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ON GENERALIZED SIEGEL DOMAINS
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Introduction. In [3], Kaup, Matsushima and Ochiai defined the notion
of “generalized Siegel domain with exponent ¢”’, which is a natural generali-
zation of the notion of Siegel domain of the first or second kind.

In this paper we consider exclusively a generalized Siegel domain 9 in
CXC" with exponent 1/2. Let Aut (9) denote the group of all holomorphic
transformations of 9. It is well-known that the group Aut (9) has the struc-
ture of real Lie group and the Lie algebra g of Aut (9) is canonically identified
with the real Lie algebra g(9) consisting of all complete holomorphic vector
fields on 9. Furthermore it is known that the Lie algebra g(4) has the
following graded structure [3]:

8(9D) = g-1+8-12+ 8+ 812815
[8x Gu] CGrzn, and dimpg gy = 2k
for some &k, 0<k<m.
In section 2 we shall prove the following Theorem.

Theorem 1. Let 9 be a generalized Siegel domain in C X C™ with exponent
1/2 and dimg §_,p,=2k, 0<k<m. Let Aut, (9) denote the identity component
of Aut (D). Then there exists a generalized Siegel domain 9 in CXC" with
exponent 1/2 which is holomorphically equivalent to 9 and such that, by choosing
a suitable coordinates system (z,w,, -, w,) in CXC",

(1) the orbit D, of Aut, (D) containing the point (\/—1, 0, -+, 0)ED is
the elementary Stegel domain

By = {(z, wy, -+, wy, 0, -+, 0)ECKC™| Im. z— 32| 2,]2> 0}
x=1
and
(2) if we put
g‘v)\/:f == {(wkﬂ) Ty wm)ecm—k‘(\/:i’ 01 A 0’ Wrt1y **°) 'wm)e'@} ’

m_p

then 9./= is a circular domain in C™* containing the origin 0 of C™~*. Moreover

the domain 9 can be expressed by 9D, and D/= as follows:

*) Recent address: Akita University
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9 = {(2’, Wy, =y wm)ECXC"'I(z, Wy - )wln : )EQO )

( wkz—l , 'wkm )Eg)\/__l} .
(Im. z—3w, |9 (Im. 2— 3] |w,]?)"

As a corollary of Theorem 1, we shall show that if the Lie algebra g(9) is
semi-simple, then 9 is a Siegel domain of the second kind which is holomor-
phically equivalent to the elementary Siegel domain in CxC™.

In section 3 we shall consider the group Aut (9) of all holomorphic trans-
formations of a generalized Siegel domain &) in C X C™ with exponent 1/2 and
dimg g_,,=2k. By Theorem 1 we can regard 9 as a holomorphlc fibre space
over the elementary Siegel domain ), with the projection z: 9—9), given by
(2, Wy, -+ w,)=(2, Wy, -+, w,, 0, -+, 0) and the fibre z7}((/—1, 0, -+, 0)) is the
circular domain §/=;. In Theorem 2 we shall prove that Aut,(9) is the direct
product of Aut, (),) and the identity component of the isotropy subgroup of
Aut, (9,/=7) at the origin 0 of 9,/7.

The author would like to express his thanks to Professor S. Murakami and
Doctor Y. Sakane for their valuable advices.

1. Preliminaries

Throughout this paper we use the following notations. Let R (resp. C)
denote the field of real numbers (resp. complex numbers) as usual. Let ‘4
(resp. 1;, 0,,,) denote the transpose of a matrix 4 (resp. the unit matrix of degree
I, sXt zero matrix) and A~' the inverse matrix of 4 if 4 is non-singular.

In this section we recall the definitions and the known results on generalized
Siegel domains. We fix a coordinates system (2, ***, 2, @;, ***, @,,) in C*XC"
once and for all.

A domain 9 in C"XC" is called a generalized Siegel domain with exponent ¢
if the following conditions are satisfied:

(1) 9 is holomorphically equivalent to a bounded domain in C**" and 9
contains a point of the form (2, 0) where 2&C" and 0 denotes the origin of C”.

(2) 9 is invariant by the transformations of C"*" of the following types:

(a) (2, w)r—(2+a,w) forallacR";

(b) (2, w)r (2, evV~Tw) forall tER;

(c) (2 w)r—(ez, e'w)  for all tER,
where ¢ is a fixed real number depending only on §). We call ¢ the exponent of
9.

We denote by Q an open convex cone in R" not containing any full straight
line. For a given convex cone  in R", a mapping F: C" X C"—C" is called an
Q-hermitian form if
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(1) F is complex linear with respect to the first variable;

(2) F(u, v)=F(v, u) for any u, veC";

(3) F(u,u)€Q for any uC” and F(u, u)=0 only if u=0, where O
denotes the closure of Q in R".

For a given convex cone Q in R" and an Q-hermitian form F: C"x C"—C",
the domain

D, F) = {(z,w)eC"x C"|Im. 2— F(w, w)EQ}

in C" X C" is called the Siegel domain of the second kind associated with ) and F.
If m=0, the domain 9(Q, F) reduces to the domain

D(Q) = {z€C"|Im. €0}

which we call the Siegel domain of the first kind associated with Q. It is easy to
see that if we put ¢=1/2 then the domain 9)(Q, F) satisfies the condition (2) of
the definition of generalized Siegel domain. Moreover it is known that
9D(Q, F) is holomorphically equivalent to a bounded domain in C™" [7].
Obviously every point of the form (v/—1a, 0), aEQ, is contained in 9(Q, F)
and hence the domain 9(Q, F) is a generalized Siegel domain with exponent
1/2. From this fact, the notion of generalized Siegel domain may be considered
as a generalization of the notion of Siegel domain of the second kind. In the
following we regard 9(Q) as the special case of the second kind and by a Siegel
domain we mean a Siegel domain of the first or second kind.

Let 9 be a generalized Siegel domain in C*X C™ with exponent ¢. Since
9 is holomorphically equivalent to a bounded domain in C**", by a well-known
theorem of H. Cartan the group Aut(9) has the structure of real Lie group and
the Lie algebra of Aut (9) is identified with the Lie algebra g(9) consisting of
all complete holomorphic vector fields on 9@ [2].

From the definition, the following holomorphic vector fields on & is con-
tained in g(9):

(a) — for k=1,2,:-,n
0z,
’ T~ 0
(b) o= v-13w, 2
@=1 W,
(c) 0 = nzk—g—l—céw —
=1 " 0z, &1 %9 »

By Kaup, Matsushima and Ochiai [3], every vector field Xeg(9) is a
polynomial vector field, and so we can express X in the follwoing form:

X=3( 3 P2 4+31( 3,05 0

@&=1 V,p=0
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where P, and 0%, are homogeneous polynomials of degrees » in 2,(1</=<n) and
pwinwg (1<B=m). If 9 is a generalized Siegel domain with exponent c=1/2,
we have the following theorem on the Lie algebra g(9).

Theorem A (Kaup, Matsushima and Ochiai [3]).
Let 9 be a generalized Siegel domain in C" X C™ with exponent 1/2. Then
we have

(1) 8(9D) = g_1+8-12+ G+ 82 H81»
[8 8u] C8nsu» Where gy={X €g(D)|[0, X] = A X} .

