PERFECT CATEGORIES III
 (HEREDITARY AND QF-3 CATEGORIES)

Manabu HARADA

(Received July 24, 1972)

Recently the author has defined perfect or semi-artinian Grothendieck categories with some assumptions [8], as a generalization of cagegories of modules in [1].

Further he has generalized essential results in [6] to such categories [9]. This note is a continuous work to give a generalizations of results in [3], [4] and [5].

Let R be a ring with identity. R.M. Thrall defined a $Q F-3$ algebra in [3] and many authors defined $Q F-3$ rings and studied them (cf. [10]).
R is called right $Q F-3$ if R has a minimal a fithful right R-module and R is called right $Q F-3^{+}$if the injective hull $E\left(R_{R}\right)$ is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories \mathfrak{U} with generating set of finitely generated objects, (which are equivalent to group valued functor categories ($\left.\mathbb{C}^{0}, A b\right)$ by [8], Theorem 3).
We shall completely determin structures of hereditary (more weakly locally $P P$) and perfect $Q F-3$ (resp, $Q F-3^{+}$) or semi-perfect and semi-artinian $Q F-3$ (resp. $Q F-3^{+}$, however this is a case of $Q F-3$) categories \mathfrak{N}. Furthermore, we shall show that \mathfrak{N} is equivalent to product of \mathfrak{A}_{a} and \mathfrak{A}_{a} is the full subcategory $\mathfrak{M}_{S}^{+1)}$, where S is the ring of upper (resp. lower) tri-angular matrices of a division ring over a well ordered set I, almost all of whose entries are zero, such that if \mathfrak{U} is $Q F-3 I$ has the last element (resp. if \mathfrak{A}, is semi-artinian $Q F-3^{+}$, then I has the last element and hence, \mathfrak{N} is $Q F-3$) and vice versa with some restrictions. Those results are generalizations of [4] and [5].

1. Preliminary results

Let \mathfrak{A} be a Grothendieck category with generating set of finitely generated objects. If every object (resp. finitely generated object) has a projective cover, then \mathfrak{A} is called perfect (resp. semi-perfect). On the other hand, if every non-zero object has the non-zero socle, \mathfrak{Y} is called semi-artinian.

[^0]If \mathfrak{A} is semi-perfect, then \mathfrak{A} has a generating set of completely indecomposable projective $\left\{P_{\infty}\right\}_{I}$. Let $\left(\left\{P_{\alpha}\right\}^{0}, A b\right)$ be the additive contravariant functor category of the pre-additive category $\left\{P_{a}\right\}$ to the category $A b$ of abelian groups. Put $R=\sum_{\alpha, \beta \in I} \oplus\left[P_{\infty}, P_{\beta}\right]$. Then R is called the induced ring from \mathfrak{Y} by $\left\{P_{\infty}\right\}$. By e_{∞} we shall denote idempotents $1_{P_{c o}}$ in R. Let \mathfrak{M}_{R} be the category of all right R-modules. \quad By \mathfrak{M}_{R}^{+}we denote the full subcategory of \mathfrak{M}_{R} whose objects consist of all M such that $M R=M$. Then

Theorem A ([8], Theorem 3). Let \mathfrak{A} be as above Then the following are equivalent.

1) $\mathfrak{\Re}$ is semi-perfect.
2) $\mathfrak{Y} \approx\left(\left\{P_{a}\right\}^{0}, \mathrm{Ab}\right)$.
3) $\mathfrak{2} \approx \mathfrak{M}_{R}^{+}$.

In this note, we only consider a semi-perfect category \mathfrak{A} and hence, \mathfrak{A} will be identified with $\left(\left\{P_{a}\right\}^{0}, A b\right)$ or \mathfrak{M}_{R}^{+}in the following. We note in this case $e_{\alpha} R$ corresponds to P_{a} and $e_{a} R e_{\beta} \approx\left[P_{\beta}, P_{a}\right]$.

We shall make use of same notations in [8] and [9] without further comments and categorical terminologies in [11]. Rings in this note do not contain identities in general.

2. Locally PP-categories

Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated. If $\left\{P_{a}\right\}$ and $\left\{Q_{\beta}\right\}$ are generating sets of \mathfrak{A} such that P_{a} and Q_{β} are completely indecomposable and projetve, then P_{a} is isomorphic to some Q_{β} and vice versa by Krull-Remak-Schmidt's theorem. Let R be the induced ring from \mathfrak{A} by $\{P\}_{\alpha}, R=\Sigma \oplus\left[P_{\alpha}: P_{\beta}\right]$. If $f R$ is projective in \mathfrak{M}_{R}^{+}for any α and β any element f in $\left[P_{\alpha}, P_{\beta}\right], \mathfrak{A}$ is called a locally (right) $P P$-category, (we called it "partially" in [3]).

This is equivalent to a fact that every functor T_{f} in $\left(\left\{P_{a}\right\}^{0}, A b\right)$ defined by $T_{f}\left(P_{\gamma}\right)=f R e_{\gamma}$ is representative for every $f \in\left[P_{a}, P_{\beta}\right]$. We define similarly a left $P P$-category.

We can easily see from the following lemma that right $P P$-categories are also left $P P$-categories and that this defintion dose not depend on $\left\{P_{a}\right\}$.

Lemma 1. Let \mathfrak{N} be a semi-perfect Grothendieck category with a generating set $\left\{P_{a}\right\}$ as above. Then \mathfrak{H} is locally $P P$ if and only if any $f \in\left[P_{a}, P_{\beta}\right]$ is zero or monomorphic, (cf. [9], Proposition 3).

Proof. We assume that \mathfrak{A} is locally $P P$ and $0 \neq f \in\left[P_{\alpha}, P_{\beta}\right]$. Since $f e_{\alpha}=f$, $0 \leftarrow f R \stackrel{\times f}{\leftarrow} e_{\infty} R$ is exact. Further, $e_{\alpha} R$ is indecomposable, and hence, $f R \stackrel{\times f}{\approx} e_{\infty} R$.

Put $K=\operatorname{Ker} f$ and $i: K \rightarrow P_{\alpha}$. If $i \neq 0$, there exists P_{γ} and $h \in\left[P_{\gamma}, K\right]$ such that $0 \neq i h \in\left[P_{\gamma}, P_{a}\right] \subseteq R$. Then $0=f i h=f e_{a} i h$ and $e_{a} i h \in e_{a} R$. Hence, $i h=e_{a} i h=0$, which is a contradiction. Therefore, f is monomorphic. Conversely, if f is monomorphic, then a mapping $\psi: f R \rightarrow e_{\alpha} R\left(\psi(f r)=e_{\alpha} r\right)$ is isomorphic. Hence, $f R$ is projective in \mathfrak{M}_{R}^{+}.

