left\{(i, j) ; m_{\alpha-1}<j<i \leqq m_{\alpha}\right\}$ and $A=\{(i, j) ; 1 \leqq j<i \leqq n\}-B$.

4. Immersion and embedding of flag manifolds

As we saw in $\S 1$, for the probrem of immersion and embedding of flag manifolds, we have to know $\bar{\gamma}_{1 / 2}(W)$. Note that the following three procedures are commutative with each other.
(a) To get γ_{t} of a vector bundle from γ_{t} of its splitting line bundles.
(b) To get $\bar{\gamma}_{t}(\xi)$ from $\gamma_{t}(\xi)$
(c) Substituting $t=\frac{1}{2}$.

Therefore we have the following "commutative diagram" of three procedures:

So let us take the path $(a)^{-1}\left(c^{\prime}\right)\left(b^{\prime}\right)\left(a^{\prime}\right)$ instead of the path $(b)(c)$. Recall that the projection $\pi: F(n) \rightarrow W$ induces the monomorphism $\pi^{*}: K(W) \rightarrow K(F(n))$ (see §2) and $\pi^{*} \tau(W)=\sum_{(i, j) \in A} \xi_{i} \otimes \xi_{j}^{*}$ (see $\S 3$). Hence

$$
\begin{aligned}
\pi^{*} \gamma_{t}(W) & =\pi^{*}\left(\gamma_{t}((W)-m)\right)=\gamma_{t}\left(\sum_{(i, j) \in A}\left(\xi_{i} \otimes \xi_{j}^{*}-1\right)\right) \\
& =\prod_{(i, j) \in A} \gamma_{t}\left(\xi_{i} \otimes \xi_{j}^{*}-1\right)
\end{aligned}
$$

Recall that for a line bundle η, we have $\gamma_{t}(\eta-1)=1+(\eta-1) t$ [2]. As we have put $\gamma_{i}=\xi_{i}-1$, the equality $\xi_{i} \otimes \xi_{i}^{*}=1$ implies $\xi_{i}^{*}=1 /\left(1+\gamma_{i}\right)$. Therefore

$$
\begin{aligned}
& \gamma_{t}\left(\xi_{i} \otimes \xi_{j}^{*}-1\right)=1+\left(\xi_{i} \otimes \xi_{j}^{*}-1\right) t \\
& =1+\left(\frac{1+\gamma_{i}}{1+\gamma_{j}}-1\right) t=1+\left(\frac{\gamma_{i}-\gamma_{j}}{1+\gamma_{j}}\right) t
\end{aligned}
$$

Substituting $t=\frac{1}{2}$ and taking its inverse element:

$$
\begin{aligned}
& \bar{\gamma}_{1 / 2}\left(\xi_{i} \otimes \gamma_{j}^{*}-1\right)=\left\{1+\frac{\gamma_{i}-\gamma_{j}}{1+\gamma_{j}}\left(\frac{1}{2}\right)\right\}^{-1}=\frac{1+\gamma_{j}}{1+\frac{1}{2}\left(\gamma_{i}+\gamma_{j}\right)} \\
& =1-\frac{\frac{1}{2}\left(\gamma_{i}-\gamma_{j}\right)}{1+\frac{1}{2}\left(\gamma_{i}+\gamma_{j}\right)}=1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}
\end{aligned}
$$

Therefore we have

$$
\pi^{*}\left(\bar{\gamma}_{1 / 2}(W)\right)=\prod_{(i, j) \in A}\left\{1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}\right\} .
$$

Combining this result with Theorem 1.2 we obtain the following
Theorem 4.1. Let $2 m=\operatorname{dim} W=n^{2}-\left(n_{1}^{2}+\cdots+n_{r}^{2}\right)$.
For a positive integer k, if the element

$$
2_{(i, j) \in A}^{m} \prod_{i}\left\{1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{i=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}\right\}
$$

of $K(F(n))$ is not divisible by 2^{k+1}, then we have

$$
\text { (i) } W \nsubseteq R^{4 m-2 k}, \quad \text { (ii) } W \mp R^{4 m-2 k-1}
$$

It does not seem easy to find from this theorem the dimension of Euclidean space in which $W\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ cannot be embedded or immersed. In the following paragraph, we will discuss non-immersion and non-embedding for only the case $W(2, n-2)=G_{2, n-2}$ for odd integer n.

5. Preliminaries

In §2, we have determined the ring structure of K-ring of $F(n)$ and $W=W\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ as follows:

$$
\begin{aligned}
& K(F(n))=Z\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right] / I^{+} \\
& K(W)={\underset{j}{*}}_{\dot{\gamma}} Z\left[c_{1}^{(j)}, c_{2}^{(j)}, \cdots, c_{n_{j}}^{(j)}\right] / J^{+} .
\end{aligned}
$$

For the next paragraph, we observe some algebraic properties of these rings. Although K-ring has no geometrical grading, giving $\operatorname{deg} \gamma_{i}=1$ and $\operatorname{deg} c_{i}^{(j)}=i$, we regard $K(F(n))$ and $K(W)$ as graded algebras. It is possible because the ideals I^{+}and J^{+}are generated by homogeneous elements. (see §2).