More precisely we can describe each subspace g, as follows:

{f_,‘a a= (ak)ER"}

on= (B Pls ot 31 O s c0(9)]

{2P10—+ZQ 5. 9D
= (B 2L 2 (005051 <o)

o= {ZPs 0 +zQI—eg(£D)}

(2) Letx be the radical of §(9D). Then

T ="T_+T_,,+7,, wherety, =1tNg,.

(3) (i) dimgg-,=mn, dimgpg_,,<2m,
(il) dimg @, = dimg g_,,—dimg x_yy5,

dimR gl = n‘—dimR ’I:_l .

(4) Let a=g_,+g_1+8. Then a is the subalgebra of §(9) corresponding
to the subgroup Aff (D) of Aut (D) consisting of all complex affine transformations
of C**™ leaving invariant the domain 9.

(5) @§_1+ao+a;is the subalgebra corresponding to the subgroup {g< Aut(D)
| g leaves invariant the complex submanifold 9),C D}, where D= {(z,w)ED|w
=0} is equivalent to a Siegel domain of the first kind in C".

By Theorem A, we can write X €g_,,, in the form

X =31Ph(X) -2 3 en(x) 0
k=1 0z, &=t ow

@

where P§,(X) denotes a homogeneous polynomial of degree one in w,(1<a=<m)
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depending on X and ¢”(X) is a constant depending on X. Then by a simple
computation, we get

(11)  add-X =+ T3 Ph(X)-0 /T e(x)-0- .
k=1 02, a=1 Oow,,
Hence the endomorphism add’ defines a complex structure on g_;;,. From this
fact and (3) of Theorem A, we obtain the following corollary:

Corollary. dimg g_,,=2k for some k, 0<k=m.

Since the group Aff (C"*™) of all complex affine transformations of C"*"
is represented as a semi-direct product GL(n+m, C)-C"*", we can write each
element g Aff(C"™*") in the form g=(4,a), where A=GL(n+m,C) and

aeC"™". Obviously the mapping which carries g=(4, a) to the matrix (161 ‘11>

€GL(n+m+1,C) is a faithful representation of Aff(C*™*™). Since Aff(9) is
a colsed subgroup of Aff(C"*"), we can identify Aff(9) with the closed sub-
group of GL(n+m+-1, C), and so the Lie algebra a is identified with the sub-
algebra of gl(n+m+1, C).

Let M be a hyperbolic manifold in the sense of Kobayashi [4]. It is known
that the group Aut(M) of all holomorphic transformations of M is a Lie group
and its isotropy subgroup K, at a point p of M is compact [4]. We may identify
the Lie algebra of Aut(M) with the Lie algebra g(M) consisting of all complete
holomorphic vector fields on M. A hyperbolic manifold M is called a Ayper-
bolic circular domain in C° if the following conditions are satisfied:

(1) Misa domain in C?%;

(2) Mis circular, that is, M is invariant by the following global one-
parameter subgroup of transformations:

L (wy, -+, wy) = (eV=Ttwy, -, eV=Ti), tER
where (w,, +*, w,) denotes a coordinates system in C?. Let M be a hyperbolic

circular domain in € containing the origin 0 of C?. Since the one-parameter

subgroup {/,|tER} induces an element 9=+/—1 Zdwwéi of g(M), we can
@=1 wm

show that every vector field X €g(M) is expressed in the form
d
X=212F

0
&5,

where P7 is a homogeneous polynomial of degree » in wg (1<B=d), by the
same way as in [3]. More precisely we can show the following Theorem B (cf.

[8]):
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Theorem B. Let M be a hyperbolic circular domain in C* containing the

origin 0 of C°. For the vector field 0=+/—1 Zd}wwa—a—eg(M), we define an
@=1 W g

endomorphism J of g(M) by J(X)=[0, X] for X€g(M). Let ¥(M) denote the Lie

subalgebra of g(M) corresponding to the isotropy subgroup K of Aut(M) at the origin

0€sM. Then we have

(1) ton = {53712 [ e D caun),

which is equal to the kernel of J; and
(2) if we put p(M)={X Sg(M)| J(X)=—X},
then  g(M)=Y¥(M)+p(M) (direct sum).

Proof. The same way as in Lemma 3.1 of [3].

2. The case of a generalized Siegel domain in C X C” with exponent
1/2.

In the following part of the paper, we consider exclusively the generalized
Siegel domain &) in C X C™ with ¢=1/2 and dimg g_,/,=2k for some k, 0 <k<m.

We may assume without loss of generality (by change of linear coordinates
if necessary) that (v/ —1, 0)E 9.

Lemma 1. If (2, w)E 9, then Im. 2>0.

Proof. Suppose that there exists a point (2, w,) €4 such that Im.z,=<0.
Since 9 is a domain in CXC™ and (v/—1, 0)E9), there exists a continuous
path ¢: [0, 119D such that $(0)=(z,, w,) and ¢(1)=(v/—1, 0). Put ¢(t)=
(2(2), w(t)) for t€[0, 1]. Then there exists a point #,&[0, 1] such that Im. 2(z,)
=0 by our assumption. Obviously this shows that the point (0, w(#,)) belongs
to 9. Hence we see that 9 contains a point of the form (0, w,), w, =0, since 9
is open. Then, by definition, ) also contains the set {(0, e/*ev-10w,)|t, 0 = R},
which is naturally identified with C— {0}. Thus there exists an injective holo-
morphic mapping ¥: C— {0} —a bounded subset of C™*!, because 9 is equivalent
to a bounded domain in C™*'. Let W(2)=(fy(2), **, fu+:1(2)). Then each f; is
a bounded holomorphic function defined on C— {0}. Hence, by the Riemann’s
extension theorem, f; extends to a bounded holomorphic function on C and so
it is constant. In particular Wis a constant mapping. Obviously this is a con-
tradiction. q.e.d.

In order to prove Theorem 1 we shall consider first the case where dimp
g-1,=2k>0, i.e., k=1, in the following.
By Theorem A, we can write each vector field X €g_,/, as follows:
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2 0,2 0
= (2 bw(X)ww)__l—Z CB(X)“ ’
@=1 0z Bt Owg
where b,(X) and ¢?(X) are complex numbers depending on X. We define a
linear mapping C: g_,,—>C™" by C(X)=(c(X), -+, ¢"(X)). Then we have
(2.1) C: g_,,—C™ is injective.
In fact, if C(X)=0, then it follows from (1.1) that \/ —1X €g(J). By a theorem

of E. Cartan [1], we have that g(9)N+/—1 g(9)=0 and hence X=0.

Since dimg g-,,=2k by our assumption, the image V= {C(X)|X&g_,,}
of C is a complex k-dimensional vector subspace of C” by (1.1) and (2.1). Fix
a non-singular linear mapping .L*: C”—C™ such that

LYV) = {(dy +++, d}, 0, -++, 0)=C™|d = (d,)eC*} .
Lemma 2. There exists a non-singular linear mapping L?: C X C"—C X C™
of the form 2=z, wmzi A ypwp (1= =m) such that

L= (B eu0m) 7+ B dX0 0| @0 =)
where L% denotes the differential of [*.

