Harada, M. Osaka J. Math. 10 (1973), 357-367

PERFECT CATEGORIES III

(HEREDITARY AND QF-3 CATEGORIES)

Manabu HARADA

(Received July 24, 1972)

Recently the author has defined perfect or semi-artinian Grothendieck categories with some assumptions [8], as a generalization of cagegories of modules in [1].

Further he has generalized essential results in [6] to such categories [9]. This note is a continuous work to give a generalizations of results in [3], [4] and [5].

Let R be a ring with identity. R.M. Thrall defined a QF-3 algebra in [3] and many authors defined QF-3 rings and studied them (cf. [10]).

R is called right QF-3 if R has a minimal a fithful right R-module and R is called right QF-3⁺ if the injective hull $E(R_R)$ is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories \mathfrak{A} with generating set of finitely generated objects, (which are equivalent to group valued functor categories (\mathfrak{C}° , Ab) by [8], Theorem 3).

We shall completely determin structures of hereditary (more weakly locally PP) and perfect QF-3 (resp, QF-3⁺) or semi-perfect and semi-artinian QF-3 (resp. QF-3⁺, however this is a case of QF-3) categories \mathfrak{A} . Furthermore, we shall show that \mathfrak{A} is equivalent to product of \mathfrak{A}_{σ} and \mathfrak{A}_{σ} is the full subcategory \mathfrak{M}_{S}^{+1} , where S is the ring of upper (resp. lower) tri-angular matrices of a division ring over a well ordered set I, almost all of whose entries are zero, such that if \mathfrak{A} is QF-3 I has the last element (resp. if \mathfrak{A} , is semi-artinian QF-3⁺, then I has the last element and hence, \mathfrak{A} is QF-3) and vice versa with some restrictions. Those results are generalizations of [4] and [5].

1. Preliminary results

Let \mathfrak{A} be a Grothendieck category with generating set of finitely generated objects. If every object (resp. finitely generated object) has a projective cover, then \mathfrak{A} is called *perfect* (resp. *semi-perfect*). On the other hand, if every non-zero object has the non-zero socle, \mathfrak{A} is called *semi-artinian*.

1) see §1.

If \mathfrak{A} is semi-perfect, then \mathfrak{A} has a generating set of completely indecomposable projective $\{P_{\mathfrak{a}}\}_I$. Let $(\{P_{\mathfrak{a}}\}^\circ, Ab)$ be the additive contravariant functor category of the pre-additive category $\{P_{\mathfrak{a}}\}$ to the category Ab of abelian groups. Put $R = \sum_{\mathfrak{a}, \mathfrak{p} \in I} \bigoplus [P_{\mathfrak{a}}, P_{\mathfrak{p}}]$. Then R is called the *induced ring* from \mathfrak{A} by $\{P_{\mathfrak{a}}\}$. By $e_{\mathfrak{a}}$ we shall denote idempotents $1_{P_{\mathfrak{a}}}$ in R. Let \mathfrak{M}_R be the category of all right R-modules. By \mathfrak{M}_R^+ we denote the full subcategory of \mathfrak{M}_R whose objects consist of all M such that MR = M. Then

Theorem A ([8], Theorem 3). Let \mathfrak{A} be as above Then the following are equivalent.

- 1) A is semi-perfect.
- 2) $\mathfrak{A} \approx (\{P_{\alpha}\}^{\circ}, \operatorname{Ab}).$
- 3) $\mathfrak{A} \approx \mathfrak{M}_R^+$.

In this note, we only consider a semi-perfect category \mathfrak{A} and hence, \mathfrak{A} will be identified with $(\{P_{\alpha}\}^{\circ}, Ab)$ or \mathfrak{M}_{R}^{+} in the following. We note in this case $e_{\alpha}R$ corresponds to P_{α} and $e_{\alpha}Re_{\beta}\approx[P_{\beta}, P_{\alpha}]$.

