Kyuno, S.
Osaka J. Math.
12 (1975), 639-645

ON THE RADICALS OF I'-RINGS

Snoj1 KYUNO

(Received October 17, 1974)

1. Introduction

N. Nobusawa [1] introduced the notion of a I'-ring, more general than a
ring, and proved analogues of the Wedderburn-Artin theorems for simple I'-
rings and for semi-simple I"-rings; Barnes [2] obtained analogues of the classical
Noether-Lasker theorems concerning primary representations of ideals for I'-
rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for
primitive I'-rings having minimum one-sided ideals, and obtained several other
structure theorems for simple I'-rings; Coppage-Luh [5] introduced the notions
of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical
for T'-rings and Barnes’ [2] prime radical was studied further. Also, inclusion
relations for these radicals were obtained, and it was shown that the radicals all
coincide in the case of a T'-ring which satisfies the descending chain condition
on one-sided ideals.

In this paper the notions of semi-prime ideals are extended to I'-rings, and
it is shown that all of the following conditions are equivalent: (1) O is a semi-
prime ideal. (2) QFisann-system. (3) The I-residue classring M/Q contains
no non-zero strongly nilpotent ideals. (4) The prime radical P(Q) of the ideal
O coincides with Q. Also, the following characterization of P(M) is obtained.
P(M) is a semi-prime ideal which is contained in every semi-prime ideal in M.
Let R be the right operator ring of a I'-ring M. For PCR and for QC M we
define P*={xeM:[I',x]CP} and Q¥={3[a;, x;]ER: M(X[et;, x:]) = O} .
In [5] the following theorem was proved. If P(M) is the prime radical of the
right operator ring R of the I'-ring M, then P(M)=P(R)*.

We show the following result dual to the above theorem, P(R)=P(M)* .
As a result, it is obtained that P(M)*'*=P(M) and P(R)**'=P(R). The similar
properties hold for the Levitzki nil radical and Jacobson radical. Also, some
radical properties are cosidered.

2. Preliminaries

Let M and T be additive abelian groups. If for all a,b,ce M, and a,B<T,
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the following conditions are satisfied, (1) aabEM (2) a(a+ B)b=aab+-asb,
aa(b+c)=aab-+aac, (a+b)ac=aac+bac (3) (acb)Bc=aa(bBc), then following
Barnes [2], M is called a T'-ring. If these conditions are strengthened to, (1’)
aabe M, aaBET (2') same as (2) (3') (aad)Bc=a(abB)c=aa(bBc) (4) xvy=0
for all x, y& M implies y=0, then M is called a I"-ring in the sense of Nobusawa
[1]. If A and B are subsets of a I"-ring M and ©CT', we denote A8B, the
subset of M consisting of all finite sums of the form >la;a;b;, where a,€4,

b;eB, and a;=0. For singleton subsets we abbreviate this notation, for
example, {a} ®B=a®B. A right (left) ideal of a I"-ring M is an additive sub-
group I of M such that ITM I (MTI<I). If Iis both a right ideal and a left
ideal, then we say that I is an ideal, or a two-sided ideal of M. For each a of a
T'-ring M, the smallest right ideal containing a is called the principal right ideal
generated by a and is denoted by |a>. Similarly we define <a| and <{a)>, the
principal left and two-sided (respecitively) ideals generated by a. Let I be an
ideal of a T'-ring M. If for each a+-1I, b+1 in the factor group M/, and each
yeT, we define (a+1)y(b+1)=avb+1, then M|I is a T'-ring which we shall
call the T"-residue class ring of M with respect to I. Let M be a I'-ring and F
the free abelian group generated by I'X M. Then

A= {Zn(v;, x)EF: ae M = Ximayx; = 0}

is a subgroup of F. Let R=F/A, the factor group, and denote the coset (v, x)
+A4 by [v, x]. It can be verified easily that [a, ]+ [c, Y]=[a, ¥+] and [a, ]
+[B, x]=[a+B, x] for all @, BT and x, y= M. We define a multiplication in
R by