First in $K(F(n))$, it holds that

$$
\begin{equation*}
\gamma_{i}^{n}=0 \quad(i=1,2, \cdots, n) . \tag{5.1}
\end{equation*}
$$

In fact let $\pi_{i}: F(n) \rightarrow C P^{n-1}$ be such natural projection that the induced homomorphism $\pi_{i}^{*}: K\left(C P^{n-1}\right)=Z[x] /\left(x^{n}\right) \rightarrow K(F(n))$ satisfies $\pi_{i}^{*}(x)=\gamma_{i}$. Then $x^{n}=0$ implies $\gamma_{i}^{n}=0$.

Next, as far as the applications discussed in §6 are concerned, it is sufficient to observe the case $W=G_{k, n-k}$. In this case, we have

$$
K\left(G_{k, n-k}\right)=Z\left[c_{1}, c_{2}, \cdots, c_{k}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{n-k}^{\prime}\right] / J^{+}
$$

and J^{+}is generated by

$$
\begin{equation*}
\left\{c_{i}+c_{i-1} c_{1}^{\prime}+\cdots+c_{1} c_{i-1}^{\prime}+c_{i}^{\prime}, \quad 1 \leqq i \leqq k(n-k)\right\} . \tag{5.2}
\end{equation*}
$$

Of course we understand that $c_{j}=0$ if $j>k$ and $c_{j}^{\prime}=0$ if $j>n-k$.
Proposition 5.1. In the ring $K\left(G_{k, n-k}\right)$, we have

$$
\begin{equation*}
c_{l}^{\prime}=\sum_{\|\mid I\|=l}(-1)^{|I|}\binom{|I|}{i_{1}, i_{2}, \cdots, i_{k}} c_{1}^{i_{1} c_{2}^{i_{2}} \cdots c_{k}^{i_{k}}} \tag{5.3}
\end{equation*}
$$

where $|I|=\sum_{j=1}^{k} i_{j}$ and $\|I\|=\sum_{j=1}^{k} j i_{j}$ for $I=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$.
Proof. By (5.2) it is sufficient to check

$$
\sum_{t+j=s}\left\{c_{c_{\|}} \sum_{|I|=j}(-1)^{|I| \mid}\binom{|I|}{i_{1}, i_{2}, \cdots, i_{k}} c^{r}\right\}=0
$$

The left hand side is rewritten as

$$
\sum_{t=0}^{s} \sum_{\|I\|=s-t}(-1)^{|I|}\binom{|I|}{i_{1}, i_{2}, \cdots, i_{k}} c^{I} c_{t}
$$

Put $J_{t}=\left(i_{1}, \cdots,\left(i_{t}+1\right), \cdots, i_{k}\right)$ for $1 \leqq t \leqq k$ then we have

$$
\begin{aligned}
& =\sum_{\|I\|=s}(-1)^{|I| \mid}\binom{|I|}{i_{1}, i_{2}, \cdots, i_{k}} c^{I}+\sum_{t=1}^{s} \sum_{\| I| |=s-t}(-1)^{\left|J_{t}\right|-1}\binom{\left|J_{i}\right|-1}{i_{1}, i_{2}, \cdots, i_{k}} c^{J_{t}} \\
& =\sum_{\|I\|=s}(-1)^{|J|}\left\{\binom{|J|}{j_{1}, j_{2}, \cdots, j_{k}}-\sum_{t=1}^{s}\binom{|J|-1}{j_{1}, \cdots,\left(j_{t}-1\right), \cdots, j_{k}}\right\} c^{J}=0
\end{aligned}
$$

by the formula for the multinomial coefficients and thus Proposition 5.1 is proved.
By Proposition 5.1, we see that all monomials in $K\left(G_{k, n-k}\right)$ is written only by c_{1}, c_{2}, \cdots. Moreover, it seems that $K\left(G_{k, n-k}\right)$ is the free module over Z with a base consisting of the monomials $\left\{c_{j_{1}} c_{j_{2}} \cdots c_{j_{r}} j_{1}+\cdots+j_{r} \leqq n-k\right\}$ but the author has succeeded only to prove Proposition 5.3. Before that, we prove the following

Lemma 5.2. Let n and k be two integers with $0 \leqq k \leqq n$, then we have

$$
\sum_{i \geq 0}(-1)^{i}\binom{n-i}{i}\binom{n-2 i}{k-i}=1
$$

Proof. Putting $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\sum_{i \geq 0}(-1)^{i}\binom{n-i}{i}\binom{n-2 i}{k-i}$, we show that $\left\{\begin{array}{l}n \\ k\end{array}\right\}=1$ by induction on n and k. Evidently we have $\left\{\begin{array}{l}n \\ 0\end{array}\right\}=\binom{n}{0}\binom{n}{0}=1$ and $\left\{\begin{array}{l}n \\ n\end{array}\right\}=$ $\binom{n}{0}\binom{n}{n}=1$. Next it is easy to see that

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}-\left\{\begin{array}{l}
n-2 \\
k-1
\end{array}\right\} .
$$

holds and by the hypothesis of induction, $\left\{\begin{array}{l}n \\ k\end{array}\right\}=1+1-1=1$. q.e.d.
In what follows, we consider the case $k=2$ and we put $r=n-2$.
Proposition 5.3. In $K\left(G_{2, r}\right)=Z\left[c_{1}, c_{2}, c_{1}{ }^{\prime}, c_{2}{ }^{\prime}, \cdots, c_{r}{ }^{\prime}\right] / J^{+}$it holds that the $2 r$ dimensional part is generated by c_{2}^{r} and other monomials of $2 r$-dimension is written as

$$
c_{1}^{2 j} c_{2}^{r-j}=\left\{\binom{2 j}{j}-\binom{2 j}{j-1}\right\} c_{2}^{r} .
$$

