ON GENERALIZED SIEGEL DOMAINS

Aкıo KODAMA*)

(Received April 1, 1976)

Introduction. In [3], Kaup, Matsushima and Ochiai defined the notion of "generalized Siegel domain with exponent c ", which is a natural generalization of the notion of Siegel domain of the first or second kind.

In this paper we consider exclusively a generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$. Let Aut (\mathscr{D}) denote the group of all holomorphic transformations of \mathscr{D}. It is well-known that the group Aut (\mathscr{D}) has the structure of real Lie group and the Lie algebra g of $\operatorname{Aut}(\mathscr{D})$ is canonically identified with the real Lie algebra $\mathfrak{g}(\mathscr{D})$ consisting of all complete holomorphic vector fields on \mathscr{D}. Furthermore it is known that the Lie algebra $\mathfrak{g}(\mathscr{D})$ has the following graded structure [3]:

$$
\begin{aligned}
& \mathfrak{g}(\mathscr{D})=\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}+\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1}, \\
& {\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}, \text { and } \operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{-1 / 2}=2 k}
\end{aligned}
$$

for some $k, 0 \leqq k \leqq m$.
In section 2 we shall prove the following Theorem.
Theorem 1. Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 k, 0 \leqq k \leqq m$. Let Aut (\mathscr{D}) denote the identity component of Aut ($\mathscr{D})$. Then there exists a generalized Siegel domain $\widetilde{\mathscr{D}}$ in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ which is holomorphically equivalent to \mathscr{D} and such that, by choosing a suitable coordinates system $\left(z, w_{1}, \cdots, w_{m}\right)$ in $\boldsymbol{C} \times \boldsymbol{C}^{m}$,
(1) the orbit $\widetilde{\mathscr{D}}_{0}$ of $A u t_{0}(\widetilde{\mathscr{D}})$ containing the point $(\sqrt{-1}, 0, \cdots, 0) \in \widetilde{\mathscr{D}}$ is the elementary Siegel domain

$$
\widetilde{\mathscr{D}}_{0}=\left\{\left(z, w_{1}, \cdots, w_{k}, 0, \cdots, 0\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{x=1}^{k}\right| w_{\infty}\right|^{2}>0\right\}
$$

and
(2) if we put

$$
\widetilde{\mathscr{D}} \sqrt{-1}=\left\{\left(w_{k+1}, \cdots, w_{m}\right) \in \boldsymbol{C}^{m-k} \mid\left(\sqrt{-1}, 0, \cdots, 0, w_{k+1}, \cdots, w_{m}\right) \in \widetilde{\mathscr{D}}\right\}
$$

then $\widetilde{\mathscr{D}}_{\sqrt{-1}}$ is a circular domain in \boldsymbol{C}^{m-k} containing the origin 0 of \boldsymbol{C}^{m-k}. Moreover the domain $\widetilde{\operatorname{D}}$ can be expressed by $\widetilde{\mathscr{D}}_{0}$ and $\widetilde{\mathscr{D}}_{\sqrt{-1}}$ as follows:

[^0]\[

$$
\begin{aligned}
\widetilde{\mathscr{D}}= & \left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid\left(z, w_{1}, \cdots, w_{k}, 0, \cdots, 0\right) \in \widetilde{\mathscr{D}}_{0}\right. \\
& \left.\left(\frac{w_{k+1}}{\left(\operatorname{Im} . z-\sum_{\alpha=1}^{k}\left|w_{a}\right|^{2}\right)^{1 / 2}}, \cdots, \frac{w_{m}}{\left(\operatorname{Im} . z-\sum_{\alpha=1}^{k}\left|w_{a}\right|^{2}\right)^{1 / 2}}\right) \in \widetilde{\mathscr{D}} \sqrt{-1}\right\} .
\end{aligned}
$$
\]

As a corollary of Theorem 1, we shall show that if the Lie algebra $g(\mathscr{D})$ is semi-simple, then \mathscr{D} is a Siegel domain of the second kind which is holomorphically equivalent to the elementary Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$.

In section 3 we shall consider the group Aut (\mathscr{D}) of all holomorphic transformations of a generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{\boldsymbol{R}} \mathrm{g}_{-1 / 2}=2 k$. By Theorem 1 we can regard $\widetilde{\mathscr{D}}$ as a holomorphic fibre space over the elementary Siegel domain $\widetilde{\mathscr{D}}_{0}$ with the projection $\pi: \widetilde{\mathscr{D}} \rightarrow \widetilde{\mathscr{D}}_{0}$ given by $\pi\left(z, w_{1}, \cdots, w_{m}\right)=\left(z, w_{1}, \cdots, w_{k}, 0, \cdots, 0\right)$ and the fibre $\pi^{-1}((\sqrt{-1}, 0, \cdots, 0))$ is the circular domain $\widetilde{\mathscr{D}} \sqrt{-1}$. In Theorem 2 we shall prove that $\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})$ is the direct product of $\mathrm{Aut}_{0}\left(\widetilde{\mathscr{D}}_{0}\right)$ and the identity component of the isotropy subgroup of $\operatorname{Aut}_{0}\left(\widetilde{\mathscr{D}}_{\sqrt{-1}}\right)$ at the origin 0 of $\widetilde{\operatorname{D}}_{\sqrt{-1}}$.

The author would like to express his thanks to Professor S. Murakami and Doctor Y. Sakane for their valuable advices.

1. Preliminaries

Throughout this paper we use the following notations. Let \boldsymbol{R} (resp. \boldsymbol{C}) denote the field of real numbers (resp. complex numbers) as usual. Let ${ }^{t} A$ (resp. $\mathbf{1}_{l}, \mathbf{0}_{s, t}$) denote the transpose of a matrix A (resp. the unit matrix of degree $l, s \times t$ zero matrix) and A^{-1} the inverse matrix of A if A is non-singular.

In this section we recall the definitions and the known results on generalized Siegel domains. We fix a coordinates system $\left(z_{1}, \cdots, z_{n}, w_{1}, \cdots, w_{m}\right)$ in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ once and for all.

A domain \mathscr{D} in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ is called a generalized Siegel domain with exponent \boldsymbol{c} if the following conditions are satisfied:
(1) \mathscr{D} is holomorphically equivalent to a bounded domain in \boldsymbol{C}^{n+m} and \mathscr{D} contains a point of the form $(z, 0)$ where $z \in \boldsymbol{C}^{n}$ and 0 denotes the origin of \boldsymbol{C}^{m}.
(2) \mathscr{D} is invariant by the transformations of $\boldsymbol{C}^{n_{+} m}$ of the following types:
(a) $(z, w) \mapsto(z+a, w) \quad$ for all $a \in \boldsymbol{R}^{n}$;
(b) $(z, w) \mapsto\left(z, e e^{-1} t w\right) \quad$ for all $t \in \boldsymbol{R}$;
(c) $(z, w) \mapsto\left(e^{t} z, e^{c t} w\right) \quad$ for all $t \in \boldsymbol{R}$,
where c is a fixed real number depending only on \mathscr{D}. We call c the exponent of \mathscr{D}.

We denote by Ω an open convex cone in \boldsymbol{R}^{n} not containing any full straight line. For a given convex cone Ω in \boldsymbol{R}^{n}, a mapping $F: \boldsymbol{C}^{m} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{n}$ is called an Ω-hermitian form if
(1) F is complex linear with respect to the first variable;
(2) $F(u, v)=\overline{F(v, u)}$ for any $u, v \in \boldsymbol{C}^{m}$;
(3) $F(u, u) \in \bar{\Omega}$ for any $u \in C^{m}$ and $F(u, u)=0$ only if $u=0$, where $\bar{\Omega}$ denotes the closure of Ω in \boldsymbol{R}^{n}.

For a given convex cone Ω in \boldsymbol{R}^{n} and an Ω-hermitian form $F: \boldsymbol{C}^{m} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{n}$, the domain

$$
\mathscr{D}(\Omega, F)=\left\{(z, w) \in \boldsymbol{C}^{n} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z-F(w, w) \in \Omega\right\}
$$

in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ is called the Siegel domain of the second kind associated with Ω and F. If $m=0$, the domain $\mathscr{D}(\Omega, F)$ reduces to the domain

$$
\mathscr{D}(\Omega)=\left\{z \in \boldsymbol{C}^{n} \mid \operatorname{Im} . z \in \Omega\right\}
$$

which we call the Siegel domain of the first kind associated with Ω. It is easy to see that if we put $c=1 / 2$ then the domain $\mathscr{D}(\Omega, F)$ satisfies the condition (2) of the definition of generalized Siegel domain. Moreover it is known that $\mathscr{D}(\Omega, F)$ is holomorphically equivalent to a bounded domain in \boldsymbol{C}^{n+m} [7]. Obviously every point of the form $(\sqrt{-1} a, 0), a \in \Omega$, is contained in $\mathscr{D}(\Omega, F)$ and hence the domain $\mathscr{D}(\Omega, F)$ is a generalized Siegel domain with exponent $1 / 2$. From this fact, the notion of generalized Siegel domain may be considered as a generalization of the notion of Siegel domain of the second kind. In the following we regard $\mathscr{D}(\Omega)$ as the special case of the second kind and by a Siegel domain we mean a Siegel domain of the first or second kind.

Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent c. Since \mathscr{D} is holomorphically equivalent to a bounded domain in $\boldsymbol{C}^{n_{+} m}$, by a well-known theorem of H. Cartan the group $\operatorname{Aut}(\mathscr{D})$ has the structure of real Lie group and the Lie algebra of Aut (\mathscr{D}) is identified with the Lie algebra $g(\mathscr{D})$ consisting of all complete holomorphic vector fields on \mathscr{D} [2].

From the definition, the following holomorphic vector fields on \mathscr{D} is contained in $\mathfrak{g}(\mathscr{D})$:

$$
\begin{equation*}
\frac{\partial}{\partial z_{k}} \quad \text { for } k=1,2, \cdots, n \tag{a}
\end{equation*}
$$

$$
\begin{align*}
\partial^{\prime} & =\sqrt{-1} \sum_{\alpha=1}^{m} w_{\infty} \frac{\partial}{\partial w_{\alpha}} \tag{b}\\
\partial & =\sum_{k=1}^{n} z_{k} \frac{\partial}{\partial z_{k}}+c \sum_{\alpha=1}^{m} w_{a} \frac{\partial}{\partial w_{\alpha}} . \tag{c}
\end{align*}
$$

By Kaup, Matsushima and Ochiai [3], every vector field $X \in \mathrm{~g}(\mathscr{D})$ is a polynomial vector field, and so we can express X in the follwoing form:

$$
X=\sum_{k=1}^{n}\left(\sum_{\nu, \mu \geq 0} P_{\nu \mu}^{k}\right) \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m}\left(\sum_{\nu, \mu \geq 0} Q_{\nu \mu \mu}^{\alpha}\right) \frac{\partial}{\partial w_{\alpha}}
$$

where $P_{\nu \mu}^{k}$ and $Q_{\nu \mu}^{\alpha}$ are homogeneous polynomials of degrees ν in $z_{l}(1 \leqq l \leqq n)$ and μ in $w_{\beta}(1 \leqq \beta \leqq m)$. If \mathscr{D} is a generalized Siegel domain with exponent $c=1 / 2$, we have the following theorem on the Lie algebra $g(\mathscr{D})$.

Theorem A (Kaup, Matsushima and Ochiai [3]).
Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C}^{n} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$. Then we have

$$
\begin{align*}
& \mathfrak{g}(\mathscr{D})=\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}+\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1} \tag{1}\\
& {\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}, \text { where } \mathfrak{g}_{\lambda}=\{X \in \mathfrak{g}(\mathscr{D}) \mid[\partial, X]=\lambda X\}}
\end{align*}
$$

More precisely we can describe each subspace \mathfrak{g}_{λ} as follows:

$$
\begin{aligned}
\mathfrak{g}_{-1} & =\left\{\left.\sum_{k=1}^{n} a^{k} \frac{\partial}{\partial z_{k}} \right\rvert\, a=\left(a^{k}\right) \in \boldsymbol{R}^{n}\right\} \\
\mathfrak{g}_{-1 / 2} & =\left\{\sum_{k=1}^{n} P_{0,1}^{k} \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m} Q_{0,0}^{\alpha} \frac{\partial}{\partial w_{\infty}} \in \mathfrak{g}(\mathscr{D})\right\} \\
\mathfrak{g}_{0} & =\left\{\sum_{k=1}^{n} P_{1,0}^{k} \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m} Q_{0,1}^{\alpha} \frac{\partial}{\partial w_{\infty}} \in \mathfrak{g}(\mathscr{D})\right\} \\
\mathfrak{g}_{1 / 2} & =\left\{\sum_{k=1}^{n} P_{1,1}^{k} \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m}\left(Q_{1,0}^{\alpha}+Q_{0,2}^{\alpha}\right) \frac{\partial}{\partial w_{w}} \in \mathfrak{g}(\mathscr{D})\right\} \\
\mathfrak{g}_{1} & =\left\{\sum_{k=1}^{n} P_{2,0}^{k} \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m} Q_{1,1}^{\alpha} \frac{\partial}{\partial w_{\infty}} \in \mathfrak{g}(\mathscr{D})\right\}
\end{aligned}
$$

(2) Let \mathfrak{r} be the radical of $\mathfrak{g}(\mathscr{D})$. Then

$$
\mathfrak{r}=\mathfrak{r}_{-1}+\mathfrak{r}_{-1 / 2}+\mathfrak{r}_{0}, \text { where } \mathfrak{r}_{\lambda}=\mathfrak{r} \cap \mathfrak{g}_{\lambda}
$$

(3) (i) $\operatorname{dim}_{R} \mathfrak{g}_{-1}=n, \operatorname{dim}_{R} \mathfrak{g}_{-1 / 2} \leqq 2 m$,
(ii) $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{1 / 2}=\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}-\operatorname{dim}_{\boldsymbol{R}} \mathfrak{r}_{-1 / 2}$,

$$
\operatorname{dim}_{R} \mathfrak{g}_{1}=n-\operatorname{dim}_{R} \mathfrak{r}_{-1}
$$

(4) Let $\mathfrak{a}=\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}$. Then \mathfrak{a} is the subalgebra of $\mathfrak{g}(\mathscr{D})$ corresponding to the subgroup Aff (\mathscr{D}) of Aut (\mathscr{D}) consisting of all complex affine transformations of \boldsymbol{C}^{n+m} leaving invariant the domain \mathscr{D}.
(5) $\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ is the subalgebra corresponding to the subgroup $\{g \in \operatorname{Aut}(\mathscr{D})$ $\mid g$ leaves invariant the complex submanifold $\left.\mathscr{D}_{1} \subset \mathscr{D}\right\}$, where $\mathscr{D}_{1}=\{(z, w) \in \mathscr{D} \mid w$ $=0\}$ is equivalent to a Siegel domain of the first kind in \boldsymbol{C}^{n}.

