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1. Introduction

For a Galois extension field L of a field K with Galois gruop G, A. Rosen-
berg and R. Ware [9] proved that if [L:K] is odd then the Witt ring W(K) is
isomorphic to W(L)°. The proof was simplified by M. Knebusch and W.
Scharlau [5], and the theorem was generalized by M. knebusch, A. Rosenberg
and R. Ware [6] to the case of commutative semilocal rings. In this note, con-
cerning with sesqui-linear forms over a non commutative ring defined in [2], we
want to extend the theorem to a case of non commutative rings. In §2 and §3,
we difine a Galois extension with involution of a ring and an odd type Galois exten-
sion with involution. From the theorem of Scharlau (cf. [11], [7]), we know that
for a Galois extension with involution LDK of fields, LDK is an odd type
Galois extension with involution if and olnly if [L:K]is odd. If ADB isa G-
Galois extension with involution of rings, then we can prove the isomorphism
i*°t"“*(q)=¢2@; 1 o*(g) for any sesqui-linear left 4-module ¢= (M, ¢q). This

isomorphism is a generalization of the case of fields [4], semilocal rings [6]. If
A is an algebra over a commutative ring R, and if A DR is an odd type G-Galois
extension with involution, then it is obtained that the inclusion map i: R—4
induces a group monomorphism 7*: W(R)—W(A4) of Witt groups of hermitian
left modules, and its image is T¢«(W(A4)). Throughout this paper, we assume
that every ring has identity element and module is unitary. Furthermore, ring
homomorphisms are assumed to correspond identity element to identity element.

2. Sesqui-linear forms

DeriNiTION 1. Let 4 be a ring with involution A—A4; aW—a, i.e. a+b=
a-+b, ab=>b a and a=a for every a,b in A. For a subring B and a finite group
G of ring-automorphisms of 4, ADB is called a G-Galois extension with involu-
tion if every element in G is compatible with the involution, i.e. o(a)=0c(a) for
all ae 4, o =G, and if ADB a G-Galois extension, i.e. AS=DB and there exist
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elements x,, x,, - ¥, and y,, y,, -+ ¥, in A4, called a G-Galois system, such that
Sx;y;=1 and Xx;0(y;)=0 for o1 in G.

DErINITION 2. (cf. [2]) Let A be a ring with involution, and M a left A4-
module. A form g: MXM—A is called a sesqui-linear form if it satisfies

g(a(m~+m’), n) = aq(m, n)+aq(m’, n) and
q(m, b(n+n")) = q(m, n)b-+q(m, n')b

for every a, b= A and m, m’, n, n' M.

DEerINITION 3. Let ADB be a G-Galois extension with involution, C the
center of 4 and C|, the fixed subring of C by the involution, i.e. C;= {c€ C; c=t}.
For any u€C, let us denote by t%: A—B a B-linear map defined by #%(a)=
M g-(ua) for a€ A4, particularly, when u=1, it is denoted by #,. For a sesqui-

=
linear left A-module g=(M, q), a sesqui-linear left B-module #%+(q)=(sM, tiq)
and a sesqui-linear left A-module o*(q)=(,M, oq), for =G, are defined as
follows;

tiq: M X M—Bj; (m, m" YW t4(q(m, m’)), and
aq: MX M—>A; (m, m)W—o(g(m, m’)),

where ,M is a left A-module defined by a new operation *; axm=o""(a)m, for
ac A, meM. TFor a sesqui-linear left B-module hA=(N, k) and the inclusion
map 7: B—A4, a sesqui-linear left 4-module :*(h)=(AQ gN, k) is defined by 7h:
(AR sN) X (AQ pN)—A; ih(aQmn, a’ Qn')=akl(n, n')a’ for aQn, a’Qn'€ AQ gN.

Lemma 1. Let ADB be a G-Galois extension with invoultion. For any left
B-module N there is an A-isomorphism ®: AQ gHom g(N, B)—Hom 4(4A& N, 4)
defined by ®(aQ f) (a'@n)=a'f(n)a for aQ f e ARQ gHomgx(N, B) and o’ Qne A
®5N, where the operations by A and B are as follows: (bf)(x)=f(x)b, for
feHomg(N, B), beB, x& N, and (ag)(y)=g(y)a for gcHom4(ARN, A), ac 4,
yeAQRpN.

