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Introduction

For a partition n=nl+n2~i ----- \-nr of an integer n, let

W= W(n» -, nr) = t/(fl)/C/«)x - x U(nr)

be the complex (generalized) flag manifold. For example W(ky n—k)=Gkn_k is

the complex Grassmann manifold and W(l, 1, ••-, 1)— F(n) is the (usual) flag

manifold U(n)/Tn where Tn is a maximal torus in U(n). Then we have the

natural bundle projection π: F(n)^>W and the induced map

π*: K(W) -+ K(F(n) ) = Z[7l, J2, ..., 7»]//+

is a monomorphism (see §2). We write MdRn the existence of an embedding

and Mc:Rn the existence of an immersion of the differentiable manifold M in

the Euclidean space Rn.

The purpose of this paper is to prove the following non-immersion and
non-embedding theorem for the complex flag manifolds.

Theorem 4.1. Let 2m=dim W=n2—(n\-\ ----- ±-n2

r). For a positive inetger

hy if the element

of K(F(n)) is not divisible by 2k+\ then

(i) W^R^-2\ (ii)

For the definition of the set A, see (3.1).

As an application of Theorem 4.1, we also prove the following non-existence

theorem of immersions and embeddings for some complex Grassmann manifolds
G2tn-2 for odd integers n.
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Theorem 6.1.* For each integer u^O, we put β(u)=2a(u)—v2(u-\-V)-\-\.

(For the definition of a(u) and v2(u-\-\), see p. 128) Then we have

(i) G2)2n+1(tRB(2u+1^2&(u\ (ii) G2§2lί

We give the first few examples of non-embeddabilities :

Problems of immersions and embeddings for flag manifolds have been

investigated by many topologists. Hoggar [10] showed that G2 w_2<3:Λ3m and

that G2>n-2^R3m~l where 2m=dίmR G2tn_2 = 4(n—2). He made use of the geo-

metrical dimensions introduced by Atiyah [1], Our results claim stronger

facts that G2 >n_2<tR*m~2β and that G2 ̂ ^R^'2^1 because β/m-+Q as n-+°o.

Our method relies on a theorem of Nakaoka [13] which seems much close to the

Atiyah-Hirzebruch's integrality theorem [3]. Tornehave [15] investigated the

existence of immersion of flag manifolds W(nl9 •• ,nr

(^RnZ~r) using the theory

of Lie algebras and Hirsch's theorem [7]. Kee Yuen Lam [12] also proved the

same result making use of his new functor μ2. Connell [6] discussed on the

existence and the non-existence of immersions of some low dimensional flag

manifolds. Among his results, there are

( i ) G2>2C#14, ( i i ) G
(iii)- G2>3ςιR2\ (iv) G

The last statement (iv) agrees with a consequence of our result.

This paper is arranged as follows. In §1, we recall the immersion and

embedding theorem of Nakaoka [13]. The structure of .K-rings and tangent

bundles of W and F(ri) are discussed in §§2-3. §4 is devoted to the proof of the

main theorem (Theorem 4.1). Here we make use of Atiyah's γ-operations and

the fact that the tangent bundle r(W) has its splitting on F(n). §5 is on some

preliminaries for §6, where we discuss non-immersion and non-embedding

of some complex Grassmann manifolds G2>w_2. Calculations used here are quite

elementry although a little bit complicated.

I should like to express my gratitude to Professors Tatsuji Kudo (my

thesis advisor), Hiroshi Toda and Minoru Nakaoka for their kind advices and

criticism. I am indebted to K. Shibata who read the manuscript. I am also

indebted to T. Kobayashi, M. Kamata and H. Minami for their valuable dis-

cussions and suggestions.