Proof. In Proposition 5.1, the convention $c_{l}^{\prime}=0(r<l \leqq 2 r)$ leads to the relations

$$
\begin{equation*}
\sum_{i_{1}+2 i_{2}=l}(-1)^{i_{1}+i_{2}}\binom{i_{1}+i_{2}}{i_{2}} c_{1}^{i_{1} c_{2}^{i_{2}}}=0 \quad(r<l \leqq 2 r) . \tag{5.4}
\end{equation*}
$$

Multiplying $c_{1}^{2 k-l}$ and rewriting $i_{2}=\boldsymbol{r}-j$ and $i_{1}+i_{2}=l-r+j$, we have the relations in homogeneous $2 r$-dimensions:

$$
\sum_{j}(-1)^{j}\binom{l-r+j}{r-j} c_{1}^{2 j} c_{2}^{r-j}=0 \quad(r<l \leqq 2 r)
$$

Therefore it is sufficient to solve the following homogeneous linear equations in $r+1$ variables $x_{0}, x_{1}, \cdots, x_{r}$.

$$
\left\{\begin{array}{c}
A_{r, r+1}=\sum_{j}(-1)^{j}\binom{1+j}{r-j} x_{j}=0 \tag{5.5}\\
A_{r, r+2}=\sum_{j}(-1)^{j}\binom{2+j}{r-j} x_{j}=0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
A_{r, 2 r}=\sum_{j}(-1)^{j}\binom{r+j}{r-j} x_{j}=0
\end{array}\right.
$$

We fix integers j, k and r with $r \geqq k+j$. Comparing the coefficients of y^{r-j} in the expansion of the equality

$$
(1+y)^{r+j}\left(1-(1+y)^{-1}\right)^{k}=y^{k}(1+y)^{r-k+j},
$$

(I owe this equality to K. Shibata) we obtain the relation

$$
\sum_{s=0}^{k}(-1)^{s}\binom{k}{s}\binom{r-s+j}{r-j}=\binom{r-k+j}{r-k-j}
$$

Hence we have

$$
\sum_{s=0}^{k}(-1)^{s}\binom{k}{s} A_{r, 2 r-s}=A_{r-k, 2(r-k)} \quad 1 \leqq k<r .
$$

This means that (5.5) is equivalent to the following homogeneous equations

$$
\left\{\begin{align*}
A_{1,2}= & \sum_{j=0}^{1}(-1)^{j}\binom{1+j}{1-j} x_{j}=0 \tag{5.6}\\
A_{2,4}= & \sum_{j=0}^{2}(-1)^{j}\binom{2+j}{2-j} x_{j}=0 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
A_{r, 2 r}= & \sum_{j=0}^{r}(-1)^{j}\binom{r+j}{r-j} x_{j}=0
\end{align*}\right.
$$

This is rewritten as

$$
\left\{\begin{array}{c}
\sum_{j>0}(-1)^{j}\binom{1+j}{1-j} x_{j}=-x_{0} \tag{5.7}\\
\sum_{j>0}(-1)^{j}\binom{2+j}{2-j} x_{j}=-x_{0} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\sum_{j>0}(-1)^{j}\binom{r+j}{r-j} x_{j}=-x_{0}
\end{array}\right.
$$

and the matrix is a triangular one with the diagonal consisting of 1 and -1 alternatively. Hence the matrix is unimodular and the solution is unique. It is therefore sufficient to show that

$$
\begin{equation*}
x_{j}=\left\{\binom{2 j}{j}-\binom{2 j}{j-1}\right\} x_{0} \tag{5.8}
\end{equation*}
$$

is the solution. In Lemma 5.2 putting $n-i=l+j$ and $i=l-j$, we have $n-2 i=2 j$. Moreover putting (i) $k-i=j$ and (ii) $k-i=j-1$, we have
(i) $\sum_{j}(-1)^{j}\binom{l+j}{l-j}\binom{2 j}{j}=(-1)^{l} \quad 1 \leqq l \leqq r$,
(ii) $\sum_{j}(-1)^{j}\binom{l+j}{l-j}\binom{2 j}{j-1}=(-1)^{l} \quad 1 \leqq l \leqq r$,
and hence $\sum_{j}(-1)^{i}\binom{l+j}{l-j}\left\{\binom{2 j}{j}-\binom{2 j}{j-1}\right\}=0,1 \leqq l \leqq r$. This means that (5.8) is just the solution of (5.6) and hence of (5.5).

6. Non-immersion and non-embedding of Grassmann manifolds

For an application of Theorem 4.1, we investigate the dimension of Euclidean spaces in which Grassmann manifolds $G_{k, n-k}$ cannot be immersed or embedded. Only the case $k=2$ and n is odd was succeeded. First we show the results. $\alpha(n)$ denotes the number of l's in the diadic expansion of an integer n and $\nu_{p}(n)$ denotes the exponent of a prime p in n.

Theorem 6.1. For each integer $u \geqq 0$ we put $\beta(u)=2 \alpha(u)-\nu_{2}(u+1)+1$. Then we have
(i) $G_{2,2 u+1} \nsubseteq R^{8(2 u+1)-23(u)}$,
(ii) $G_{2,2 u+1} \nsubseteq P^{8(2 u+1)-2 \beta(u)-1}$.