By Theorem A, we can write $X \in \mathfrak{g}_{-1 / 2}$ in the form

$$
X=\sum_{k=1}^{n} P_{0,1}^{k}(X) \frac{\partial}{\partial z_{k}}+\sum_{\alpha=1}^{m} c^{\alpha}(X) \frac{\partial}{\partial w_{\infty}}
$$

where $P_{0,1}^{k}(X)$ denotes a homogeneous polynomial of degree one in $w_{a}(1 \leqq \alpha \leqq m)$
depending on X and $c^{\alpha}(X)$ is a constant depending on X. Then by a simple computation, we get

$$
\begin{equation*}
a d \partial^{\prime} \cdot X=\sqrt{-1} \sum_{k=1}^{n} P_{0,1}^{k}(X) \frac{\partial}{\partial z_{k}}-\sqrt{-1} \sum_{\alpha=1}^{m} c^{\alpha}(X) \frac{\partial}{\partial w_{\infty}} . \tag{1.1}
\end{equation*}
$$

Hence the endomorphism $a d \partial^{\prime}$ defines a complex structure on $\mathfrak{g}_{-1 / 2}$. From this fact and (3) of Theorem A, we obtain the following corollary:

Corollary. $\quad \operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 k$ for some $k, 0 \leqq k \leqq m$.
Since the group Aff $\left(\boldsymbol{C}^{n+m}\right)$ of all complex affine transformations of \boldsymbol{C}^{n+m} is represented as a semi-direct product $G L(n+m, \boldsymbol{C}) \cdot \boldsymbol{C}^{n+m}$, we can write each element $g \in \operatorname{Aff}\left(C^{n+m}\right)$ in the form $g=(A, a)$, where $A \in G L(n+m, C)$ and $a \in \boldsymbol{C}^{n+m}$. Obviously the mapping which carries $g=(A, a)$ to the matrix $\left(\begin{array}{cc}A & a \\ 0 & 1\end{array}\right)$ $\in G L(n+m+1, \boldsymbol{C})$ is a faithful representation of $\operatorname{Aff}\left(\boldsymbol{C}^{n+m}\right)$. Since $\operatorname{Aff}(\mathscr{D})$ is a colsed subgroup of $\operatorname{Aff}\left(\boldsymbol{C}^{n+m}\right)$, we can identify $\operatorname{Aff}(\mathscr{D})$ with the closed subgroup of $G L(n+m+1, C)$, and so the Lie algebra \mathfrak{a} is identified with the subalgebra of $\mathfrak{g l}(n+m+1, C)$.

Let M be a hyperbolic manifold in the sense of Kobayashi [4]. It is known that the group $\operatorname{Aut}(M)$ of all holomorphic transformations of M is a Lie group and its isotropy subgroup K_{p} at a point p of M is compact [4]. We may identify the Lie algebra of $\operatorname{Aut}(M)$ with the Lie algebra $\mathfrak{g}(M)$ consisting of all complete holomorphic vector fields on M. A hyperbolic manifold M is called a hyperbolic circular domain in \boldsymbol{C}^{d} if the following conditions are satisfied:
(1) M is a domain in \boldsymbol{C}^{d};
(2) M is circular, that is, M is invariant by the following global oneparameter subgroup of transformations:

$$
l_{t}:\left(w_{1}, \cdots, w_{d}\right) \mapsto\left(e \sqrt{-1 t} w_{1}, \cdots, e^{\sqrt{ }-1 t} w_{d}\right), \quad t \in \boldsymbol{R}
$$

where $\left(w_{1}, \cdots, w_{d}\right)$ denotes a coordinates system in \boldsymbol{C}^{d}. Let M be a hyperbolic circular domain in \boldsymbol{C}^{d} containing the origin 0 of \boldsymbol{C}^{d}. Since the one-parameter subgroup $\left\{l_{t} \mid t \in \boldsymbol{R}\right\}$ induces an element $\partial=\sqrt{-1} \sum_{\alpha=1}^{d} w_{a} \frac{\partial}{\partial w_{\alpha}}$ of $\mathfrak{g}(M)$, we can show that every vector field $X \in \mathfrak{g}(M)$ is expressed in the form

$$
X=\sum_{\alpha=1}^{d}\left(\sum_{v \geq 0} P_{v}^{\alpha}\right) \frac{\partial}{\partial w_{\infty}}
$$

where P_{ν}^{a} is a homogeneous polynomial of degree ν in $w_{\beta}(1 \leqq \beta \leqq d)$, by the same way as in [3]. More precisely we can show the following Theorem B (cf. [8]):

Theorem B. Let M be a hyperbolic circular domain in \boldsymbol{C}^{d} containing the origin 0 of \boldsymbol{C}^{d}. For the vector field $\partial=\sqrt{-1} \sum_{\alpha=1}^{d} w_{a} \frac{\partial}{\partial w_{\infty}} \in \mathfrak{g}(M)$, we define an endomorphism J of $\mathfrak{g}(M)$ by $J(X)=[\partial, X]$ for $X \in \mathfrak{g}(M)$. Let $\mathfrak{f}(M)$ denote the Lie subalgebra of $\mathrm{g}(M)$ corresponding to the isotropy subgroup K of $A u t(M)$ at the origin $0 \in M$. Then we have

$$
\begin{equation*}
\mathfrak{f}(M)=\left\{\sum_{\alpha=1}^{d} P_{1}^{\alpha} \frac{\partial}{\partial w_{a}} \left\lvert\, \sum_{\alpha=1}^{d} P_{1}^{\alpha} \frac{\partial}{\partial w_{\alpha}} \in \mathfrak{g}(M)\right.\right\}, \tag{1}
\end{equation*}
$$

which is equal to the kernel of J; and
(2) if we put $\mathfrak{p}(M)=\left\{X \in \mathfrak{g}(M) \mid J^{2}(X)=-X\right\}$, then $\quad \mathfrak{g}(M)=\mathfrak{f}(M)+\mathfrak{p}(M) \quad$ (direct sum).

Proof. The same way as in Lemma 3.1 of [3].
2. The case of a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent 1/2.

In the following part of the paper, we consider exclusively the generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with $c=1 / 2$ and $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{-1 / 2}=2 k$ for some $k, 0 \leqq k \leqq m$.

We may assume without loss of generality (by change of linear coordinates if necessary) that $(\sqrt{-1}, 0) \in \mathscr{D}$.

Lemma 1. If $(z, w) \in \mathscr{D}$, then $\operatorname{Im} . z>0$.
Proof. Suppose that there exists a point $\left(z_{0}, w_{0}\right) \in \mathscr{D}$ such that $\operatorname{Im} . z_{0} \leqq 0$. Since \mathscr{D} is a domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ and $(\sqrt{-1}, 0) \in \mathscr{D}$, there exists a continuous path $\phi:[0,1] \rightarrow \mathscr{D}$ such that $\phi(0)=\left(z_{0}, w_{0}\right)$ and $\phi(1)=(\sqrt{-1}, 0)$. Put $\phi(t)=$ $(z(t), w(t))$ for $t \in[0,1]$. Then there exists a point $t_{0} \in[0,1]$ such that $\operatorname{Im} . z\left(t_{0}\right)$ $=0$ by our assumption. Obviously this shows that the point $\left(0, w\left(t_{0}\right)\right)$ belongs to \mathscr{D}. Hence we see that \mathscr{D} contains a point of the form $\left(0, w_{1}\right), w_{1} \neq 0$, since \mathscr{D} is open. Then, by definition, \mathscr{D} also contains the set $\left\{\left(0, e^{1 / 2 t} e e^{-1} \theta w_{1}\right) \mid t, \theta \in \boldsymbol{R}\right\}$, which is naturally identified with $\boldsymbol{C}-\{0\}$. Thus there exists an injective holomorphic mapping $\Psi: \boldsymbol{C}-\{0\} \rightarrow$ a bounded subset of \boldsymbol{C}^{m+1}, because \mathscr{D} is equivalent to a bounded domain in \boldsymbol{C}^{m+1}. Let $\Psi(z)=\left(f_{1}(z), \cdots, f_{m+1}(z)\right)$. Then each f_{i} is a bounded holomorphic function defined on $\boldsymbol{C}-\{0\}$. Hence, by the Riemann's extension theorem, f_{i} extends to a bounded holomorphic function on \boldsymbol{C} and so it is constant. In particular Ψ is a constant mapping. Obviously this is a contradiction.
q.e.d.

In order to prove Theorem 1 we shall consider first the case where $\operatorname{dim}_{\boldsymbol{R}}$ $\mathrm{g}_{-1 / 2}=2 k>0$, i.e., $k \geqq 1$, in the following.

By Theorem A, we can write each vector field $X \in \mathfrak{g}_{-1 / 2}$ as follows:

$$
X=\left(\sum_{\alpha=1}^{m} b_{a}(X) w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{m} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}},
$$

where $b_{\alpha}(X)$ and $c^{\beta}(X)$ are complex numbers depending on X. We define a linear mapping $C: \mathfrak{g}_{-1 / 2} \rightarrow \boldsymbol{C}^{m}$ by $C(X)=\left(c^{1}(X), \cdots, c^{m}(X)\right)$. Then we have

$$
\begin{equation*}
C: \mathfrak{g}_{-1 / 2} \rightarrow \boldsymbol{C}^{m} \text { is injective } \tag{2.1}
\end{equation*}
$$

In fact, if $C(X)=0$, then it follows from (1.1) that $\sqrt{-1} X \in \mathrm{~g}(\mathscr{D})$. By a theorem of E. Cartan [1], we have that $\mathfrak{g}(\mathscr{D}) \cap \sqrt{-1} \mathrm{~g}(\mathscr{D})=0$ and hence $X=0$.

Since $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 k$ by our assumption, the image $V=\left\{C(X) \mid X \in \mathrm{~g}_{-1 / 2}\right\}$ of C is a complex k-dimensional vector subspace of \boldsymbol{C}^{m} by (1.1) and (2.1). Fix a non-singular linear mapping $\mathcal{L}^{1}: \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{m}$ such that

$$
\mathcal{L}^{1}(V)=\left\{\left(d_{1}, \cdots, d_{k}, 0, \cdots, 0\right) \in \boldsymbol{C}^{m} \mid d=\left(d_{i}\right) \in \boldsymbol{C}^{k}\right\}
$$

Lemma 2. There exists a non-singular linear mapping $\mathcal{L}^{2}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ of the form $\tilde{z}=z, \widetilde{w}_{\alpha}=\sum_{\beta=1}^{m} A_{\alpha \beta} w_{\beta}(1 \leqq \alpha \leqq m)$ such that

$$
\left.\left.\mathcal{L}_{*}^{2} \mathfrak{g}_{-1 / 2}=\left\{\sum_{\alpha=1}^{m} a_{w}(X) \tilde{w}_{w}\right) \frac{\partial}{\partial \tilde{z}}+\sum_{\beta=1}^{k} d_{\beta}(X) \frac{\partial}{\partial \widetilde{w}_{\beta}} \right\rvert\,\left(d^{\beta}(X)\right) \in \boldsymbol{C}^{k}\right\}
$$

where \mathcal{L}_{*}^{2} denotes the differential of \mathcal{L}^{2}.
Proof. Let $C: \mathfrak{g}_{-1 / 2} \rightarrow \boldsymbol{C}^{m}$ and $\mathcal{L}^{1}: \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{m}$ be the same mappings as before. Then, for

$$
X=\left(\sum_{\alpha=1}^{m} b_{\alpha}(X) w_{\alpha}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{m} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}} \in \mathfrak{g}_{-1 / 2}
$$

we have $\mathcal{L}^{1}(C(X))=\left(d^{1}(X), \cdots, d^{k}(X), 0, \cdots, 0\right)$ for some $d^{\beta}(X) \in \boldsymbol{C}(1 \leqq \beta \leqq k)$. Let $\left(1 \oplus \mathcal{L}^{1}\right)(z, w)=\left(z, \mathcal{L}^{1}(w)\right)$. If we put $\mathcal{L}^{2}=1 \oplus \mathcal{L}^{1}$, then \mathcal{L}^{2} satisfies our claim. q.e.d.

Let $\widetilde{\mathscr{D}}$ be the image of \mathscr{D} under the mapping \mathcal{L}^{2} given in Lemma 2. Then it is easy to see that $\widetilde{\mathscr{D}}$ is also a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and the Lie algebra $g(\widetilde{\mathscr{D}})$ coincides with $\mathcal{L}_{*}^{2} g(\mathscr{D})$. Put $\tilde{\partial}=\tilde{z} \frac{\partial}{\partial \tilde{z}}+\frac{1}{2} \sum_{\beta=1}^{m} \tilde{w}_{a} \frac{\partial}{\partial \tilde{w}_{a}}$. Then $\mathcal{L}_{*}^{2} \partial=\tilde{\partial}$. Thus it follows from Theorem A that $\mathcal{L}_{*}^{2} \mathfrak{g}_{\lambda}=\tilde{\mathfrak{g}}_{\lambda}$, where $\tilde{\mathfrak{g}}_{\lambda}=\{\tilde{X} \in \mathfrak{g}(\widetilde{\mathscr{D}}) \mid[\tilde{\partial}, \tilde{X}]=\lambda \tilde{X}\}$. In particular we have

$$
\tilde{\mathfrak{g}}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha=1}^{m} a_{\infty} \tilde{w}_{a}\right) \frac{\partial}{\partial \tilde{z}}+\sum_{\beta=1}^{k} d^{\beta} \frac{\partial}{\partial \widetilde{w}_{\beta}} \right\rvert\, d=\left(d^{\beta}\right) \in \boldsymbol{C}^{k}\right\}
$$

by Lemma 2, where each a_{a} is uniquely determmined by $d=\left(d^{\beta}\right)$. Hence we may assume that

$$
\mathfrak{g}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha=1}^{m} a_{\infty} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} d^{\beta} \frac{\partial}{\partial w_{\beta}} \right\rvert\, d=\left(d^{\beta}\right) \in \boldsymbol{C}^{k}\right\}
$$

to prove Theorem 1, considering $\widetilde{\mathscr{D}}$ instead of \mathscr{D} if necessary. Then by using (1.1) and (2.1), we can show that each vector field $X \in g_{-1 / 2}$ is of the following form:

$$
X=\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{\beta^{\beta}(X)} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}}
$$

where $c^{\beta}(X)$ is a complex number depending on X and $a_{\alpha \beta}$ is a complex number depending only on $g_{-1 / 2}$ and hence \mathscr{D} (cf.Vey [9], Lemme 5.1). Thus we get

$$
\begin{equation*}
\mathfrak{g}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \bar{c}^{\bar{\beta}} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta} \frac{\partial}{\partial w_{\beta}} \right\rvert\,\left(c^{\beta}\right) \in \boldsymbol{C}^{k}\right\} \tag{2.2}
\end{equation*}
$$

Lemma 3. The matrix $\left(a_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq k}$ in (2.2) is non-singular skew-hermitian.
Proof. Let $X=\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{c^{\beta}(X)} w_{\alpha}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}} \in g_{-1 / 2}$.
Then, by (1.1) we get

$$
\left[\partial^{\prime}, X\right]=\sqrt{-1}\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{c^{\beta}(X)} w_{\alpha}\right) \frac{\partial}{\partial z}-\sqrt{-1} \sum_{\beta=1}^{k} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}}
$$

Put $Y=\left[\partial^{\prime}, X\right]$. By a direct calculation we get

$$
[X, Y]=2 \sqrt{-1}\left(\sum_{\alpha, \beta=1}^{k} a_{\alpha \beta} c^{\alpha}(X) \overline{c^{\beta}(X)}\right) \frac{\partial}{\partial z}
$$

Since $[X, Y] \in \mathrm{g}_{-1}$, we see that the number $\sum_{\alpha, \beta=1}^{k} a_{\alpha \beta} c^{\alpha}(X) \overline{c^{\beta}(X)}$ is pure imaginary by (1) of Theorem A. Hence $\sum_{\alpha, \beta=1}^{k}\left(a_{\alpha \beta}+\overline{a_{\beta_{\alpha}}}\right) c^{\alpha, \beta}(X) \overline{c^{\beta}(X)}=0$. On the other hand, since the set $\left\{C(X)=\left(c^{\beta}(X)\right) \mid X \in \mathfrak{g}_{-1 / 2}\right\}$ is a complex k-dimensional vector subspace of \boldsymbol{C}^{m}, we get $a_{\alpha \beta}+\overline{a_{\beta \alpha}}=0$ for $1 \leqq \alpha, \beta \leqq k$.