Proof. Let C: g_,,—~C™ and .[*: C"—C™ be the same mappings as before.
Then, for

m a m
= b))+ 31 (X) g,
@=1 z Bt Owg
we have LY(C(X))=(d'(X), -, dX), 0, --+,0) for some d¥(X)eC(1<B=k).
Let (1LY (2, w)=(2, LY(w)). If we put L?’=1P.L", then L7 satisfies our
claim, q.e.d.
Let 9 be the image of 9 under the mapping _£? given in Lemma 2. Then

it is easy to see that J) is also a generalized Siegel domain in C X C™ with exponent

1/2 and the Lie algebra g(J) coincides with _£g(9). Put 8= 22—1- Z B,

0z 28 “ow,’
Then _[f0= 0. Thus it follows from Theorem A that L2 g,=@,, where

3= {X=g(D)|[0, X]=rX}. In partlcular we have
=) ) 4310 D |a = @)=c)

by Lemma 2, where each a, is umq'uely determmined by d=(d?). Hence we
may assume that

=1 O ysvgs 0 g (amyect
g = {G w3302 2 | a = @) =c)
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to prove Theorem 1, considering & instead of 9) if necessary. Then by using
(1.1) and (2.1), we can show that each vector field X &g_,/, is of the following
form:
m_k — 8 k a
X = (2] 23 aupc™(X)w,) ~+21 A(X) =
@=1 =1 0z #=1 Owg

where ¢f(X) is a complex number depending on X and @, is a complex number
depending only on g_,/, and hence 9 (cf.Vey [9], Lemme 5.1). Thus we get

22) o= | M awu) S 3iel

= = =" duw,

(cﬂ)eck}
Lemma 3. The matrix (aup)i<w,p<i 0 (2.2) is non-singular skew-hermitian.
Proof. Let X—=(313 4,0 (X)w,) L +31cH(X)-2-cg_ys.

@=18=1 oz p=1 Owg
Then, by (1.1) we get
— m_ _k [ a [— ]
[, X] = V=1 (33 3 ase? (X)) -~/ —1 3102(X) ..

Wg

Put Y=[0’, X]. By a direct calculation we get

[X, Y] = 2¢/ =1 (3 amsc‘”(X)C"(X))~

dﬂl

Since [X, Y]Eg-,, we see that the number }] a 25¢°(X)cP(X) is pure imaginary
by (1) of Theorem A. Hence 2 (aaﬂ+a5m)c“(X)cﬂ(X) 0. On the other hand,

since the set {C(X)=(c*(X))| X E€g.,,} is a complex k-dimensional vector sub-

space of C™, we get a,g+ag,=0 for 1<a, B<k.

We need some preparations to prove that (dug);<a ss; 1S non-singular. We
identify the Lie algebra a=g_,+g-,,-+g, with the subalgebra of gl(m-4-2, C) as
in §1. Thus we can represent the vector field X €g_,/, by the following matrix:

0 Ekalgcﬂ(X), ---------------------,Ek]amgc‘*(Xj, 0
iR B=1 i

0 &(X)
O 4(x)
0
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Therefore the global one-parameter subgroup exptX generated by X is given by

: 123 @0, =, 1} ansX) % ; (00
| 9
0
------ 0 0 e, o

Thus the action of exptX on 9 is given by

2> gt ﬁ ﬂfk‘_, awﬂcB(X)w,,—k%z i‘, aupc”(X)cP(X)
@®=1 g=1 @, B=1
Wat— Wo+1c%(X), 1=2azk

2.3)
(ws'—’wa , kRH1=B=m.

Now we can prove that (ds);<a,s<; is non-singular. Since (@ug)isa,s<; 1S

skew-hermitian, it is enough to show that
k —
(2.4) >} aupc®P=+0 for any nonzero vector ¢=(c”)&C*
@ F=1 R _
Suppose that there exists a nonzero vector ¢,=(ci, ***, ¢5) such that >} @58
@, B=1
=0. Then the vector field
: )

Co = (E E amgcowm) — Z 5.“

belonging to g_,, generates the global one-parameter subgroup exptX, which
acts on 9 by

m k _
g = 2+t Dagachw,
@=1B=1
mewm+th; Isa=<k
We—Wp , R+1=B8=m.

Thus exptX, «(v/ —1,0)=(/—1, tc}, ---, tck, 0, ---,0). Hence 9 must contain
the set {(v/ —1, eV sl e, eV 04, 0, ey 0)|¢, 0 = R}, which is identified with
the complex plane C since ¢, 0 by our assumption. But this is a contradiction,
because 9 is holomorphically equivalent to a bounded domain in C”*!.  q.e.d.
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Lemma 4. There exists a non-singular linear mapping L3: C X C*—>C X C™
of the form

*) 2Z=x, wmzﬁ Baswg(1 Sa=m), such that
B=1

c= (cf’)EC"’}

k — 8 k 6
Li8n={(2 duf) 23102 0
&,B=1 0Z F=1 Owg

where (dup)i<a,p<; 15 @ non-singular skew-hermitian matrix.

Proof. Let [3: CXC™—>C X C™ be a non-singular linear mapping defined

by (*). Then, by a simple caluclation, we have .L’ig=£ and .[’,ﬁiz
0z 02 ow,

g}lBMé?zg(lgagm). Put B—=(Bus)<upsy Let E—(E,)—B-'. Take a
= B

vector field
m k - 6 k a
X = (23 23 2apc?(X)wy) —+ 23 A(X) —
@=18=1 0z B=1 8w3

belonging to g_,,. Then we have

X — {)Z:l (wi "‘2 amszﬁm Ew,\)ﬁh}g‘f‘z’; (;V‘_, X )Bxs)a—;\ .

=1 8-1 0Z A=1p=1

Now we have to find out the matrix B which satisfies the following conditions:

25) SYSVauP(X)Es =0 for all n, k+1=<r<m;
w=18=1

(2.6) SVH(X)Byy =0  foralln, k-1<A=<m.
=1
Since {C(X)=(c*(X))| X €g_,,}=C*, the conditions are equivalent to the

following

. see t see
@y s Gy s @) (Evpan oy By

@5 | : N C = 0
Gy Qyy s Q) \ Eppyy wo0ee- JE,.
By, oo s By
(2.6) : P =0
Bm'b ...... , Bm,k

Put A1=(aij)1§i,j§ky Az=(as¢)k+1§s§m,1§t§m Elz(Eij)1§i§k,k+1§j§m and E,=
(Es)i+1ss,tsm- Then, (2.5) can be written as ‘4,E,+'4,E,=0, ,_,. Since the
matrix 4, is non-singular by Lemma 3, we have

2.5y E, = —'A7'.'4,.E,.
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Now we define a mapping £3: C X C"—C X C" by

2y (17 0 0 YyYa
ﬁ)l B S e 1
L3 =10 1, tATMA
ZT),,, 0 0 lm k wm

Then _[? satisfies the conditions (2.5)” and (2.6)" and hence we have proved
Lemma 4. q.e.d.