1. Immersion and embedding of almost complex manifolds

For a complex vector bundle ξ over a finite CW-complex X, let

* More complete results are obtained in [18].
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denote the Atiyah class of ξ [2]. The map jt: Vεctc(X)-*l+K(X)[t]+

defined by 7t(ξ)= Σ 7'(£K is multiplicative: 7t(ξ®η)=7t(ξ)7t(v). We define
»^o

the dual Atiyah class ^(ξ)^K(X) by 7\ξ)=l and Σ 7^)7^)=® for

Then 7t(ξ)= Σ '/''(f ) *' ίs tne inverse element of 7t(ξ) in the multiplicative

group l+K(X)[t]+.
If M is an almost complex manifold of 2m-dimension, that is, its tangent

bundle r(M) has a structure of m-dimensional complex vector bundle, then we
write 7\M) (resp. γ'(M)) for γ'(τ(M)— m) (resp. 7'(τ(M)— m)). We see that
7'(M)=0 if i>m. The following theorem due to Nakaoka [13, Theorem 8]

is the starting point of our investigations.

Theorem 1.1. Let M be a closed almost complex manifold of real dimension
2m such that K(M) has no elements of finite order. Then if M can be embedded

(resp. immersed) in R^~2\ the element ^2m~i7i(M)^K(M) is divisible by 2k+1

ι=0

(resp. 2k).

Note that the element in Theorem 1.1 is rewritten as

= 2m
Y = 2«?1/2(Ar)

2 /

where 7ι/2(M) is regarded as the element of K(M)®Z[^]. If JV is another
almost complex manifold of dimension 2/z, it holds that

The following theorem is a generalization of Theorem 9 of Nakaoka [13]
and the proof relies on Sanderson-Schwarzenberger [14, Theorem 1].

Theorem 1.2. Let M be the same as in Theorem 1.1. For a positive integer

k, if the element Σ 2"-I7I(M) is not divisible by 2k+\ then
»=o

(i) M<tR*m~2\ (ϋ) M^R^-2k~l.

Before we prove Theorem 1.2, we put a remark on the exponent of 2 in the

binomial coefficient ί , j. Let v2(ri) denote the exponent of 2 in n and a(n) the

number of Γs in the diadic expansion of n. Since the equality v2(n\)=n—a(ri)
holds by the elementary number theory, we have the following

Lemma 1.3. v2(( % }) = a(b)+a(a-b)-a(a).

Proof of Theorem 1.2. (i) Straightfoward from Theorem 1.1. (ii) Suppose
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*-1. We fix an integer s=2t>m. By James [11] it holds that

CPsdR4s~1 and therefore by Sandeson-Schwarzenberger [14, Lemma] it holds

that MX CPsc:R4m+4s-2k-2. Thus by Theorem 1.1 the element

2m+s7ι/2(M X CPS) = 2*7ι/2(M)(g)2s71/2(CPs)

is divisible by 2k+1. On the other hand, the isomorphism τ(CPs)®lc^(s+l)η
implies γt(CP$)=(l+tx)'+l and 7ί(CPs)=(l+^)~s~1 where -η is the canonical
line bundle over CP5 and x=η— lc^K(CPs). Therefore we have

2571/2(CPS) = 2s(l+X/2)-s-ι (mod **+1) = Σ (-

Since (f ̂ "'V'1' (O^zΌ) are divisible by 4 and (2*\ is divisible by 2 but not

by 4 (see Lemma 1.3), 2sγ1/2(CPs) is divisible by 2 but not by 4. Hence 2w<y1/2(M)
must be divisible by 2*+1. This leads to a contradiction.

2. Airing of flag manifolds

Let (nly n2, •••, nr) be a partition of an interg n: n=nγ+n2-\ ----- \-nr and let

W= W(nly n2, ..-, nr) = U^/U^x U(n2)x - x U(nr)

be a complex flag manifold. For example for (1, 1, •••, 1) we have the usual flag

manifold F(n)=U(n)ITn where Tn is a maximal torus of U(n). For (k, n—k)

we have the complex Grassamann manifold Gk>n.k of all ^-planes in Cn and for

(1, n — 1), W is just the complex projective space CP*"1.