Proof. If 33a;®f; is in Ker ®, then X fi(n)a,=P(>]a;R f;) (1Qn)=0 for
allnin N. Let x,,x,, --- %, and y,,,, -** y, be a G-Galois system of 4. Then we
have 33a;Q fi=23: ;% ts(y ;0:)R fi=20, ;%,;Qte(y ;a:)fi=0, since Iita(y;a:)f;
—0 is obtained by (Slte(y;a)f) (m)— S filn)taly a) = Sutolfim)y )=
to(3i fm)a: 5 ;)=0 for all nEN. Hence Ker ®=0. If g is any element in
Hom4(4A®sN, A), we put f;: N—B; fi(n)=t(g(1R®n)x;) for every neN, i=
1,2, - n. Then f; is in Hompg (N, B) and so 3> 7;® f; is an element in AQ 5
Hom (N, B) such that ®(3) #;® f;)=g, because ®(3 7;Q f;)(a®@n)=3 af(n)y;
=37 at,(g(1Qn)x;)y;=ag(1R@n)=g(aQn) for all aQne AQ zN.
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Lemma 2. Let ADB be a G-Galois extension with involution. If M is a
left A-module, then for any element u in the unit group U(C,) of the fixed subring
C, of the center of A by the involution, a map

9: Hom 4(M, A) — Homyz(M, B); f Mt f

is a B-isomorphism as left B-modules defined by (bf) (m)=f(m)b for b B, me M
and f € Hom 4(M, A) or Homgz(M, B).

Proof. If fis in Hom,(M, A) and t%o f=0, then for any me M we have
uf(m)=3x;t(y;uf(m))=>"x,(tao f(y;m))=0, hence f=0. If g is in Homz(M, B),
an A-homomorphism f: M—A4 defined by f(m)=> u""'x;g(y;m) for me M, satis-
fies 250 f(m)=231a(x:8(yim))=2 16(%:)g(yim)=g(Xte(%:)yim)=g (m) for all me
M, therefore t%o f=g and so 0 is a B-isomorphism.

Proposition 1. Let ADB be a G-Galois extension with involution, and C,
the subring of the center of A whose element is fixed by the involution.

1) If a sesqui-linear left B-module h=(N, h) is non degeneratei.e. ¢: N—
Hompg(N, B); s> h(—, n) and : N—Hompg(N, B); nM~h(n, —) are B-
isomorphisms, then i*(h)=(AQ gN, th) is also non degenerate, where i: B—A is the
inclusion map.

2) If a sesqui-linear left A-module g=(M, q) is non degenerate, then t4s(q)=
(8M, tiq) and o*(q)=(.M, oq) are also non degenerate for every uc U(C,) and
c=G.

Proof. 1) Let A=(N, k) be a non degenerate sesqui-linear left B-module.
Since ¢: N— Hompg(N, B); nmvh(—, n) and &: AQ gHompg (N, B)— Hom ,
(A® N, A) are B-isomorphisms, the composition ®o(I®¢); AR pN— Hom,
(A®5N, A) is an A-isomorphism. And, it is obtained that ®o(IQ¢)(a@n)=
th(—, a@®mn) for a@ne AR gN, because Po(I QR p) (a@n) (@' @n')=D(aQh(—, n))
(@ @n')y=a'h(n’, n)a=ih(a’ Qn’, aQn) for every o’ QW' € AQzN. For : N—

Hompg(N, B); nM—h(n, —), similarly, we obtain the isomorphism ®o(I/®q));

AR gN—-Hom 4(AQgN, A); aQnwWih(aQ@n, —). Therefore, i*(h)=(AQ 4z
N, ih) is non degenerate. 2) Let g=(M, ¢) be a non degenerate sesqui-linear
left 4-module. From the following diagram and Lemma 2, we can conclude
that £5+4(g) is non degenerate;

v bW
lqy’ (‘l"l) o A
Hompg(M, B)

where ¢', (V'),: M—Hompg(M, B); m W tig(—, m), (mWtaq(m, —)). o*(q)
is obviously non degenerate.

Hom 4(M, 4)
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Theorem 1. Let ADB be a G-Galois extension with involution. For any
sesqui-linear left A-module g=(M, q), we have an isometry

i*Otg*(Q)gzveGJ_G*(q) .