Now by Lemma 4, we may assume to prove Theorem 1 that

@) g = (D ) L 3yerl

ow B

(c?) EC"} .
Lemma 5. There exists a non-singular linear mapping L*: CX C"—>C X C™
of the form
2=z, @y = 3 cows (1 Sa<Fk) and @, = ws (k+1=B=m)
A=1
such that

i {(Z dyc® w,,,) +Z_]ICB '(Cﬂ)eck}

where each d, is a nonzero purely imaginary number depending only on 9.

Proof. By Lemma 4, the matrix D=(dug),<4,6<; in (2.7) is non-singular
and skew-hermitian. Hence D can be diagonalized by a suitable unitary matrix
U=(twp)iss,p<p- Put U™'-D.U=diag. (d,, -++,d,), where diag. (d,, :*-,d,) denotes
the diagonal matrix whose (/, /)-component is d;. Then, since D is non-singular
and skew-hermitian, each d, is a nonzero purely imaginary number. Now define

a non-singular linear mapping [*: C><C”’—>C><C”‘ by 2=z, @ —Z UpuWa

(1=a=k) and We=wg (k+1=B=m).
Then it is easy to see that the mapping _[* satisfies our conditions. q.e.d.

Proof of Theorem 1: Suppose first dimg g_,,=2k>0. By Lemma 5 we
may assume that

= (e 310 2 et

Note that each d, is a nonzero purely imaginary number. For the sake of
simplicity, we denote (w,, -+, %,) and (w4, ***, w,) by @’ and w”, respectively.
For a€ R (resp. t€ R) we denote by T, (resp. ¥,) the holomorphic transforma-
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tion (2, w)—(2+a, w) (resp. (2, w)—(e'z, e/#w)) of C*'. Now we define a
mapping ®: C*X C*—C by
D(u, v) = — 2 du®®  for u=(u"), v = (v*)EC*.

__1ml

Then each vector field belonging to g_,/, is expressed in the from 2/ —1®(w’, ¢)

a—a——i—z"} c“’i. Since this vector field is determined completely by ¢=(c*)eC*,
z @=1 Ow,

we write it by X,. By (2.3) the vector field X, generates the global one-parameter
subgroup exptX,:

(7, o', ') = (3+2y/ —1D(@’, te)+~/—1D(te, tc), w'+tc, ).
Now we claim that
(2.8) D(c, ¢)=0 for all ceC*.

Suppose that there exists a nonzero vector ¢,&C* such that ®(c,, ¢,) <0. Then,
for a point (2, 0)E 9, we have

CXthcO-(ZO, 0) = (z0+\/?1(p(tco’ t()o), tcy, O)
for any t&R. Thus, by Lemma 1, Im.2y+®(#c,, tc;)>0 for any t=R. This
is impossible since ®(c,, ¢;) <0. Therefore we get (2.8). In particular, we see
that each number A,:=d,/2\/ —1 (1 Sa=<k) is positive. Now we define a linear

mapping L%: CX C"—>C X C" by Z=2, Wa=-/ A w, (1=a=<k) and @We=w, (k+
1=<B=m). Then it is easy to see that

k
Lign = [2vIGien) gl @)=
Hence, by considering the image 9—_%(Q) if necessary, we may assume that

812 = {2\/—1(Ec w.,,) +§;1 = b, (c‘”)EC”}

Define a mapping F: C*X C*—C by
F(u, v) = gu“ﬁ’ for any u = (u®), v = (v*)EC*.
Then the domain
&= {(z ', 0)eCcxC"|Im.z—F(w', w')>0}
is an elementary Siegel domain. Now we put

Dy= = {w'eC" (v =1, 0, w’)c D} .
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We shall show that 9, is connected. Take two points Py=(v/—1, 0, ;")

and P.=(v/—1, 0, w,”’) of 9. Then there exists a continuous path T': [0, 1]
— 9 such that I'(0)=P, and T'(1)=P,. For any t€[0, 1], we put I'()=(2(2),
w'(t), w’’()), where 2(¢)EC, w'(f)=C* and w”(f)eC™*. Since

T—Re.z(t) 'CXPX—w’(t) '(z(t)y wl(t)) w”(t))
= (v —1(Im.2(t)— F(@'(z), @'(2))), 0, @'’(t))
we see that Im.z(t)—F(w'(f), @'(t))>0 for any ¢<[0, 1] by Lemma 1. Thus we
can define a continous function /(¢) on [0, 1] by /(#)=Ilog(Im.2()—F(2'(t), 2'(2))).
Then it is obvious that /(0)=I(1)=0 and e/®=Im.2(t)—F(«'(), #'(t)) for any
t<[0, 1]. Thus the point
(V=1 0, e B Ow(1) = (700 /1, 0, e O (1))

belongs to 9 by the definition of 9. Put g(t)=e #®w"(t). Then gt)E Dy =
for nay t€[0, 1], g(0)=w,” and g(1)=w,”. Thus 9,/= is connected. It is
obvious that 9,/ is a circular domain in C"~* containing the origin 0 by the

definition of the generalized Siegel domain. Let (2,%’,%”) be a point of 9.
Then there exists a real number #, such that efo=Im.z—F(w’, w’), because

T ge.expX_, (2, ', 0")=(v/—1(Im.2—F(z’, 2')), 0, w”’) belongs to 9 and
hence Im.z—F(%’, w’)>0 by Lemma 1. Thus we have W_, - T_p, ,-expX_,/-
(2, %', w")=(/—1,0, e %”). Hence (Im.z—F(%, ")) 2-w"’"€ D=, and
so 9 is contained in the set

{(z, %', w”")yeCxC"|Im.z—F(w', w')>0, (Im.2—F(2', w')) " -w" € Dy=} .

Conversely, take a point (2, %', w”)eC X C™ such that Im.2—F(%’, #’)>0 and
(Im.z—F(w’, ') V2.0’ =9),/=5. Then, by the same way as above, we can
show that there exists a real number #, such that eo=Im.2— F(%’, #’) and

Trer-€xpX, W, «(v/—1, 0, e /20") = (2, w', ") .

This shows that (2, 2/, w”)€ J), since (v/—1, 0, e ?w")E ) by the definition
of 9/=. Therefore
D= {(z, o', w")eCxC"|Im.2—F(w',w')>0,
(Im.2—F(o', w')) 2.0 € D=} .
Now we shall show that the orbit 9), of Aut(9) containing the point

(v —1,0)E9 coincides with the elementary Siegel domain £. Let (2, »’, 0)
€&. Since Im.2—F(w', w')>0, there exists a real number #, such that efo=

Im.z—F(w’,w’). Then it is easy to see that TRe,,-eprw/-\If,o-(\/—_——l, 0)=
(3, ", 0), and so E CAuty(9D)-(v/—1,0)=9D, We claim that 9,c&. Let G
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be the identity component Auty(9) of Aut (9), K the isotropy subgroup of G
at (v/—1, 0) and G, the identity component of Aff(9). Put K,=G,NK. Then
we can show that G/K=G,/K, by the same way as Lemma 2.3. of Nakajima [5].
Therefore it is enough to see that G,-(v/—1,0)C&. Let P(D) (resp. GL(D))
be the analytic subgroup of G, generated by the subalgebra g_,4g_,/, (resp. g,.)
Then we have G,=P(9)-GL(9D) (semi-direct product), because P(9)-GL(9D)
is an abstract subgroup of G, and contains an open neighborhood of the identity
element of G,. Since GL(9)-(v/—1,0)C D, by (5), of Theorem 4 and ob-
viously P(9)-£C&, we get G,-(v/—1,0)C&. Therefor G-(v/—1,0)=G,-
(v —1,0)=&. This completes the first case where k>0.