In this paragraph, we determine the ring structure of K(F(n)) and K(W)

explicitly. Generally for a compact Lie group G and its closed subgroup H,

the ring homomorphism a: R(H)->K(G/H) is constructed by Atiyah-Hirzebruch

[4] as follows. For an isomorphism class x=[V]^R(H) of an if -vector space

V, a(x) is the isomorphism class of vector bundle V^>GxHV-*G/H associated

with the natural principal //-bundle over G/H. If V is moreover a G-vector

space, that is, x is in the image of ί*: R(G)^>R(H), the bundle map α: GxHV-+

G/HxV difined by a(gXHv)=(gH, gv) is an isomorphism and hence a(x)=

(dim V)lc. Therefore a is factored through the natural projection p:

R(H) - - - * K(GIH)

.ί\ /«
R(H) ®R(G) Z

The following theorem is due to Hodgkin [9, Corollary of Lemma 9.2].

Theorem 2.1. Let G be a compact connected Lie group with πι(G)free and
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let H be a closed connected subgroup of G with maximal rank. Then the ring
homomorphism cί: R(H)ξξ>R(G)Z->K(G/H) is an isomorphism.

We use these facts for G= U(n) and H= T" or Π U(nj). First we will in-

vestigate the case F(n) and then the general case W(nly n2y 9nr). As is well
known we have

R(Tn) = Z[al9 aϊ\ a2, a2\ ••-, α«, aϊ1]

R(U(n)) = Z[λj, X2, -, λβ, λ Γ1]

and λ, is mapped on the i-th elementary symmetric polynomial of a^ a2> *"> an
by the monomorphism ί*: R(U(ri))-*R(Tn). Let ξ{ be the image of αt by the

ring homomorpism a: R(Tn)-*K(F(n)), then ?ιθ?2θ — θ£, is the vector
bundle associated with the principal Tn bundle Tn-*U(ri)^F(ri). Let

<rk(xly x2, " ,Xn) denote the A-th elementary symmetric polynomial in variables

χι> %2> •••> xn The element σk(aί9 a2> ••-, an) has the same dimension as ί ^ Jlc

and they coincide with each other in (g) R(U(n3)) ®R(u(n) Z. Therefore

?z, •••'?«)== holds ίn K(F(n)) In particuler ξ1ξ2--ξn=l holds and

we have ξ~j'1= Π ?jfe. Therefore the ring K(F(n)) is isomorphic to the quotient

ring of Z[ξl9 ξ2y ••-, fn] factored by the ideal generated by

{**(£„&,-, £,)

For the convenience of the later use we adopt the generators 7,=fi — 1.
Then we can choose the elements

as a new generator system of the ideal. Hence we have the following

Proposition 2.2.

K(F(n)) = Z[Ύl, Ύ2> .-, %,]//+

where I+ is the ideal generated by {σ^OΊ, γ2 , , γn);

We repeat the same procedure for W—W(n^ n2, •• ,wr). For a partition

(wι> #2> "•> wr) °f w> we define a sequence of integers (m0, mly •••, mr) inductively
as follows :

TWO = 0, m. = nij-i+n. (1 ̂ «^r) .

For the representation ring of Π f^(^y) we have
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R(U U(n.))

and i*: R(\l U(n:))->R(Tn} mapsλ^ on the/>-th fundamental symmetric poly-

nomial in variables {α,: m^^i^m^. We denote σ^ for the image of X^} by

the map a: R(U U(n.)) -+K(W). Since the element

has the same dimension as ί ? J lc, they conicide with each other i

®R(U(n$®RW{n»Z. Therefore Σ ^M.^-^Wj) holds ίn

y=ι y ι 1+ +ίr=* \ Λ /
In particular σ%σ%—σ¥=\ holds and we obtain (σ^)~1= Π <rίk?. Therefore1 3/ *φ/ k

the ring K(W) is isomorphic to the quotient ring of

factored by the ideal generated by the elements

Again we change the generators as follows. The homomorphism
7Γ*: .K(W)->j£(F(w)) induced by the projection of the fibre bundle T[ F(nj)-*

F(ri)-+Wis a monomorphism. In fact, since the odd dimensional parts of the
cohomology groups H2i+1(F(ri), Z) and H2i+1(W, Z) vanish (Bott [16; Theorem