As an analogy of Theorem 4 in [9], we have
Theorem 1 ([9]). Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated object. Then \mathfrak{A} is locally PP and perfect (resp. semi-artinian) if and only if \mathfrak{A} is equivalent to $\left[I, \mathfrak{N}_{i}\right]^{r}\left(\text { resp. }\left[I, \mathfrak{N}_{i}\right]^{l}\right)^{2)}$ with functors $T_{i j}$ such that $\psi_{k_{j i}:}: T_{k j}(B) \rightarrow T_{k_{i}}(P)$ for $k>j>i($ resp. $k<j<i)$ is monomorphic, for any minimal object B in $T_{j i}(P)$ and $P \in \mathfrak{H}_{i}$, where $\mathfrak{A l}_{i}$'s are semi-simple categories with generating sets.

Proof. We assume that \mathfrak{A} is locally $P P$ and $\left\{P_{\alpha}\right\}$ is a generating set of completely indecomposable projectives. Making use of Lemma 1 and the proof of Theorem 4 in [9] we know that \mathfrak{A} is equivalent to $\left[I, \mathfrak{N r}_{i}\right]^{r}$ (resp. $\left.\left[I, \mathfrak{N}_{i}\right]^{l}\right)$ and that $\left\{\boldsymbol{P}_{\alpha}^{(i)}=\widetilde{S}_{i}\left(P_{i \alpha}\right)\right\}^{2)}$ (resp. $\left\{S_{i}\left(P_{i \alpha}\right)\right\}$) is a generating set in $\left[I, \mathfrak{N}_{i}\right]^{r}$ (resp. $\left.\left[I, \mathscr{A}_{i}\right]^{l}\right)$, where $\left\{P_{i \infty}\right\}$ is a generating set of \mathfrak{U}_{i} and $P_{i \infty}$ is minimal. Since $f \in\left[\boldsymbol{P}_{a}^{(i)}, \boldsymbol{P}_{\beta}^{(j)}\right]$ is monmomorphic by Lemma 1, we have the conditions in the theorem. The converse is also clear from the structure of $\left[I, \mathscr{\mathscr { N }}_{i}\right]^{r}\left(\right.$ resp. $\left.\left[I, \mathfrak{N}_{i}\right]^{l}\right)$ and Lemma 1.

Remark. If we replace a minimal objects B in the above condition by any finite coproduct of $B_{w_{i}}$, it is equivalent to the condition $\left.(*)-1\right)$ in Theorem 3 in [9]. Hence, this fact gives us the defference between semi-hereditaty and locally $P P$. We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. Let \mathfrak{N} be as in Theorem 1 and $\left\{P_{a}\right\}$ a generating set of completely indecomposable projectives. If \mathfrak{A} is locally $P P$, then the following are equivalent.

1) All P_{a} are J-nilpotent.
2) $1 \mathrm{~L}\left(P_{a}\right)<\infty$ for all α.
3) \mathfrak{A} is semi-artinian.

Futhermore, the following are equivalent.

1) $\mathrm{rL}\left(P_{a}\right)<\infty$ for all α.
2) श is perfect, (cf. [9], Theorem 6).

3. QF-3 categories

Let \mathfrak{A} be a Grothendieck category with generating set of projectives $\left\{P_{a}\right\}$. An object C in \mathfrak{A} is called faithful if for any non-zero morphism $f: P_{a} \rightarrow P_{\beta}$, there exists $g \in\left[P_{\beta}, C\right]$ such that $g f \neq 0$. Let $\left\{Q_{\beta}\right\}$ be another generating set of projec-

[^1]tives and $f^{\prime} \neq 0 \in\left[Q_{\varepsilon}, Q_{\delta}\right]$. Since $Q_{\varepsilon} \oplus Q_{\varepsilon}{ }^{\prime}=\sum_{J} \oplus P_{\alpha}$ and $Q_{\delta} \oplus Q_{\delta}^{\prime}=\sum_{J^{\prime}} \oplus P_{\beta}$, we have a non-zero morphim $f: \sum_{J} \oplus P_{a} \rightarrow \sum_{J^{\prime}} \oplus P_{\beta}$ such that $f \mid Q_{z}=f^{\prime}$ and $f \mid Q_{z}{ }^{\prime}=0$. Hence, there exist α, β such that $\left(p_{\beta} f \mid P_{a}\right) \neq 0$, where p_{β} is the projection of $\sum_{J^{\prime}} \oplus P_{\beta}$ to P_{β}. Then we have $g^{\prime} \in\left[P_{\beta}, C\right]$ such that $g^{\prime}\left(p_{\beta} f \mid P_{a}\right) \neq 0$. Hence, $g^{\prime} p_{\beta} f \neq 0$. Let $i_{Q_{\varepsilon}}$ and $i_{Q_{\delta}}$ be inclusions. Peut $g^{\prime} p_{\beta} i_{Q_{\delta}}=g \in\left[Q_{\delta}, C\right]$. Then $g^{\prime} p_{\beta} f i_{Q_{\mathrm{B}}}=g^{\prime} p_{\beta} i_{Q_{8}} f^{\prime}=g f^{\prime}$ and $\operatorname{Ker} f=Q_{\mathrm{s}^{\prime}}$. Therefore, $g f^{\prime} \neq 0$. Thus, we have shown that the faithfulness of C dose not depend on generating sets of projectives.

Let $\left(\mathbb{C}^{\circ}, A b\right)$ be the contravariant additive functor category, where \mathbb{C} is the small pre-additive category $\left\{P_{a}\right\}$. Then \mathfrak{A} is equivalent to $\left(\mathfrak{X}^{0}, A b\right)$. Hence C is faithful and only if the corresponding functor in the above is a faithful functor. Furthermore, $\left(\mathbb{C}^{0}, A b\right)$ is eqivalent to \mathfrak{M}_{R}^{+}, where R is the induced ring from $\left\{P_{a}\right\}$. Then faithful functors correspond to faithful modules in \mathfrak{M}_{R}^{+}.

An object M is called a minimal faithful if M is faithful and every faithful object is a coretract of M. According to R.M. Thrall [13], we call $\mathfrak{A} Q F-3$ if \mathfrak{A} contains a minimal faithful object M or equivalently, if \mathbb{M}_{R}^{+}has a minimal faithful module.

From now on we shall assume that \mathfrak{A} is a Grothendieck category with generating set of small projectives P_{α}. Further, we shall assume that \mathfrak{X} is a locally $P P$ and semi-perfect category and hence, we may assume that all P_{a} are completely indecomposable and $P_{\alpha} \not \approx P_{\beta}$ for $\alpha \neq \beta$.

Every object A in \mathfrak{U} has an injective hull of A in \mathfrak{U} (see [11], p. 89, Theorem 3.2). We denote it by $E(A)$. If $E\left(\sum_{I} \oplus P_{a}\right)$ is projective, \mathfrak{Y} is called $Q F-3^{+}$ (see [2]).

Let Q be an injective envelope of R in \mathfrak{M}_{R}^{+}and M a minimal faithful module in \mathfrak{M}_{R}^{+}. Then M is a retract of Q and hence, M is injective. Furthermore, since R is faithful, M is also a retract of R. Therefore, M is projective, and injective and we may assume that M is a right ideal of R.