We need some preparations to prove that $\left(a_{\alpha \beta}\right)_{1 \leqq \alpha, \beta \leqq k}$ is non-singular. We identify the Lie algebra $\mathfrak{a}=\mathrm{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}$ with the subalgebra of $\mathfrak{g l}(m+2, C)$ as in $\S 1$. Thus we can represent the vector field $X \in \mathrm{~g}_{-1 / 2}$ by the following matrix:

Therefore the global one-parameter subgroup exptX generated by X is given by

Thus the action of exptX on \mathscr{D} is given by

$$
\left\{\begin{array}{l}
z \mapsto z+t \sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{c^{\beta}(X)} w_{\alpha}+\frac{t^{2}}{2} \sum_{\alpha, \beta=1}^{k} a_{\alpha \beta} c^{\alpha}(X) \overline{c^{\beta}(X)} \tag{2.3}\\
w_{\alpha \mapsto} \mapsto w_{\alpha}+t c^{\omega}(X), \quad 1 \leqq \alpha \leqq k \\
w_{\beta} \mapsto w_{\beta} \quad, k+1 \leqq \beta \leqq m .
\end{array}\right.
$$

Now we can prove that $\left(a_{\alpha \beta}\right)_{1 \leqq \alpha, \beta \leqq_{k}}$ is non-singular. Since $\left(a_{\alpha \beta}\right)_{1 \leqq \alpha, \beta \leqq k}$ is skew-hermitian, it is enough to show that

$$
\begin{equation*}
\sum_{\alpha, \beta=1}^{k} a_{\alpha \beta} c^{c \bar{c}} c^{\beta} \neq 0 \text { for any nonzero vector } c=\left(c^{\alpha}\right) \in \boldsymbol{C}^{k} . \tag{2.4}
\end{equation*}
$$

Suppose that there exists a nonzero vector $c_{0}=\left(c_{0}^{1}, \cdots, c_{0}^{k}\right)$ such that $\sum_{\alpha, \beta=1}^{k} a_{\alpha \beta} c_{0}^{\alpha} \overline{c_{0}^{\beta}}$ $=0$. Then the vector field

$$
X_{c_{0}}=\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \bar{\beta} c_{0}^{\bar{\beta}} w_{\alpha}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c_{0}^{\beta} \frac{\partial}{\partial w_{\beta}}
$$

belonging to $\mathfrak{g}_{-1 / 2}$ generates the global one-parameter subgroup $\operatorname{expt} X_{c_{0}}$ which acts on \mathscr{D} by

$$
\left\{\begin{array}{l}
\mathcal{Z} \mapsto z+t \sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{c_{0}^{\beta}} w_{\alpha} \\
w_{\alpha^{\mapsto} \mapsto w_{a}+t c_{0}^{\alpha},} \quad 1 \leqq \alpha \leqq k \\
w_{\beta} \mapsto w_{\beta} \quad, \\
k+1 \leqq \beta \leqq m .
\end{array}\right.
$$

Thus $\operatorname{expt} X_{c_{0}} \cdot(\sqrt{-1}, 0)=\left(\sqrt{-1}, t c_{0}^{1}, \cdots, t c_{0}^{k}, 0, \cdots, 0\right)$. Hence \mathscr{D} must contain the set $\left\{\left(\sqrt{-1}, e^{\sqrt{-1}} t c_{0}^{1}, \cdots, e^{\sqrt{-1}} t c, 0, \cdots, 0\right) \mid t, \theta \in \boldsymbol{R}\right\}$, which is identified with the complex plane \boldsymbol{C} since $c_{0} \neq 0$ by our assumption. But this is a contradiction, because \mathscr{D} is holomorphically equivalent to a bounded domain in \boldsymbol{C}^{m+1}. q.e.d.

Lemma 4. There exists a non-singular linear mapping $\mathcal{L}^{3}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ of the form
(*) $\tilde{z}=z, \widetilde{w}_{\alpha}=\sum_{\beta=1}^{m} B_{\alpha \beta} w_{\beta}(1 \leqq \alpha \leqq m)$, such that

$$
\mathcal{L}_{*}^{3} \mathrm{~g}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha, \beta=1}^{k} d_{\alpha \beta} \overline{c^{\beta}} \tilde{w}_{a}\right) \frac{\partial}{\partial \tilde{z}}+\sum_{\beta=1}^{k} c^{\beta} \frac{\partial}{\partial \widetilde{w}_{\beta}} \right\rvert\, c=\left(c^{\beta}\right) \in \boldsymbol{C}^{k}\right\}
$$

where $\left(d_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq_{k}}$ is a non-singular skew-hermitian matrix.
Proof. Let $\mathcal{L}^{3}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ be a non-singular linear mapping defined by (*). Then, by a simple caluclation, we have $\mathcal{L}_{*}^{3} \frac{\partial}{\partial z}=\frac{\partial}{\partial z}$ and $\mathcal{L}_{*}^{3} \frac{\partial}{\partial w_{a}}=$ $\sum_{\beta=1}^{m} B_{\beta \infty} \frac{\partial}{\partial \widetilde{w}_{\beta}}(1 \leqq \alpha \leqq m)$. Put $B=\left(B_{\alpha \beta}\right)_{1 \leqq \alpha, \beta \leqq m}$. Let $E=\left(E_{\alpha \beta}\right)=B^{-1}$. Take a vector field

$$
X=\left(\sum_{a=1}^{m} \sum_{\beta=1}^{k} a_{a \beta} \overline{c^{\beta}(X)} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta}(X) \frac{\partial}{\partial w_{\beta}}
$$

belonging to $\mathrm{g}_{-1 / 2}$. Then we have

$$
\mathcal{L}_{*}^{3} X=\left\{\sum_{\lambda=1}^{m}\left(\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{\beta^{\beta}(X)} E_{\alpha \lambda}\right) \tilde{w}_{\lambda}\right\} \frac{\partial}{\partial \tilde{z}}+\sum_{\lambda=1}^{m}\left(\sum_{\beta=1}^{k} c^{\beta}(X) B_{\lambda \beta}\right) \frac{\partial}{\partial \tilde{w}_{\lambda}} .
$$

Now we have to find out the matrix B which satisfies the following conditions:

$$
\begin{array}{cc}
\sum_{\alpha=1}^{m} \sum_{\beta=1}^{k} a_{\alpha \beta} \overline{\beta^{\beta}(X)} E_{\alpha \lambda}=0 & \text { for all } \lambda, k+1 \leqq \lambda \leqq m \\
\sum_{\beta=1}^{k} c^{\beta}(X) B_{\lambda \beta}=0 & \text { for all } \lambda, k+1 \leqq \lambda \leqq m \tag{2.6}
\end{array}
$$

Since $\left\{C(X)=\left(c^{\beta}(X)\right) \mid X \in \mathrm{~g}_{-1 / 2}\right\}=C^{k}$, the conditions are equivalent to the following

$$
\begin{gather*}
\left(\begin{array}{ccc}
a_{11}, \cdots, & a_{k 1}, \cdots, & a_{m 1} \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
a_{1 k}, \cdots, & a_{k k}, \cdots, & a_{m k}
\end{array}\right)^{t} \cdot\left(\begin{array}{cc}
E_{1, k+1}, & \cdots, \\
\vdots & E_{m, k+1} \\
\vdots & \vdots \\
E_{1 m}, \cdots \cdots, E_{m m}
\end{array}\right)=\mathbf{0}_{k, m-k} \tag{2.5}\\
\left(\begin{array}{ccc}
B_{k+1,1}, & \cdots \cdots, B_{k+1, k} \\
\vdots & \vdots \\
\vdots & \vdots \\
B_{m, 1}, & \cdots \cdots, & B_{m, k}
\end{array}\right)=\mathbf{0}_{m-k, k} .
\end{gather*}
$$

Put $A_{1}=\left(a_{i j}\right)_{1 \leqq i, j \leq k}, \quad A_{2}=\left(a_{s t}\right)_{k+1 \leq s \leq m, 1 \leq t \leq k}, \quad E_{1}=\left(E_{i j}\right)_{1 \leq i \leq k, k+1 \leq j \leq m} \quad$ and $\quad E_{2}=$ $\left(E_{s t}\right)_{k+1 \leq s, t}$. Then, (2.5)' can be written as ${ }^{t} A_{1} E_{1}+{ }^{t} A_{2} E_{2}=\mathbf{0}_{k, m-k}$. Since the matrix A_{1} is non-singular by Lemma 3, we have

$$
\begin{equation*}
E_{1}=-{ }^{t} A_{1}^{-1} \cdot{ }^{t} A_{2} \cdot E_{2} \tag{2.5}
\end{equation*}
$$

Now we define a mapping $\mathcal{L}^{3}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ by

$$
\mathcal{L}^{3}:\left(\begin{array}{c}
\tilde{z} \\
\tilde{w}_{1} \\
\vdots \\
\tilde{w}_{m}
\end{array}\right)=\left(\begin{array}{c:c:c}
1 & \mathbf{0} & \mathbf{0} \\
\hdashline \mathbf{0} & \mathbf{1}_{k} & -{ }^{t} A_{1}^{-1 t} A_{2} \\
\hdashline \mathbf{0} & \mathbf{0} & \mathbf{1}_{m-k}
\end{array}\right)^{-1} \cdot\left(\begin{array}{c}
z \\
w_{1} \\
\vdots \\
w_{m}
\end{array}\right)
$$

Then \mathcal{L}^{3} satisfies the conditions (2.5) ${ }^{\prime \prime}$ and (2.6) ${ }^{\prime}$ and hence we have proved Lemma 4.
q.e.d.

Now by Lemma 4, we may assume to prove Theorem 1 that

$$
\begin{equation*}
\mathfrak{g}_{-1 / 2}=\left\{\left.\left(\sum_{a, \beta=1}^{k} d_{a \beta} \bar{\beta}^{\bar{\beta}} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta} \frac{\partial}{\partial w_{\beta}} \right\rvert\,\left(c^{\beta}\right) \in \boldsymbol{C}^{k}\right\} . \tag{2.7}
\end{equation*}
$$

Lemma 5. There exists a non-singular linear mapping $\quad \mathcal{L}^{4}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ of the form

$$
\tilde{z}=z, \widetilde{w}_{a b}=\sum_{\lambda=1}^{k} c_{a \lambda} w_{\lambda}(1 \leqq \alpha \leqq k) \text { and } \widetilde{w}_{\beta}=w_{\beta}(k+1 \leqq \beta \leqq m)
$$

such that

$$
\mathcal{L}_{*}^{4} \mathrm{~g}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha=1}^{k} d_{a} \overline{c^{\alpha}} \widetilde{w}_{a}\right) \frac{\partial}{\partial \tilde{z}}+\sum_{\beta=1}^{k} c^{\beta} \frac{\partial}{\partial \tilde{w}_{\beta}} \right\rvert\,\left(c^{\beta}\right) \in \boldsymbol{C}^{k}\right\}
$$

where each d_{a} is a nonzero purely imaginary number depending only on \mathscr{D}.
Proof. By Lemma 4, the matrix $D=\left(d_{\alpha \beta}\right)_{1 \leqq \alpha, \beta \leq k}$ in (2.7) is non-singular and skew-hermitian. Hence D can be diagonalized by a suitable unitary matrix $U=\left(u_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq k}$. Put $U^{-1} \cdot D \cdot U=\operatorname{diag} .\left(d_{1}, \cdots, d_{k}\right)$, where diag. $\left(d_{1}, \cdots, d_{k}\right)$ denotes the diagonal matrix whose (l, l)-component is d_{l}. Then, since D is non-singular and skew-hermitian, each d_{l} is a nonzero purely imaginary number. Now define a non-singular linear mapping $\mathcal{L}^{4}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ by $\tilde{z}=z, \widetilde{w}_{\alpha}=\sum_{\lambda=1}^{k} u_{\lambda_{\alpha}} w_{\lambda}$ $(1 \leqq \alpha \leqq k)$ and $\widetilde{w}_{\beta}=w_{\beta}(k+1 \leqq \beta \leqq m)$.