Z[ah x,]g (B y;]1= ‘21 [t %:8;,] -
If we define a composition on M X R into M by a3[a;, x;]=2 aa,%; for

aeM, 3[a;, x]ER, then M is a right R-module, and we call R the right

operator ring of the I'-ring M. Similarly we may construct a left operator ring
L of M so that M is a left L-module. If A4 is a right (left) ideal of R (L), then
MA (AM) is an ideal of M. For subsets NS M, ®CT, we denote by [, N]
the set of all finite sums 2[4 %] in R, where v;,€ ®, x;€ N, and we denote by

[(®, N)] the set of all elements [p, x] in R, where p=®, x&N. Thus, in

particular, R=[T', M]. For PCR we define P*={ac M: [T, a]=[T, {a}]<P}.

It then follows that if P is a right (left) ideal of R, then P* is a right (left) ideal

of M. Also, for any collection C of sets in R, ﬂé’*:(ﬂCP)*. For Q<M we
Pe Pe

define Q¥ = {3 [a;, x:]ER: M(X [, #,])<Q}. Then it follows that if Q is a

right (left) ideal of M, then Q*’ is a right (left) ideal of R. Also for any collec-
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tion 9 of sets in M, N O*=(N Q)*¥. For other notions relevant to I'-rings we
ec9g es9

refer to [5].

3. Semi-primeness

Following Barnes [2] an ideal P of a T'-ring M is prime if for any ideals
A, BcM, ATBCP implies ACP or BCP. A subset S of M is an m-system
in M if S=¢ or if a, b S implies {a)T'b>N S=+¢. Barnes [2] has shown that
an ideal P is prime if and only if its complement P° is an m-system. The
prime radical P(4) of the ideal 4 in a T'-ring M is the set consisting of those
elements r of M with the property that every m-system in M which contains
meets A (that is, has nonempty intersection with 4). The prime radical of the
zero ideal in a T'-ring M may be called the prime radical of the I'-ring M which
we denote by P(}). Barnes [2] has characterized P(M) as the intersection of
all prime ideals of M. We now make the following definition. An ideal Q in a
T-ring M is said to be a semi-prime ideal if and only if it has the following
property: If A4 is an ideal in M such that ATACQ, then A<Q. It is clear
that a prime ideal is semi-prime. Moreover, the intersection of any set of semi-
prime ideals is a semi-prime ideal. It follows easily by induction that if Q is a
semi-prime ideal and A is an ideal and (AT)"A=(ATAT---AT)ACQ for an
arbitary positive integer n, A Q. Following Coppage-Luh [5] a subset .S of M
is strongly nilpotent if there exists a positive integer z such that (ST)"S=0. We
state the following theorem whose proof we omit since it can be established by
very easy modifications of the proof of Theorem 4.11 in [6].

Theorem 3.1. An ideal Q in a T-ring M is a semi-prime ideal in M if and
only if the T-residue class ring M|Q contains no nonzero strongly nilpotent ideals.

The following result is easy to prove.

Theorem 3.2. If Q is an ideal in a T-ring M, the following conditions are
equivalent: (1) Q is a semi-prime ideal. (2) If acM such that {ayT'{a><=Q,
then ac Q.

A set N of elements of a T'-ring M is said to be an n-system if N=¢ or if
ac N implies {a)T'(a)>NN=+¢. The equivalence of conditions (1) and (2) of
Theorem 3.2 assures us that an ideal Q in a I'-ring M is semi-prime if and
only if its complement Q¢ is an n-system. By proofs analogous to Lemma 4.14
and Theorem 4.15 in McCoy [6] we have the following results.

Lemma 3.3. If N is an n-system in a T-ring M and a= N, there exists an
m-system L such that ac L and LCN.

Theorem 3.4. An ideal Q in a T'-ring M is a semi-prime ideal in M if and
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only if P(Q)=0.