A]), the induced homomorphism τr* . H*(W, Z)^H*(F(n), Z) is monic because
the Serre spectral sequence of the above fibre bundle collapses (Serre [17]).
Moreover, the Atiyah-Hirzebruch spectral sequence of W also collapses and
hence the Chern character ch: K(W)-*H*(W, Q) is monic [4]. Therefore, the
commutative diagram

leads that the homomorphism π*: K(W)^*K(F(ri)) is monic. We define the
element 4° such that τr*(cp^) is the p-th elementary symmetric polynomial in
{Ύ;; m^^i^m,}. Then σ^ and 4y> differ in Z^, γ2, •••, γj only by an
element of the submodule generated by {ek" k <p} or, the same, by {σ£" k <p}.
Hence we can adopt 4" as ring generators of K(W).



IMMERSION AND EMBEDDING PROBLEMS 123

Proposition 2.3.

where J+ is the ideal generated by

3. Tangent bundles of F(n) and W

The tangent bundles of F(n) and W=W(nl9 n2y •••, nr) are investigated by
such authors as Hirzebruch [8, §13] and Kee Yuen Lam [12] as follows:

Proposition 3.1.

(1) Let fiθ ΘL be the vector bundle associated with the principal bundle
Tn-*U(ri)-*F(n\ then we have

(2) Let ζΊΘ θζV be the vector bundle associated with the principal bundle

^)X ••• x U(nr)-+U(n)-*W9 then we have

With a partition (nlyn2, ~ ,nn) of an integer ny we associate an increasing
sequence (m0, ml9 •••, mr) defined as follows:

mQ = 0, nii = nii^+ni (Q<i<^r) .

Let r: F(ri)^Wbe the natural projection. Since TT*: K(W}-*K(F(ri)) is a
monomorphism and it holds that 7r*(ξ'Λ)— Σ f f , we have the splitting

(3.1) **

where β= U {(»,;); wβ_ι <j<i^ma] and A={(i,j);l^j<i^n}-B.

4. Immersion and embedding of flag manifolds

As we saw in §1, for the probrem of immersion and embedding of flag
manifolds, we have to know 71/2( W). Note that the following three procedures
are commutative with each other.

(a) To get Ύt of a vector bundle from γt of its splitting line bundles.

(b) To get 7t(ξ ) from

(c) Substituting t= — .
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Therefore we have the following "commutative diagram" of three procedures:

So let us take the path („)-' (c') (b'} (a') instead of the path (b) (c). Recall that
the projection π: F(n)^W induces the monomorphism π*:
(see §2) and x*τ(W)= Σ f,®0 (see §3). Hence

ίi.ΐ~\e= A N '

π*Ύt(W) =

= Π

-«)) = rX Σ

Recall that for a line bundle 17, we have 7|(ι7-l)=l+(,_i)ί [2]. As we have
put y,=ft-l, the equality ft®ff=l implies ff=l/(l+γ.). Therefore

_
Substituting t=— and taking its inverse element:

f(%-7,.)

= 1~ι+rττ =

Therefore we have

π*(Ύι/2(W)) = Π {l+(τ, Ύ ) Σ ( —^ (Ύ +Ύ V~ r

Cι,jΊe4 * •''' / = ι V 2 / J

Combining this result with Theorem 1.2 we obtain the following

Theorem 4.1. Let 2m=dim W=n2-(n2^ \-n2).
For a positive integer ky if the element
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of K(F(ri)) is not divisible by 2k+1, then we have

(i) W(tR*m-2k, (ii)

It does not seem easy to find from this theorem the dimension of Euclidean

space in which W(nly nl^ *"> nr) cannot be embedded or immersed. In the
following paragraph, we will discuss non-immersion and non-embedding for

only the case W(2, n—2)=G2tn-2 for odd integer n.

5. Preliminaries

In §2, we have determined the ring structure of ^-ring of F(n) and

W=W(nl9 #2> •••> nr)
 as follows:

KΓfl/f/\ /ς?\ 7\fίft /Ό') ... /Ό')"l/7"+/V^KK J — Q9 ^[£l > 03 > > Cn JlJ

For the next paragraph, we observe some algebraic properties of these
rings. Although K-ήng has no geometrical grading, giving deg%— 1 and
degc\s*=i, we regard K(F(ri)) and K(W) as graded algebras. It is possible
because the ideals /+ and/+ are generated by homogeneous elements, (see §2).