It remains the case where dimg g_,,=0, i.e., k=0. But in this case Theorem
1 is now obvious from the proof of the case where 2> 0. q.e.d.

Corollaries of Theorem 1: As an immediate consequence of Theorem 1 we
obtain the following corollary.

Corollary 1. Let 9 be a generalized Siegel domain in C X C™ with exponent
1/2 and dimgg_,,=2m. Then 9 is a Siegel domain which is holomorphically
equivalent to the elementary Stegel domain

&= {(zw, -, w,)ECXC | Im.2— 3] |2, |*>0} .
Corollary 2. There exists no generalized Siegel domain in C X C™ with ex-
ponent 1/2 such that dimg g_,;,—2m—2.

Proof. Suppose that there exists a generalized Siegel domain 9 in C <X C™
with exponent 1/2 and dimgg_,;=2m—2. Then, by Theorem 1 there exists
a generalized Siegel domain 9 with exponent 1/2 which is holomorphically
equivalent to &) and is expressed in the following form with respect to a suitable
coordinates system (2, w,, -+, @,,) in C X C™:

D = {(z,w,, -, ©,) ECX C" | Im.z— 3|, [>>0,
a=1

(Im.z—zz;]il w, ) 2w, € Pyy=}

where 9),/= is a circular domain in C containing the origin of C. Since 9=
is given by 9,/ == {w,€C| |w, | <R} for some positive number R,

g) — {(2’, Wy, oy wm)ECXCm'Im2—(m2:1|wml2+R_2|wmlz)>O} *

Thus & is a Siegel domain of the second kind in CxXC™. Then we see that
dimp §_,,=2m in the decomposition of g(J) as in Theorem A. But this is a
contradiction since dimg §_,,=dimg g_,,=2m—2 by our assumption. q.e.d.
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Corollary 3. Let 9 and 9, be the same domains as in Theorem 1 and T1:
g(@)—>g(£Do) the homomorphzsm induced by the Lie group homomorphism of Auto(.CD)
to Aut(9D,) defined by g—g|D,, where g| D, denotes the restriction of g to D,.
Then T1 is surjective.

Proof. Note that 9), is the Aut(J)-orbit. Let (2, ®,, -, w,) be the
coordinates system in CXC™ as in Theorem 1. Let ¢(9)=g_,+g§_12-+ 8o+ 812

+a (resp. g(@o)zg”_l—f—g"_llz—l—gg—}—gj/z—{—g‘{) be the decomposition of g(J) (~resp.
8(9,)) as in Theorem A. Since 9), is an elementary Sigel domain, g(9,) is
simple. In particular, we have

85 = [8-1/2, 872]+[9%1, gf] and
gll)/2 == [g—(ll/Za gll)] .
0 0,1 a - . 0
Put 0° = 2—+— > w,—. Then it is obvious that [[(0)=0°. Hence the
0z 2 =1 “ow,
homomorphism [] preserves the gradition, z.e., [I(g,)Cgar. Now we shall show

that [] is injective on g_,+g_1»+81,+6:,. Since g_,+g_1,=8%1+g-3/, it is
sufficient to show that [] is injective on g,,+g,. Let X;Egq, such that T[(X))

—0. Then n([ﬁ, [ﬂ, Xlﬂ) 0. Slnce[:a [ X;J]Eg_l and TT is iden-
0z Loz 02’
9

2% X 1]]:0. On the other hand, it is known that the

endomorphism (ad<6—>> ! g,—@-, is injective (cf. [9]). Thus we get X,=0.
2

(2.9)

tity on g_,, we have [8 l:
02’

Therefore ] is injective on g,. Analogously we can show that [] is injective

on gy, by using the injectiveity of ad(%): 812—>8-12- Note that the subalgebra

g-1+80+g; corresponds to the subgroup leaving the upper half plane 9=
{(z,0)€CxC"|Im.2>0} invariant. Now we claim that each element of Aut,
(D)) can be extended to an element of Auty(J). We identify Aut(9D,) with
SL(2, R)/{--1}}. Since each element y— (“ (IDESL(Z R) acts on 9), by a

holomorphic transformation /,: 2—(az-+b) (cz+d)™', we can define a mapping
Li: D, x C"—>D,x €™ by Iz, w)=(l(2), (cz+d)'w). Since Ly ,,=1, -1, for any
T .ESL(2, R), 1, induces a holomorphic transformation of 9 if

(2.10) D)cD.
Put o'=(w,, -, w), W' =(w44y, -+, w,,) and Hw’l|:(§k]|~w¢,|2)l/2 for any w=

@=1

(wy, -+, w,)EC™. Then

(2.11) Im. L(z)—|l(cz+d) 2’| = |cz+d| A(Im.2—]||2’||?)>0



242 A. Kopama

for any (2, w’, w”’)E9). Since

Im. ly(z)_‘ | l(cz“f‘d)_l‘wll[2)_1/2.(cz+d)—1.w//

= eV ~10(z7) (Im_z_ ”w/Hz)-l/z_,w// ,

where 6(z, v)=—arg.(cz+d), and e\/?‘?’(”)(lm.z—||w’||2)‘1/2w”6.@\/:1, we
have

(2.12)  (Im. b(2)—||(ca+d) "0/ |) "2+ (ca+-d) w’ €Dy

By (2) of Theorem 1, (2.11) and (2.12) imply (2.10). Hence we get ¢,4=0 and
hence [I(g,)#0. We now prove that [] is surjective. Since dimg g7=1 and
I1(g))#0, we get TI(g,)=g;. Therefore it follows that gf,=[g-1/, gi]=
I1([g-1/2» @) € T1(g12), and so TI(gy)=8%/2. Then gi=[g-1/, gi/2]-+[8%1, gi]=

I1([8-1/2 @121+ [8-1 @:]) CT1(g0), and so II(g,)=gs. Therefore II is surjective.
q.e.d.