In view of Barnes’ characterization of P(M) as the intersection of all prime
ideals of M (Theorem 7 in [2]) we have the following immediate corollary to the
preceding theorem.

Corollary 3.5. If Q is an ideal in a T'-ring M, then P(Q) is the smallest semi-
prime ideal in M which contains Q.

We have the following characterization of P(M) which follows immediately
from Corollary 3.5 and Theorem 7 in [2].

Theorem 3.6. P(M) is a semi-prime ideal which is contained in every semi-
prime ideal in M.

4. The prime radical
Coppage-Luh [5] have proved the following Lemma 4.1 and Theorem 4.2.

Lemma 4.1. If P is a prime ideal of R, then P* is a prime ideal of M.

Theorem 4.2. If P(R) is the prime radical of the right operator ring R of the
T-ring M, then P(M)=P(R)*.

We prepare the following lemma.

Lemma 4.3. If Q is a prime ideal of M, then Q*' is a prime ideal of R.

This proof is found in the proof of Theorem 4.1 in [5]. We now prove the
following theorem dual to Theorem 4.2.

Theorem 4.4. If P(R) is the prime radical of the right operator ring R, then
P(R)=P(M)*.

Proof. Let P be a prime ideal of R, by Lemma 4.1 P* is a prime ideal of

M. Letusset P*=Q. Then by Lemma 4.3 Q* is a prime ideal of R. Since

O¥={reR: MrcQ}={reR: [T, Mr]C P}, it follows that RO* =[T", M]Q*

=[I', MO*]<P. Thus by the primeness of P, Q¥ CP. Also, [T, MP]=

[T, M]P=RPcP. Hence, PcQO*. Therefore P=0Q%. It follows that P(R),

which is the intersection of all prime ideals of R, contains ﬂg)Q*'=( ﬂg)Q)*',
Qe Qe

where 9 is a certain collection of prime ideals of M. But (N Q)¥ 2P(M)¥, so
esg)

we conclude that P(R)2 P(M)*. On the other hand, P(M)*' =(N Q)*' =N Q*,
where the intersection is taken over all prime ideals of M. Since, by Lemma 4.3
each O* is a prime ideal of R, and P(R) is the intersection of all prime ideals
of R, it follows P(R)C P(M)*’. 'Thus P(R)=P(M)*.
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The following result is a consequence of Theorem 4.2 and Theorem 4.4.

Theorem 4.5. If P(R) is the prime radical of the right operator ring R, then
P(M)=P(M)*"* and P(R)=P(R)**'.

The next theorem follows immediately from previous Theorem 4.4 and
Theorem 4.2 in [5].

Theorem 4.6. If I is an ideal of a T-ring M, then P(I)*=I* N P(R),
where P(I) denotes the prime radical of I considered as a T'-ring.

5. The Levitzki nil radical

Following Coppage-Luh [5] a subset S of a I'-ring M is locally nilpotent if
for any finite set F ©.S and any finite set ®CT, there exists a positive integer n
such that (F®)"F=0. Also the Levitzki nil radical of M is the sum of all locally
nilpotent ideals of M and is denoted by _L(M).

Coppage-Luh [5] have proved the next theorem.

Theorem 5.1. If M is a T-ring then L(M)=_L(R)*, where _L(R) is the
Levitzki nil radical of the right operator ring R of M.

We know the following result whose proof will be found in Jacobson [7],
p. 163.

Theorem 5.2. _L(R) is a locally nilpotent ideal.
We prove the following two lemmas.

Lemma 5.3. If ] is a locally nilpotent ideal of a T-ring M, then J* is a
locally nilpotent ideal of R, where R is the right operator ring of M.

Proof. A finite subset of J*’ is a subset of [¢,, F,], where ¢, is a finite subset
of T" and F, is a finite subset of M. Since M[¢,, F,]< ], M¢p,F,< J. Thus
F,¢,F, is a finite subset of J. Since J is locally nilpotent, (F,¢,F;p,)"F,¢,F,=0
for some n. Hence, (F,¢,)”*"'F,=0. Thus [¢,, F,]"*"*=[¢,, (F1,)*" ' F,]=
[¢:, 0]=0. Then J*' is locally nilpotent.