Then it is easy to see that the mapping \mathcal{L}^{4} satisfies our conditions. q.e.d.
Proof of Theorem 1: Suppose first $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 k>0$. By Lemma 5 we may assume that

$$
\mathfrak{g}_{-1 / 2}=\left\{\left.\left(\sum_{\alpha=1}^{k} d_{\alpha} \overline{c^{\alpha}} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\beta=1}^{k} c^{\beta} \frac{\partial}{\partial w_{\beta}} \right\rvert\,\left(c_{\beta}\right) \in \boldsymbol{C}^{k}\right\} .
$$

Note that each d_{α} is a nonzero purely imaginary number. For the sake of simplicity, we denote (w_{1}, \cdots, w_{k}) and $\left(w_{k+1}, \cdots, w_{m}\right)$ by w^{\prime} and $w^{\prime \prime}$, respectively. For $a \in \boldsymbol{R}$ (resp. $t \in \boldsymbol{R}$) we denote by T_{a} (resp. Ψ_{t}) the holomorphic transforma-
tion $(z, w) \mapsto(z+a, w)\left(\right.$ resp. $\left.(z, w) \mapsto\left(e^{t} z, e^{1 / 2 t} w\right)\right)$ of C^{m+1}. Now we define a mapping $\Phi: \boldsymbol{C}^{k} \times \boldsymbol{C}^{k} \rightarrow \boldsymbol{C}$ by

$$
\Phi(u, v)=\frac{1}{2 \sqrt{-1}} \sum_{\alpha=1}^{k} d_{\alpha} u^{\bar{\alpha}} v^{\alpha} \quad \text { for } \quad u=\left(u^{\alpha}\right), v=\left(v^{\alpha}\right) \in \boldsymbol{C}^{k}
$$

Then each vector field belonging to $\mathrm{g}_{-1 / 2}$ is expressed in the from $2 \sqrt{-1} \Phi\left(w^{\prime}, c\right)$ $\frac{\partial}{\partial z}+\sum_{\alpha=1}^{k} c^{\infty} \frac{\partial}{\partial w_{\infty}}$. Since this vector field is determined completely by $c=\left(c^{\alpha}\right) \in \boldsymbol{C}^{k}$, we write it by X_{c}. By (2.3) the vector field X_{c} generates the global one-parameter subgroup $\operatorname{expt} X_{c}$:

$$
\left(z, w^{\prime}, w^{\prime \prime}\right) \mapsto\left(z+2 \sqrt{-1} \Phi\left(w^{\prime}, t c\right)+\sqrt{-1} \Phi(t c, t c), w^{\prime}+t c, w^{\prime \prime}\right) .
$$

Now we claim that

$$
\begin{equation*}
\Phi(c, c) \geqq 0 \quad \text { for all } c \in \boldsymbol{C}^{k} \tag{2.8}
\end{equation*}
$$

Suppose that there exists a nonzero vector $c_{0} \in \boldsymbol{C}^{k}$ such that $\Phi\left(c_{0}, c_{0}\right)<0$. Then, for a point $\left(z_{0}, 0\right) \in \mathscr{D}$, we have

$$
\operatorname{expt} X_{c_{0}} \cdot\left(z_{0}, 0\right)=\left(z_{0}+\sqrt{-1} \Phi\left(t c_{0}, t c_{0}\right), t c_{0}, 0\right)
$$

for any $t \in \boldsymbol{R}$. Thus, by Lemma $1, \operatorname{Im} . z_{0}+\Phi\left(t c_{0}, t c_{0}\right)>0$ for any $t \in \boldsymbol{R}$. This is impossible since $\Phi\left(c_{0}, c_{0}\right)<0$. Therefore we get (2.8). In particular, we see that each number $\lambda_{\alpha}:=d_{\alpha} / 2 \sqrt{-1}(1 \leqq \alpha \leqq k)$ is positive. Now we define a linear mapping $\mathcal{L}^{5}: \boldsymbol{C} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C} \times \boldsymbol{C}^{m}$ by $\tilde{z}=z, \tilde{w}_{\alpha}=\sqrt{\lambda_{\alpha}} w_{\alpha}(1 \leqq \alpha \leqq k)$ and $\tilde{w}_{\beta}=w_{\beta}(k+$ $1 \leqq \beta \leqq m$). Then it is easy to see that

$$
\mathcal{L}_{*}^{5} \mathfrak{g}_{-1 / 2}=\left\{\left.2 \sqrt{-1}\left(\sum_{\alpha=1}^{k} \overline{c^{\omega}} \tilde{w}_{\alpha}\right) \frac{\partial}{\partial z}+\sum_{\alpha=1}^{k} c^{\alpha} \frac{\partial}{\partial \tilde{w}_{w}} \right\rvert\,\left(c^{\alpha}\right) \in \boldsymbol{C}^{k}\right\}
$$

Hence, by considering the image $\tilde{\mathscr{D}}=\mathcal{L}^{5}(\mathscr{D})$ if necessary, we may assume that

$$
\mathrm{g}_{-1 / 2}=\left\{\left.2 \sqrt{-1}\left(\sum_{\alpha=1}^{k} \overline{c^{\bar{\alpha}}} w_{a}\right) \frac{\partial}{\partial z}+\sum_{\alpha=1}^{k} c^{\infty} \frac{\partial}{\partial w_{a}} \right\rvert\,\left(c^{\alpha}\right) \in \boldsymbol{C}^{k}\right\}
$$

Define a mapping $F: \boldsymbol{C}^{k} \times \boldsymbol{C}^{k} \rightarrow \boldsymbol{C}$ by

$$
F(u, v)=\sum_{\alpha=1}^{k} u^{\alpha} \overline{v^{\alpha}} \quad \text { for any } u=\left(u^{\alpha}\right), v=\left(v^{\alpha}\right) \in \boldsymbol{C}^{k}
$$

Then the domain

$$
\mathcal{E}=\left\{\left(z, w^{\prime}, 0\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)>0\right\}
$$

is an elementary Siegel domain. Now we put

$$
\mathscr{D}_{\sqrt{-1}}=\left\{w^{\prime \prime} \in \boldsymbol{C}^{m-k} \mid\left(\sqrt{-1}, 0, w^{\prime \prime}\right) \in \mathscr{D}\right\}
$$

We shall show that $\mathscr{D}_{\sqrt{-1}}$ is connected. Take two points $P_{0}=\left(\sqrt{-1}, 0, w_{0}^{\prime \prime}\right)$ and $P_{1}=\left(\sqrt{-1}, 0, w_{1}^{\prime \prime}\right)$ of \mathscr{D}. Then there exists a continuous path $\Gamma:[0,1]$ $\rightarrow \mathscr{D}$ such that $\Gamma(0)=P_{0}$ and $\Gamma(1)=P_{1}$. For any $t \in[0,1]$, we put $\Gamma(t)=(z(t)$, $\left.w^{\prime}(t), w^{\prime \prime}(t)\right)$, where $z(t) \in \boldsymbol{C}, w^{\prime}(t) \in \boldsymbol{C}^{k}$ and $w^{\prime \prime}(t) \in \boldsymbol{C}^{m-k}$. Since

$$
\begin{aligned}
& T_{-R e \cdot z}(t) \cdot \exp X_{-w^{\prime}(t)} \cdot\left(z(t), w^{\prime}(t), w^{\prime \prime}(t)\right) \\
= & \left(\sqrt{ }-1\left(\operatorname{Im} \cdot z(t)-F\left(w^{\prime}(t), w^{\prime}(t)\right)\right), 0, w^{\prime \prime}(t)\right),
\end{aligned}
$$

we see that $\operatorname{Im} . z(t)-F\left(w^{\prime}(t), w^{\prime}(t)\right)>0$ for any $t \in[0,1]$ by Lemma 1 . Thus we can define a continous function $l(t)$ on $[0,1]$ by $l(t)=\log \left(\operatorname{Im} . z(t)-F\left(w^{\prime}(t), w^{\prime}(t)\right)\right)$. Then it is obvious that $l(0)=l(1)=0$ and $e^{l(t)}=\operatorname{Im} . z(t)-F\left(w^{\prime}(t), w^{\prime}(t)\right)$ for any $t \in[0,1]$. Thus the point

$$
\left(\sqrt{-1}, 0, e^{-1 / 2 l(t)} w^{\prime \prime}(t)\right)=\left(e^{-l(t)} e^{l(t)} \cdot \sqrt{-1}, 0, e^{-1 / 2 l(t)} w^{\prime \prime}(t)\right)
$$

belongs to \mathscr{D} by the definition of \mathscr{D}. Put $g(t)=e^{-1 / 2 l(t)} w^{\prime \prime}(t)$. Then $g(t) \in \mathscr{D} \sqrt{=1}$ for nay $t \in[0,1], g(0)=w_{0}{ }^{\prime \prime}$ and $g(1)=w_{1}{ }^{\prime \prime}$. Thus $\mathscr{D}_{\sqrt{ }=1}$ is connected. It is obvious that $\mathscr{D}_{\sqrt{ }=1}$ is a circular domain in \boldsymbol{C}^{m-k} containing the origin 0 by the definition of the generalized Siegel domain. Let $\left(z, w^{\prime}, w^{\prime \prime}\right)$ be a point of \mathscr{D}. Then there exists a real number t_{0} such that $e^{t_{0}}=\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)$, because $T_{-R e \cdot z} \cdot \exp X_{-w^{\prime}} \cdot\left(z, w^{\prime}, w^{\prime \prime}\right)=\left(\sqrt{-1}\left(\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)\right), 0, w^{\prime \prime}\right)$ belongs to \mathscr{D} and hence $\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)>0$ by Lemma 1. Thus we have $\Psi_{-t_{0}} \cdot T_{-R e \cdot z} \cdot \exp X_{-w^{\prime}} \cdot$ $\left(z, w^{\prime}, w^{\prime \prime}\right)=\left(\sqrt{-1}, 0, e^{-t_{0} / 2} w^{\prime \prime}\right)$. Hence $\left(\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)\right)^{-1 / 2} \cdot w^{\prime \prime} \in \mathscr{D}_{\sqrt{-1}}$, and so \mathscr{D} is contained in the set

$$
\left\{\left(z, w^{\prime}, w^{\prime \prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)>0,\left(\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)\right)^{-1 / 2} \cdot w^{\prime \prime} \in \mathscr{D}_{\sqrt{ }=1}\right\} .
$$

Conversely, take a point $\left(z, w^{\prime}, w^{\prime \prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m}$ such that $\operatorname{Im} . z-F\left(w^{\prime}, z^{\prime}\right)>0$ and $\left(\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)\right)^{-1 / 2} \cdot w^{\prime \prime} \in \mathscr{D}_{\sqrt{-1}}$. Then, by the same way as above, we can show that there exists a real number t_{0} such that $e^{t_{0}}=\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)$ and

$$
T_{R e \cdot z} \cdot \exp X_{w^{\prime}} \cdot \Psi_{t_{0}} \cdot\left(\sqrt{-1}, 0, e^{-t_{0} / 2} w^{\prime \prime}\right)=\left(z, w^{\prime}, w^{\prime \prime}\right)
$$

This shows that $\left(z, w^{\prime}, w^{\prime \prime}\right) \in \mathscr{D}$, since $\left(\sqrt{-1}, 0, e^{-t_{0} / 2} w^{\prime \prime}\right) \in \mathscr{D}$ by the definition of $\mathscr{D}_{\sqrt{ }=1}$. Therefore

$$
\begin{aligned}
\mathscr{D}= & \left\{\left(z, w^{\prime}, w^{\prime \prime}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)>0\right. \\
& \left.\left(\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)\right)^{-1 / 2} \cdot w^{\prime \prime} \in \mathscr{D}_{\sqrt{ }=1}\right\}
\end{aligned}
$$

Now we shall show that the orbit \mathscr{D}_{0} of $\operatorname{Aut}_{0}(\mathscr{D})$ containing the point $(\sqrt{-1}, 0) \in \mathscr{D}$ coincides with the elementary Siegel domain \mathcal{E}. Let $\left(z, w^{\prime}, 0\right)$ $\in \mathcal{E}$. Since $\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)>0$, there exists a real number t_{0} such that $e^{t_{0}}=$ $\operatorname{Im} . z-F\left(w^{\prime}, w^{\prime}\right)$. Then it is easy to see that $T_{R \in, z} \cdot \exp X_{w^{\prime}} \cdot \Psi_{t_{0}} \cdot(\sqrt{-1}, 0)=$ $\left(z, w^{\prime}, 0\right)$, and so $\mathcal{E} \subset \operatorname{Aut}_{0}(\mathscr{D}) \cdot(\sqrt{-1}, 0)=\mathscr{D}_{0}$. We claim that $\mathscr{D}_{0} \subset \mathcal{E}$. Let G
be the identity component $\operatorname{Aut}_{0}(\mathscr{D})$ of Aut ($\left.\mathscr{D}\right), K$ the isotropy subgroup of G at $(\sqrt{-1}, 0)$ and G_{a} the identity component of $\operatorname{Aff}(\mathscr{D})$. Put $K_{a}=G_{a} \cap K$. Then we can show that $G / K=G_{a} / K_{a}$ by the same way as Lemma 2.3. of Nakajima [5]. Therefore it is enough to see that $G_{a} \cdot(\sqrt{ } \overline{-1}, 0) \subset \mathcal{E}$. Let $P(\mathscr{D})$ (resp. $G L_{0}(\mathscr{D})$) be the analytic subgroup of G_{a} generated by the subalgebra $\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}\left(\right.$ resp. g_{0}) Then we have $G_{a}=P(\mathscr{D}) \cdot G L_{0}(\mathscr{D})$ (semi-direct product), because $P(\mathscr{D}) \cdot G L_{0}(\mathscr{D})$ is an abstract subgroup of G_{a} and contains an open neighborhood of the identity element of G_{a}. Since $G L_{0}(\mathscr{D}) \cdot(\sqrt{-1}, 0) \subset \mathscr{D}_{1}$ by (5), of Theorem A and obviously $P(\mathscr{D}) \cdot \mathcal{E} \subset \mathcal{E}$, we get $G_{a} \cdot(\sqrt{-1}, 0) \subset \mathcal{E}$. Therefor $G \cdot(\sqrt{-1}, 0)=G_{a}$. $(\sqrt{-1}, 0)=\mathcal{E}$. This completes the first case where $k>0$.

It remains the case where $\operatorname{dim}_{R} g_{-1 / 2}=0$, i.e., $k=0$. But in this case Theorem 1 is now obvious from the proof of the case where $k>0$. q.e.d.

Corollaries of Theorem 1: As an immediate consequence of Theorem 1 we obtain the following corollary.

Corollary 1. Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 m$. Then \mathscr{D} is a Siegel domain which is holomorphically equivalent to the elementary Siegel domain

$$
\mathcal{E}=\left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{m}\right| w_{\infty}\right|^{2}>0\right\}
$$

Corollary 2. There exists no generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ such that $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 m-2$.