Remark 1. It might be interesting to compare these results with the Atiyah-Hirzebruch's results [3] that (i) $C P^{m} ₫ R^{4 m-2^{\alpha}(m)}$ and (ii) $C P^{m} \leftrightarrows R^{4 m-2^{\alpha}(m)-1}$.

Remark 2. Connell [6] also proved that $G_{2,3} \nsubseteq R^{19}$.
Proof. By the results in $\S 3$ we have

$$
\begin{align*}
& K\left(G_{2, n-2}\right)=Z\left[c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{n-2}^{\prime}\right] / J^{+} \tag{6.1}\\
& K(F(n))=Z\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right] / I^{+} \tag{6.2}
\end{align*}
$$

Let $\pi: F(n) \rightarrow G_{2, n-2}$ be the projection of the fibre bundle with the fibre $F(2) \times F(n-2)$, then $\pi^{*}: K\left(G_{2, n-2}\right) \rightarrow K(F(n))$ is a monomorphism and $\pi^{*}\left(c_{i}\right)$ (resp. $\left.\pi^{*}\left(c_{i}^{\prime}\right)\right)$ is the i-th symmetric polynomial in γ_{1}, γ_{2} (resp. $\gamma_{3}, \gamma_{4}, \cdots, \gamma_{n}$). In Proposition 5.1 we have shown that c_{2}^{n-2} generates the 2(n-2)-dimensional part of the graded module $K\left(G_{2, n-2}\right)$ and we will show in Lemma 6.4 that the coefficient a of c_{2}^{n-2} in $\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}\left(G_{2, n-2}\right)$ is

$$
a= \begin{cases}0 & n: \text { even } \tag{6.3}\\ -\frac{2(2 u+3)}{(2 u-1)(u+1)}\binom{2 u}{u}^{2} & n=2 u+3\end{cases}
$$

Therefore unfortunately we get no informations if n is even. When n is odd, note that $\nu_{2}\left(\binom{2 u}{u}\right)=\alpha(u)$ holds by Lemma 1.3. Then we have

$$
\begin{equation*}
\nu_{2}(a)=\beta(u)=2 \alpha(u)-\nu_{2}(u+1)+1 \tag{6.4}
\end{equation*}
$$

Since $\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}\left(G_{2, n-2}\right)$ cannot be devided by $2^{v_{2}(a)+1}$, Theorem 6.1 follows from Theorem 1.2.

It is left to get the coefficient a of c_{2}^{n-2} in

$$
\begin{equation*}
2_{\substack{m \leq i \leq n \\ 1 \leqq j \leq 2}}^{\prod_{i}}\left\{1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}\right\} \tag{6.5}
\end{equation*}
$$

which will be done in Lemmas 6.2, 6.3 and 6.4. In Lemma 6.2 we work in the case $G_{k, n-k}$ for arbitraly k, but in Lemmas 6.3 and 6.4 we restrict ourselves to the case $k=2$.

Lemma 6.2.

(a) For fixed j, we can put

$$
\begin{gathered}
\prod_{i=k+1}^{n}\left\{1+\left(\gamma_{i}-\gamma_{j}\right) \sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}+\gamma_{j}\right)^{l-1}\right\} \\
=\sum_{l=0}^{\infty}\left(-\frac{1}{2}\right)^{l} \sum_{p=0}^{l}(-1)^{p} e_{n, l-p, p} \pi^{*}\left(c_{p}\right) \gamma_{j}^{l-p} \\
e_{n, l-p, p}=\sum_{r=0}^{l-p}(-1)^{r}\binom{n-k}{r}\binom{l-1}{l-p-r}
\end{gathered}
$$

(b)

Proof. $\quad \bar{\gamma}_{1 / 2}\left(\xi_{i} \otimes \xi_{j}^{*}-1\right)=1+\sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left(\gamma_{i}-\gamma_{j}\right)\left(\gamma_{i}+\gamma_{j}\right)^{l-1}$

$$
\begin{aligned}
& =1+\sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l} \sum_{p=0}^{l-1}\binom{l-1}{l-p-1}\left(\gamma_{i}-\gamma_{j}\right) \gamma_{i}^{p} \gamma_{j}^{l-p-1} \\
& =1+\sum_{l=1}^{\infty}\left(-\frac{1}{2}\right)^{l}\left\{\sum_{p=1}^{l}\binom{l-1}{l-p} \gamma_{i}^{p} \gamma_{j}^{l-p}-\sum_{p=0}^{l-1}\binom{l-1}{l-p-1} \gamma_{i}^{p} \gamma_{j}^{l-p}\right\} .
\end{aligned}
$$

In order to introduce a new function, we recall some properties of binomial coefficient $\binom{a}{b}$. Putting $\binom{0}{0}=1$ and $\binom{0}{b}=0$ if $b \neq 0,\binom{a}{b}$ is defined by $\binom{a}{b}=\binom{a-1}{b}+\binom{a-1}{b-1}$ for each pair (a, b) of integers. Then $\binom{a}{b}=0$ if $b<0$ or if $0 \leqq a<b$. $\binom{a}{0}=1$ for each a and $\binom{a}{a}=1$ if $a \geqq 0$. We define a new function $\left[\begin{array}{l}a \\ b\end{array}\right]$ for each pair (a, b) of intergers by

$$
\left[\begin{array}{l}
a \tag{6.6}\\
b
\end{array}\right]=\binom{a}{b}-\binom{a}{b-1}
$$