Proof. Let x,, x,, +-- x, and y,, y,, -** ¥, be a G-Galiois system of 4. For
each o =G, we can define an A-homomorphism e,: AQ s M—AR ;M ; aQmM>
Slac(x;)Qy:m. Because, for any c€ 4, we have e,(acQm)=> ;aco(x;)Q y;m=
2%, ;a0 (x (Y ;07 (€)%:))Q yim =3 ;a0 (x;)Rta(yo ' (c) x;) ym= 23a0(x,;)RY;
o (c)ym=e,(aQ o ' (c)m), particularly, if ¢ isin B, we obtain e, (acQm)=e (aQcm),
therefore e, is well defined. Since e,(a®@m)=e,(1Q0o'(a)m) for aQme AR zM,
the image of e, is equal to e (1®M). Now, we check identities e,oe,=

{8‘" gg; Z:: , (6, 7€G), and 3,cce,=1. For any aQme AQ zM, we have

e oe(aQm)=> e (aT(x;) Qym)=2 e (aQ o *T(x;)y;m)= {e,(a@m), for o=

for o7’
and  Doecl(aQ@m) =3 secao(%:)Q yim =" iato(x,)Q yim = aQ 3t o(x;)y;m=
a®@m. Accordingly, AQ sM=3,-De,(1QM) is obtained. Further, e, (1QM)
and ,M are A-isomorphic by an A-homomorphism §,: M—e (1QM); mms
e,(1Qm). Because, {,(axm)={ (o' (a)m)=e,(1 Qo '(a)m)=e,(aQ@m)=ae, (1 Qdm)
=af(m), and if {(m)=e,(1Qm)=>io(x;)®y;m=0 then by a canonical ho-
momrphism AR ;M—M; aQmMW— o~ }(a)m, {,(m)=0 is sent to m=>;x;y,m=
0. Thus, AQM=3ccPe(1QM)=3ccD M as left A-modules. Now,
we shall show that the subspaces {¢,(1QM); o =G} of i*t.4(q)=(AQ zM, itq)
are orthogonal each other and ¢,(1® zM) is isometric to o*(q)=(,M, oq) for
each c=G. For m, neM and o, TG, we have itq(e,(1Qm), e.(1Qn))=it.q
(Zio (2)Qyim, 23,7(x;)Qy n) =23 ;0(x:)teq(yim, y m)7(x,;) =2 ; veco (%:)Y
(a(yim, 3 m))(x) = Sheco (Sixsa™ ()Y (alm, )7 (0770 )= {51 ™)

ggi ‘:z:. Accordingly, we obtain (A@pM, itsq)= 3 sec | e(1®M) and an

isometry &,: («M, oq)—>(e-(1QM), it,q); mwW e, (1Qm) for each o G, hence
1*otex(9) =2 vec L o*(q)-

3. Witt groups
Let A be a ring with involution.

DEFINITION 4. (cf. [2]) A sesqui-linear left A-module ¢=(M, g) is called
hermitian, if g(m, n)=gq(n, m) is satisfied for every m, neM. And, a hermitian
left A-module (M, q) is called metabolic, if there exists a hermitian left A-module
(V@ V*,h,) defined by k (v+f, o' +f)=f()+f'(v)+g(v, v'), v, V' EV, f, f EV*
=Hom4(V, A) for some hermitian left 4-module (V, g), and if (M, g) is iso-
metric to (VDV*, h,). We shall call that a hermitian left 4-module (¥, g) is
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reflexive, (finitely generated projecctive), if M is reflexive i.e. the map &: M—
Hom y(Hom (M, A), A); &(m) (f)=f(m), f €Hom (M, A), me M, is an A-iso-
morphism, (M is finitely generated projecteve).

Let 9,(4), (94(A4)), denote the category of non degenerate and reflexive,
(finitely generated projective), hermitian left A-modules and their isometries, and
M, (A4), (M4(A4)), the subcategory of 9,(A4), (D4(4)), consiting of metabolic left
A-modules.” Since 9,(4) and M ,(4), (Ds(4) and M ,(4)), have the product | ,
we can construct the Witt-Grothendieck group GW,(4), (GW 4(4)), and the Witt
group W,(A), (Wp(A)). We can check that from the inclusion map i: B—A4,
the trace map #3: A—B and ¢ in G,

i*: W/B) — W,(A), (WyB) = WyA)),
ok W,(A) = W(B), (Wy(A4) > WyB)), and
o*: W/(A) = W,(4), (Wy4) = Wi4)),

are induced, where < U(C,) and 4 DB is a G-Galois extension with involution.

Lemma 3. Let ADB be a G-Galois extension with involution. If M is a
reflexive left B-module, then AQ gM 1is also a reflexive A-module.