We shall make use of same notations in [8] and [9] without further comments and categorical terminologies in [11]. Rings in this note do not contain identities in general.

2. Locally PP-categories

Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated. If $\{P_{\alpha}\}$ and $\{Q_{\beta}\}$ are generating sets of \mathfrak{A} such that P_{α} and Q_{β} are completely indecomposable and projetve, then P_{α} is isomorphic to some Q_{β} and vice versa by Krull-Remak-Schmidt's theorem. Let R be the induced ring from \mathfrak{A} by $\{P\}_{\alpha}, R = \Sigma \oplus [P_{\alpha}, P_{\beta}]$. If fR is projective in \mathfrak{M}_{R}^{+} for any α and β any element f in $[P_{\alpha}, P_{\beta}]$, \mathfrak{A} is called a *locally (right) PP-category*, (we called it "partially" in [3]).

This is equivalent to a fact that every functor T_f in $(\{P_{\alpha}\}^\circ, Ab)$ defined by $T_f(P_{\gamma})=fRe_{\gamma}$ is representative for every $f \in [P_{\alpha}, P_{\beta}]$. We define similarly a left *PP*-category.

We can easily see from the following lemma that right *PP*-categories are also left *PP*-categories and that this definiton dose not depend on $\{P_{\alpha}\}$.

Lemma 1. Let \mathfrak{A} be a semi-perfect Grothendieck category with a generating set $\{P_{\alpha}\}$ as above. Then \mathfrak{A} is locally PP if and only if any $f \in [P_{\alpha}, P_{\beta}]$ is zero or monomorphic, (cf. [9], Proposition 3).

Proof. We assume that \mathfrak{A} is locally *PP* and $0 \neq f \in [P_{\alpha}, P_{\beta}]$. Since $fe_{\alpha} = f$, $0 \leftarrow fR \stackrel{\times f}{\leftarrow} e_{\alpha}R$ is exact. Further, $e_{\alpha}R$ is indecomposable, and hence, $fR \stackrel{\times f}{\approx} e_{\alpha}R$.

Put K = Ker f and $i: K \to P_{\omega}$. If $i \neq 0$, there exists P_{γ} and $h \in [P_{\gamma}, K]$ such that $0 \neq ih \in [P_{\gamma}, P_{\omega}] \subseteq R$. Then $0 = fih = fe_{\omega}ih$ and $e_{\omega}ih \in e_{\omega}R$. Hence, $ih = e_{\omega}ih = 0$, which is a contradiction. Therefore, f is monomorphic. Conversely, if f is monomorphic, then a mapping $\psi: fR \to e_{\omega}R(\psi(fr) = e_{\omega}r)$ is isomorphic. Hence, fR is projective in \mathfrak{M}^{+}_{R} .

As an analogy of Theorem 4 in [9], we have

Theorem 1 ([9]). Let \mathfrak{A} be a semi-perfect Grothendieck category with generating set of finitely generated object. Then \mathfrak{A} is locally PP and perfect (resp. semi-artinian) if and only if \mathfrak{A} is equivalent to $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^{l})^{2^{2}}$ with functors T_{ij} such that ψ_{kji} : $T_{kj}(B) \to T_{ki}(P)$ for k > j > i (resp. k < j < i) is monomorphic, for any minimal object B in $T_{ji}(P)$ and $P \in \mathfrak{A}_i$, where \mathfrak{A}_i 's are semi-simple categories with generating sets.

Proof. We assume that \mathfrak{A} is locally PP and $\{P_{\alpha}\}$ is a generating set of completely indecomposable projectives. Making use of Lemma 1 and the proof of Theorem 4 in [9] we know that \mathfrak{A} is equivalent to $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^i$) and that $\{P_{\alpha}^{(i)} = \tilde{S}_i(P_{i\alpha})\}^{2}$ (resp. $\{S_i(P_{i\alpha})\}$) is a generating set in $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^i$), where $\{P_{i\alpha}\}$ is a generating set of \mathfrak{A}_i and $P_{i\alpha}$ is minimal. Since $f \in [P_{\alpha}^{(i)}, P_{\beta}^{(j)}]$ is monomorphic by Lemma 1, we have the conditions in the theorem. The converse is also clear from the structure of $[I, \mathfrak{A}_i]^r$ (resp. $[I, \mathfrak{A}_i]^i$) and Lemma 1.