Lemma 5.4. If M is a T-ring then L(R)S L(M)*, where _L(R) is the
Levitzki nil radical of the right operator ring R of M.

Proof. Since L(R) is an ideal by ‘Theorem 5.2., we have R_.L(R)S L(R),
so [T, M].L(R) < L(R), that is, [I", M_L(R)] < L(R). Thus, M_L(R)<_L(R)*. By
Theorem 5.1., we get M_L(R)C _L(M). Therefore L(R)S _L(M)*.

Theorem 5.5. If M is a T-ring then L(M)*'=_L(R), where L(R) is the
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Levitzki nil radical of the right operator ring R of M.

Proof. In view of Lemma 5.3 and the fact that (M) is a locally nilpotent
ideal (Theorem 7.1 in [5]), we know that L(M)*  is a locally nilpotent ideal of
R. By the definition of _L(R), L(M)* <_L(R). On the other hand by Lemma
5.4, L(R)c L(M)*¥. Hence L(M)*=_L(R).

The next theorem follows from Theorem 5.1 and Theorem 5.5.

Theorem 5.6. If [(R) is the Levitzki nil radical of the right operator ring
R of a T-ring M, then L(M)**=_L(M) and L(R)**'=_L(R).

The next theorem follows immediately from previous Theorem 5.5 and
Theorem 7.3 in [5].

Theorem 5.7. If I is an ideal of a T-ring M, then L(I)*'=I* N _L(R).

6. The Jacobson radical

Following Copppage-Luh [5] an element a of a T-ring M is right quasi-
regular (abbreviated rgr) if, for any v T, there exists n,€T, x;&€ M, i=1,2,---,n
such that

xfya—}—fn‘_, xn,-x,-—i xyan;x; = 0 for all xe M .
i=1 i=1

A subset S of M is rqr if every element in S is rgr. J(M)={acsM: {a)is
rgr} is the right Jacobson radical of M. Copppage-Luh [5] have shown the
following Lemma 6.1 and Theorem 6.2.

Lemma 6.1. An element a of a T-ring M is rqr if and only if, for all yET,
[v, a] is rqr in the right operator ring R of M.

Theorem 6.2. If M is a T-ring then J(M)=9(R)*, where J(R) denotes the
Jacobson radical of the right operator ring R of M.

We prove the following theorem dual to Theorem 6.2.
Theorem 6.3. If M is a T-ring, then J(R)=J(M)* .
Proof. If Z‘] [vi, ] J(M)*, then for all x& M
x(Z’ [vs %:]) = Ei]xfy;x,-e (M) .
By Theorem 6.2, for all yeT
[ 29“%“4‘] = [ x]?[fy,-, x]1EH(R).
Hence R '2 [vi, %;] 2s rgr. By the difinition of J(R), Z[«y,-, x;]€ 4(R) and then
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JM¥ CJ(R). I (3, w]€ J(R), for all yET and all x& M
[ A D08, 1] = [, Ssdin] < IR)
Thus
v, Dudax > = {[7, a]ER: ac w25 CH(R) .

Hence, [v,a] is rgr for all y T and for a =<3} x8;x,>. By Lemma 6.1
x8;:x;> is rgr and then x(21[8;, x;])=>x8;x; € (M), that is, M(3[8;, x;]) <
J(M). Therefore [5;, x;]€ J(M)*. Then J(R)CY(M)*. Thus the proof

is completed.
By Theorem 6.2 and Theorem 6.3 we have the following theorem.
Theorem 6.4. J(M)=Zg(M)*'* and J(R)=J(R)** .
The next result follows from Theorem 6.3 and Theorem 8.4 in [5].
Theorem 6.5. If I is an ideal in a T-ring M, J(I)*'=I* N J(R).
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