Proof. If £: M—Homg(Homgy(M, B), B); m\W—(f W f(m)) is a B-iso-
morphism, I®&: AR zM—>AR gHomg(Homg(M, B), B) is an A-isomorphism.
Since ®: AQ gHomz(M, B)—Hom4(AQ zM, A); aQ f W (a' @mM-> a’f(m)a)
is an A-isomorphism, the composition @'=Hom(®™*, I)o®: AQ zHomz(Hompg
(M, B), B) - Hom (Hom4(M, A), A) is also an A-isomorphism, and so is
@’ o(IRE): AQ zM—Hom 4(Hom 4(ARQ zM, A), A). We can check @'o(IQE)
(a®m) (f)=f(a®m) for fEHom ,(AQ zM, A) and a@meEAQ zM; For f
Hom (4A® sM, 4), we put ®'(f)=30;Q¢; in AQ zHomz(M, B), then we
have  @'c (IQE) (a®m) (f)= P(aQE(m)) (f)=Hom(7, I) o (a®E(m)) ()=
D (aQE (m)) (7)) = P (a®E(m)) (b:Qg:) = 22b:& (m) (g:)a=21bigi(m)a=
Sag,(m)b,=f(a®m). Thus, AQ M is reflexive over 4.

Lemma4. Let ADB be a G-Galois extension with involution. If M is a
reflexive left A-module, then M is also reflexive over B.

Proof. Since by Lemma 2, 6: Hom 4(M, A)—-Homg(M, B); f Wtgo f is
a B-isomorphism, the lemma is obtained from the following commutative dia-

gram;

1) Inorder that ,(4) becomes a set, we need to do an restriction on the cadinal number
of module, for example, 9,(4)C{(M, q); cardinal number of M <N}.
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M ———;’:i———-—> Hom o(Homy(M, A4), A)
A 0
Hom g(Hom 4(M, A), B)
€5 Hom(6°*, I)

Hom g(Hompg(M, B), B) .

The commutativity is as follows; for any meM and feHompz(M, B), setting
g=07'(f) in Homj(M, A), we have Hom (07, I)ofo& o(m) (f)=Hom(07*, I)
(teoE a(m)) (f) = taok a(m) (07(f))=te(g(m))=1s08(m)=F(m)=E s(m) (f)-

Lemma 5. Let ADB be a G-Galois extension with involution, C, the fixed
subring of the center of A by the involution, and u an element of the unit group
U(Cy). If ¢=(M, q) is in M, (A), (My(A)), then i*(9)=(AR pM, 13), t3x(q)=
(8M, t3q) and o*(q)=(M, oq), for =G, are in M,(4), (Mp(4)).

Proof. This is easily obtained from Lemma 3 and Lmma 4.

Thus, group-homomorphisms of Witt groups ¢*, t4« and o*, for c€G, are
well defined. From now on, we shall denote by W(A4) one of W,(A4) and W,(A4).
We put G*= {o*: W(A)>W(A); s =G}, Tex=reera™ and W(A4)®'={[q]E
W(A); a*([q])=[q] for all c*=G*}.

From Theorem 1 we have

Theorem 2. Let ADB be a G-Galois extension with involution. Then, we
have

i*ot,;*:TGt on W(A).

Let ADB be a G-Galois extension with involution, C, the fixed subring of
the center of 4 by the involution. Then easily we have

Lemma 6. For any uc U(C,), a sesqui-linear left B-module (A, b}) defined
by bt: AX A—B; (a, a' )Wt (aud’) is non degenerate and hermitian.

DErFINITION 5. ADB is called an odd type G-Galois extension with involu-
tion, if there exists u in U(C,) such that (4, b)=<1>_| h,,, <1>=(B, I); I(b, b')=
b, for b, ¥ =B, and h,, is a metabolic left B-module.