Corollary 4. Let 9 be a generalized Siegel doméin in C X C™ with exponent
1/2. If the Lie algebra g(9D) is semi-simple, then 9 is a Siegel domain which is
holomorphically equivalent to the elementary Siegel domain

m

&= {(z) Wy, ---,wm)ECxC'”IIm.z-Z|wm|2>0} .

a=1

Proof. We claim that dimg g_,),=2m, i.e., k=m. Then our assertion is
obvious by Corollary 1. We may assume 9=9) in Theorem 1 without loss of
generality. Suppose that k=m. We consider first the case where 2>0. Let
I1: 3(9)—>(9,) be the homomorphism defined in Corollary 3. Then IT is
surjective by Corollary 3. Put 8,=Ker [[. Then 8, is a semi-simple ideal of
the semi-simple Lie algebra g(J). Thus there exists a semi-simple ideal 8§
such that g(9)=348, (direct sum). Since 8, is isomorphic to g(D,), 8, is
simple. Since [] is injective on g_;+g_1,+8,»+@a; by the proof of Corollary 3,
8, is contained in g, Let B denote the Killing form of g(J). Put gi=
{Xeg,|B(X, 8)=0}. Noting that the ideal 8, is a graded Lie subalgebra, it
is easy to see that ge=go+%, 8, =0-118-1.F8+ 8.+ and gGo=[g-12 iz]-
Since 8,=Ker[[Cg,, every vector field X &8, is given by X =“ik+ IQ%"J% in

Theorem A. Thus it can be expressed by the matrix

0 0 0
(2.13) X=| 0 | 0, C

Now we claim that C=0,,,_, in (2.13). Let S, (resp. S;) be the analytic sub-
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group of Aut,(9D) corresponding to 3, (resp. 3,). Obviously
(2.14) 81°82=8§2° &1 for any g,€S, and g,ES,.

Let X,(cEC*) be the vector field belonging to g, defined in the proof of
Theorem 1. Put g;=exp X, and

It is easy to see that if 4=0,,,_,, then C=0. By a routine calculation, we get

S1°8 (2w, w') = (z+2\/ —1F(w'+ Aw", c)—f—\/—‘lF(c, ¢), w'+Aw''+-¢, Ew'")
and

&gz, o, w’) = (z—I-Z\/——lF(w’, c)+/ —1F(c, ¢), w' +c+ A", Ew")

for any (2, w’, w”)E9. By (2.14), we get F(w'-+Aw", ¢)=F(w’, c¢) and hence
F(Aw", ¢)=0. Since c is arbitrary, we get Aw”’=0 for any element w” of an
open subset of C”"*. Thus A=0. Therefore we get

' 0k+l,k+113 0 ] lkﬂif 0
T TN B
0 Lok 0 | = .

Since 9 is holomorphically equivalent to a bounded domain in C*** and
any bounded domain in C™*! is hyperbolic in the sense of Kobayashi [4], 9 is
hyperbolic. Since 9= is a complex submanifold of @, it is also hyperbolic.
Thus 9,/= is a hyperbolic circular domain in C”~* containing the origin 0. By
§.1, we have that Auty(9,=) is a Lie group and its isotropy subgroup K= at
0€ 9,/= is compact. Moreover K,/= is a subgroup of GL(m—k,C) by Theorem
B. Let t = be the subalgebra of g(9),=) corresponding to K,=i. Now we
claim that f,/= can be identified with 8,. By (2.15) we can identify S, with
a subgroup of K/=. Conversely, let K° /= be the identity component of K\/=

and take an arbitrary element g&K’,=. Put g"z( (1) 2), where 1=1,,,. Then

we can easily see that g leaves § invariant by (2) of Theorem 1, and hence g
defines a holomorphic transformation of & and g€, by (2.15). Thus K% =
can be identified with S, in a natural way. In particular, f,/= is a semi-simple
Lie algebra. On the other hand, ¥,=; contains a nonzero element 0”=
v —1 i wm’@— induced by the global one-parameter subgroup w’r—eV ~lg’’

@=f+1 W,

(€ R) and obviously 9 belongs to the center of t,,=. This is a contradiction.
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Suppose next k=0. Then we can show as above that the Lie algebra
/= is identified with the semi-simple Lie algebra

On the other hand, f,/= contains a nonzero element 8’=+/—1 fm‘_, w,,éa— belong-
@=1 W,

ing to the center. This is a contradiction.
Therefore k=m, and we complete the proof. q.e.d.

3. The structure of Aut (9)

The purpose of this section is to consider the structure of the group of all
holomorphic transformations of a generalized Siegel domain 9 in CXC™ with
exponent 1/2 and dimpg g_,,= 2k for some &, 0<k<m.

In this section we use the following notations. For a point

3= '(zl, wey zkH)ECHl, define ||5” — (% |zj|2)1/2 .
=1

Put
L .0 L 0
U(k+1,1) = {geGL(k+-2,C)|'g-| oo o = | e
0 i —1 0o -1
and

SU(k+1, 1) = U(k+1, 1) N SL(k+2, C) .

For each element 7:(’3 2>ESU(k+1, 1), where A=(a;;)=i,jsp+1 0="(by, **-,

by+) and c=(c,, +++, ¢;4,), We put
L(v) = (a;,+b;, 2a;5, 2a;5, -+, 2a; 4.1);
(31) C(’)’) = (cl+d) 262: 263) R 2Ck+1);
B;(v) =/ —1(bj—a;)) and D(v) = /—1(d—c,)
for j=1, 2, -+, k1.
It is easy to see that U(k-+1, 1) coincides with all matrices (‘3 E)EGL(k—}— 2,0C)
of the form ‘4A—‘c=1,,,, ‘bb—|d|?*=—1 and 'b4—dc=0,,,,. From this,
we get
(3.2) lcz+d|?—I[|A3+Dbl]> = 1—|l3]]°

for any (‘g B)E U(k+1, 1) and any 3&C**, by an easy computation.
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Now we consider the group Aut (€) of all holomorphic transformations of
the elementary Siegel domain

&= {(z, w, =, w)ECX C*|Im.a—3] |w,|*>0} .

The elementary Siegel domain & is holomorphically equivalent to the unit open
ball B= {3="(z", -+, 2*")eC*"*||]31|<1}. In fact, the biholomorphic isomor-
phism ¢: £—B is given by

(3.3) &= (s—v/—1) (s —1), &7 = 2w,_(34+/—1)!

for j=2, 3, .-+, k+1. It is well-known that the group Aut,($) can be identified

with the simple Lie group SU(k-1,1) and each element fy:(’g 3) eSU(k+1,1)

acts on B by the holomorphic transformation oy: §—(A3+b)(c3+d)™'. Define
Wi=¢ toy-¢ for each yeSU(k+1, 1). Then it is obvious that W) defines a
holomorphic transformation of £. By a direct calculation, we see that the
action of W3 on &€ is given by

2 /=1 LHEMZHD()) - (L(v)Z+B(7))
1—=(C(MZ+D(7)) " (L7)Z+By(7))
w, 1 /=1 CNZEDI) (L2 B,1i(7)
1—(C()Z+D(v)) (L) Z+ By(7))
for j=1, 2, --+, k, where Z='(2, w,, ---, w,) €€ and C(v), L,(7), B;(7), D(7) are
defined by (3.1).
Let K°,= be the identity component of the isotropy subgroup of Aut(9y/=1)
at the origin 0€ 9=. We define a mapping ¥y x: DyX C"*—>Dyx C"* for
each yeSU(k+1, 1) and K€K’ /= as follows:

5 o /=1 2H(C)Z+D()) " - (L(v)Z+By(7))
1—(C(M)Z+D(7)) ™ (L(7)Z+By(7))

w, /=1 (ENZHDV) " (L;1(¥)Z2+B;..(7))
Wyt 1—=(C(M)Z+D(7))*+(L(7)Z+B(7))
for j=1,2, -+, k.
- K. 2v/ —1(C()Z+D(7))* .
1—(C(7)Z+D(7)) ™' -(L(7)Z+By(7))
for Z=X(z, w,, -+, w,) €D, and W="w,,, +-+, w,)EC™*. Since Do=1{(z, w,,

wey 2y, 0, -, 0)ECX C’”lIm.z—g |w,|2>0} =&, Wy, is a well-defined holo-

morphic mapping of 9,x C"* into itself.
Now we can state Theorem 2.
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Theorem 2. Let Wy : DyxC"*—>DyX C"* be the holomorphic mapping
defined as above. Then Wy induces a holomorphic transformation of 9, and
moreover any holomorphic transformation of 9 belonging to the identity component
of Aut (D) is of this form, i.e.,

Auty(D) = {Wyx|vESUR+1,1), KEK =} .
Proof. Let (2, w,, -, w,,) be the coordinates system in C'xC™ defined in
Theorem 1. We put w'=(w,, -+, w,), w”’=(w,,, -**, w,) and ||w’||=(zh]|'w,,,,lz)‘/2
a=1

as before. First we claim that each element ¥y Aut, (€)=Aut,(9,) can be

extended to a holomorphic transformation of 9. We consider the following

mappings:

o s — 2/ =1(C)Z4D() ',
1—=(C(v)Z+D(7)) " «(L(7)Z+B\(7))

for s=k+1, k42, -+, m. Put Wi=4(w3?, ---, U**1), We shall show that

(3'4) (t(\Ijg(Z))) ZT)k+1’ R wm)E@

for any (2, w)=("Z, w4y, -+, wm)egj.
Put (YY(Z)),=(VYAZ), -+, 3**(Z)). If we show the following two con-
ditions
(3.5) Im. WYY Z)—|(¥YZ)),|*>0 and
(3.6) (Im. WY Z)—|[(THZ)), D) 20" €Dy=
where @"'=(,,,, **-, @,,), then (3.4) will follow from Theorem 1. The con-
dition (3.5) is obvious, since ¥J is a holomorphic transformation of g, By
routine calculations, we get
Im. W3 Z)— (T Z)),|
k+1
1—-_Zfll(C'(’)’)Z~I—D('Y))“-(L,-(')’)Z-l-Ef,-(')’))|Z
— [1=(CMZ+D() (LN Z+By(7))|*

b

and hence ,
(Im. W3 Z)—[|(TY(Z)).l %)~ V2w,
2eV/"10(Z:Ngy

1C)Z+ D) (1 SN C)Z+ D) L) 7+ B ) 1)

where 0(Z, v) = —arg. {1—(C(v)Z+D(v)) ' -(L(7)Z+ By(7))}
—arg. (C(7)Z+D(v))+=(2.

Let ¢ be the biholomorphic isomorphism defined in (3.3) and put 3=¢(Z)E 3.
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Then we get
C(7)Z+D(v) = (s-++/—1) (3+d) and
:Z:J:l(C("Y)Z+D('Y))"(L,-('Y)Z-FB,-('Y)) |? = 1| (A3+b)-(cg+d)|I*.
Hence it follows from (3.2) that

i 2,
| C(v)Z+D(7)] '(1—’;2:1;I(C(?’)ZﬁLD('Y))“'(LJ-('Y)ZﬂLBj('Y))IZ)"2

2w,

T eV =1 -(—1EIP7

Moreover it is easy to check that 1—|[3|[2=4 |24/ —1| %Im.2—||=’||?). Thus
we get

(I T Z)— (P2l )2+, = eV 92N Im 2 [['|[) -,
and hence
(Im. I Z)— [[(TUZ))u| D) 2" = eV (Im.z— ||| [2) /22" .

Since (Im.z—||@’'|?)" 2. w” €Dy= and D=7 is circular, we get (Im.¥IY(Z)
—I(FUZ))ul) 2"’ €D\/=1. Therefore we have (3.4). By (3.4), we can define
a mapping ¥,: 9—9 by

(3.7) Wy (*Z, w”’) — ((YYZ2)), @) .

It is easy to see that this mapping ¥y is an extension of Wj if we verify the
follwiwng relation

(3.8) Wy, Wy, = Uy,y, for any v,, v,eSU(k+1, 1).
For this, consider a mapping ¢: {z=C|Im.2>0} X C"—C™"* defined by
(3.9) 2= (x—v—1)(z+v =1} & = 2w, (3++/—1)

for j=2, 3, +--, m+1. Note that the restriction $: 9,—>C™*! is nothing but the
biholomorphic isomorphism ¢: Dy—>B defined in (3.3). Since Im.z>0 if
(2, w)E D by Lemma 1, it is easy to check that ¢ is injective and holomorphic on
9. Thus § defines a biholomorphic isomorphism of 9 onto the image domain
B: =HD) in C"*'. Now we define a holomorphic mapping &y: BX C" *—>C"+

for each y:(f 2)eSU(k+1, 1) by

- {a  (A3+b)-(c3+d)!
T g (g-d)
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where 3.8 and §'="(z*", ---, 2"*')eC™ *. Then by direct calculations we get
F(Py(z, w)) = (P2, w))  for all (z, w)ED .

From this fact, the verification of (3.8) has reduced to verify the following
relation

(3.10) Gy, Gy, = Gy, for any v,, v,&SU(k+1, 1).
But (3.10) follows from the relation ‘4A4—‘tc=1,,,, ‘bb— |d|>=—1 and 'b4—dc
=0, which is satisfied for any (f B)E U(k+1, 1). Therefore we have showed

that each element W& Auty(J),) can be extended to the element W, Aut,(D)
defined by (3.7). Next, taking an element K&K’/ =7, we define a mapping
Wy x: DX €t Dyx C"* by

o x: (2, w") = ((¥3(2)), K"

which is nothing but the mapping ¥, x defined as before. Then, by using the
expression of 9 as in Theorem 1, we can see easily that W, , defines a holomor-
phic transformation of §. Moreover the subset {Wy ,|vESUk+1, 1), K
K=} of Auty(D) has the structure of real Lie transformation group of 9 with
dimension equal to dim SU(k+1, 1)4dim K°,/=;. It remains to show that this
Lie group coincides with Auty(J). We denote by 3ii(k+1, 1) (resp. t,/=7) the
Lie algebra of SU(k+1, 1) (resp. of K°,=7). We claim the following equality

(3.11) dim g(9) = dim 8it(k+1, 1)+dim ¥y .

If we show (3.11), then it is obvious that Auty (D)= {¥y x|yESUk+1, 1),
KeK’=}. Let II: o(9D)—>a(D,) be the homomorphism defined in Corollary
3. Let g(9)=38+t be a Levi-decomposition of g(J), where t denotes the
radical of g(J) and 3 denotes a maximal semi-simple subalgebra of g(9). Put
8,=Ker]IN8. Then 8, is an ideal of 8. Thus there exists an ideal 3, of
3 such that 3=318, (direct sum). Since g(9),) is a simple Lei algebra
isomorphic to &ii(k4-1, 1) and [ is surjective, it follows that T[(r)=O0, 7.e.,
tCKerI]. Hence we get g(9)=38,+KerI] (direct sum) and 8, is isomorphic
to 8i1(k+1, 1). Since Ker[] Cg, by the proof of Corollary 3, we see that [g_,+
g-12 Ker[[]=0. From this fact we can show in the same way as in the proof
of Corollary 4 that Ker]] is identified with ¥,,=5. Thus we get the equality
(3.11) and Theorem 2 is proved. q.e.d.