Since R is semi-perfect, $R=\sum_{I} \oplus e_{\infty} R$ and $e_{\infty} R e_{\infty}$'s are local rings. In the proof of theorem 4 in [9], we considered indecomposable projective objects P in \mathfrak{M}_{R}^{+}such that $\left[P, e_{\infty} R\right]=0$ for all $e_{\infty} R \approx P$. We call such P belonging to the first block. Contrary, if $\left[e_{\infty} R, P\right]=0, P$ is called belonging to the last bolck.

Lemma 2. Let \mathfrak{A} be a locally $P P$ and $Q F-3$ semi-perfect Grothendieck category and R the induced ring. Then a minimal faithful object is a coproduct of $e_{a_{i}} R$'s which belong to the first block.

Proof. Since M is injective and a retract of $\sum_{I} \oplus e_{a} R, M=\sum_{J} \oplus e_{a_{i}} R$ by [14], Lemma 2. Further, since $e_{\alpha_{i}} R$ is injective $\left[e_{\omega_{i}} R, e R\right]=0$ by Lemma 1 if $e_{\omega_{i}} R \approx e R$. Hence, $e_{\omega_{i}} R$ belongs to the first block.

Lemma 3. Let \mathfrak{Y} be as above and $\sum_{J} \oplus e_{i} R$ a minimal faithful ideal. Then for any $\delta \in I$ there exist $\varphi(\delta)$ in J such that $e_{\varphi(\delta)} R e_{\delta} \neq 0$.

Proof. Let x be a non-zero element in $e_{\delta} R e_{\delta}$. Since $\sum_{I} \oplus e_{i} R=\sum_{J, I \ni \infty} \oplus e_{i} R e_{\omega}$ is faithful, $e_{\varphi(\delta)} R e_{\delta} x \neq 0$ for some $\varphi(\delta)$.

Let e_{i} be as above. We put $\mathrm{R}(i)=\left\{\gamma \mid \in I, e_{i} R e_{\gamma} \neq 0\right\}$.
Lemma 4. Let \mathfrak{A} be as above and further perfect. Then $\mathrm{R}(i)$ contains the last element δ in $\mathrm{R}(i)$ namely, $e_{i} R e_{\delta} \neq 0$ and $e_{\delta} R$ belongs to the last block.

Proof. We assume that $\mathrm{R}(1)$ does not contain the last element in $\mathrm{R}(1)$. Put $N=\sum_{\gamma \in \mathrm{R}(1)} \oplus e_{1} R /\left(\sum_{\varepsilon \geqslant \gamma} e_{1} R e_{\varepsilon}\right) \oplus \sum_{j \geqslant 2} \oplus e_{j} R$ and put $N_{1}=\sum_{r \in \mathrm{R}(1)} \oplus e_{1} R /\left(\sum_{\varepsilon \geqslant \gamma} e_{1} R e_{\varepsilon}\right)$, and $N_{2}=\sum_{j \geqslant 2} \oplus e_{j} R$. We shall show that N is faithful in \mathfrak{M}_{R}^{+}. Let $x=\sum x_{a \beta}$, $x_{\alpha \beta} \in e_{\alpha} R e_{\beta}$ and $x_{\alpha \beta} \neq 0$. If $\varphi(\alpha) \neq 1$, we take $0 \neq y \in e_{\varphi(\alpha)} R e_{\omega} \in N_{2}$. Then $y x=\sum y x_{\alpha \beta} \in \sum \oplus e_{\varphi(\alpha)} R e_{\beta}$ and $y x \neq 0$ by Theorem 1, since $e_{\delta} R e_{\delta}$ is a division ring by Lemma 1 . We assume $\varphi(\alpha)=1$. Then $\alpha \in \mathrm{R}(1)$ and there exists $y \in e_{1} R e_{\infty}$ and $0 \neq y x_{\alpha \beta} \in e_{1} R e_{\beta}$. Hence, $\beta \in \mathrm{R}(1)$. Since $\mathrm{R}(1)$ does not have the last element, we obtain γ in $\mathrm{R}(1)$ such that $\beta<\gamma$. Hence $\left\{y+\left(\sum_{\varepsilon \geqslant \gamma} e_{1} R e_{\varepsilon}\right)\right\} x \neq 0$. Therefore, N is faithful and N contains a submodule N_{0} which is isomorphic to $e_{1} R$. Then $N_{0}=n R \approx e_{1} R$ and $n e_{1}=n$. Since $e_{j} R e_{1}=0$ for $j \geqslant 2, n \in N_{1}$. Let $n=\sum_{i=1}^{n} \bar{r}_{\gamma_{i}}, \bar{r}_{\gamma_{i}} \in e_{1} R /\left(\sum_{\gamma_{i} \leq \varepsilon} e_{1} R e_{\varepsilon}\right)$. Then $n\left(e_{1} R e_{\gamma}\right)=0$ for $\gamma=\max \left(\gamma_{i}\right)$. However, $e_{1}\left(e_{1} R e_{\gamma}\right) \neq 0$. Which is a contradiction.

Theorem 3 ([4], Theorem 1). Let \mathfrak{A} be a perfect or semi-perfect and semiartinian and locally $P P$-Grothendieck category with a generating set of small preojectives $\left\{G_{\gamma}\right\}_{I_{1}}$. If \mathfrak{A} is $Q F-3$, there exist non-isomon phic indecomposable and projective objects $\left\{P_{a}\right\}_{J}\left(\right.$ resp. $\left.\left\{Q_{\beta}\right\}_{J}\right)$ such that

1) $\left\{P_{a}\right\}\left(\right.$ resp. $\left.\left\{Q_{\beta}\right\}\right)$ is an isomorphic representative class of the projectives in the first (resp. last) block,
2) $\sum_{J} \oplus P_{\infty}$ is a minimal faithful and injective object and
3) each P_{a} contains the unique minimal subobject S_{∞} which is isomorphic to Q_{a}. Hence $\left[S_{a}: \Delta_{a}\right]=1$ and S_{a} is projective in \mathfrak{M}_{R}^{+}where $\Delta_{\infty}=\left[Q_{a}, Q_{\infty}\right]$ is a division ring. Furthermore, any indecomposable projective is isomorphic to a subobject in some P_{a}.