Proposition 2. Let A be an algebra over a commutative ring R, and ADR
an odd type G-Galois extension with involution. We suppose that u is in the fixed
subring of the center of A by the involution such that u is unit in A and (A, b¥)=
<> h,, for a metabolic left R-module h,,—(N, h,,). Then we have tiyoi*=1I on
W(R) and Y ,cc | o*up={1>_| i*(h,,) as hermitian left A-modules, where {u)
denotes a hermitian left A-module defined by a form A X A—A; (x, y)Wxuj.
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Proof. If g=(M, q)is in 9,(R), (Dp (R)), then tiyoi*(q)=(A R M, tiiq) is
also in §,(R), (D5(R)). We can check #%ig=5b*®q as follows; for any a@m,
a' @m' in AQ g M, we have tiig(a@m, a’ @m')=t (uaq(m, m')a’)=t(uaa’)q(m, m’)
=b¥(a, a’)q(m, m)=b{Rq(aQ@m, a’@m’). Since R is commutative and 4 is an
R-algebra, the tensor product (4, b%)Q(M, ¢9)=(AQ M, biRq)=(AQ M, t4iq)
is well defined in 9,(R), (D4(R)), and so we have #%y0i*(q)=btRq=({1>_1 h,,)
Re=(1>®q9)1L (r,Rq9)=ql (h,Rq). But, by Lemma 3 and Lemma 4, if M is
reflexive over R then AQ M =(RON)QpgM=MD(NRrM) is also reflexive
over R, and hence so is N®rM. Accordingly, 4,Qq9=(NQ M, k,®q) is in
9.(R), (95 (R)). On the other hand, %,,®q is also metabolic,? (cf. [5], Lemma
1.2 and Lemma 1.5). Therefore, we have #%,0i*([¢])=[q] for all [¢] in W(R).
Since we have easily (4, b¥)=t(<w>) and (4, b¥)=~<1>_| h,, as hermitian left
R-modules, we obtain #*(b¥)=1*otes(<u>)=>sec | o*<u> by Theorem 1.
Therefore >, | a*Cup={1>_| i*(h,,).

Theorem 3. Let A be an algebra over a commutative ring R, and ADR an
odd type G-Galois extension with involution. Then we have

1) *: W (R)—>W,(A) and i*: Wy(R)—W »(A) are injective,

2) tgx: W, (A)—=>W,(R) and tyy: Wiy(A)— W (R) are sujective and split, and
so W (A)=i*(W,(R))DKer tgy, Wy(A)=i*(WyR))PBKer tyy,

3) Ker tg=Ker Tor, Imi*=Im Tgx, i.e. i*: W, (R)—Tex(W,(A)) and i*:
W o(R)— T (W p(A)) are isomorphisms.
Furthermore, if A is commutative, then we have Tex(W,(A))=W,(A)¢" and
Te(Wy(A)=W(A)®, i.e. i*: W, (R)=>W, (A and i*: Wy(R)—>Wy(A)** are
isomorphisms.

Proof. Let C, be the fixed subring of the center of A by the involution.
For any u< U(C,) and a sesqui-linear left A-module g=(, g), the scaling “q=
(M, “q) by u is defined to be “g: M X M—A; (m, ny\W—uq(m, n). If g=(M, q)
is non degenerate, or hemitian, then so is “g=(M, “q), respectively. If ¢ is me-
tabolic then so is ¥q. Therefore, a scaling [¢q]W\—>[*q] defines a group-automor-
phism g of the Witt group W(4). Take u in U(C,) such that (4, b%)=<1>_| h,,.
Since by Proposition 2 #44ci*=1, we have that i*: W(R)—W(4) is injective and
I=t4yot*=tyopoi*. Therefore, it is obtained that #,,: W(A4)—W(R) is surjec-
tive and split, and W(A)=Ker #,4 P poi*(W(R))==Ker 1,4Pi*(W(R)). Since by
Theorem 1 i*oty = Te+x on W(A), we have i*=i*ot yopoi*=Tgwopoi*, and so
i*: W(R)—T¢«(W(A)) is an isomorphism and Ker tg=Ker T, If A is a
commutative ring, then W(4) becomes a commutative ring with identity [{1}].
Ter: W(A)—>W(A)®" is a ring-homomorphism, and T, (W(4)) is an ideal of
W(A4)¢*. But by Proposition 2 Tg«(<up)=<1>_| i*(h,,) and ¢*(h,,) is a metabolic

2) See Appendix.
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left A-module. Therefore, [{1D>]="Te+([<w>]) is in To(W(A)), and so Te+(W(A))
=W(4)*".

4. Examples

In this section, we expose some examples of Galois extension with involu-
tion.

ExampLE 1. Let L, K be fields and LDK a G-Galois extension with non
trivial involution. Put L= {a€L; a=a} and K,=L,N K. Then we have two
cases;

Case I; K=+K,, then LDL, and K DK, are quadratic extensions, G induces
the Galois group of L,DK,, and L=L,K=L,® K.

Case II; K=K,, then LDL,DK and [L : K]=|G| is even.