Proof. Suppose that there exists a generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 m-2$. Then, by Theorem 1 there exists a generalized Siegel domain $\widetilde{\mathscr{D}}$ with exponent $1 / 2$ which is holomorphically equivalent to \mathscr{D} and is expressed in the following form with respect to a suitable coordinates system (z, w_{1}, \cdots, w_{m}) in $\boldsymbol{C} \times \boldsymbol{C}^{m}$:

$$
\begin{aligned}
& \widetilde{\mathscr{D}}=\left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{m-1}\right| w_{a}\right|^{2}>0\right. \\
& \left.\quad\left(\operatorname{Im} . z-\sum_{\alpha=1}^{m-1}\left|w_{a}\right|^{2}\right)^{-1 / 2} \cdot w_{m} \in \widetilde{\mathscr{D}}_{\sqrt{ }-1}\right\}
\end{aligned}
$$

where $\widetilde{\mathscr{D}}_{\sqrt{ }=1}$ is a circular domain in \boldsymbol{C} containing the origin of \boldsymbol{C}. Since $\widetilde{\mathscr{D}}_{\sqrt{ }=1}$ is given by $\widetilde{\mathscr{D}}_{\sqrt{-1}}=\left\{w_{m} \in \boldsymbol{C}| | w_{m} \mid<R\right\}$ for some positive number R,

$$
\tilde{\mathscr{D}}=\left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z-\left(\sum_{\alpha=1}^{m-1}\left|w_{a}\right|^{2}+R^{-2}\left|w_{m}\right|^{2}\right)>0\right\}
$$

Thus $\tilde{\mathscr{D}}$ is a Siegel domain of the second kind in $\boldsymbol{C} \times \boldsymbol{C}^{m}$. Then we see that $\operatorname{dim}_{\boldsymbol{R}} \tilde{\mathfrak{g}}_{-1 / 2}=2 m$ in the decomposition of $\mathrm{g}(\widetilde{\mathscr{D}})$ as in Theorem A. But this is a contradiction since $\operatorname{dim}_{\boldsymbol{R}} \tilde{\mathfrak{g}}_{-1 / 2}=\operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{-1 / 2}=2 m-2$ by our assumption. q.e.d.

Corollary 3. Let $\widetilde{\mathscr{D}}$ and $\widetilde{\mathscr{D}}_{0}$ be the same domains as in Theorem 1 and Π : $\mathrm{g}(\widetilde{\mathscr{D}}) \rightarrow \mathrm{g}\left(\widetilde{\mathscr{D}}_{0}\right)$ the homomorphism induced by the Lie group homomorphism of Aut ${ }_{0}(\widetilde{\mathscr{D}})$ to Aut $0_{0}\left(\widetilde{\mathscr{D}}_{0}\right)$ defined by $g \mapsto g \mid \widetilde{\mathscr{D}}_{0}$, where $g \mid \widetilde{\mathscr{D}}_{0}$ denotes the restriction of g to $\widetilde{\mathscr{D}}_{0}$. Then Π is surjective.

Proof. Note that $\widetilde{\mathscr{D}}_{0}$ is the $\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})$-orbit. Let $\left(z, w_{1}, \cdots, w_{m}\right)$ be the coordinates system in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ as in Theorem 1. Let $\mathfrak{g}(\tilde{D})=\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}+\mathfrak{g}_{1 / 2}$ $+\mathrm{g}_{1}\left(\right.$ resp. $\left.\mathrm{g}\left(\widetilde{\mathscr{D}}_{0}\right)=\mathrm{g}_{-1}^{o}+\mathrm{g}_{-1 / 2}^{o}+\mathrm{g}_{0}^{o}+\mathfrak{g}_{1 / 2}^{o}+\mathrm{g}_{1}^{o}\right)$ be the decomposition of $\mathrm{g}(\widetilde{\mathscr{D}})$ (resp. $\left.g\left(\widetilde{\mathscr{D}}_{0}\right)\right)$ as in Theorem A. Since $\widetilde{\mathscr{D}}_{0}$ is an elementary Sigel domain, $g\left(\widetilde{\mathscr{D}}_{0}\right)$ is simple. In particular, we have

$$
\begin{align*}
& \mathfrak{g}_{0}^{o}=\left[\mathfrak{g}_{-1 / 2}^{o}, \mathfrak{g}_{1 / 2}^{o}\right]+\left[\mathfrak{g}_{-1}^{o}, \mathfrak{g}_{1}^{o}\right] \text { and } \tag{2.9}\\
& \mathfrak{g}_{1 / 2}^{o}=\left[\mathfrak{g}_{-1 / 2}^{o}, \mathfrak{g}_{1}^{o}\right]
\end{align*}
$$

Put $\partial^{o}=z \frac{\partial}{\partial z}+\frac{1}{2} \sum_{\alpha=1}^{k} w_{\infty} \frac{\partial}{\partial w_{\infty}}$. Then it is obvious that $\Pi(\partial)=\partial^{\circ}$. Hence the homomorphism Π preserves the gradition, i.e., $\Pi\left(g_{\lambda}\right) \subset \mathfrak{g}_{\lambda}^{o}$. Now we shall show that Π is injective on $\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1}$. Since $\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}=\mathfrak{g}_{-1}^{o}+\mathfrak{g}_{-1 / 2}^{0}$, it is sufficient to show that Π is injective on $\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1}$. Let $X_{1} \in \mathfrak{g}_{1}$ such that $\Pi\left(X_{1}\right)$ $=0$. Then $\Pi\left(\left[\frac{\partial}{\partial z},\left[\frac{\partial}{\partial z}, X_{1}\right]\right]\right)=0$. Since $\left[\frac{\partial}{\partial z},\left[\frac{\partial}{\partial z}, X_{1}\right]\right] \in \mathrm{g}_{-1}$ and Π is identity on \mathfrak{g}_{-1}, we have $\left[\frac{\partial}{\partial z},\left[\frac{\partial}{\partial z}, X_{1}\right]\right]=0$. On the other hand, it is known that the endomorphism $\left(\operatorname{ad}\left(\frac{\partial}{\partial z}\right)\right)^{2}: \mathfrak{g}_{1} \rightarrow \mathrm{~g}_{-1}$ is injective (cf. [9]). Thus we get $X_{1}=0$. Therefore Π is injective on \mathfrak{g}_{1}. Analogously we can show that Π is injective on $\mathfrak{g}_{1 / 2}$ by using the injectiveity of $a d\left(\frac{\partial}{\partial z}\right): \mathfrak{g}_{1 / 2} \rightarrow \mathfrak{g}_{-1 / 2}$. Note that the subalgebra $\mathfrak{g}_{-1}+\mathrm{g}_{0}+\mathrm{g}_{1}$ corresponds to the subgroup leaving the upper half plane $\mathscr{D}_{1}=$ $\left\{(z, 0) \in \boldsymbol{C} \times \boldsymbol{C}^{m} \mid \operatorname{Im} . z>0\right\}$ invariant. Now we claim that each element of Aut_{0} $\left(\mathscr{D}_{1}\right)$ can be extended to an element of $\operatorname{Aut}_{0}(\widetilde{D})$. We identify $\operatorname{Aut}_{0}\left(\mathscr{D}_{1}\right)$ with $S L(2, \boldsymbol{R}) /\left\{ \pm 1_{2}\right\}$. Since each element $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \boldsymbol{R})$ acts on \mathscr{D}_{1} by a holomorphic transformation $l_{\gamma}: z \mapsto(a z+b)(c z+d)^{-1}$, we can define a mapping $\tilde{l}_{\gamma}: \mathscr{D}_{1} \times \boldsymbol{C}^{m} \rightarrow \mathscr{D}_{1} \times \boldsymbol{C}^{m}$ by $\tilde{l}_{\gamma}(z, w)=\left(l_{\gamma}(z),(c z+d)^{-1} w\right)$. Since $\tilde{l}_{\gamma_{1} \cdot \gamma_{2}}=\tilde{l}_{\gamma_{1}} \cdot \tilde{l}_{\gamma_{2}}$ for any $\gamma_{1}, \gamma_{2} \in S L(2, \boldsymbol{R}), \tilde{l}_{\gamma}$ induces a holomorphic transformation of $\widetilde{\mathscr{D}}$ if

$$
\begin{equation*}
\tilde{l}_{\gamma}(\widetilde{\mathscr{D}}) \subset \widetilde{\mathscr{D}} . \tag{2.10}
\end{equation*}
$$

Put $w^{\prime}=\left(w_{1}, \cdots, w_{k}\right), w^{\prime \prime}=\left(w_{k+1}, \cdots, w_{m}\right)$ and $\left\|w^{\prime}\right\|=\left(\sum_{\alpha=1}^{k}\left|w_{a}\right|^{2}\right)^{1 / 2}$ for any $w=$ $\left(w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C}^{m}$. Then
(2.11) $\operatorname{Im} . l_{\gamma}(z)-\left\|(c z+d)^{-1} w^{\prime}\right\|^{2}=|c z+d|^{-2}\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)>0$
for any $\left(z, w^{\prime}, w^{\prime \prime}\right) \in \widetilde{\mathscr{D}}$. Since

$$
\begin{aligned}
& \left.\operatorname{Im} \cdot l_{\gamma}(z)-\left\|(c z+d)^{-1} w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot(c z+d)^{-1} \cdot w^{\prime \prime} \\
= & e^{\sqrt{-1 \theta}(z, \gamma)}\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot w^{\prime \prime},
\end{aligned}
$$

where $\theta(z, \gamma)=-\arg .(c z+d)$, and $e^{\sqrt{-1 \theta}(z, \gamma)}\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)^{-1 / 2} w^{\prime \prime} \in \widetilde{\mathscr{D}}_{\sqrt{ }=1}$, we have

$$
\begin{equation*}
\left(\operatorname{Im} . l_{\gamma}(z)-\left\|(c z+d)^{-1} w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot(c z+d)^{-1} \cdot w^{\prime \prime} \in \widetilde{\mathscr{D}}_{\sqrt{-1}} \tag{2.12}
\end{equation*}
$$

By (2) of Theorem 1, (2.11) and (2.12) imply (2.10). Hence we get $g_{1} \neq 0$ and hence $\Pi\left(\mathfrak{g}_{1}\right) \neq 0$. We now prove that Π is surjective. Since $\operatorname{dim}_{R} \mathfrak{g}_{1}^{o}=1$ and $\Pi\left(g_{1}\right) \neq 0$, we get $\Pi\left(g_{1}\right)=\mathfrak{g}_{1}^{o}$. Therefore it follows that $\mathfrak{g}_{1 / 2}^{o}=\left[\mathfrak{g}_{-1 / 2}^{o}, \mathfrak{g}_{1}^{o}\right]=$ $\Pi\left(\left[\mathfrak{g}_{-1 / 2}, \mathfrak{g}_{1}\right]\right) \subset \Pi\left(\mathfrak{g}_{1 / 2}\right)$, and so $\Pi\left(\mathfrak{g}_{1 / 2}\right)=\mathfrak{g}_{1 / 2}^{o}$. Then $\mathfrak{g}_{0}^{o}=\left[\mathfrak{g}_{-1 / 2}^{o}, \mathfrak{g}_{1 / 2}^{o}\right]+\left[\mathfrak{g}_{-1}^{o}, \mathfrak{g}_{1}^{o}\right]=$ $\Pi\left(\left[g_{-1 / 2}, g_{1 / 2}\right]+\left[g_{-1}, g_{1}\right]\right) \subset \Pi\left(g_{0}\right)$, and so $\Pi\left(g_{0}\right)=g_{0}^{o}$. Therefore Π is surjective.

Corollary 4. Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$. If the Lie algebra $\mathfrak{g}(\mathscr{D})$ is semi-simple, then \mathscr{D} is a Siegel domain which is holomorphically equivalent to the elementary Siegel domain

$$
\mathcal{E}=\left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{m}\right| w_{w}\right|^{2}>0\right\}
$$

Proof. We claim that $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 m$, i.e., $k=m$. Then our assertion is obvious by Corollary 1. We may assume $\mathscr{D}=\widetilde{D}$ in Theorem 1 without loss of generality. Suppose that $k \neq \mathrm{m}$. We consider first the case where $k>0$. Let $\Pi: g(\widetilde{D}) \rightarrow\left(\widetilde{\mathscr{D}}_{0}\right)$ be the homomorphism defined in Corollary 3. Then Π is surjective by Corollary 3. Put $\mathfrak{\xi}_{2}=\operatorname{Ker} \Pi$. Then $\mathfrak{\xi}_{2}$ is a semi-simple ideal of the semi-simple Lie algebra $\mathfrak{g}(\widetilde{\mathscr{D}})$. Thus there exists a semi-simple ideal $\mathfrak{\mathfrak { B }}_{1}$ such that $\mathfrak{g}(\widetilde{\mathscr{D}})=\mathfrak{I}_{1}+\mathfrak{g}_{2}$ (direct sum). Since $\mathfrak{\mathfrak { g }}_{1}$ is isomorphic to $\mathfrak{g}\left(\widetilde{\mathscr{D}}_{0}\right), \mathfrak{Z}_{1}$ is simple. Since Π is injective on $\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1}$ by the proof of Corollary 3 , \mathfrak{g}_{2} is contained in \mathfrak{g}_{0}. Let B denote the Killing form of $\mathfrak{g}(\widetilde{D})$. Put $\mathfrak{g}_{0}^{1}=$ $\left\{X \in \mathfrak{g}_{0} \mid B\left(X, \mathfrak{F}_{2}\right)=0\right\}$. Noting that the ideal \mathfrak{F}_{1} is a graded Lie subalgebra, it is easy to see that $\mathfrak{g}_{0}=\mathfrak{g}_{0}^{1}+\mathfrak{g}_{2}, \mathfrak{g}_{1}=\mathfrak{g}_{-1}+\mathfrak{g}_{-1 / 2}+\mathfrak{g}_{0}^{1}+\mathfrak{g}_{1 / 2}+\mathfrak{g}_{1}$ and $\mathfrak{g}_{0}^{1}=\left[\mathfrak{g}_{-1 / 2}, \mathfrak{g}_{1 / 2}\right]$. Since $\mathfrak{\xi}_{2}=\operatorname{Ker} \Pi \subset \mathfrak{g}_{0}$, every vector field $X \in \mathfrak{\xi}_{2}$ is given by $X=\sum_{\alpha=k+1}^{m} Q_{0,1}^{\alpha} \frac{\partial}{\partial w_{\infty}}$ in Theorem A. Thus it can be expressed by the matrix

$$
X=\left(\begin{array}{c:c:c}
0 & \mathbf{0} & \mathbf{0} \tag{2.13}\\
\hdashline \mathbf{0} & \mathbf{0}_{k, k} & C \\
\hdashline \mathbf{0} & \mathbf{0}_{m-k, k} & D
\end{array}\right)
$$

Now we claim that $C=\mathbf{0}_{k, m-k}$ in (2.13). Let S_{1} (resp. S_{2}) be the analytic sub-
group of $A u_{0}(\widetilde{\mathscr{D}})$ corresponding to \mathfrak{B}_{1} (resp. \mathfrak{B}_{2}). Obviously

$$
\begin{equation*}
g_{1} \cdot g_{2}=g_{2} \cdot g_{1} \quad \text { for any } g_{1} \in S_{2} \text { and } g_{2} \in S_{2} \tag{2.14}
\end{equation*}
$$