4. Examples and remarks

Given an integer k such that 0<k=<m, k4m—1, there is an example of the
generalized Siegel domain &) in € XC™ with exponent 1/2 and dimpg g_,,=2k.
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Indeed we have the following examples.

ExampLES. Let k be an integer as above and p a positive integer different
from 2. Put

Dy=i= {(wk+1’ **y wm)ecm_k| |Wpir | P4 |0, | P <1} .

Obviously 9= is a bounded Reinhardt domain in €™ *. For this domain
D=1, we define a domain 9) in C X C™ as follows:

D= {(z w, -, wm)ECXC"’IIm.z——gllwalz>0,
(Im. 3— 3w, ) 20" € Dy}
where @’ =(w;+,, ***, ,). The domain 9 is also expressed as follows:
D = {(z, wi, -, w)ECKC™ Iz —3 3, |'—( 3] ol ¥*>0} .

We shall show that 9 is a desired example. Itis easy to see that 9) satisfies the
condition (2) of the definition of the generalized Siegel domain with exponent
1/2. Moreover the mapping ¢ defined in (3.9) gives a biholomorphic isomor-
phism of 9 onto the bounded Reinhardt domain

R = {(zl, TN zk+1’ ul’ “ee, um_k)EC"'+1|l§|z“|2+(m2—k|upll’)2/?<l}
@=1 B=1

in C**!, Thus 9 is a generalized Siegel domain in CXC™ with exponent 1/2.
Now we show that dimpg g_,,=2k. First we recall that the group Aut,(R)
consists of all transformations of the following type (cf. [6], [8]):

@) {z > (AZ+b) (c2+d)™

1P (cZ+-d) leV-19s.uf 1< B<m—Fk

where (13 2)6 U(k+1, 1), sER and 2='(z', -+, 2¥*'). Note that we can

replace U(k+1, 1) by SU(k+1, 1) in (4.1), because any element g€ U(k+1, 1)
can be written in the form g=eV=19. g, for suitable 6 € R and g, SU(k+1, 1).
Hence we get

(4.2)  Aut,(R)-0= {(=', -+, 2*'1, 0, -, O)EC"‘*‘llﬁlz”|2<1} .
Since Auty(D)=¢ '-Auty(R)-P, (4.2) implies that
Auty(D) (v =T, 0) = {(3, w,, =, 0, 0, -, 0)ECX €™ | Im. 5— 33| w, | >0} .

From this fact, we can conclude that dimg g_,,=2k.
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RemaRk 1. In the case where #=2, the analogy of Theorem 1 is not true
in general. In fact we have the following example. Let

9D = {(2), 2o, 0, W) EC*X C*| Im. 2)— |, |2— | w,|?>0, Im. 2,— Re(w,w,) > 0} .

Then 9 is a generalized Siegel domain in C?X C? with exponent 1/2 and dimp
g-1,=2, more precisely
(+3) gn={2v=T cwlﬁf+V~1 ow, +c 2 cecy.
wl
We shall sketch the proof of this fact. First g) is a generalized Siegel domain
with exponent 1/2. In fact, 9) is contained in the domain

D = {(21, 20 Wy, W) EC?* X C*| Im. 2, — |, |2— | w,|2>0, 2Im. 2;+Im. 2,> 0}

and 9 is holomorphically equivalent to a bounded domain in C* Next we
shall show that dimg g-,,=2. For given c=C, Aut,(9) contains the global
one-parameter subgroup ‘

(1) Bz Wy, W3) = (3120 — 1 tow,++/— 1| tc|?, 2,4/ —1 tTwy, w+te, w,), tER.

This global one-parameter subgroup induces a holomorphic vector field

X.=2/— 1(:w1 —I—\/ lc‘wza8 —|—05— belonging to g_,,. Thus dimg g_,,
22 w,

=2. Suppose that dimg g-,,=4. Then we can show in the same way as in
the proof of Proposition 5.1 of Vey [9] that &) is a Siegel domain of the second
kind, and 9 can be expressed as follows:

D = {(21, 2y w1, w,) EC*X C?| Im.. 2,— F(w, w) >0, Im. z,— Fy(w, w) >0}

where w=(w,, w,) and F=(F,, F;)isa {x€R|x>0} X {x& R|x>0} — hermitian
form. Hence Fy(w, w)=0 and Fy(w, w)=0 for any w=C? On the other hand,
if we take a point (3,0, —1,1)€9), then Im.0—Fy,(—1, 1), (—1,1))>0 and
hence Fy((—1, 1), (—1,1))<0. This is a contradiction. Thus we get 2=dimg
g-12+F4. Hence dimg g_,5,=2. By (4.3), we can see that there exists no non-
singular linear mapping _[?: C?X C*—C?X C? satisfying the conditions stated in
Lemma 4.

RemARK 2. Let (2, w) be a coordinates system in CXC and 9 a genera-
lized Siegel domain in C'X C with exponent ¢>0. :Then we can show in the
same way as in the proof of Theorem 1 that 9 can be expressed as follows:

D = {(z, w)eCXC|Im.x—A |w| >0}
where 4 is a positive real number depending only on 9.

ReMARK 3. Let 9 be a generalized Siegel domain in €' X C™ with exponent
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1/2 and dimg g-,,=2k, 0=<k=<m. Then there is a natural Auty(9)-equivariant
holomorphic imbedding of 9 into the complex projective space P,,.,(C).

In order to show this fact, we may identify 9 with the generalized Siegel
domain & as in Theorem 1. Let §: 9—>3B be the biholomorphic isomorphism
defined in (3.9). Then & is a domain in C"*! and the group Aut,($) consists
of all holomorphic transformations of the following type:

@ - {3H(Aa+b) (c3+d)
3= K-(cg+d)-5

7.K*

‘33>ESU(k+1,1) and Ke

K°,=. Note that K°/=; is a subgroup of GL(m—k, C). By using a homo-

where 5=t(zl’ o, zk+1)’ 8/zt(quvz’ e zm+1)’ 72(

geneous coordinate of P, (C), we define a holomorphic imbedding Z: em e,
P, . (C) by

AT k1 o k+2 +1 t o1 k+1 k2 +1
/e (z’...,z y & ’...,zm )[—)(z’...’z ’1’2 ’...’2"’ ).

Then it is easy to see that the restriction /: B»P, . (C) defines an Auty(B)-
equivariant holomorphic imbedding of 3 into P,,,(C), where the holomorphic

transformation Wy x of B is extended to a projective transformation W, x of
P, .,(C) induced by the matrix

A
rrrrrrrrrrrrrrrr o |eGLm+2,C).

Putting /=/-$, we get a desired Aut,(9)-equivariant holomorphic imbedding
l: P, ,(C).
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