Proof. We shall prove the theorem on the induced ring $R=\sum \oplus e_{\omega} R$; $e_{\infty} R \not \approx e_{\beta} R$ if $\alpha \neq \beta$. We know from Lemmas 2 and 3 that $\sum_{J} \oplus e_{i} R$ is a minimal faithful ideal, $e_{i} R$ belongs to the first block and $e_{i} R$ contains a submodule $e_{i} R e_{\gamma_{i}}$ where γ_{i} is the last element in $\mathrm{R}(i)$. Since $e_{\gamma_{i}} R e_{\mathrm{g}}=0$ for $\varepsilon \neq \gamma_{i}, \mathrm{r}_{i}=e_{i} R e_{\gamma_{i}}$ is a right ideal. Put $\Delta_{i}=e_{\gamma_{i}} R e_{\gamma_{i}}$, then Δ_{i} is a division ring by Lemma 1. $e_{i} R$ is
indecomposable and injective. On the other hand, any Δ_{i}-submodule of r_{i} is a R-module. Hence, $\left[\mathfrak{r}_{i}: \Delta_{i}\right]=1$ and r_{i} is the unique minimal subideal in $e_{i} R$. Since $\mathfrak{r}_{i} \approx e_{\gamma_{i}} R e_{\gamma_{i}}=e_{\gamma_{i}} R, \mathfrak{r}_{i}$ is projective. Furthermore, $\mathfrak{r}_{i} \approx \mathfrak{r}_{j}$ if $i \neq j$, since $e_{i} R \approx e_{i} R_{j}$ and $e_{i} R, e_{j} R$ are injective hull of r_{i} and \mathfrak{r}_{j}, respectively. Let $e_{\delta} R$ be in the last block. Then $e_{\varphi(\delta)} R e_{\delta} \neq 0$ and $\varphi(\delta) \in J$. Hence, $e_{\varphi(\delta)} R e_{\delta}=\mathfrak{r}_{\varphi(\delta)}$. Therefore, $\left\{e_{\gamma_{i}} R\right\}$ is an isomorphic respresentative class of projectives in the last block. Let $\varepsilon \in I-J$. Then $e_{\varphi(\varepsilon)} R e_{\varepsilon} \neq 0$ by Lemma 3. Hence, $\left[e_{\mathrm{\varepsilon}} R, e_{\varphi(\mathrm{\varepsilon})} R\right] \neq 0$, which means that $e_{\varepsilon} R$ does not belong to the first block. Furthermore, $e_{\varepsilon} R$ is ismorphic into $e_{\varphi(\mathrm{e})} R$ by Lemma 1.

Lemma 5. Let R be the induced ring from a locally PP-Grothendieck category with generating set $\left\{P_{a}\right\}$ as above. We assume that $\left\{e_{i} R\right\}_{J}$ is a set of injective objects such that $E=\mathrm{E}(R)$ in \mathfrak{M}_{R}^{+}is an essential extension of $\sum_{J} \oplus e_{i} R^{\left(K_{i}\right)}$. Then any $f \in\left[e_{\beta} R, E\right]$ is either zero or monomorphic, where $e_{i} R^{\left(K_{i}\right)}=\sum_{K_{i}} \oplus e_{i} R$ and e_{β} is any primitive idempotent.

Proof. We assume $f \neq 0$. Then $\mathfrak{r}=f^{-1}\left(\sum_{i=1}^{n} e_{i_{t}} R\right) \neq 0$ for some $e_{i_{t}}$. Since $\sum_{t=1}^{n} e_{i_{t}} R$ is injective, $f \mid \mathfrak{r}$ is extended to $g \in\left[e_{\beta} R, \sum_{i=1}^{n} e_{i_{t}} R\right]$. Then g is monomorphic by Lemma 1. Therefore, f is monomorphic.

Theorem 4. Let \mathfrak{N} be a perfect, locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is $Q F-3^{+}$if and only if every projective P_{γ} in the first block are injective and for any indecomposable projective P, there exists P_{a} in $\left\{P_{\gamma}\right\}$ that $\left[P, P_{a}\right] \neq 0$. Hence, $\left\{P_{\sigma}\right\}$ is an isomorphic reprensentative class of all projective and injective indecomposable objects.

Proof. Let R be the induced ring from completely indecomposable projectives P_{∞}. We assume \mathfrak{A} is $Q F-3^{+}$. Then $E=\mathrm{E}(R)$ is isomorphic to $\sum_{J \ni j} \oplus e_{\alpha_{j}} R^{\left(K_{j}\right)}$, It is clear that $e_{\alpha_{j}} R$ belongs to the first block from Lemma 1. For any projective $e_{\beta} R, \mathrm{E}\left(e_{\beta} R\right) \subset E$. Hence, $\left[e_{\beta} R, e_{\alpha_{j}} R\right] \neq 0$ for some j, which implies $\left\{e_{a_{j}} R\right\}$ consist of all projectives in the first block. Conversely, we assume that all projectives $\left\{e_{i} R\right\}_{J}$ in the first block are injective and have the property in the theorem. Since $\left[e_{\beta} R, e_{i} R\right] \neq 0$ for any $e_{\beta} R, E \supset \sum_{K_{i}, J} \oplus e_{i} R^{\left(K_{i}\right)} \supset R$ for suitable indices K_{i}. We assume $E \neq \sum_{K_{j}, J} \oplus e_{j} R^{\left(K_{j}\right)}$. Then there exists $g \in$ $\left[e_{k} R, E\right]$ such that $\operatorname{Im} g \nsubseteq \sum \oplus e_{j} R^{\left(K_{j}\right)}$. On the other hand, we obtain $g^{\prime} \in\left[e_{k} R, E_{0}\right]$ such that $g^{\prime} \mid g^{-1}\left(E_{0}\right)=g$ from the proof of Lemma 5 , where E_{0} is a finite coproduct of $e_{j} R$'s. Then $\left(g-g^{\prime}\right) \mid E_{0}=0$. Therefore, $g=g^{\prime}$ by Lemma 5, which is a contradiction.

Remark. The fact $\left[e_{\beta} R, e_{\alpha_{j}} R\right] \neq 0$ is equivalent to the validity of Lemma 3 for the above $\mathfrak{\imath}$.

Theorem 4'. Let \mathfrak{A} be a semi-perfect, semi-artinian and locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is $Q F-3^{+}$if and only if \mathfrak{A} contains projectives P_{a} in the first block and all of such P_{a} are injective and for any indecomposable projective P, there exists P_{∞} such that $\left[P, P_{a}\right] \neq 0$. Hence, $\left\{P_{a}\right\}$ consist of all projective and injective indecomposable objects. In this case $\mathfrak{2}$ is QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).

Proof. We assume \mathfrak{U} is $Q F-3^{+}$. Let S be the socle of $E=\mathrm{E}(R)$ and $S=\sum \oplus S_{\gamma}$, where S_{γ} 's are minimal objects in E. Then $E=\mathrm{E}(S)$ and $E_{\gamma}=\mathrm{E}\left(S_{\gamma}\right)$ is imdecomposable and projective by the assumption. Hence, from [8], Corollary 1 to Lemma $2 E_{\gamma} \approx e_{\gamma} R$, which belongs to the first block. Let $e_{\beta} R$ be any indecomposable ideal. Then $\mathrm{E}\left(e_{\beta} R\right) \subset E$. Hence, $\left[e_{\beta} R, e_{\gamma} R\right] \neq 0$ by Lemma 1 and the proof of Lemma 5. Since each $e_{\gamma} R$ has the non-zero socle, \mathfrak{Y} is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The converse is similarly proved as in the proof of Theorem 4.