REMARK. If we replace a minimal objects B in the above condition by any finite coproduct of B_{a_i} , it is equivalent to the condition (*)-1 in Theorem 3 in [9]. Hence, this fact gives us the defference between semi-hereditaty and locally *PP*. We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. Let \mathfrak{A} be as in Theorem 1 and $\{P_{\mathfrak{a}}\}$ a generating set of completely indecomposable projectives. If \mathfrak{A} is locally PP, then the following are equivalent.

- 1) All P_{α} are J-nilpotent.
- 2) $1L(P_{\alpha}) < \infty$ for all α .
- 3) A is semi-artinian.

Futhermore, the following are equivalent.

- 1) $rL(P_{\alpha}) < \infty$ for all α .
- 2) A *is perfect*, (cf. [9], Theorem 6).

3. QF-3 categories

Let \mathfrak{A} be a Grothendieck category with generating set of projectives $\{P_{\mathfrak{a}}\}$. An object C in \mathfrak{A} is called *faithful* if for any non-zero morphism $f: P_{\mathfrak{a}} \to P_{\beta}$, there exists $g \in [P_{\beta}, C]$ such that $gf \neq 0$. Let $\{Q_{\beta}\}$ be another generating set of projec-

²⁾ see [8], §3.

tives and $f' \neq 0 \in [Q_{\mathfrak{e}}, Q_{\delta}]$. Since $Q_{\mathfrak{e}} \oplus Q_{\mathfrak{e}}' = \sum_{J} \oplus P_{\mathfrak{o}}$ and $Q_{\delta} \oplus Q_{\delta}' = \sum_{J'} \oplus P_{\beta}$, we have a non-zero morphim $f: \sum_{J} \oplus P_{\mathfrak{o}} \to \sum_{J'} \oplus P_{\beta}$ such that $f | Q_{\mathfrak{e}} = f' \text{ and } f | Q_{\mathfrak{e}}' = 0$. Hence, there exist α , β such that $(p_{\beta}f | P_{\mathfrak{o}}) \neq 0$, where p_{β} is the projection of $\sum_{J'} \oplus P_{\beta}$ to P_{β} . Then we have $g' \in [P_{\beta}, C]$ such that $g'(p_{\beta}f | P_{\mathfrak{o}}) \neq 0$. Hence, $g' p_{\beta} f \neq 0$. Let $i_{Q_{\mathfrak{e}}}$ and $i_{Q_{\mathfrak{b}}}$ be inclusions. Peut $g' p_{\beta} i_{Q_{\mathfrak{b}}} = g \in [Q_{\delta}, C]$. Then $g' p_{\beta} f i_{Q_{\mathfrak{b}}} = g' p_{\beta} i_{Q_{\mathfrak{b}}} f' = gf'$ and $\operatorname{Ker} f = Q_{\mathfrak{e}'}$. Therefore, $gf' \neq 0$. Thus, we have shown that the faithfulness of C dose not depend on generating sets of projectives.

Let (\mathbb{C}°, Ab) be the contravariant additive functor category, where \mathbb{C} is the small pre-additive category $\{P_{\sigma}\}$. Then \mathfrak{A} is equivalent to $(\mathfrak{A}^{\circ}, Ab)$. Hence C is faithful and only if the corresponding functor in the above is a faithful functor. Furthermore, (\mathbb{C}°, Ab) is equivalent to \mathfrak{M}_{R}^{+} , where R is the induced ring from $\{P_{\sigma}\}$. Then faithful functors correspond to faithful modules in \mathfrak{M}_{R}^{+} .