Let $X_{c}\left(c \in \boldsymbol{C}^{k}\right)$ be the vector field belonging to $\mathrm{g}_{-1 / 2}$ defined in the proof of Theorem 1. Put $g_{1}=\exp X_{c}$ and

$$
g_{2}=\exp X=\left(\begin{array}{c:c:c}
1 & \mathbf{0} & \mathbf{0} \\
\hdashline \mathbf{0} & \mathbf{1}_{k} & A \\
\hdashline \mathbf{0} & \mathbf{0} & E
\end{array}\right)
$$

It is easy to see that if $A=\mathbf{0}_{k, m-k}$, then $C=\mathbf{0}$. By a routine calculation, we get

$$
g_{1} \cdot g_{2} \cdot\left(z, w^{\prime}, w^{\prime \prime}\right)=\left(z+2 \sqrt{-1} F\left(w^{\prime}+A w^{\prime \prime}, c\right)+\sqrt{-1} F(c, c), w^{\prime}+A w^{\prime \prime}+c, E w^{\prime \prime}\right)
$$ and

$$
g_{2} \cdot g_{1}\left(z, w^{\prime}, w^{\prime \prime}\right)=\left(z+2 \sqrt{-1} F\left(w^{\prime}, c\right)+\sqrt{-1} F(c, c), w^{\prime}+c+A w^{\prime \prime}, E w^{\prime \prime}\right)
$$

for any $\left(z, w^{\prime}, w^{\prime \prime}\right) \in \widetilde{D}$. By (2.14), we get $F\left(w^{\prime}+A w^{\prime \prime}, c\right)=F\left(w^{\prime}, c\right)$ and hence $F\left(A w^{\prime \prime}, c\right)=0$. Since c is arbitrary, we get $A w^{\prime \prime}=0$ for any element $w^{\prime \prime}$ of an open subset of \boldsymbol{C}^{m-k}. Thus $A=\mathbf{0}$. Therefore we get

$$
\mathfrak{I}_{2}=\left\{\left(\begin{array}{l:l}
\mathbf{0}_{k+1, k+1} & \mathbf{0} \tag{2.15}\\
\hdashline \mathbf{0} & *
\end{array}\right)\right\} \text { and } S_{2}=\left\{\left(\begin{array}{c:c}
\mathbf{1}_{k+1} & \mathbf{0} \\
\hdashline \mathbf{0} & *
\end{array}\right)\right\} .
$$

Since $\widetilde{\mathscr{D}}$ is holomorphically equivalent to a bounded domain in \boldsymbol{C}^{m+1} and any bounded domain in \boldsymbol{C}^{m+1} is hyperbolic in the sense of Kobayashi [4], \widetilde{D} is hyperbolic. Since $\widetilde{\mathscr{D}}_{\sqrt{-1}}$ is a complex submanifold of $\widetilde{\mathscr{D}}$, it is also hyperbolic. Thus $\widetilde{\mathscr{D}}_{\sqrt{-1}}$ is a hyperbolic circular domain in \boldsymbol{C}^{m-k} containing the origin 0 . By $\S .1$, we have that $\operatorname{Aut}_{0}\left(\widetilde{\mathscr{D}}_{\sqrt{-1}}\right)$ is a Lie group and its isotropy subgroup $K_{\sqrt{-1}}$ at $0 \in \widetilde{\mathscr{D}}_{\sqrt{-1}}$ is compact. Moreover $K_{\sqrt{-1}}$ is a subgroup of $G L(m-k, C)$ by Theorem B. Let $\mathscr{l}_{\sqrt{-1}}$ be the subalgebra of $g\left(\widetilde{D}_{\sqrt{-1}}\right)$ corresponding to $K_{\sqrt{-1}}$. Now we claim that $\mathfrak{f}_{\sqrt{ }=1}$ can be identified with \mathfrak{E}_{2}. By (2.15) we can identify S_{2} with a subgroup of $K_{\sqrt{-1}}$. Conversely, let $K^{0} \sqrt{-1}$ be the identity component of $K_{\sqrt{-1}}$ and take an arbitrary element $g \in K^{0} \sqrt{-1}$. Put $\tilde{g}=\left(\begin{array}{ll}1 & 0 \\ 0 & g\end{array}\right)$, where $1=\mathbf{1}_{k+1}$. Then we can easily see that \tilde{g} leaves \widetilde{D} invariant by (2) of Theorem 1 , and hence \tilde{g} defines a holomorphic transformation of $\widetilde{\mathscr{D}}$ and $\tilde{g} \in S_{2}$ by (2.15). Thus $K^{0}{ }_{\sqrt{-1}}$ can be identified with S_{2} in a natural way. In particular, $\mathbb{f}_{\sqrt{-1}}$ is a semi-simple Lie algebra. On the other hand, $\mathscr{l}_{\sqrt{-1}}$ contains a nonzero element $\partial^{\prime \prime}=$ $\sqrt{-1} \sum_{\alpha=k+1}^{m} w_{a} \frac{\partial}{\partial w_{\infty}}$ induced by the global one-parameter subgroup $w^{\prime \prime} \mapsto e^{\sqrt{-1}} w^{\prime \prime}$ $(t \in \boldsymbol{R})$ and obviously $\partial^{\prime \prime}$ belongs to the center of $\mathfrak{f}_{\sqrt{-1}}$. This is a contradiction.

Suppose next $k=0$. Then we can show as above that the Lie algebra $\mathfrak{f}_{\sqrt{-1}}$ is identified with the semi-simple Lie algebra

$$
\operatorname{Ker} \Pi=\left\{\left(\begin{array}{c:c}
0 & \mathbf{0}_{1, m} \\
\hdashline \mathbf{0}_{m, 1} & *
\end{array}\right)\right\} .
$$

On the other hand, $\mathbb{l}_{\sqrt{-1}}$ contains a nonzero element $\partial^{\prime}=\sqrt{-1} \sum_{\alpha=1}^{m} w_{\infty} \frac{\partial}{\partial w_{\infty}}$ belonging to the center. This is a contradiction. Therefore $k=m$, and we complete the proof.
q.e.d.

3. The structure of Aut ($\mathscr{D})$

The purpose of this section is to consider the structure of the group of all holomorphic transformations of a generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=2 k$ for some $k, 0 \leqq k \leqq m$.

In this section we use the following notations. For a point

$$
z={ }^{t}\left(z^{1}, \cdots, z^{k+1}\right) \in \boldsymbol{C}^{k+1}, \text { define }\|z\|=\left(\sum_{j=1}^{k+1}\left|z^{j}\right|^{2}\right)^{1 / 2} .
$$

Put

$$
U(k+1,1)=\left\{\left.g \in G L(k+2, C)\right|^{t} g \cdot\left(\begin{array}{c:c}
\mathbf{1}_{k+1} & 0 \\
\hdashline 0 & -1
\end{array}\right) \cdot g=\left(\begin{array}{c:c}
\mathbf{1}_{k+1} & 0 \\
\hdashline 0 & -1
\end{array}\right)\right\}
$$

and

$$
S U(k+1,1)=U(k+1,1) \cap S L(k+2, C)
$$

For each element $\gamma=\left(\begin{array}{cc}A & \mathfrak{b} \\ \mathfrak{c} & d\end{array}\right) \in S U(k+1,1)$, where $A=\left(a_{i j}\right)_{1 \leq i, j \leq k+1}, \mathfrak{b}={ }^{t}\left(b_{1}, \cdots\right.$, $\left.b_{k+1}\right)$ and $\mathrm{c}=\left(c_{1}, \cdots, c_{k+1}\right)$, we put

$$
\left\{\begin{align*}
L_{j}(\gamma) & =\left(a_{j 1}+b_{j}, 2 a_{j 2}, 2 a_{j 3}, \cdots, 2 a_{j, k+1}\right) \tag{3.1}\\
C(\gamma) & =\left(c_{1}+d, 2 c_{2}, 2 c_{3}, \cdots, 2 c_{k+1}\right) ; \\
B_{j}(\gamma) & =\sqrt{-1}\left(b_{j}-a_{j 1}\right) \text { and } D(\gamma)=\sqrt{-1}\left(d-c_{1}\right)
\end{align*}\right.
$$

for $j=1,2, \cdots, k+1$.
It is easy to see that $U(k+1,1)$ coincides with all matrices $\left(\begin{array}{cc}A & \mathfrak{b} \\ \mathfrak{c} & d\end{array}\right) \in G L(k+2, C)$ of the form ${ }^{t} \bar{A} A-{ }^{t} \overline{\mathrm{c}} \mathrm{C}=\mathbf{1}_{k+1},{ }^{t} \overline{\mathrm{~b} b}-|d|^{2}=-1$ and ${ }^{t} \overline{\mathrm{~b}} A-\bar{d} \mathrm{c}=0_{1, k+1}$. From this, we get

$$
\begin{equation*}
|\mathfrak{c z}+d|^{2}-\|A \mathfrak{z}+\mathfrak{b}\|^{2}=1-\|\mathfrak{z}\|^{2} \tag{3.2}
\end{equation*}
$$

for any $\left(\begin{array}{ll}A & \mathfrak{b} \\ c & d\end{array}\right) \in U(k+1,1)$ and any $z \in C^{k+1}$, by an easy computation.

Now we consider the group Aut (\mathcal{E}) of all holomorphic transformations of the elementary Siegel domain

$$
\mathcal{E}=\left\{\left(z, w_{1}, \cdots, w_{k}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{k}\left|\operatorname{Im} . z-\sum_{a=1}^{k}\right| w_{\infty}\right|^{2}>0\right\}
$$

The elementary Siegel domain \mathcal{E} is holomorphically equivalent to the unit open ball $\mathcal{B}=\left\{z={ }^{t}\left(z^{1}, \cdots, z^{k+1}\right) \in C^{k+1} \mid\|z\|<1\right\}$. In fact, the biholomorphic isomor$\operatorname{phism} \phi: \mathcal{E} \rightarrow \mathcal{B}$ is given by

$$
\begin{equation*}
z^{1}=(z-\sqrt{-1})(z+\sqrt{-1})^{-1}, z^{j}=2 w_{j-1}(z+\sqrt{-1})^{-1} \tag{3.3}
\end{equation*}
$$

for $j=2,3, \cdots, k+1$. It is well-known that the $\operatorname{group}^{\operatorname{Aut}}(\mathscr{B})$ can be identified with the simple Lie group $S U(k+1,1)$ and each element $\gamma=\left(\begin{array}{cc}A & \mathfrak{b} \\ \boldsymbol{c} & d\end{array}\right) \in S U(k+1,1)$ acts on \mathscr{B} by the holomorphic transformation $\sigma_{\gamma}: \mathfrak{z} \mapsto\left(A_{z}+\mathfrak{b}\right)\left(c_{z}+d\right)^{-1}$. Define $\Psi_{\gamma}^{0}=\phi^{-1} \cdot \sigma_{\gamma} \cdot \phi$ for each $\gamma \in S U(k+1,1)$. Then it is obvious that Ψ_{γ}^{0} defines a holomorphic transformation of \mathcal{E}. By a direct calculation, we see that the action of Ψ_{γ}^{0} on \mathcal{E} is given by

$$
\left\{\begin{array}{l}
z \mapsto \sqrt{-1} \frac{1+(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)} \\
w_{j} \mapsto \sqrt{-1} \frac{(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{j+1}(\gamma) Z+B_{j+1}(\gamma)\right)}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)}
\end{array}\right.
$$

for $j=1,2, \cdots, k$, where $Z={ }^{t}\left(z, w_{1}, \cdots, w_{k}\right) \in \mathcal{E}$ and $C(\gamma), L_{j}(\gamma), B_{j}(\gamma), D(\gamma)$ are defined by (3.1).

Let $K_{\sqrt{-1}}^{0}$ be the identity component of the isotropy subgroup of $\operatorname{Aut}\left(\widetilde{\mathscr{D}}_{\sqrt{-1}}\right)$ at the origin $0 \in \widetilde{\mathscr{D}}_{\sqrt{-1}}$. We define a mapping $\Psi_{\gamma, K}: \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k} \rightarrow \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k}$ for each $\gamma \in S U(k+1,1)$ and $K \in K^{0}{ }_{\sqrt{-1}}$ as follows:

$$
\Psi_{\gamma, K}:\left\{\begin{array}{c}
z \mapsto \sqrt{-1} \frac{1+(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)} \\
w_{j} \mapsto \sqrt{-1} \frac{(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{j+1}(\gamma) Z+B_{j+1}(\gamma)\right)}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)} \\
\text { for } j=1,2, \cdots, k \\
W \mapsto K \cdot \frac{2 \sqrt{-1}(C(\gamma) Z+D(\gamma))^{-1}}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)} \cdot W
\end{array}\right.
$$

for $Z={ }^{t}\left(z, w_{1}, \cdots, w_{k}\right) \in \widetilde{\mathscr{D}}_{0}$ and $W={ }^{t}\left(w_{k+1}, \cdots, w_{m}\right) \in \boldsymbol{C}^{m-k}$. Since $\widetilde{\mathscr{D}}_{0}=\left\{\left(z, w_{1}\right.\right.$, $\left.\left.\cdots, w_{k}, 0, \cdots, 0\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{k}\right| w_{c \mid}\right|^{2}>0\right\}=\mathcal{E}, \Psi_{\gamma, K}$ is a well-defined holomorphic mapping of $\widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k}$ into itself.

Now we can state Theorem 2.