First in K(F(ri))> it holds that

(5.1) Ύ? = 0 (i=l,2,-,n).\ / » * \ 7 7 7 /

In fact let π{\ F(n)-:>CPn~l be such natural projection that the induced

homomorphism πf: K(CPn-l}=Z[x]l(xn)-^K(F(n)} satisfies *?(*)=%•• τhen

xn=Q implies γ?=0.
Next, as far as the applications discussed in §6 are concerned, it is suffi-

cient to observe the case W=Gkn.k. In this case, we have

ktn-k) = Z[cί9

and J+ is generated by

(5.2) {Ci+Ci_lCl>+...+C

Of course we understand that £,—0 ifj>k and £/=0 Ίfj>n—k.

Proposition 5.1. In the ring K(GktH.k)9 we have

(5.3) c,'=
ιuι ι=/
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where |/| = Σ *, and \\I\\= ^jijfor /=(i,, i,, -, ik).
j=ι J y=ι J

Proof. By (5.2) it is sufficient to check

Σ {c. Σ (-i)'"G z '
7!. ,V}=o

t + j = s \\I\\=j \'1> *2> llk/

The left hand side is rewritten as

S .S-i-'Ki, ί" ,. ,)Λ'
Put /,=(/!, •••, (zt-j-l), •••, ίt) for l^ί^Λ then we have

— y f— ιv"Λ J ^l Λc'+y y c— ιv /< |~ ι/'.'/ / '~~1Λc /<
- C + ' - } « " *

by the formula for the multinomial coefficients and thus Proposition 5.1 is proved.
By Proposition 5.1, we see that all monomials in K(Gktn-k) is written only

by cl9 c2y •••. Moreover, it seems that K(Gk>n-k) is the free module over Z with

a base consisting of the monomials {Cjl

cj2'"
cjr

: h~\ ----- \~jr^
n~^} but the

author has succeeded only to prove Proposition 5.3. Before that, we prove the
following

Lemma 5.2. Let n and k be two integers with Q^k^n, then we have

Proof. Putting {^ j= gf-iy^T1')^?), we show that {^ } = 1 by

induction on n and k. Evidently we have | Q ί~(o)( 0 / ^ anc^ I n I

( 0 )( / ^' Neχt it is easy to see that

holds and by the hypothesis of induction, | ? | — 1 + 1 — 1 — 1. q.e.d.

In what follows, we consider the case k=2 and we put r=n—2.

Proposition 5.3. In K(G2 r)=Z[clf c2, ̂ /, c2', •••, c/]IJ+ it holds that the 2r-
dimensional part is generated by c2 and other monomials of 2r-dimension is written
as
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Proof. In Proposition 5.1, the convention c/—Q (r<l^2r) leads to the

relations

(5.4)
'2

Multiplying c\k~l and rewriting i2=r—j and h+*2— ̂ ~r~h/> we have the relations

in homogeneous 2r-dimensions :

Σ (-l)' 7 ; ^-' = 0

Therefore it is sufficient to solve the following homogeneous linear equations

in r+1 variables x0, xly •••, xr.

(5.5)

We fix integers j, k and r with r^k-\-j. Comparing the coefficients of

yr~j in the expansion of the equality

(I owe this equality to K. Shibata) we obtain the relation

y^ ( i v( k^ (r~*+Λ - (r~k+J}
λί(~l'\s)( r-j )- \r-k-j )•

Hence we have

Σ
5=0

This means that (5.5) is equivalent to the following homogeneous equations

(5.6)

This is rewritten as
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(5.7)

and the matrix is a triangular one with the diagonal consisting of 1 and — 1
alternatively. Hence the matrix is unimodular and the solution is unique. It

is therefore sufficient to show that

is the solution. In Lemma 5.2 putting n — i=l-\-j and i=l—j, we have
n—2i=2j. Moreover putting (i) k—i=j and (ii) k—ί=j—\> we have

(ϋ) ^ (-l

and hence Σ(-l)y({ίJ )ί(2^ -( j?ι)}=0» l^^' This means that (5 8)

is just the solution of (5.6) and hence of (5.5).