An object M is called a *minimal faithful* if M is faithful and every faithful object is a coretract of M. According to R.M. Thrall [13], we call \mathfrak{A} QF-3 if \mathfrak{A} contains a minimal faithful object M or equivalently, if \mathfrak{M}_R^+ has a minimal faithful module.

From now on we shall assume that \mathfrak{A} is a Grothendieck category with generating set of small projectives P_{σ} . Further, we shall assume that \mathfrak{A} is a locally *PP* and semi-perfect category and hence, we may assume that all P_{σ} are completely indecomposable and $P_{\sigma} \approx P_{\beta}$ for $\alpha \pm \beta$.

Every object A in \mathfrak{A} has an injective hull of A in \mathfrak{A} (see [11], p. 89, Theorem 3.2). We denote it by E(A). If $E(\sum_{i} \bigoplus P_{\sigma})$ is projective, \mathfrak{A} is called $QF-3^+$ (see [2]).

Let Q be an injective envelope of R in \mathfrak{M}_R^+ and M a minimal faithful module in \mathfrak{M}_R^+ . Then M is a retract of Q and hence, M is injective. Furthermore, since R is faithful, M is also a retract of R. Therefore, M is projective, and injective and we may assume that M is a right ideal of R.

Since R is semi-perfect, $R = \sum_{I} \bigoplus e_{\sigma}R$ and $e_{\sigma}Re_{\sigma}$'s are local rings. In the proof of theorem 4 in [9], we considered indecomposable projective objects P in \mathfrak{M}_{R}^{+} such that $[P, e_{\sigma}R] = 0$ for all $e_{\sigma}R \approx P$. We call such P belonging to the first block. Contrary, if $[e_{\sigma}R, P] = 0$, P is called belonging to the last bolck.

Lemma 2. Let \mathfrak{A} be a locally PP and QF-3 semi-perfect Grothendieck category and R the induced ring. Then a minimal faithful object is a coproduct of $e_{\alpha_i} R$'s which belong to the first block.

Proof. Since M is injective and a retract of $\sum_{I} \oplus e_{\sigma}R$, $M = \sum_{J} \oplus e_{\sigma_{i}}R$ by [14], Lemma 2. Further, since $e_{\sigma_{i}}R$ is injective $[e_{\sigma_{i}}R, eR] = 0$ by Lemma 1 if $e_{\sigma_{i}}R \approx eR$. Hence, $e_{\sigma_{i}}R$ belongs to the first block.

Lemma 3. Let \mathfrak{A} be as above and $\sum_{J} \bigoplus e_i R$ a minimal faithful ideal. Then for any $\delta \in I$ there exist $\varphi(\delta)$ in J such that $e_{\varphi(\delta)} Re_{\delta} \neq 0$.

Proof. Let x be a non-zero element in $e_{\delta}Re_{\delta}$. Since $\sum_{I} \bigoplus e_{i}R = \sum_{J,I \ni \sigma} \bigoplus e_{i}Re_{\sigma}$ is faithful, $e_{\varphi(\delta)}Re_{\delta}x \neq 0$ for some $\varphi(\delta)$.

Let e_i be as above. We put $R(i) = \{\gamma | \in I, e_i Re_{\gamma} \neq 0\}$.

Lemma 4. Let \mathfrak{A} be as above and further perfect. Then R(i) contains the last element δ in R(i) namely, $e_i Re_{\delta} \neq 0$ and $e_{\delta} R$ belongs to the last block.