Lemma 6. Let \mathfrak{A} be as in Theorem 3 (resp. Theorem 4') and $e_{1} R$ in the first block. Let η be the last (resp. first) element in $\mathrm{R}(1)$. Then $\mathrm{R}(1)=\mathrm{C}(\eta)$. If \mathfrak{A} is as Theorem $4, \mathrm{R}(1)^{\gamma} \supseteq \mathrm{C}(\gamma)$ for any $\gamma \in \mathrm{R}(1)$ and for any δ and $\delta^{\prime} \in(1)$ there exists ε in $\mathrm{R}(1)$ such that $e_{\delta} R e_{\varepsilon} \neq 0$ and $e_{\delta}{ }^{\prime} R e_{\varepsilon} \neq 0$, where $\mathrm{R}(1)^{\gamma}=\{\alpha \mid \in \mathrm{R}(1), \alpha \leq \gamma\}$ and $\mathrm{C}(\eta)=\left\{\delta \mid \in I, e_{\delta} R e_{\eta} \neq 0\right\}$.

Proof. Let γ be in $\mathrm{R}(1)$ and δ be in $(I-\mathrm{R}(1))^{\gamma}$. Then $e_{\varphi(\delta)} R e_{\delta} \neq 0$ and $\varphi(\delta) \neq 1$. We assume $e_{\delta} R e_{\gamma} \neq 0$. Then $e_{\varphi(\delta)} R e_{\gamma} \supset\left(e_{\varphi(\delta)} R e_{\delta}\right)\left(e_{\delta} R e_{\gamma}\right) \neq 0$ by Theorem 1. We take non-zero element x, y in $e_{\varphi(\delta)} R e_{\gamma}$ and $e_{1} R e_{\gamma}$, respectively. Consider a mapping $\psi: x R \rightarrow y R$ such that $\psi(x r)=y r$. Then ψ is well defined and R-homomorphic by Theorem 1. Hence, $\left[e_{\varphi(\delta)} R, e_{1} R\right] \neq 0$, which is a contradiction. Therefore, $\mathrm{R}(1)^{\gamma} \supset \mathrm{C}(\gamma)$. Let x be a non-zero element in $e_{1} R e_{\gamma}$. Then $x R$ is a projective and indecomposable ideal in $e_{1} R$ by the assumption.
 implies $q \leqslant \gamma$ (resp. $q \geqslant \gamma$). Similarly, we have $q \geqslant \gamma$ (resp. $q \leqslant \gamma$). We assume $\mathrm{R}(1)$ contains the last (resp. first) elemeny η. Then $e_{\gamma} R e_{\eta} \approx x R e_{\eta}=($ the socle of $\left.e_{1} R\right) \neq 0$. Hence, $\mathrm{R}(1)=\mathrm{C}(\eta)$. Let $\gamma^{\prime} \in \mathrm{R}(1)$. Then $e_{\gamma} R$ and $e_{\gamma^{\prime}} R$ are monomorphic to $e_{1} R$. Since $e_{1} R$ is injective, their images have a non-zero intersection \mathfrak{r}. Hence, $\mathfrak{r}_{e_{\varepsilon}} \neq 0$ for some ε. Therefore, $e_{\gamma} R e_{\mathrm{e}} \neq 0$ and $e_{\gamma^{\prime}} R e_{\mathrm{\varepsilon}} \neq 0$.

Lemma 7 (cf. [12]). Let Δ be a division ring and I a well ordered set. Let $\left\{e_{i j}\right\}_{I}$ be a set of matrix units. Put $R=\sum_{i \leq j \in I} \oplus e_{i j} \Delta$. Then $e_{11} R$ is injective and hence, R is hereditary and $Q F-3$ in $\mathfrak{M}_{R}^{+} . \quad R$ is $Q F=3$ if and only of I contains the last element.

Proof. We first note that each $e_{i i} R$ contains only right ideals of form $e_{i j} R$ $i \leqslant j$ and $\left[e_{i i} R, e_{11} R\right] \approx \Delta$. Let

be a given exact diagram in $\mathfrak{M}_{R^{+}}^{+}$. We shall extend f to M by the standard argument. We obtain a maximal extension $f_{0}: N_{0} \rightarrow e_{11} R$ such that $N_{0} \supset N$ and $f_{0} \mid N=f$. If $M \neq N_{0}$, there exists m in M such that $m e_{i i} \notin N_{0}$, since $\left\{e_{i i} R\right\}$ is a generating set. Put $M^{\prime}=N_{0}+m e_{i i} R$ and $\mathfrak{r}=\left\{x \mid \in e_{i i} R, m x \in N_{0}\right\}$. Then \mathfrak{r} is a right ideal in $e_{i i} R$. Hence, $\mathfrak{r} \approx e_{j j} R$ for some $j>i$. We define $g: \mathfrak{r} \rightarrow e_{11} R$ by setting $g(x)=f_{0}(m x)$ for $x \in \mathfrak{r}$. Then $e_{1 i} \mid \mathfrak{r}$ and g are in $\left[\mathfrak{r}, e_{11} R\right] \approx e_{j 1} \Delta \approx \Delta$. Hence, $g=\delta\left(e_{1 i} \mid \mathfrak{r}\right)$ for some δ in Δ, namely $g(x)=\delta e_{1 i} x$ for any x in r . Therefore, we have an extension $f_{0}^{\prime}: M^{\prime} \rightarrow e_{11} R$ by $f_{0}^{\prime}\left(n_{0}+m x\right)=f_{0}\left(n_{0}\right)+\delta e_{1 i} x$. Hence, $N_{0}=M$. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect and $\mathrm{J}(R)=\sum_{i, j \geq i+1} \oplus e_{i j} \Delta$. Since $\mathrm{J}(R)$ is projective, R is hereditary by [9], Lemma 3. Therefore, R is $\mathrm{QF}-3^{+}$by Theorem 4. If R is $\mathrm{QF}-3, e_{11} R$ is a minimal faithful module by Theorem 3. Hence, I has the last element by Theorem 3. Conversely, I has the last element, then $e_{11} R$ contains the unique submodule $e_{1 \gamma} R$. It is clear that $e_{11} R$ is faithful module. Let M be a faithful module in \mathfrak{M}_{R}^{+}. Then there exists m in M such that $m e_{1 \gamma} \neq 0$. Hence, we have a monomorphism f of $e_{11} R$ to M by $f\left(e_{11} r\right)=m e_{11} r$. Therefore, R is QF-3.