Then, we have $\left[\begin{array}{l}a \\ b\end{array}\right]=0$ if $b<0$ or if $0 \leqq a+1<b,\left[\begin{array}{l}a \\ 0\end{array}\right]=1$ for each a and $\left[\begin{array}{c}a \\ a+1\end{array}\right]=-1$ if $a \geqq 0$. Using these the above equations are contineued as follows:

$$
=\sum_{l=0}^{\infty}\left(-\frac{1}{2}\right)^{l} \sum_{p=0}^{l}\left[\begin{array}{l}
l-1 \\
l-p
\end{array}\right] \gamma_{i}^{p} \gamma_{j}^{l-p} .
$$

Therefore

$$
\begin{aligned}
& \prod_{i=k+1}^{n} \bar{\gamma}_{1 / 2}\left(\xi_{i} \otimes \xi_{j}^{*}-1\right) \\
& =\prod_{i=k+1}^{n} \sum_{l_{i}=0}^{\infty}\left\{\left(-\frac{1}{2}\right)^{l_{i}} \sum_{p_{i}=0}^{l_{i}}\left[\begin{array}{l}
l_{i}-1 \\
l_{i}-p_{i}
\end{array}\right] \gamma_{i}^{p_{i}} \gamma_{j}^{l_{i}-p_{i}}\right\} \\
& =\sum_{l=0}^{\infty}\left(-\frac{1}{2}\right)^{l} \sum_{l_{k+1}+\cdots+l_{n}=l} \sum_{p=0}^{l}\left\{\sum_{p_{k+1}+\cdots+p_{n}=p} \prod_{i=k+1}^{n}\left[\begin{array}{l}
l_{i}-1 \\
l_{i}-p_{i}
\end{array}\right] \prod_{i=k+1}^{n} \gamma_{i}^{p_{i}}\right\} \gamma_{j}^{l-p} \\
& =\sum_{l=0}^{\infty}\left(-\frac{1}{2}\right)^{l} \sum_{p=0}^{l}\left\{\sum_{p_{k+1}} \sum_{\cdots+p_{n}=p} \sum_{l_{k+}+\cdots+l_{n=l}} \prod_{p_{i} \leq l_{i}}^{n}\left[\begin{array}{l}
l_{i}-1 \\
l_{i}-p_{i}
\end{array}\right]_{i=k+1}^{n} \gamma_{i=k}^{p_{i}}\right\} \gamma_{j}^{l-p}
\end{aligned}
$$

We first show that $\sum_{l_{k+1}+\cdots+l_{n}=l=l} \prod_{i=k+1}^{n}\left[\begin{array}{l}l_{i}-1 \\ l_{i}-p_{i}\end{array}\right]$.depends only on p but does not depend on the partition $\left(p_{k+1}, \cdots, p_{n}\right)$ of p and moreover it is equal to

$$
\begin{equation*}
e_{n, l-p, p}=\sum_{r=0}^{l-p}(-1)^{r}\binom{n-k}{r}\binom{l-1}{l-p-r} . \tag{6.7}
\end{equation*}
$$

For that we set up a relation of the function $\left[\begin{array}{l}a \\ b\end{array}\right]$. Comparing the
coefficient of x^{t} in the expansion of the equality

$$
\prod_{i=1}^{q}(1+x)^{-s_{i}}=(1+x)^{-s}, \quad\left(s=s_{1}+\cdots+s_{q}\right)
$$

we have $\sum_{t_{1}+\cdots+t_{q}=t} \prod_{i=1}^{q}\binom{s_{i}+t_{i}-1}{t_{i}}=\binom{s+t-1}{t}$.
From this we easily see that

$$
\sum_{t_{1}+\cdots+t_{q}=t} \prod_{i=1}^{q}\left[\begin{array}{c}
s_{i}+t_{i}-1 \tag{6.9}\\
t_{i}
\end{array}\right]=\sum_{r=0}^{q}(-1)^{r}\binom{q}{r}\binom{s+t-1}{t-r}
$$

In fact

$$
\begin{aligned}
& \sum_{t_{1}+\cdots+t_{q}=t} \prod_{i=1}\left\{\binom{s_{i}+t_{i}-1}{t_{i}}-\binom{s_{i}+t_{i}-1}{t_{i}-1}\right\} \\
& =\sum_{t_{1}+\cdots+t_{q}=t} \sum_{I \supset J}(-1)^{r} \prod_{i=1}^{q}\binom{s_{i}^{\prime}+t_{i}^{\prime}-1}{t_{i}^{\prime}}
\end{aligned}
$$

where J runs through all of the subsets of $I=\{1,2, \cdots, q\}$ and r is the number of elements in J. Moreover

$$
\begin{array}{lllll}
s_{i}^{\prime}=s_{i}+1 & \text { and } & t_{i}^{\prime}=t_{i}-1 & \text { if } & i \in J \\
s_{i}^{\prime}=s_{i} & \text { and } & t_{i}^{\prime}=t_{i} & \text { if } & i \notin J .
\end{array}
$$

Hence the above equation is continued as

$$
\begin{aligned}
& \left.=\sum_{I \supset J}(-1)^{r}\right)_{t_{1}^{\prime}+\cdots+t_{q^{\prime}}=t-r} \prod_{i=1}\binom{s_{i}^{\prime}+t_{i}^{\prime}-1}{t_{i}^{\prime}} \\
& =\sum_{I \supset J}(-1)^{r}\binom{s+t-1}{t-r}=\sum_{r=0}^{q}(-1)^{r}\binom{q}{r}\binom{s+t-1}{t-r} .
\end{aligned}
$$