Proof. We assume that R(1) does not contain the last element in R(1). Put $N = \sum_{\gamma \in \mathbb{R}^{(1)}} \bigoplus e_1 R/(\sum_{e \geqslant \gamma} e_1 Re_e) \bigoplus \sum_{j \ge 2} \bigoplus e_j R$ and put $N_1 = \sum_{r \in \mathbb{R}^{(1)}} \bigoplus e_1 R/(\sum_{e \geqslant \gamma} e_1 Re_e)$, and $N_2 = \sum_{j \ge 2} \bigoplus e_j R$. We shall show that N is faithful in \mathfrak{M}_R^+ . Let $x = \sum x_{\alpha\beta}$, $x_{\alpha\beta} \in e_{\alpha} Re_{\beta}$ and $x_{\alpha\beta} \neq 0$. If $\varphi(\alpha) \neq 1$, we take $0 \neq y \in e_{\varphi(\alpha)} Re_{\alpha} \in N_2$. Then $yx = \sum yx_{\alpha\beta} \in \sum \bigoplus e_{\varphi(\alpha)} Re_{\beta}$ and $yx \neq 0$ by Theorem 1, since $e_{\delta} Re_{\delta}$ is a division ring by Lemma 1. We assume $\varphi(\alpha) = 1$. Then $\alpha \in \mathbb{R}(1)$ and there exists $y \in e_1 Re_{\alpha}$ and $0 \neq yx_{\alpha\beta} \in e_1 Re_{\beta}$. Hence, $\beta \in \mathbb{R}(1)$. Since R(1) does not have the last element, we obtain γ in R(1) such that $\beta < \gamma$. Hence $\{y + (\sum_{e \geqslant \gamma} e_1 Re_e)\}x \neq 0$. Therefore, N is faithful and N contains a submodule N_0 which is isomorphic to $e_1 R$. Then $N_0 = nR \approx e_1 R$ and $ne_1 = n$. Since $e_j Re_1 = 0$ for $j \ge 2$, $n \in N_1$. Let $n = \sum_{i=1}^n \overline{r}_{\gamma_i}, \overline{r}_{\gamma_i} \in e_1 R/(\sum_{\gamma_i \le e} e_1 Re_e)$. Then $n(e_1 Re_{\gamma}) = 0$ for $\gamma = \max(\gamma_i)$. However, $e_1(e_1 Re_{\gamma}) \neq 0$. Which is a contradiction.

Theorem 3 ([4], Theorem 1). Let \mathfrak{A} be a perfect or semi-perfect and semiartinian and locally PP-Grothendieck category with a generating set of small preojectives $\{G_{\gamma}\}_{I}$. If \mathfrak{A} is QF-3, there exist non-isomorphic indecomposable and projective objects $\{P_{\alpha}\}_{J}$ (resp. $\{Q_{\beta}\}_{J}$) such that

1) $\{P_n\}$ (resp. $\{Q_{\beta}\}$) is an isomorphic representative class of the projectives in the first (resp. last) block,

2) $\sum \oplus P_{\sigma}$ is a minimal faithful and injective object and

3) each P_{α} contains the unique minimal subobject S_{α} which is isomorphic to Q_{α} . Hence $[S_{\alpha}: \Delta_{\alpha}] = 1$ and S_{α} is projective in \mathfrak{M}_{R}^{+} where $\Delta_{\alpha} = [Q_{\alpha}, Q_{\alpha}]$ is a division ring. Furthermore, any indecomposable projective is isomorphic to a subobject in some P_{α} .

Proof. We shall prove the theorem on the induced ring $R = \sum \bigoplus e_{\alpha}R$; $e_{\alpha}R \approx e_{\beta}R$ if $\alpha \neq \beta$. We know from Lemmas 2 and 3 that $\sum_{T} \bigoplus e_{i}R$ is a minimal faithful ideal, $e_{i}R$ belongs to the first block and $e_{i}R$ contains a submodule $e_{i}Re_{\gamma_{i}}$ where γ_{i} is the last element in R(i). Since $e_{\gamma_{i}}Re_{e}=0$ for $\varepsilon \neq \gamma_{i}$, $\mathfrak{r}_{i}=e_{i}Re_{\gamma_{i}}$ is a right ideal. Put $\Delta_{i}=e_{\gamma_{i}}Re_{\gamma_{i}}$, then Δ_{i} is a division ring by Lemma 1. $e_{i}R$ is