Lemma 8. Let Δ be a division ring and $\left\{e_{i_{j}}\right\}_{I}$ a set of matrix units. Put $S=\sum_{I} \oplus \Delta e_{i j}$ and $R=\sum_{i \geq j} \oplus \Delta e_{i j}$. Then

1) R is semi-hereditary.
2) R is semi-hereditary and $Q F-3$ (or $Q F-3^{+}$) if and only if I has the last element.
3) R is hereditary and $Q F-3^{+}$(or $Q F-3$) if and only if I is finite, (cf. [12]).

Proof. 1) Let \mathfrak{r} be a right ideal generated by $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Since $x_{i}=\sum_{\alpha} x_{i} e_{\infty}$ and $x_{i} e_{\omega} \in \mathfrak{r}$, we may assume that $x_{i} \in R e_{\alpha_{i}}$, where $e_{\alpha_{i}}=e_{\alpha_{i} \alpha_{i}}$. Let $\alpha_{i}=\max \left(\alpha_{i}\right)$. Considering $R e_{\alpha_{i}}$ as a Δ-vector space, we may assume x_{1}, \cdots, x_{t} are linearly independent over Δ. If $\sum_{i=1}^{t} x_{i} r_{i}=0$ for $r_{i} \in R$ and $x_{1} r_{1} \neq 0$, then $r_{1} e_{\varepsilon} \neq 0$ for $\varepsilon \leqslant \alpha_{1}$. Considering in S, we have $\sum_{i} x_{i} e_{d_{i}} r_{1} e_{\varepsilon x_{1}}=0$ and $e_{d_{i}} r_{1} e_{d_{i}} \neq 0$. Therefore, $\sum x_{i} R=\sum \oplus x_{i} R$. Put $\alpha_{2}=\max \left(\left\{\alpha_{i}\right\}-\alpha_{1}\right)$. We consider a vector space V_{2} generated by $\left\{\sum_{1}^{t} \oplus x_{i} R e_{\omega_{2}}, x_{j} e_{\alpha_{2}}\right\}$. We may assume $V_{2}=\sum \oplus x_{i} R e_{\omega_{2}}$ $\oplus y_{1} \Delta \oplus \cdots \oplus y_{s} \Delta$, where $y_{j}=x_{k} e_{\alpha_{2}}$ for some k. We shall show that $\sum \oplus x_{i} R+$ $\sum y_{j} R=\sum \oplus x_{i} R \oplus \sum \oplus y_{j} R$. We have already shown that $\sum y_{i} R=\sum \oplus y_{i} R$. Let $\sum x_{i} r_{i}=\sum y_{j} r_{j}{ }^{\prime} ; r_{i}, r_{j}{ }^{\prime} \in R$. If $r_{1}^{\prime} \neq 0, r_{1}^{\prime} e_{\varepsilon}{ }^{\prime} \neq 0$ for some ε^{\prime}. Then multiplying $e_{\mathrm{z}}{ }^{\prime} \alpha_{2}$ in the above, we have $\sum x_{i} e_{\alpha_{1}} r_{i} e_{\mathrm{e}^{\prime} \alpha_{2}}=\sum y_{i} e_{\alpha_{2}} r_{i}{ }^{\prime} e_{\mathrm{e}^{\prime} \alpha_{2}}$ and
$e_{\alpha_{1}} r_{i} e_{e^{\prime} \alpha_{2}} \in R e_{\omega_{2}}, \delta_{1}=e_{\alpha_{2}} r_{1}^{\prime} e_{\varepsilon^{\prime} \alpha_{2}}^{\prime} \neq 0$. Hence, $\sum y_{i} \delta_{i}=\sum x_{i} e_{a_{2}} r_{i} e_{e^{\prime} \alpha_{2}} \in \sum x_{i} R e_{a_{2}}$, which is a contradication. On the other hand, $x_{i} R \approx e_{\omega_{1}} R, y_{j} R \approx e_{\omega_{2}} R$. Repeating this argument, we show that \mathfrak{r} is projective.
2) We assume that I has the last element α. We shall show that $e_{\text {ac }} R$ is injective as an analogy of Lemma 7. Let \mathfrak{r} be a right ideal in some $e_{\beta \beta} R$. Put $\mathrm{R}(\mathfrak{r})=\left\{\gamma \mid \in I, \mathfrak{r} e_{\gamma \gamma} \neq 0\right\}$. If $\mathrm{R}(\mathfrak{r})$ contains the last element δ in $\mathrm{R}(\mathfrak{r})$, then $\mathfrak{r}_{\delta}=\sum_{\delta^{\prime} \leq \delta} e_{\beta \beta \delta} R e_{\delta^{\prime}}{ }^{\prime} \approx e_{\delta \delta} R$. Let ε be the least element in $I-\mathrm{R}(\mathrm{r})$. If ε is not a limit element, $\mathrm{R}(\mathfrak{r})$ contains the element. We assume ε is limit. Then $\mathfrak{r}=\underset{\mathfrak{g}^{\prime}<\mathfrak{s}}{\cup} \mathfrak{r}_{\varepsilon^{\prime}}$. We shall show $\left[\mathfrak{r}, e_{a \phi \infty} R\right] \approx \Delta e_{\omega \omega}$. Let $f \in\left[\mathfrak{r}, e_{\alpha \beta} R\right]$ and put $f_{\varepsilon^{\prime}}=f \mid \mathfrak{r}_{\varepsilon^{\prime}} \in\left[\mathfrak{r}_{\mathrm{r}^{\prime}}, e_{\infty \neq \alpha} R\right]$ $\approx\left[e_{\varepsilon^{\prime}} \varepsilon^{\prime} R, e_{a \infty} R\right]$. Then $f_{\varepsilon^{\prime}}=\delta_{\varepsilon^{\prime}} e_{a \alpha a}$ for some $\delta_{\varepsilon^{\prime}} \in \Delta$. For $\varepsilon^{\prime} \varepsilon^{\prime \prime}$ we have $\delta_{\varepsilon^{\prime}} e_{a \varepsilon^{\prime}}$ $=f_{\varepsilon^{\prime}}\left(e_{a \varepsilon^{\prime}}\right)=f\left(e_{a \varepsilon^{\prime}}\right)=f_{\varepsilon^{\prime \prime}}\left(e_{\beta^{\prime}}\right)=\delta_{\varepsilon^{\prime \prime}} e_{a \varepsilon^{\prime}}$. Hence, $\delta_{\varepsilon^{\prime}}=\delta_{\varepsilon^{\prime \prime}}$. If we put $\delta=\delta_{\varepsilon^{\prime}}, f=\delta e_{a \beta}$. Thus, we have prepared necessary facts to use the proof of Lemma 7. Therefore, $e_{\alpha \omega} R$ is injective in \mathfrak{M}_{R}^{+}and R is $Q F-3^{+}$and $Q F-3$ by Theorem 4'. The converse is clear from 1) and Theorems 3 and 4^{\prime}.
3) If I is finite, R is a hereditary and $Q F-3$ artinian ring by [4], Theorem 3. We assume that R is hereditary and $Q F-3$ or $Q F-3^{+}$. Then I has the last element by Theorem 4. We assume that I contains a limit number α. Consider $\mathrm{J}\left(e_{\alpha} R\right)=\sum_{\alpha<\gamma} \oplus e_{\alpha \gamma} \Delta$. Let $x=\sum_{i=1}^{n} e_{\alpha \gamma_{i}} \delta_{i}$. Then $x=\sum e_{\alpha \gamma_{i}+1} \delta_{i} e_{\gamma_{i}+1 \gamma_{i}} \in \mathrm{~J}\left(e_{\alpha} R\right) \mathrm{J}(R)$ $\subseteq \mathrm{J}^{2}\left(e_{\omega} R\right)$. Hence, $\mathrm{J}\left(e_{\infty} R\right)=\mathrm{J}^{2}\left(e_{a} R\right)$, which implies $\mathrm{J}\left(e_{\infty} R\right)$ is not projective by [8], Proposition 2. Therefore, I does not contain the limit number, but contain the last element, Hence, I is finite.