Replace l_{i} for $s_{i}+t_{i}$ and $l_{i}-p_{i}$ for t_{i} in (6.9). Since $p_{k+1}+\cdots+p_{n}=p$ is constant, the condition $t_{1}+\cdots+t_{q}=t$ is replaced by $l_{k+1}+\cdots+l_{n}=l$ and hence we have

$$
\sum_{l_{k+1}+\cdots+l_{n}=l} \prod_{i=k+1}^{q}\left[\begin{array}{l}
l_{i}-1 \tag{6.10}\\
l_{i}-p_{i}
\end{array}\right]=\sum_{r=0}^{n-k}(-1)^{r}\binom{n-k}{r}\binom{l-1}{l-p-r}
$$

as required.
Next we show that in $K(F(n))$ it holds that

$$
\begin{equation*}
\pi^{*} c_{p}=(-1)_{p_{k+1}}^{p}, \sum_{+p_{n}=p} \prod_{i=k+1}^{n} \gamma_{i}^{p_{i}} . \tag{6.11}
\end{equation*}
$$

In fact,

$$
\prod_{1 \leqq j \leqq k}\left(1+\gamma_{j}\right)_{k+1 \leqq i \leqq n}\left(1+\gamma_{i}\right)=\prod_{1 \leqq i \leqq n}\left(1+\gamma_{i}\right)=1
$$

implies

$$
\pi^{*}\left(\sum_{p} c_{p}\right)=\prod_{1 \leqq j \leqq k}\left(1+\gamma_{j}\right)=\prod_{k+1 \leqq i \leq n}\left(1+\gamma_{i}\right)^{-1}
$$

$$
=\prod_{k+1 \leq i \leq} \sum_{p_{i}=0}^{\infty}\left(-\gamma_{i}\right)^{p_{i}}=\sum_{p=0}^{\infty}(-1)_{p_{k+1}}^{p} \sum_{p^{+}} \prod_{p_{n}=p i=k^{k+1}}^{n} \gamma_{i^{p} i}^{p_{i}}
$$

Hence we have (6.11) and Lemma 6.2 is proved.
For the calculations in Lemma 6.4, we restrict ourselves to the case $k=2$ and determine the values of some $e_{n, l-p, p}$'s more explicitly. We put

$$
\begin{equation*}
e_{i j}=(-1)^{j} e_{n, n-i, j} \tag{6.12}
\end{equation*}
$$

Lemma 6.3.

(1) When n is even, putting $n-2=2 u$, we have

$$
\begin{array}{ll}
e_{i j}=\sum_{2 r+s=2^{u}+2-i}(-1)^{r+j}\binom{2 u}{r}\binom{j+1-i}{s} & \text { if } j+1 \geqq i . \\
e_{i j}=\sum_{2 r+s=2^{u}+2-i}(-1)^{r+s+j}\binom{2 u-i+j+1}{r}\binom{i-j-1}{s} & \text { if } j+1 \leqq i
\end{array}
$$

(2) When n is odd, putting $n-2=2 u+1$, we have

$$
\begin{array}{ll}
e_{i j}=\sum_{2^{r+s}=2^{u}+3-i}(-1)^{r+j}\binom{2 u+1}{r}\binom{j+1-i}{s} & \text { if } j+1 \geqq i . \\
e_{i j}=\sum_{2^{r+s}=2^{u}+3-i}(-1)^{r+s+j}\binom{2 u-i+j+2}{r}\binom{i-j-1}{s} & \text { if } j+1 \leqq i .
\end{array}
$$

Proof. Comparing the coefficients of x^{m} in the expansion of

$$
(1-x)^{k}(1+x)^{l}=\left\{\begin{array}{lll}
\left(1-x^{2}\right)^{k}(1+x)^{l-k} & \text { if } & l \geqq k \\
\left(1-x^{2}\right)^{l}(1-x)^{k-l} & \text { if } \quad l \leqq k
\end{array}\right.
$$

we have

$$
\sum_{r=0}^{m}(-1)^{r}\binom{k}{r}\binom{l}{m-r}=\left\{\begin{array}{lll}
\sum_{2 r+s=m}(-1)^{r}\binom{k}{r}\binom{l-k}{s} & \text { if } l \geqq k \\
\sum_{2 r+s=m}(-1)^{s+r}\binom{l}{r}\binom{k-l}{s} & \text { if } \quad l \leqq k
\end{array}\right.
$$

Applying this to Lemma 6.2 (b) with $k=2$, we have Lemma 6.3. q.e.d.
We give the list of some $e_{i j}(1 \leqq i \leqq 5,0 \leqq i \leqq 2)$ which we will use in Lemma 6.4.
(1) When n is even, putting $n-2=2 u$, we have

$$
\begin{array}{lrl}
e_{10}=0 & e_{11}=(-1)^{u+1}\binom{2 u}{u} & e_{12}=(-1)^{u} 2\binom{2 u}{u} \\
e_{20}=(-1)^{u}\binom{2 u-1}{u} & e_{21}=(-1)^{u+1}\binom{2 u}{u} & e_{22}=(-1)^{u}\binom{2 u}{u} \\
e_{30}=(-1)^{u} 2\binom{2 u-2}{u-1} & e_{31}=(-1)^{u+1}\binom{2 u-1}{u-1} & e_{32}=0 \\
e_{40}=(-1)^{u-1}\binom{2 u-3}{u-1}+(-1)^{u} 3\binom{2 u-3}{u-2} &
\end{array}
$$