Proposition 3. (cf. [11]) Let L, K be fields and L DK a G-Galois extension
with involution. Then LOK odd type if and only if |G| =[L : K]=odd.

Proof. If LDK is odd type then obviously [L : K]=odd. We shall show
the converse. Firstly, we suppose that LD K is a G-Galois extension with trivial
involution and |G|=o0dd. Then there is an a in L such that L=K[a]. Put
[L : K]=2m+-1. From the proof of Scharlau’s theorem (cf. [7], Th. 1.6, p. 195),
we have that a K-linear map f: L—K defined by f(1)=1 and f(a")=0 for i=
1, 2, -+, 2m, defines a non degenerate bilinear left K-module (L, b%) by b¥(x, y)
=f(xy) for x, yEL, where uL is determined by b}(u, —)=f. Then we have
(L, b9)=K | (KaDKa*PD---PKa™), where K=<1>, and KaP---PKa™ is a
metabolic subspace, because Ka®---@Ka™ is a total isotropic subspace of it.
Accordingly, LDK is odd type. Secondaly, suppose that LDK is a G-Galois
extension with non trivial involution, and |G |=o0dd. By Case I, the involution
is non trivial on K, i.e. K#K,, and so L=L,K=L,Q K. Since L,DK, be-
comes a G-Galois extension with trivial involution, L,DK, is odd type, and so
there is # in L, such that (L,, b%) is isometric to the orthogonal sum of (1> and
some metabolic K,-subspace #,,. Then we have (L, b¥)=i*(L,, b?)=(K & g,Lo»
1Y) =1*({1>)_L i*(h,,)=<1>_| i*(h,,) as hermitian K-modules, and *(4,,) becomes
a metabolic K-module. Thus, LDK is odd type.

Corollary 1. Let LOK be fields and a G-Galois extension with involution.
If |G| =odd, then the inclusion map i: K—L induces an isomorphism of hermitian
Witt groups; i*: W(K)— Te(W(L))=W(L)®".

ExampLE 2. Let R be a commutative ring, (¥, ¢) a non degenerate qu-
adratic R-module having a orthogonal base; (V, ¢)=Rv, | Rv, | -+ | Rv,. Then
2 and ¢(v;) =1, 2, --- n are invertible in R. Let p,, be a symmetry defined by
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v, ie. p,,,.(x)=x—l%)i) v; for k& V. 'The Clifford algebra C(V, g)=Cy(V, )
q\%:
DC,(V, q) is a separable and Z/(2)-graded R-algebra (cf. [1], [8]). Each p,, is

extended to an algebra-automorphism p; of C(V, g), for i=1, 2, --- n, and §; is
homogeneous i.e. p,(C,(V, 9))=C,(V, g),j=0,1. C(V, g) has an involution
defined by (x,x,-:-x,)=x,---x,x, for x;€V. Then p; is compatible with this
involution. Let G be a group of automorphisms of C(V, q) generated by 4, 6,
+=*bn. Then, we can show that C(V, ¢) DR is a G-Galois extension with involu-
tion.

Proposition 4. Let C(V, q), b,, b, *** pn and G be as above. Then C(V, q)
DR s a G-Galois extension with involution, and G=(p,) X (p) X +++ X (Hn).

Proof. If n=1, C(Rv,, )= R[X]/(X*—q(v,)) is a separable quadratic exten-
sion of R, and so C(Rv,, ¢ DR is a Galois extension with Galois group (4,) (cf.
[8]). Suppose that n>1and C(Ro,P---PRo,_,, g DR is a Galois extension with
Galois group (8,) X (4,) X +-* X (fn-,). Since Rov,P:--PRv,=(Rv,P---PRv,_,)
LRo,, it is well known that C(Ro,®-@®Ro,, g)—C(R0,® B Ry, B
C(Rv,, q), where @ denotes the graded tensor product over R. Let x,, - x,
and y,, -** y, be a (8,) X -+ X (b4-,)-Galois system of C(Rv,P---DRov,_,, g) and
Uy, - up and w,, - w, a (B,)-Galois system of C(Rv,, q). x;, y; and u,, w; are
chosen as homogeneous elements in C(Rv, -+ PRov,,_,, ) and C(Rv,, g), respec-
tively. Then, {(—1)*®ix,Qu;; 1<i<s, ISj<t#} and {y;Qw;; 1<i<s, 1<
J=t} are a (b,) X +++ X (Bp-,) X (p)-Galois system of C(Rov,P-+- PR, 9)=C(Rv,
®D-+DRv, _,, q)@C(R'v,,, q), where 0u; and 9y; denete the degree of u; and y;.
Because, >3 (—1)¥®ix,Qu; 0 X 7(y:;Qw;) =2 ;%0 (y:) Qu,;7(w;)= {(1)®1 :
IXT=IXT o e (p) XX (bn_y) and TE(5y). Since C(Ro,®DRor, &
o XT=IXI P Pr-1 Pn ! v
C(Rv,, 9)=C(Rv,P---PRo,_,, §)QC(Rv,, q) as R-modules and (C(Rv,B---B
Ro,_,, )Q C(Rv,, q)) (ﬁl)(al)x“'x‘?”')=C(R7Jl@---EBR'ZJ,,_“ q)(s?l)x"-x(f':‘,._,)@C(Rvm
q)“;\"’:R@R:R, we have that C(Rv,P - B Rv,, ) DR is a Galois extension with
Galois group (8,) X ** X (b,). Thus, the proposition is obtained by induction.