From the above proof and [9] Lemma 3 we have
Corollary. Let R be as above. Then R is hereditary if and only if $|I| \leqslant \aleph_{0}$ and does not contain the last element.

Theorem 5. Let \mathfrak{Q} be a perfect or semi-perfect and semi-artiniam, and locally $P P-G r o t h e n d i e c k$ category with generating set of small projectives. If \mathfrak{A} is $Q F-3^{+}$ or QF-3, then \mathfrak{A} is equivalent to $\Pi \mathfrak{U}_{a}$, where \mathfrak{U}_{a} 's are of the same type as \mathfrak{A} and \mathfrak{A}_{a} is not expressed as a product of full subcategories.

Proof. Let R be the induced ring from \mathfrak{A} and $\sum e_{i} R$ the coproduct of projectives in the first block. We shall show $e_{\varepsilon} R e_{\varepsilon^{\prime}}=0$ for either $\varepsilon \in R(i)$, $\varepsilon^{\prime} \notin \mathrm{R}(i)$ or $\varepsilon \notin \mathrm{R}(i), \varepsilon^{\prime} \in \mathrm{R}(i)$. If $\varepsilon \in \mathrm{R}(i) e_{\varepsilon} R$ is monomorphic to a submodule of $e_{i} R$. Hence, $e_{\mathrm{e}} R e_{\mathrm{z}}{ }^{\prime}=0$ if $\varepsilon^{\prime} \notin \mathrm{R}(i)$. Next, we assume $\varepsilon^{\prime} \in \mathrm{R}(i)$. If $e_{\mathrm{e}} R e_{\mathrm{s}}{ }^{\prime} \neq 0$ for $\varepsilon \notin \mathrm{R}(i), 0 \neq e_{\mathrm{e}} R e_{\mathrm{\varepsilon}} e_{\mathrm{\varepsilon}} R e_{\gamma_{i}} \subset e_{\mathrm{\varepsilon}} R e_{\gamma_{i}}$ for some $\gamma_{i} \in \mathrm{R}(i)$ (or the last (resp. first) element in $\mathrm{R}(i)$) by Lemma 1 , which contradicts to a fact $\mathrm{R}^{\gamma_{i}(i)} \supset \mathrm{C}\left(\gamma_{i}\right)$. Put $R_{i}=\sum_{\mathrm{g}, \mathrm{e}^{\prime} \in R(i)^{\mathrm{e}}} e_{\mathrm{e}} R e_{\mathrm{g}}$. Then $R=\sum \oplus R_{i}$ as a ring by Theorems 3,4 and 4^{\prime}. It is clear that each R_{i} is $Q F-3^{+}$or $Q F-3$ and directly indecomposable. Hence, we have the theorem.

From the above theorem, we may restrict ourselves to a case of indecomposable categories if \mathfrak{A} is as in the theorem.

Theorem 6. Let \mathfrak{A} be an indecomposable semi-perfect Grothendieck category with generating set of finitely generated objects. Then we have

1) \mathfrak{A} is perfect, (semi-) hereditary and $Q F-3^{+}$(resp. QF-3) if and only if \mathfrak{A} is equivalent to $\left[I, \mathfrak{M}_{\Delta}\right]^{r}$, where I is a well ordered set (resp. with last element).
2) $\mathfrak{\mathscr { U }}$ is semi-artinan, hereditary and $Q F-3^{+}$(or $Q F-3$) if and only if \mathfrak{A} is equivalent to $\left[I, \mathfrak{M}_{\Delta}\right]^{l}$, where I is a finite set
3) \mathfrak{H} is semi-artinian, semi-hereditary and $Q F-3^{+}$(or $Q F-3$) if and only if \mathfrak{A} is equivalent to $\left[I, M_{\Delta}\right]^{l}$, where I is a well ordered set with last element. Where Δ is a division ring and functors $T_{i j}$ in $\left[I, \mathfrak{M}_{\Delta}\right]$ are equal to $1_{M_{\Delta}},\left(c f .\left[2^{\prime}\right]\right.$, Theorem 3.2).