Theorem 2. Let $\Psi_{\gamma, K}: \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k} \rightarrow \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k}$ be the holomorphic mapping defined as above. Then $\Psi_{\gamma, K}$ induces a holomorphic transformation of $\widetilde{\mathscr{D}}$, and moreover any holomorphic transformation of $\widetilde{\mathscr{D}}$ belonging to the identity component of Aut ($\widetilde{\mathscr{D}})$ is of this form, i.e.,

$$
\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})=\left\{\Psi_{\gamma, K} \mid \gamma \in S U(k+1,1), K \in K^{0}{ }_{\sqrt{-1}}\right\}
$$

Proof. Let $\left(z, w_{1}, \cdots, w_{m}\right)$ be the coordinates system in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ defined in Theorem 1. We put $w^{\prime}=\left(w_{1}, \cdots, w_{k}\right), w^{\prime \prime}=\left(w_{k+1}, \cdots, w_{m}\right)$ and $\left\|w^{\prime}\right\|=\left(\sum_{\alpha=1}^{k}\left|w_{a}\right|^{2}\right)^{1 / 2}$ as before. First we claim that each element $\Psi_{\gamma}^{0} \in \operatorname{Aut}_{0}(\mathcal{E})=\operatorname{Aut}_{0}\left(\mathscr{D}_{0}\right)$ can be extended to a holomorphic transformation of $\widetilde{\mathscr{D}}$. We consider the following mappings:

$$
w_{s} \mapsto \widetilde{w}_{s}:=\frac{2 \sqrt{-1}(C(\gamma) Z+D(\gamma))^{-1} w_{s}}{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)}
$$

for $s=k+1, k+2, \cdots, m$. Put $\Psi_{\gamma}^{0}={ }^{t}\left(\Psi_{\gamma}^{0,1}, \cdots, \Psi_{\gamma}^{0, k+1}\right)$. We shall show that

$$
\begin{equation*}
\left(^{t}\left(\Psi_{\gamma}^{0}(Z)\right), \widetilde{w}_{k+1}, \cdots, \widetilde{w}_{m}\right) \in \widetilde{\mathscr{D}} \tag{3.4}
\end{equation*}
$$

for any $(z, w)=\left({ }^{t} Z, w_{k+1}, \cdots, w_{m}\right) \in \widetilde{\mathscr{D}}$.
Put $\left(\Psi_{\gamma}^{0}(Z)\right)_{w}=\left(\Psi_{\gamma}^{0,2}(Z), \cdots, \Psi_{\gamma}^{0, k+1}(Z)\right)$. If we show the following two conditions

$$
\begin{align*}
& \operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2}>0 \text { and } \tag{3.5}\\
& \left(\operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2}\right)^{-1 / 2} \cdot \widetilde{w}^{\prime \prime} \in \widetilde{\mathscr{D}}_{\sqrt{-1}} \tag{3.6}
\end{align*}
$$

where $\tilde{w}^{\prime \prime}=\left(\tilde{w}_{k+1}, \cdots, \tilde{w}_{m}\right)$, then (3.4) will follow from Theorem 1. The condition (3.5) is obvious, since Ψ_{γ}^{0} is a holomorphic transformation of $\widetilde{\mathscr{D}}_{0}$. By routine calculations, we get

$$
\begin{aligned}
& \operatorname{Im} . \Psi_{\gamma}^{0}(Z)-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2} \\
= & \frac{1-\sum_{j=1}^{k+1}\left|(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{j}(\gamma) Z+B_{j}(\gamma)\right)\right|^{2}}{\left|1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)\right|^{2}},
\end{aligned}
$$

and hence

$$
=\frac{\left(\operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2}\right)^{-1 / 2} \cdot \tilde{w}_{s}}{|C(\gamma) Z+D(\gamma)| \cdot\left(1-\sum_{j=1}^{k+1}\left|(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{j}(\gamma) Z+B_{j}(\gamma)\right)\right|^{2}\right)^{1 / 2}}
$$

where

$$
\begin{aligned}
\theta(Z, \gamma)= & -\arg \cdot\left\{1-(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{1}(\gamma) Z+B_{1}(\gamma)\right)\right\} \\
& -\arg \cdot(C(\gamma) Z+D(\gamma))+\pi / 2
\end{aligned}
$$

Let ϕ be the biholomorphic isomorphism defined in (3.3) and put $z=\phi(Z) \in \mathscr{B}$.

Then we get

$$
\begin{aligned}
& C(\gamma) Z+D(\gamma)=(z+\sqrt{-1})(\mathfrak{c z}+d) \text { and } \\
& \sum_{j=1}^{k+1}\left|(C(\gamma) Z+D(\gamma))^{-1}\left(L_{j}(\gamma) Z+B_{j}(\gamma)\right)\right|^{2}=\left\|\left(A_{\mathfrak{z}}+\mathfrak{b}\right) \cdot(\mathfrak{c z}+d)^{-1}\right\|^{2} .
\end{aligned}
$$

Hence it follows from (3.2) that

$$
\begin{aligned}
& \frac{2 w_{s}}{|C(\gamma) Z+D(\gamma)| \cdot\left(1-\sum_{j=1}^{k+1}\left|(C(\gamma) Z+D(\gamma))^{-1} \cdot\left(L_{j}(\gamma) Z+B_{j}(\gamma)\right)\right|^{2}\right)^{1 / 2}} \\
= & \frac{2 w_{s}}{|z+\sqrt{-1}| \cdot\left(1-\|\left. z\right|^{2}\right)^{1 / 2}} .
\end{aligned}
$$

Moreover it is easy to check that $1-\|z\|^{2}=4|z+\sqrt{-1}|^{-2}\left(\operatorname{Im} \cdot z-\left\|w^{\prime}\right\|^{2}\right)$. Thus we get

$$
\left(\operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)-\|\left(\Psi_{\gamma}^{0}((Z))_{w} \|^{2}\right)^{-1 / 2} \cdot \widetilde{w}_{s}=e^{\sqrt{-1} \theta(Z, \gamma)}\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot w_{s},\right.
$$

and hence

$$
\left(\operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2}\right)^{-1 / 2} \cdot \widetilde{w}^{\prime \prime}=e^{\sqrt{-1} \theta(Z, \gamma)}\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot w^{\prime \prime}
$$

Since $\left(\operatorname{Im} . z-\left\|w^{\prime}\right\|^{2}\right)^{-1 / 2} \cdot w^{\prime \prime} \in \widetilde{\mathscr{D}}_{\sqrt{ }=1}$ and $\widetilde{\mathscr{D}}_{\sqrt{-1}}$ is circular, we get $\left(\operatorname{Im} . \Psi_{\gamma}^{0,1}(Z)\right.$ $\left.-\left\|\left(\Psi_{\gamma}^{0}(Z)\right)_{w}\right\|^{2}\right)^{-1 / 2} \cdot \widetilde{w}^{\prime \prime} \in \widetilde{\mathscr{D}}_{\sqrt{-1}}$. Therefore we have (3.4). By (3.4), we can define a mapping $\Psi_{\gamma}: \widetilde{\mathscr{D}} \rightarrow \widetilde{\mathscr{D}}$ by

$$
\begin{equation*}
\Psi_{\gamma}:\left({ }^{t} Z, w^{\prime \prime}\right) \mapsto\left({ }^{t}\left(\Psi_{\gamma}^{0}(Z)\right), \widetilde{w}^{\prime \prime}\right) . \tag{3.7}
\end{equation*}
$$

It is easy to see that this mapping Ψ_{γ} is an extension of Ψ_{γ}^{0} if we verify the follwiwng relation

$$
\begin{equation*}
\Psi_{\gamma_{2}} \cdot \Psi_{\gamma_{1}}=\Psi_{\gamma_{2} \cdot \gamma_{1}} \quad \text { for any } \gamma_{1}, \gamma_{2} \in S U(k+1,1) \tag{3.8}
\end{equation*}
$$

For this, consider a mapping $\tilde{\phi}:\{z \in \boldsymbol{C} \mid \operatorname{Im} . z>0\} \times \boldsymbol{C}^{m} \rightarrow \boldsymbol{C}^{m+1}$ defined by

$$
\begin{equation*}
z^{1}=(z-\sqrt{-1})(z+\sqrt{-1})^{-1}, z^{j}=2 w_{j-1}(z+\sqrt{-1})^{-1} \tag{3.9}
\end{equation*}
$$

for $j=2,3, \cdots, m+1$. Note that the restriction $\tilde{\phi}: \widetilde{\mathscr{D}}_{0} \rightarrow C^{m+1}$ is nothing but the biholomorphic isomorphism $\phi: \widetilde{\mathscr{D}}_{0} \rightarrow \mathcal{B}$ defined in (3.3). Since Im. $z>0$ if $(z, w) \in \widetilde{\mathscr{D}}$ by Lemma 1, it is easy to check that $\tilde{\phi}$ is injective and holomorphic on $\widetilde{\mathscr{D}}$. Thus $\widetilde{\phi}$ defines a biholomorphic isomorphism of $\widetilde{\mathscr{D}}$ onto the image domain $\widetilde{\mathscr{B}}:=\widetilde{\phi}(\widetilde{\mathscr{D}})$ in \boldsymbol{C}^{m+1}. Now we define a holomorphic mapping $\tilde{\sigma}_{\gamma}: \mathscr{B} \times \boldsymbol{C}^{m-k} \rightarrow \boldsymbol{C}^{m+1}$ for each $\gamma=\left(\begin{array}{cc}A & \mathfrak{b} \\ \mathfrak{c} & d\end{array}\right) \in S U(k+1,1)$ by

$$
\tilde{\sigma}_{\gamma}:\left\{\begin{array}{l}
z \mapsto(A z+\mathfrak{b}) \cdot(\mathfrak{c z}+d)^{-1} \\
z^{\prime} \mapsto(\mathfrak{c z}+d)^{-1} z^{\prime}
\end{array}\right.
$$

where $z \in \mathscr{B}$ and $z^{\prime}={ }^{t}\left(z^{k+1}, \cdots, z^{m+1}\right) \in \boldsymbol{C}^{m-k}$. Then by direct calculations we get

$$
\tilde{\phi}\left(\Psi_{\gamma}(z, w)\right)=\tilde{\sigma}_{\gamma}(\tilde{\phi}(z, w)) \quad \text { for all }(z, w) \in \widetilde{\mathscr{D}} .
$$

From this fact, the verification of (3.8) has reduced to verify the following relation

$$
\begin{equation*}
\tilde{\sigma}_{\gamma_{2}} \cdot \tilde{\sigma}_{\gamma_{1}}=\tilde{\sigma}_{\gamma_{2}, \gamma_{1}} \quad \text { for any } \gamma_{1}, \gamma_{2} \in S U(k+1,1) \tag{3.10}
\end{equation*}
$$

But (3.10) follows from the relation ${ }^{t} \bar{A} A-{ }^{t} \overline{\mathrm{c}} \mathrm{C}=1_{k+1},{ }^{t} \overline{\mathrm{~b}} \mathfrak{b}-|d|^{2}=-1$ and ${ }^{t \overline{\mathrm{~b}}} A-\bar{d} \mathrm{c}$ $=0$, which is satisfied for any $\left(\begin{array}{ll}A & \mathfrak{b} \\ \mathfrak{c} & d\end{array}\right) \in U(k+1,1)$. Therefore we have showed that each element $\Psi_{\gamma}^{0} \in \operatorname{Aut}_{0}\left(\widetilde{\mathscr{D}}_{0}\right)$ can be extended to the element $\Psi_{\gamma} \in \operatorname{Aut}_{0}(\widetilde{\mathscr{D}})$ defined by (3.7). Next, taking an element $K \in K^{0}{ }_{\sqrt{-1}}$, we define a mapping $\Psi_{\gamma, K}: \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k} \rightarrow \widetilde{\mathscr{D}}_{0} \times \boldsymbol{C}^{m-k}$ by

$$
\Psi_{\gamma, K}:\left({ }^{t} Z, w^{\prime \prime}\right) \mapsto\left({ }^{t}\left(\Psi_{\gamma}^{0}(Z)\right), K \widetilde{w}^{\prime \prime}\right)
$$

which is nothing but the mapping $\Psi_{\gamma, K}$ defined as before. Then, by using the expression of $\widetilde{\mathscr{D}}$ as in Theorem 1, we can see easily that $\Psi_{\gamma, K}$ defines a holomorphic transformation of $\widetilde{\mathscr{D}}$. Moreover the subset $\left\{\Psi_{\gamma, K} \mid \gamma \in S U(k+1,1), K \in\right.$ $\left.K^{0}{ }_{V-1}\right\}$ of $\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})$ has the structure of real Lie transformation group of $\widetilde{\mathscr{D}}$ with dimension equal to $\operatorname{dim} S U(k+1,1)+\operatorname{dim} K^{0}{ }_{\sqrt{-1}}$. It remains to show that this Lie group coincides with $\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})$. We denote by $\mathfrak{B u}(k+1,1)$ (resp. $\mathfrak{f}_{\sqrt{-1}}$) the Lie algebra of $S U(k+1,1)$ (resp. of $\left.K^{0}{ }_{\sqrt{-1}}\right)$. We claim the following equality

$$
\begin{equation*}
\operatorname{dim} \mathfrak{g}(\widetilde{\mathscr{D}})=\operatorname{dim} \mathfrak{s u} \mathfrak{H}(k+1,1)+\operatorname{dim} \mathfrak{l}_{\sqrt{ }=1} . \tag{3.11}
\end{equation*}
$$

If we show (3.11), then it is obvious that $\operatorname{Aut}_{0}(\widetilde{\mathscr{D}})=\left\{\Psi_{\gamma, K} \mid \gamma \in S U(k+1,1)\right.$, $\left.K \in K^{0}{ }_{\sqrt{-1}}\right\}$. Let $\Pi: \mathrm{g}(\widetilde{\mathscr{D}}) \rightarrow \mathrm{g}\left(\widetilde{\mathscr{D}}_{0}\right)$ be the homomorphism defined in Corollary 3. Let $\mathfrak{g}(\widetilde{\mathscr{D}})=\mathfrak{B}+\mathfrak{r}$ be a Levi-decomposition of $\mathfrak{g}(\widetilde{\mathscr{D}})$, where \mathfrak{r} denotes the radical of $\mathfrak{g}(\widetilde{\mathscr{D}})$ and \mathfrak{B} denotes a maximal semi-simple subalgebra of $\mathfrak{g}(\widetilde{\mathscr{D}})$. Put $\mathfrak{E}_{2}=\operatorname{Ker} \Pi \cap \mathfrak{B}$. Then $\mathfrak{\Xi}_{2}$ is an ideal of \mathfrak{B}. Thus there exists an ideal \mathfrak{B}_{1} of \mathfrak{B} such that $\mathfrak{B}=\mathfrak{F}_{1}+\mathfrak{F}_{2}$ (direct sum). Since $\mathfrak{g}\left(\widetilde{\mathscr{D}}_{0}\right)$ is a simple Lei algebra isomorphic to $\mathfrak{n l}(k+1,1)$ and Π is surjective, it follows that $\Pi(\mathfrak{r})=0$, i.e., $\mathfrak{r} \subset \operatorname{Ker} \Pi$. Hence we get $\mathfrak{g}(\widetilde{\mathscr{D}})=\mathfrak{g}_{1}+\operatorname{Ker} \Pi$ (direct sum) and \mathfrak{g}_{1} is isomorphic to $\mathfrak{B l} \mathfrak{n}(k+1,1)$. Since $\operatorname{Ker} \Pi \subset g_{0}$ by the proof of Corollary 3, we see that $\left[\mathfrak{g}_{-1}+\right.$ $\left.\mathfrak{g}_{-1 / 2}, \operatorname{Ker} \Pi\right]=0$. From this fact we can show in the same way as in the proof of Corollary 4 that $\operatorname{Ker} \Pi$ is identified with $\sqrt{\sqrt{-1}}$. Thus we get the equality (3.11) and Theorem 2 is proved.
q.e.d.