6. Non-immersion and non-embedding of Grassmann manifolds

For an application of Theorem 4.1, we investigate the dimension of Eucli-

dean spaces in which Grassmann manifolds Gkttl-k cannot be immersed or
embedded. Only the case k=2 and n is odd was succeeded. First we show
the results. a(n) denotes the number of Γs in the diadic expansion of an integer
n and vp(ri) denotes the exponent of a prime p in n.

Theorem 6.1. For each integer u^O we put β(u)=2a(u)—v2(u+l)+l.
Then we have

(i) G 2t2u+1(tR^"+»-^"\ (ii) G2.2l(

REMARK 1. It might be interesting to compare these results with the

Atiyah-Hirzebruch's results [3] that (i) CPm(tR^m'2Λ(m} and (ii)

REMARK 2. Connell [6] also proved that

Proof. By the results in §3 we have
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(6.1) K(G2^2) = Z[Cl> c2, c,', c2', -/._J//+

(6.2) K(F(n)) = Z[Ύlt J2, -, rB]//+

Let π: F(n)-^G2tn-2 be the projection of the fibre bundle with the fibre
F(2)χF(n~2), then TT*: K(G2n_2)-+K(F(ri)) is a monomorphism and τr*(^)
(resp. τr*(£/)) is the i-th symmetric polynomial in γ1? γ2 (resp. γ3, γ4, •••,%,).
In Proposition 5.1 we have shown that c2~

2 generates the 2(n — 2)-dimensional
part of the graded module K(G2tn-2) and we will show in Lemma 6.4 that the

coefficient a of cn

2~
2 in Σ 2m-'7''(G2 Λ_2) is

i = 0 '

( 0 n: even
- 2(2^+3) ί2uV n = 2u+3

(2u-l)(u+l)\u /

Therefore unfortunately we get no informations if n is even. When n is odd,

note that v2(( U))=θί(u) holds by Lemma 1.3. Then we have

(6.4) v2(ά) = β(u) = 2a(u)-v2(u+ 1)+ 1 .

Since Σ2w"f¥(G2 M_2) cannot be devided by 2^+\ Theorem 6.1 follows from
»=0

Theorem 1.2. q.e.d.

It is left to get the coefficient a of c2~
2 in

(6.5) 2»3 Π. B {l+(7,-7;.) Σ ~

which will be done in Lemmas 6.2, 6.3 and 6.4. In Lemma 6.2 we work in the
case G^fl-fc for arbitraly k, but in Lemmas 6.3 and 6.4 we restrict ourselves to
the case k=2.

Lemma 6.2.

(a) For fixed j, we can put

π ι
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_ °° / 1 \ /
Proof. 7 1 / 2(fi®ξf— 1) = 1+ Σ ( —^~} (Ύi—r

In order to introduce a new function, we recall some properties of binomial

coefficient (£ Y Putting (0)=1 and (i^0 if όφ°> (4) is defined by

ί « W^1 )+(j 1 1) for each Paίr («. έ) of integers. Then ( * )=0 if έ<0

or if 0^α<6. ( n )=1 for each α and ( a J=l if αΞ>0. We define a new func-

tion i for each pair (a, b) of intergers by

Then, we have Γ j Ί — 0 if i<0 or if 0^α+l<i, Γ^l^l for each a and

_ ? . = — ! if fl^O. Using these the above equations are contineued as

follows :

Therefore

Π ?ι/2(£, ®l?-

00 / 1 V l n Γ7 1 Ί n

= Σ (-^-) Σ { Σ Σ Π ί'll Π yf} yj-'
/ = 0 \ 2 / * = 0 ίjk+1+ +ί(| = *lA++ "+/ιι = / ί = * + lL*i Pfjl^ft+l