ExampiE 3. Let A DB be a G-Galois extension with involution. The nX
n-matrix ring A, over A has an invoution A,—>A,; (a;;)W-*(a;;), where (" )
denotes the transpose matrix. Then, 4,DB,, is also a G-Galois extension with
involution. Furthermore, if ADB is odd type, then so is 4,DB,. Because,
we suppose that « is a unit in the fixed subring C, of the center of A by the in-
volution, and (4, %) is a orthogonal sum of <{1> and a metabolic B-left module
h,=(N, k). Then A,~B,Q zA as B,-left modules and C, is the fixed subring
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of the center of A4, by the involution. Therefore, we have (4,, b%)=(B,Q 4,
16Y)=1*(1> | i*h,={1>_| i*h, as sesqui-linear B,-left modules, and i*h, is a
metabolic B,-module, where 7:B<B,,.

Using the Morita context, Example 3 is extended as follows;

ExampLE 4. (cf. [2], Chap. I, 8.) Let ADB be a G-Galois extension with
involution, A(4, G)=3),ccPAu, a crossed product of 4 and G with a trivial
factor set, and M a faithful left A(4, G)-module. We may assume that u; is
the identity element in A(4, G), and 4 is a subring of A(4, G). We suppose
that M has a non degenerate hermitian form [ , J: M X M—A4 satisfying [u,(m),
u,(n)]=c([m, n]) for every oG and m,ncM. Put A°=Hom (M, M) and
I=Hom,4 (M, M), then M is regarded as right A-module and so as 4- A-
bimodule. We can define an involution A—A; AM X by [m, n\]=[mX, n] for
every m,n<M (cf. [2], p. 61). For each o €G, a ring-automorphism ¢’: A—A
is defined by ma’(\)=u,((u;'(m))r) for meM and nEA. Put G’'={o’; s=G}.
Since #,u,=u,. in A(4, G), the map G—G’; o W’ is a group homomorphism.
We can easily check A®=T". For any AEA, ¢’ €G’, o/(X)=0c’()) is satisfided;
for any m, neM, we have [mo’(X), n]=/[u,(u; (m)X), n]l=o([u; (m)X, u;'(n)]=
o([uz*(m), u*(n)A])=[m, na’(\)]=[ma’(7), n]. Put MC= {me M; u,(m)=m for
all c=G}, then MS becomes a left B-module. We can show that if M€ is
finitely generated projective and generator over B, then A DT is also a G’-Galois
extension with involution and G’=G. Now, we shall prove this. We denote
by ( , ) a sesqui-linear form M x M—A defined by [m, m'\m"’=m(m’, m"") for
every m, m’ and m”’ €M (see [2], p. 61).

Lemma 7. Under above conditions, we have M=AMCS=AQ z;MC®, and
[, ] #nduces a non degenerate hermitian form [ , 1| M€ X M€ over B.