4. Examples and remarks

Given an integer k such that $0 \leqq k \leqq m, k \neq m-1$, there is an example of the generalized Siegel domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$ and $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{-1 / 2}=2 k$.

Indeed we have the following examples.
Examples. Let k be an integer as above and p a positive integer different from 2. Put

$$
\mathscr{D}_{\sqrt{-1}}=\left\{\left.\left(w_{k+1}, \cdots, w_{m}\right) \in \boldsymbol{C}^{m-k}| | w_{k+1}\right|^{p}+\cdots+\left|w_{m}\right|^{p}<1\right\} .
$$

Obviously $\mathscr{D}_{\sqrt{-1}}$ is a bounded Reinhardt domain in \boldsymbol{C}^{m-k}. For this domain $\mathscr{D}_{\sqrt{ }=1}$, we define a domain \mathscr{D} in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ as follows:

$$
\begin{aligned}
\mathscr{D}=\{ & \left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{a=1}^{k}\right| w_{a}\right|^{2}>0, \\
& \left.\left(\operatorname{Im} . z-\sum_{a=1}^{k}\left|w_{a}\right|^{2}\right)^{-1 / 2} \cdot w^{\prime \prime} \in \mathscr{D}_{\sqrt{-1}}\right\},
\end{aligned}
$$

where $w^{\prime \prime}=\left(w_{k+1}, \cdots, w_{m}\right)$. The domain \mathscr{D} is also expressed as follows:

$$
\mathscr{D}=\left\{\left(z, w_{1}, \cdots, w_{m}\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{k}\right| w_{a}\right|^{2}-\left(\sum_{\beta=k+1}^{m}\left|w_{\beta}\right|^{p}\right)^{2 / p}>0\right\}
$$

We shall show that \mathscr{D} is a desired example. It is easy to see that \mathscr{D} satisfies the condition (2) of the definition of the generalized Siegel domain with exponent $1 / 2$. Moreover the mapping $\tilde{\phi}$ defined in (3.9) gives a biholomorphic isomorphism of \mathscr{D} onto the bounded Reinhardt domain

$$
\mathcal{R}=\left\{\left.\left(z^{1}, \cdots, z^{k+1}, u^{1}, \cdots, u^{m-k}\right) \in C^{m+1}\left|\sum_{\alpha=1}^{k+1}\right| z^{\infty}\right|^{2}+\left(\sum_{\beta=1}^{m-k}\left|u^{\beta}\right|^{p}\right)^{2 / p}<1\right\}
$$

in \boldsymbol{C}^{m+1}. Thus \mathscr{D} is a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent $1 / 2$. Now we show that $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 k$. First we recall that the $\operatorname{group} \mathrm{Aut}_{0}(\mathcal{R})$ consists of all transformations of the following type (cf. [6], [8]):

$$
\left\{\begin{array}{l}
\tilde{z} \mapsto(A \tilde{z}+\mathfrak{b})(c \tilde{z}+d)^{-1} \tag{4.1}\\
u^{\beta} \mapsto(c \tilde{z}+d)^{-1} e^{V-1} \theta_{\beta} \cdot u^{\beta}, 1 \leqq \beta \leqq m-k
\end{array}\right.
$$

where $\left(\begin{array}{cc}A & \mathfrak{b} \\ \mathfrak{c} & d\end{array}\right) \in U(k+1,1), \theta_{\beta} \in R$ and $\tilde{z}={ }^{t}\left(z^{1}, \cdots, z^{k+1}\right)$. Note that we can replace $U(k+1,1)$ by $S U(k+1,1)$ in (4.1), because any element $g \in U(k+1,1)$ can be written in the form $g=e^{\sqrt{-1} \theta} \cdot g_{0}$ for suitable $\theta \in \boldsymbol{R}$ and $g_{0} \in S U(k+1,1)$. Hence we get

$$
\begin{equation*}
\operatorname{Aut}_{0}(\mathcal{R}) \cdot 0=\left\{\left.\left(z^{1}, \cdots, z^{k+1}, 0, \cdots, 0\right) \in \boldsymbol{C}^{m+1}\left|\sum_{j=1}^{k+1}\right| z^{j}\right|^{2}<1\right\} \tag{4.2}
\end{equation*}
$$

Since $\operatorname{Aut}_{0}(\mathscr{D})=\tilde{\phi}^{-1} \cdot \operatorname{Aut}_{0}(\mathscr{R}) \cdot \tilde{\phi}$, (4.2) implies that

$$
\operatorname{Aut}_{0}(\mathscr{D}) \cdot(\sqrt{ } \overline{-1}, 0)=\left\{\left(z, w_{1}, \cdots, w_{k}, 0, \cdots, 0\right) \in \boldsymbol{C} \times\left.\boldsymbol{C}^{m}\left|\operatorname{Im} . z-\sum_{\alpha=1}^{k}\right| w_{\infty}\right|^{2}>0\right\}
$$

From this fact, we can conclude that $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 k$.

Remark 1. In the case where $n \geqq 2$, the analogy of Theorem 1 is not true in general. In fact we have the following example. Let

$$
\mathscr{D}=\left\{\left(z_{1}, z_{2}, w_{1}, w_{2}\right) \in \boldsymbol{C}^{2} \times \boldsymbol{C}^{2}\left|\operatorname{Im} . z_{1}-\left|w_{1}\right|^{2}-\left|w_{2}\right|^{2}>0, \operatorname{Im} . z_{2}-\operatorname{Re}\left(\bar{w}_{1} w_{2}\right)>0\right\} .\right.
$$

Then \mathscr{D} is a generalized Siegel domain in $\boldsymbol{C}^{2} \times \boldsymbol{C}^{2}$ with exponent $1 / 2$ and $\operatorname{dim}_{\boldsymbol{R}}$ $\mathrm{g}_{-1 / 2}=2$, more precisely

$$
\begin{equation*}
\mathrm{g}_{-1 / 2}=\left\{\left.2 \sqrt{-1} \bar{c} w_{1} \frac{\partial}{\partial z_{1}}+\sqrt{-1} \bar{c} w_{2} \frac{\partial}{\partial z_{2}}+c \frac{\partial}{\partial w_{1}} \right\rvert\, \boldsymbol{c} \in \boldsymbol{C}\right\} . \tag{4.3}
\end{equation*}
$$

We shall sketch the proof of this fact. First \mathscr{D} is a generalized Siegel domain with exponent $1 / 2$. In fact, \mathscr{D} is contained in the domain

$$
\mathscr{D}^{\prime}=\left\{\left(z_{1}, z_{2}, w_{1}, w_{2}\right) \in \boldsymbol{C}^{2} \times \boldsymbol{C}^{2}\left|\operatorname{Im} . z_{1}-\left|w_{1}\right|^{2}-\left|w_{2}\right|^{2}>0,2 \operatorname{Im} . z_{1}+\operatorname{Im} . z_{2}>0\right\}\right.
$$

and \mathscr{D}^{\prime} is holomorphically equivalent to a bounded domain in \boldsymbol{C}^{4}. Next we shall show that $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{g}_{-1 / 2}=2$. For given $c \in \boldsymbol{C}, \operatorname{Aut}_{0}(\mathscr{D})$ contains the global one-parameter subgroup

$$
\left(z_{1}, z_{2}, w_{1}, w_{2}\right) \mapsto\left(z_{1}+2 \sqrt{-1} t \bar{c} w_{1}+\sqrt{-1}|t c|^{2}, z_{2}+\sqrt{-1} t \bar{c} w_{2}, w_{1}+t c, w_{2}\right), t \in \boldsymbol{R} .
$$

This global one-parameter subgroup induces a holomorphic vector field $X_{c}=2 \sqrt{-1} \bar{c} w_{1} \frac{\partial}{\partial z_{1}}+\sqrt{-1} \bar{c} w_{2} \frac{\partial}{\partial z_{2}}+c \frac{\partial}{\partial w_{1}}$ belonging to $\mathrm{g}_{-1 / 2}$. Thus $\operatorname{dim}_{\boldsymbol{R}} \mathrm{g}_{-1 / 2}$ $\geqq 2$. Suppose that $\operatorname{dim}_{R} \mathfrak{g}_{-1 / 2}=4$. Then we can show in the same way as in the proof of Proposition 5.1 of Vey [9] that \mathscr{D} is a Siegel domain of the second kind, and \mathscr{D} can be expressed as follows:

$$
\mathscr{D}=\left\{\left(z_{1}, z_{2}, w_{1}, w_{2}\right) \in \boldsymbol{C}^{2} \times \boldsymbol{C}^{2} \mid \operatorname{Im} . z_{1}-F_{1}(w, w)>0, \operatorname{Im} . z_{2}-F_{2}(w, w)>0\right\}
$$

where $w=\left(w_{1}, w_{2}\right)$ and $F=\left(F_{1}, F_{2}\right)$ is a $\{x \in \boldsymbol{R} \mid x>0\} \times\{x \in \boldsymbol{R} \mid x>0\}$ - hermitian form. Hence $F_{1}(w, w) \geqq 0$ and $F_{2}(w, w) \geqq 0$ for any $w \in C^{2}$. On the other hand, if we take a point $(3,0,-1,1) \in \mathscr{D}$, then $\operatorname{Im} .0-F_{2}((-1,1),(-1,1))>0$ and hence $F_{2}((-1,1),(-1,1))<0$. This is a contradiction. Thus we get $2 \leqq \operatorname{dim}_{R}$ $\mathrm{g}_{-1 / 2} \neq 4$. Hence $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2$. By (4.3), we can see that there exists no nonsingular linear mapping $\mathcal{L}^{3}: \boldsymbol{C}^{2} \times \boldsymbol{C}^{2} \rightarrow \boldsymbol{C}^{2} \times \boldsymbol{C}^{2}$ satisfying the conditions stated in Lemma 4.

Remark 2. Let (z, w) be a coordinates system in $\boldsymbol{C} \times \boldsymbol{C}$ and \mathscr{D} a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}$ with exponent $c>0$. Then we can show in the same way as in the proof of Theorem 1 that \mathscr{D} can be expressed as follows:

$$
\mathscr{D}=\left\{(z, w) \in \boldsymbol{C} \times\left.\boldsymbol{C}|\operatorname{Im} . z-A| w\right|^{1 / c}>0\right\}
$$

where A is a positive real number depending only on \mathscr{D}.
Remark 3. Let \mathscr{D} be a generalized Siegel domain in $\boldsymbol{C} \times \boldsymbol{C}^{m}$ with exponent
$1 / 2$ and $\operatorname{dim}_{R} \mathrm{~g}_{-1 / 2}=2 k, 0 \leqq k \leqq m$. Then there is a natural $\operatorname{Aut}_{0}(\mathscr{D})$-equivariant holomorphic imbedding of \mathscr{D} into the complex projective space $P_{m+1}(\boldsymbol{C})$.

In order to show this fact, we may identify \mathscr{D} with the generalized Siegel domain $\widetilde{\mathscr{D}}$ as in Theorem 1. Let $\widetilde{\phi}: \widetilde{\mathscr{D}} \rightarrow \widetilde{\mathscr{B}}$ be the biholomorphic isomorphism defined in (3.9). Then $\widetilde{\mathscr{B}}$ is a domain in \boldsymbol{C}^{m+1} and the group Aut $(\widetilde{\mathscr{B}})$ consists of all holomorphic transformations of the following type:

$$
\tilde{\Psi}_{\gamma, K}:\left\{\begin{array}{l}
\mathfrak{z} \mapsto\left(A_{z}+\mathfrak{b}\right)(\mathfrak{c z}+d)^{-1} \\
z^{\prime} \mapsto K \cdot(\mathfrak{c z}+d)^{-1} \cdot z^{\prime}
\end{array}\right.
$$

where $z={ }^{t}\left(z^{1}, \cdots, z^{k+1}\right), z^{\prime}={ }^{t}\left(z^{k+2}, \cdots, z^{m+1}\right), \gamma=\left(\begin{array}{ll}A & \mathfrak{b} \\ c & d\end{array}\right) \in S U(k+1,1)$ and $K \in$ $K^{0} \sqrt{-1}$. Note that $K^{0} \sqrt{-1}$ is a subgroup of $G L(m-k, C)$. By using a homogeneous coordinate of $P_{m+1}(\boldsymbol{C})$, we define a holomorphic imbedding $\tilde{t}: \boldsymbol{C}^{m+1} \hookrightarrow$ $P_{m+1}(\mathrm{C})$ by

$$
\tilde{l}:{ }^{t}\left(z^{1}, \cdots, z^{k+1}, z^{k+2}, \cdots, z^{m+1}\right) \mapsto{ }^{t}\left(z^{1}, \cdots, z^{k+1}, 1, z^{k+2}, \cdots, z^{m+1}\right) .
$$

Then it is easy to see that the restriction $\tilde{\ell}: \widetilde{\mathscr{G}} \hookrightarrow P_{m+1}(\boldsymbol{C})$ defines an $\operatorname{Aut}_{0}(\widetilde{\mathscr{B}})$ equivariant holomorphic imbedding of $\widetilde{\mathscr{B}}$ into $P_{m+1}(\boldsymbol{C})$, where the holomorphic transformation $\tilde{\Psi}_{\gamma, K}$ of $\widetilde{\mathscr{B}}$ is extended to a projective transformation $\bar{\Psi}_{\gamma, K}$ of $P_{m+1}(\boldsymbol{C})$ induced by the matrix

$$
\left(\begin{array}{cc:c}
A & \mathfrak{b} & \mathbf{0} \\
\mathfrak{c} & d & \\
\hdashline \mathbf{0} & K
\end{array}\right) \in G L(m+2, C)
$$

Putting $\ell=\tilde{l} \cdot \tilde{\phi}$, we get a desired $\operatorname{Aut}_{0}(\mathscr{D})$-equivariant holomorphic imbedding $\ell: \mathscr{D} \hookrightarrow P_{m+1}(\boldsymbol{C})$.

Osaka University

References

[1] E. Cartan: Sur les domains bornés homogènes de l'espace de n variables complexes, Abh. Math. Seminar Hamburg, 11 (1935), 116-162.
[2] H. Cartan: Sur les groupes de transformations analytiques, Hermann, Paris, 1935.
[3] W. Kaup, Y. Matsushima, and T. Ochiai: On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475-498.
[4] S. Kobayashi: Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, INC., New York, 1970.
[5] K. Nakajima: On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ. 14 (1974), 533-548.
[6] I. Naruki: The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci. 4 (1968), 527-543.
[7] I.I. Pjateckii-Sapiro: Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966.
[8] T. Sunada: On bounded Reinhardt domains, Proc. Japan Acad. 50 (1974), 119-123.
[9] J. Vey: Sur la division des domains de Siegel, Ann. Sci. École Norm. Sup. 3 Serie 3 (1970), 479-506.

[^0]: *) Recent address: Akita University