>/^'/

n Γ 7 _ 1 Π

We first show that Σ Π / A -depends only on p but does not
'*+ι + + '«=/* = *+ιL*i~~".Pϋ

depend on the partition (pk+ι, •••,/>«) of /> and moreover it is equal to

For that we set up a relation of the function f . Comparing the
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coefficient of x* in the expansion of the equality

we have Σ I

From this we easily see that

(6.9) Σ Π P' +ίf ~ Π = Σ (- i)Y
/!+••• + /,-/ t-i L ί J r-o \ ;

In fact

ί̂  -r̂

=/ι+..Σ

where / runs through all of the subsets of 1= {1,2, •••, q} and r is the number
of elements in /. Moreover

ί/ = ί, +l and t/= tf—l if ίe/

ί / — Sj and ί/ = ί, if i

Hence the above equation is continued as

Replace /t for ίf+ίf and If—pi for £, in (6.9). Since/>ft+1H—-\-ρn=p is

constant, the condition ίj-j h^=^ is replaced by lk+l-\ \-ln=l and hence
we have

(6.ιo) Σ
ιk+ί+ — +ιH=ι i=k

as required.
Next we show that in K(F(n)) it holds that

(6.H) π*cp = (-\γ Σ Π Ύ ^ .
Pk+1+' +Pn = P i = * + l

In fact,

Π (1 + 7,) Π (1 + 7,)= Π(l+7,)=l
l^j^k k + l^i^n l^/^«

implies

)= Π (l + 7y)= Π
J
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= Π Σ (-%•)>•= Σ(-1K Σ Π 7?'
A + l^ί^» Pg = 0 P = 0 Pk+l±- +Pn = P i = k + l

Hence we have (6.11) and Lemma 6.2 is proved.
For the calculations in Lemma 6.4, we restrict ourselves to the case k=2

and determine the values of some enj-ptpS more explicitly. We put

(6.12) «„ = (-!)'*„.„_,.,.

Lemma 6.3.
(1) When n is even, putting n—2=2u, we have

ίf

«,= Σ ( - i Y + ^ - - - i f
3 2r + s=2U+2-i \ 7 /\ S J

(2) When n is odd, putting n—2=2u+ly we have

etj= Σ (-iJ 2r + s=2« + 3-, \ P

o= Σ (_ιΓ^J 2r + s=2« + 3-ί

Proof. Comparing the coefficients of xm in the expansion of

π #2VΠ χ)k~l if l<k

we have

if

Applying this to Lemma 6.2 (b) with k=2, we have Lemma 6.3. q.e.d.

We give the list of some e{. (1^/5J5, 0^^2) which we will use in Lemma
6.4.

(1) When n is even, putting n—2=2uy we have
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* = <- D f ;r2

3)+<- »""(2«"r3

3) % - (- ι>"2(2ur2

2)
(2) When rc is odd, putting n— 2=2u+l, we have

Lemma 6.4. /^ K(G2ftl_2), the coefficient a of cΓ2 ίw 2mfγ1/2(G2tn_2) is

Γa = i
n: even

(6.13) a = \ 2(2u+3) (',

Proof. Combining (6.5), (a) of Lemma 6.2 and (6.12), we have

1

i
2

,2 = y 2 =o\ 2

The term of degree m=2(n—2) in this equation is

and as^Ί, 7*2 ̂ 2, it must hold that 4^ί1+ί2^8. So we can list up all terms which

appear in (6.14) as follows:
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) 7ι "37*"3 =

Γ5 = 0

- 0

Note that the relations on the right hand side is obtained from Proposition

5.3. Therefore the coefficient a of cn

2~
2 in (6.2) is obtained as follows:

+ 3̂1̂ 31 ^10^41 1̂1̂ 40 ^20^42 ^22^40 + ̂ 31̂ 42

+ 4̂1̂ 32 + ^42^42 1̂1̂ 51 2̂1̂ 52 2̂2̂ 51 3̂2̂ 52

Applying the list given bellow Lemma 6.3 to this equation, we have (6.13).

q.e.d.

KYUSHU UNIVERSITY
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