Proof. Let «, -+ x,, and y,, -+ ¥, be a G-Galois system of 4. For any
meM, m is written as m="3"; ,co¥:i0(V:)us(M)= co®io(yim)=2ix:tc(yim),
and is contained in AMC, where t5(y;m)=3rcct,(yim) is in MC. If >Va;Qm;
is an element in A® zMC such that >a;m;=0, then we have >a,Qm;=2; ;
xte(y ;a)Qm=32; ;% ,;Qtc(y ;a:)ym=23 % ,;Qts(y ;2 a;m;)=0. Therefore, M=
AMCS=A® zMFC is obtained. Since o([m, n)]=[u,(m), u,(n)] for every c€G
and m,neM, [, I'=[ , ]|M®X MFC defines a hermitian B-form [ , ]': M€ X
M¢—B. By M=AM®°, [M° m]'=0 implies m=0. If f is any element in
Homgz(M¢C, B), then I® f is in Hom (M, A), hence there is an element 7 in M
such that f=[—, m]. But, f(n) is in B for all n&M¢, then we have [n, m]=f(n)
=a([n, m))=[u,(n), u(m)]=[n, u,(m)] for all ne MC, o G, and so m=u,(m) for
all e =G, i.e. meMC. Therefore, [ , ]’ is non degenerate.

Proposition 5. If M€ is finitely generated projective and generator over B,



GaLois EXTENSION WITH INVOLUTION OF RINGS 701

then ADT is a G'-Galois extension with involution, and G'=G.

Proof. Let x,, -+ x, and y,, --- y, be G-Galois system of 4. Since M€ is
a finitely generated projective and generator B-module, and [ , J|M¢X M€ is
non degenerate, hence there exist m,, --+ m, and n,, +-- n,, u,, - u, and v,, *** v,
in M€ such that 33[m;, n;]=1, I=3Y[—, w]o;=>Y(u;, v;). Put mj,=% umni;
=y,v;. Then we have 3% .(mi;, u,(n; ;)= ;(% s, us(y;0:)) =22 ;[— % jus]

[—, ulvs; fi =7 1; f =1
7 o) =5 [~ sl (y o= { Tl o st for o = f g o o2
Since nf; is expressed as ng,=3[ms, mln; ;= ym(ny, ni;), we have
20 u(me s me) o’ (ny, nt;)) =23, ; e(mij, tg(mp(ney m7}))) = 2% ;(mij, us (7))

={é:f§£::j Therefore, {(m;;, my); 1<i<s<, 1<j=n, 1<k=<r} and

{(ng, n7;); 1=50<s, 1=<j<n, 1<k=<r} are G’-Galois system of A and G=G".
Thus ADT is a G’-Galois extension with involution.

Corollary 2. Let A be an algebra over a commutative ring R, and ADR a
G-Galois extension with involution. If M is a faithful left A(A, G)-module such
that M is finitely generated projective over A and M has a non degenerate hermi-
tian form [ , | M X M—A satisfying o([m, n))=[u.(m), u,(n)] for all n, meM
and o €G, then A=Hom 4(M, M) DT'=Homy, 4 )(M, M) is a G-Galois extension
with involution.

Proof. Since, under the condition of the corollary, we have #,(4)=R and
M=AMC®=AR zMC, we conclude that M€ is a direct summand of M as R-
module. Therefore M€ is finitely generated projective and generator over R,
and by Proposition 5 ADT is a G’-Galois extension with involution and G=G".

Appendix

Let R be a commutative ring.

Lemma A. ([5], Lemma 1.2) Let (M, q) be a non degenerate hermitian R-
module. Then (M, q) is metabolic if and only if there is an R-direct summand N of
M such that N*=N.

Lemma B. (cf. [5], Lemma 1.5) Let (M, q) be any non-degenerate hermitian
R-module and (N, h,,) a metabolic R-module such that N is a projective R-module.
If (N, h,,)Q(M, §)=(NR®RrM, h,,Rq) is non degenerate, then (N, h,,)QQ(M, q) is

also metabolic.

Proof. Suppose (N, k,,)=(UDU*, h,), where U¥*=Homg(U, R) and (U, g)
is a hermitian R-module. By Lemma 4, it is sufficient to show (U*@Q@M)t=
U*QM in (UQMBPU*QM, h,RQq). If >u;@m;is in (U*QM)LN(URQM),
then we have h,®q(u;Q@m;, fQx)=h (u;, f)q(m;, )=2 f(u;) g(m;, x)=
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9 f(u;)m;, x)=0, for every x&M and feU¥*, hence 3 f(u;)m;=0 for every
feU*. Since U is projective over R, there exist {f,€U*; j&I} and {v,€U;
JEI} such that x=37 ;v f(x) for all x & U. Accordingly, >, @m,=3"; ez
0, [ () @m;=33 ;19,3 f(u;)m;=0. We obtain that (U*QM)*-N(UQRM)
=0 and so (U*QM)*=U*QM.
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