Proof. $\left[I, \mathfrak{M}_{\Delta}\right]^{r}$ is perfect, hereditary and $Q F-3^{+}$by Lemma 7 and [9], Theorem 3. We assume that I contains the last element. [$\left.I, \mathfrak{M}_{\Delta}\right]^{r}$ is $Q F-3$ by Lemma 7. If I is finite, $\left[I, \mathfrak{M}_{\Delta}\right]^{l}$ is semi-primary, hereditary and $Q F-3^{+}$(and $Q F-3$) by Lemma 8. Finally, $\left[I, \mathfrak{M}_{\Delta}\right]^{l}$ is semi-artinian, semi-hereditary and $Q F-3^{+}(Q F-3)$ by Lemma 8 and [9], Proposition 1. Next, we assume that \mathfrak{H} is one of the forms in the theorem. Let R be the induced ring: $R=\sum_{I} \oplus e_{i} R$. Then $e_{1} R$ in the case 1) and $e_{\infty} R$ in cases 2) and 3) are in the first block by Theorems 4 and 4^{\prime}, respectively, where α is the last element in I. Since, $\mathfrak{2}$ is indecomposable, $e_{1} R e_{\gamma}\left(\right.$ resp. $\left.e_{\infty} R e_{\gamma}\right) \neq 0$ for any $\gamma \in I$ by Theorem 5, Lemma 3 and Remark. Let \mathfrak{A} be herediary (cases 1) and 2)). If $\left[e_{1} R e_{\gamma}: \Delta_{\gamma}\right] \geqslant$ 2 (resp. $\left[e_{\infty} R e_{\gamma}: \Delta_{\gamma}\right] \geqslant 2$) for any $\gamma \in I$, there exist linearly independent elements x, y over $\Delta_{\gamma}=e_{\gamma} R e_{\gamma}$. Then $x R+y R=x R \oplus y R$ by [9], Theorem 3, which contradicts to the indecomposability of $e_{1} R$ and $e_{b} R$. Let a, b be non-zero elements in $e_{1} R e_{\gamma}$. As the proof of Lemma 6, a mapping $\psi: a R \rightarrow b R$ such that $\psi(a)=b$ gives a R-homomorphism. Furthermore, ψ is extended in $\left[e_{1} R, e_{1} R\right]=\Delta$, Hence $b=\delta a$ for some $\delta \in \Delta_{1}$. Therefore, $\left[e_{1} R e_{\gamma}: \Delta_{1}\right]=1$. Similarly, we obtain $\left[e_{a} R e_{\gamma}: \Delta_{a}\right]=1$. Next, we assume \mathfrak{A} is semi-hereditary and $Q F-3^{+}$(case 3)). Then $e_{\infty} R$ is in the first block and injective. Let x, y be non-zero elements in $e_{\infty} R e_{\gamma}$. Then $x R+y R$ is a projective right ideal in $e_{\infty} R$. Since $e_{\alpha} R$ contains the unique minimal module and R is semi-perfect, $x R+y R \stackrel{\psi}{\approx} e_{\delta} R$ for some $\delta \in I$. Put $\psi^{-1}\left(e_{\delta}\right)=z$, then $z \in e_{\infty} R e_{\delta}$ and $x=z r, y=z r^{\prime}$ for $r, r^{\prime} \in R$. Hence, $r=\delta$ and $x=z e_{\delta} r e_{\delta}, y=z e_{\delta} r^{\prime} e_{\delta}$. Therefore $\left[e_{\infty} R e_{\gamma}: \Delta_{\gamma}\right]=1$. Similarly to the above, we can show $\left[e_{\omega} R e_{\gamma}: \Delta_{\gamma}\right]=1$. Thus, in any cases $e_{1} R e_{\varepsilon}$ (resp. $e_{\infty} R e_{\varepsilon}$) is a simple Δ_{e}-module. Hence, if $e_{\mathrm{e}} R e_{\gamma} \neq 0, e_{1} R e_{\mathrm{e}} \otimes_{\Delta_{\mathrm{e}}} e_{\mathrm{e}} R e_{\gamma} \subset e_{1} R e_{\gamma}$ implies $\left[e_{\mathrm{e}} R e_{\gamma}: \Delta_{\mathrm{e}}\right]=$ $\left[e_{\varepsilon} R e_{\gamma}: \Delta_{\gamma}\right]=1$ from Theorem 1. Let $x \neq 0 \in e_{i} R e_{j}$. Then Δ_{i} is isomorphic to Δ_{j} by $\xi: \delta_{i} x=x \xi\left(\delta_{i}\right)$. First we choose non-zero elements $m_{1 j}$ in $e_{1} R e_{j}$. Then $e_{j} R$ is monomorphic to $\sum_{k \geq j} m_{1 k} \Delta$ by the multiplication of $m_{1 j}$ from the left side. Hence, we can choose $m_{j k}$ in $e_{j} R e_{k}$ such that $m_{1 j} m_{j k}=m_{1 k}$ (if $e_{j} R e_{k} \neq 0$). Then
$m_{1 i}\left(m_{i j} m_{j k}\right)=m_{1 j} m_{j k}=m_{1 k}=m_{1 i} m_{i k}$. Therefore, $m_{i_{j}} m_{j_{k}}=m_{i k}$ if $m_{i j} \neq 0$ and $m_{j^{k}} \neq 0$. Thus, R is a subring of $\sum_{i \leq j} \oplus e_{i j} \Delta$ (resp. $\sum_{i \geq j} \oplus e_{i j} \Delta$) such that all of elements of some (i, j)-entries may be equal to zero, where $\Delta \approx \Delta_{i}$. We assume $e_{i} R e_{j}=0$ (in cases 1) and 2)). Then $i \neq 1$ (resp. $i \neq \alpha$) and there exists γ from Lemma 6 such that $e_{i} R e_{\gamma} \neq 0, e_{j} R e_{\gamma} \neq 0$. Put $e=e_{11}+e_{i i}+e_{j j}+e_{\gamma \gamma}$ (resp. $e=$ $\left.e_{11}+e_{i i}+e_{j j}+e_{a s s}\right)$. Then $e R e=e_{11} \Delta \oplus e_{1 i} \Delta \oplus e_{1 j} \Delta \oplus e_{1 \gamma} \Delta \oplus e_{i i} \Delta \oplus e_{i \gamma} \Delta \oplus e_{j j} \Delta \oplus$ $e_{j \gamma} \Delta \oplus e_{\gamma \gamma} \Delta$ is hereditary by [9], Corolalry to Lemma 2 if R is hereditary. However, we can easily see that $e R e$ is not hereditary (cf. [6], Theorem 1). Therefore, $R=\sum_{i \leq j} \oplus e_{i j} \Delta$, (resp. $R=\sum_{i \geq j} \oplus e_{i j} \Delta$). Finally, we assume that R is semi-hereditay (case 3)). Let $\gamma<\delta$ be in I. Then since $m_{a \gamma} R+m_{a \delta} R$ is projective, $m_{a \gamma} R+m_{a \delta} R=z R$ as before, where $z \in e_{a} R e_{\delta}$. Hence, $z R=m_{a \delta} R \supset m_{a \gamma \gamma} R$. Therefore, $0 \neq m_{a \gamma \gamma}=m_{a \Delta \delta} e_{\delta} e r_{\gamma}$ implies $e_{\delta} R e_{\gamma} \neq 0$. Thus, \mathfrak{A} is equivalent to $\left[I, \mathfrak{M}_{\Delta}\right]^{l}$. The remainimg parts are clear from Theorems 3,4 and 4^{\prime} and Lemma 8.

Osaka City University

References

[1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960) 466-488.
[2] R.R.Colby and E.A.Rutter: Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968) 253-257.
[2'] -: Generalization of QF-3 algebras, Trans. Amer. Math. Soc. 153 (1971), 371-386.
[3] M. Harada: On semi-primary PP-rings, Osaka J. Math. 2 (1965), 154-161.
[4] -: $Q F-3$ and semi-primary $P P$-rings, I ibid. 2 (1965), 357-368.
[5] —: QF-3 and semi-primary PP-rings II, ibid. 3 (1966), 21-27.
[6] -: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966) 463-484.
[7] -: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
[8] -: Perfect categories I, Osaka J. Math. 10 (1973), 329-341.
[9] -: Perfect categories II, Osaka J. Math. 10 (1973), 343-355.
[10] J.P.Jans: Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108.
[11] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
[12] H.Tachikawa: On left QF-3 rings, ibid. 32 (1970) 255-268.
[13] M.R.Thrall: Some generalizations of quasi-Frobenius algebra, Trans. Amer. Math. Soc. 64 (1948) 173-183.
[14] R.B.Warfield: Decomposition of injective modules, Pacific. J. Math. 31 (1969), 263 -276.

[^0]: 1) see $\S 1$.
[^1]: 2) see [8], §3.