$$
\begin{array}{ll}
e_{41}=(-1)^{u}\binom{2 u-2}{u-1}+(-1)^{u+1}\binom{2 u-2}{u-2} & e_{42}=(-1)^{u-1}\binom{2 u-1}{u-1} \\
e_{50}=(-1)^{u-1} 4\binom{2 u-4}{u-2}+(-1)^{u} 4\binom{2 u-4}{u-3} & \\
e_{51}=(-1)^{u} 3\binom{2 u-3}{u-2}+(-1)^{u+1}\binom{2 u-3}{u-3} & e_{52}=(-1)^{u-1} 2\binom{2 u-2}{u-2}
\end{array}
$$

(2) When n is odd, putting $n-2=2 u+1$, we have

$$
\begin{aligned}
& e_{10}=(-1)^{u+1}\binom{2 u+1}{u} \quad e_{11}=(-1)^{u}\binom{2 u-1}{u} \quad e_{12}=0 \\
& e_{20}=(-1)^{u+1}\binom{2 u}{u} \quad e_{21}=0 \quad e_{22}=(-1)^{u}\binom{2 u+1}{u} \\
& e_{30}=0 \quad e_{31}=(-1)^{u+1}\binom{2 u}{u} \quad e_{32}=(-1)^{u}\binom{2 u+1}{u} \\
& e_{40}=(-1)^{u} 3\binom{2 u-2}{u-1}+(-1)^{u+1}\binom{2 u-2}{u-2} \\
& e_{41}=(-1)^{u-1} 2\binom{2 u-1}{u-1} \quad e_{42}=(-1)^{u}\binom{2 u}{u-1} \\
& e_{50}=(-1)^{u-1}\left\{\binom{2 u-3}{u-1}-6\binom{2 u-3}{u-2}+\binom{2 u-3}{u-3}\right\} \\
& e_{51}=(-1)^{u}\binom{2 u-2}{u-1}+(-1)^{x+1} 3\binom{2 u-2}{u-2} \\
& e_{52}=(-1)^{u-1}\binom{2 u-1}{u-1}+(-1)^{u}\binom{2 u-1}{u-2}
\end{aligned}
$$

Lemma 6.4. In $K\left(G_{2, n-2}\right)$, the coefficient a of c_{2}^{n-2} in $2^{m} \bar{\gamma}_{1 / 2}\left(G_{2, n-2}\right)$ is

$$
a= \begin{cases}0 & n: \text { even } \tag{6.13}\\ -\frac{2(2 u+3)}{(2 u-1)(u+1)}\binom{2 u}{u}^{2} & n=2 u+3\end{cases}
$$

Proof. Combining (6.5), (a) of Lemma 6.2 and (6.12), we have

$$
\begin{aligned}
2^{m} \bar{\gamma}_{12}\left(G_{2, n-2}\right)= & 2^{m}\left\{\sum_{i_{1}=1}^{n} \sum_{j_{1}=0}^{2}\left(-\frac{1}{2}\right)^{n+j_{1}-i_{1}} e_{i_{1 j} j_{1}} c_{j_{1}} \gamma_{1}^{n-i_{1}}\right\} \\
& \times\left\{\sum_{i_{2}=1}^{n} \sum_{j_{2}=0}^{2}\left(-\frac{1}{2}\right)^{n+j_{2}-i_{2}} e_{i_{2} j_{2}} c_{j_{2}} \gamma_{2}^{n-i_{2}}\right\}
\end{aligned}
$$

The term of degree $m=2(n-2)$ in this equation is

$$
\begin{equation*}
\sum_{i_{1}+i_{2}=j_{1}+j_{2}+4} e_{i_{1} j_{1}} e_{i_{2} j_{2}} c_{j_{1}} c_{j_{2}} \gamma_{1}^{n-i_{1}} \gamma_{2}^{n-i_{2}} \tag{6.14}
\end{equation*}
$$

and as $j_{1}, j_{2} \leqq 2$, it must hold that $4 \leqq i_{1}+i_{2} \leqq 8$. So we can list up all terms which appear in (6.14) as follows:

$e_{i_{11}} e_{i_{2 j 2}}$	$c_{j_{1}} c_{j_{2}} \gamma_{1}^{n-i_{1}} \gamma_{2}^{n-i_{2}}$
$e_{20} e_{20}$	$\gamma_{1}^{n-2} \gamma_{2}^{n-2}=c_{2}^{n-2}$
$e_{10} e_{30}$	$\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right) \gamma_{1}^{n-3} \gamma_{2}^{n-3}=-c_{2}^{n-2}$
$e_{20} e_{31}+e_{21} e_{30}$	$c_{1}\left(\gamma_{1}+\gamma_{2}\right) \gamma_{1}^{n-3} \gamma_{2}^{n-3}=c_{2}^{n-2}$
$e_{30} e_{32}+e_{32} e_{30}$	$c_{2} \gamma_{1}^{n-3} \gamma_{2}^{n-3}=c_{2}^{n-2}$
$e_{31} e_{31}$	$c_{1}^{2} \gamma_{1}^{n-3} \gamma_{2}^{n-3}=c_{2}^{n-2}$
$e_{10} e_{41}+e_{11} e_{40}$	$c_{1}\left(\gamma_{1}^{3}+\gamma_{2}^{3}\right) \gamma_{1}^{n-4} \gamma_{2}^{n-4}=-c_{2}^{n-2}$
$e_{20} e_{42}+e_{22} e_{40}$	$c_{2}\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right) \gamma_{1}^{n-4} \gamma_{2}^{n-4}=-c_{2}^{n-2}$
$e_{21} e_{41}$	$c_{1}^{2}\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right) \gamma_{1}^{n-4} \gamma_{2}^{n-4}=0$
$e_{31} e_{42}+e_{32} e_{41}$	$c_{1} c_{2}\left(\gamma_{1}+\gamma_{2}\right) \gamma_{1}^{n-4} \gamma_{2}^{n-4}=c_{2}^{n-2}$
$e_{42} e_{22}$	$c_{2}^{2} \gamma_{1}^{n-4} \gamma_{2}^{n-4}=c_{2}^{n-2}$
$e_{10} e_{52}+e_{12} e_{50}$	$c_{2}\left(\gamma_{1}^{4}+\gamma_{2}^{4}\right) \gamma_{1}^{n-5} \gamma_{2}^{n-5}=0$
$e_{11} e_{51}$	$c_{1}^{2}\left(\gamma_{1}^{4}+\gamma_{2}^{4}\right) \gamma_{1}^{n-5} \gamma_{2}^{n-5}=-c_{2}^{n-2}$
$e_{21} e_{52}+e_{22} e_{51}$	$c_{1} c_{2}\left(\gamma_{1}^{3}+\gamma_{2}^{3}\right) \gamma_{1}^{n-5} \gamma_{2}^{n-5}=-c_{2}^{n-2}$
$e_{32} e_{52}$	$c_{2}^{2}\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right) \gamma_{1}^{n-5} \gamma_{2}^{n-5}=-c_{2}^{n-2}$
$e_{11} e_{62}+{ }_{12} e_{61}$	$c_{1} c_{2}\left(\gamma_{1}^{5}+\gamma_{2}^{5}\right) \gamma_{1}^{n-6} \gamma_{2}^{n-6}=0$
$e_{22} e_{62}$	$c_{2}^{2}\left(\gamma_{1}^{4}+\gamma_{2}^{4}\right) \gamma_{1}^{n-6} \gamma_{2}^{n-6}=0$
$e_{12} e_{72}$	$c_{2}^{2}\left(\gamma_{1}^{6}+\gamma_{2}^{6}\right) \gamma_{1}^{n-7} \gamma_{2}^{n-7}=0$

Note that the relations on the right hand side is obtained from Proposition 5.3. Therefore the coefficient a of c_{2}^{n-2} in (6.2) is obtained as follows:

$$
\begin{aligned}
a & =e_{20} e_{20}-e_{10} e_{30}+e_{20} e_{31}+e_{21} e_{30}+e_{30} e_{32}+e_{32} e_{30} \\
& +e_{31} e_{31}-e_{10} e_{41}-e_{11} e_{40}-e_{20} e_{42}-e_{22} e_{40}+e_{31} e_{42} \\
& +e_{41} e_{32}+e_{42} e_{42}-e_{11} e_{51}-e_{21} e_{52}-e_{22} e_{51}-e_{32} e_{52}
\end{aligned}
$$

Applying the list given bellow Lemma 6.3 to this equation, we have (6.13).
q.e.d.

Kyushu University

References

[1] M.F. Atiyah: Immersions and embeddings of manifolds, Topology 1 (1962), 125132.
[2] M.F. Atiyah: K-theory. Benjamin, 1967.
[3] M.F. Atiyah-F. Hirzebruch: Quelque théorèmes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France 87 (1959), 383-396.
[4] M.F. Atiyah-F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. 3, Differential geometry, (1961), 7-38.
[5] A. Borel-F. Hirzebruch: Characteristic classes and homogeneous spaces, I. Amer. J. Math., 80 (1958), 458-538.
[6] F.J. Connell: Nonimmersions of low dimensional flag manifolds, Proc. Amer. Math. Soc. 44 (1974), 474-478.
[7] M.W. Hirsch: Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242276.
[8] F. Hirzebruch: Topological methods in algebraic geometry, 3rd ed., SpringerVerlag, Berlin, 1966.
[9] L.H. Hodgkin-V.P. Snaith: Topics in K-theory, Lecture Note in Math. 496 Springer 1975.
[10] S.G. Hoggar: A nonembedding results for complex Grassmann manifolds, Proc. Edinburgh Math. Soc. 17 (1970-1971), 149-153.
[11] I.M. James: Some embeddings of projective spaces, Proc. Cambridge Philos. Soc. 55 (1959), 294-298.
[12] Kee Yuen Lam: A formula for tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305-314.
[13] M. Nakaoka: Characteristic classes with values in complex cobordism, Osaka J. Math. 10 (1973), 521-543.
[14] B.J. Sanderson-R.L.E. Schwarzenberger: Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322.
[15] J.Tornehave: Immersions of complex flagmanifolds, Math. Scand. 23 (1968), 2226.
[16] R. Bott: An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France 84 (1956), 251-281.
[17] J.-P. Serre: Homologie singulière des espaces fibrés. applications, Ann. of Math. 54 (1951), 425-505.
[18] T. Sugawara: Non-immersion and non-embedding of complex Grassmann manifolds, to appear.