indecomposable and injective. On the other hand, any Δ_i -submodule of \mathfrak{r}_i is a *R*-module. Hence, $[\mathfrak{r}_i: \Delta_i]=1$ and \mathfrak{r}_i is the unique minimal subideal in $e_i R$. Since $\mathfrak{r}_i \approx e_{\gamma_i} R e_{\gamma_i} = e_{\gamma_i} R$, \mathfrak{r}_i is projective. Furthermore, $\mathfrak{r}_i \approx \mathfrak{r}_j$ if $i \pm j$, since $e_i R \approx e_i R_j$ and $e_i R$, $e_j R$ are injective hull of \mathfrak{r}_i and \mathfrak{r}_j , respectively. Let $e_{\delta} R$ be in the last block. Then $e_{\varphi(\delta)} R e_{\delta} \pm 0$ and $\varphi(\delta) \in J$. Hence, $e_{\varphi(\delta)} R e_{\delta} = \mathfrak{r}_{\varphi(\delta)}$. Therefore, $\{e_{\gamma_i} R\}$ is an isomorphic respresentative class of projectives in the last block. Let $\varepsilon \in I - J$. Then $e_{\varphi(\varepsilon)} R e_{\varepsilon} \pm 0$ by Lemma 3. Hence, $[e_{\varepsilon} R, e_{\varphi(\varepsilon)} R] \pm 0$, which means that $e_{\varepsilon} R$ does not belong to the first block. Furthermore, $e_{\varepsilon} R$ is ismorphic into $e_{\varphi(\varepsilon)} R$ by Lemma 1.

Lemma 5. Let R be the induced ring from a locally PP-Grothendieck category with generating set $\{P_{\omega}\}$ as above. We assume that $\{e_iR\}_J$ is a set of injective objects such that E=E(R) in \mathfrak{M}_R^+ is an essential extension of $\sum_J \bigoplus e_i R^{(K_i)}$. Then any $f \in [e_{\beta}R, E]$ is either zero or monomorphic, where $e_i R^{(K_i)} = \sum_{K_i} \bigoplus e_i R$ and e_{β} is any primitive idempotent.

Proof. We assume $f \neq 0$. Then $\mathfrak{r} = f^{-1}(\sum_{i=1}^{n} e_{i_i}R) \neq 0$ for some e_{i_i} . Since $\sum_{i=1}^{n} e_{i_i}R$ is injective, $f \mid \mathfrak{r}$ is extended to $g \in [e_{\beta}R, \sum_{i=1}^{n} e_{i_i}R]$. Then g is monomorphic by Lemma 1. Therefore, f is monomorphic.

Theorem 4. Let \mathfrak{A} be a perfect, locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is QF-3⁺ if and only if every projective P_{γ} in the first block are injective and for any indecomposable projective P, there exists P_{α} in $\{P_{\gamma}\}$ that $[P, P_{\alpha}] \neq 0$. Hence, $\{P_{\tau}\}$ is an isomorphic representative class of all projective and injective indecomposable objects.

Proof. Let R be the induced ring from completely indecomposable projectives P_{α} . We assume \mathfrak{A} is $QF-3^+$. Then $E=\mathbb{E}(R)$ is isomorphic to $\sum_{j=j} \oplus e_{\alpha_j} R^{(K_j)}$, It is clear that $e_{\alpha_j} R$ belongs to the first block from Lemma 1. For any projective $e_{\beta}R$, $\mathbb{E}(e_{\beta}R) \subset E$. Hence, $[e_{\beta}R, e_{\alpha_j}R] \pm 0$ for some j, which implies $\{e_{\alpha_j}R\}$ consist of all projectives in the first block. Conversely, we assume that all projectives $\{e_i R\}_J$ in the first block are injective and have the property in the theorem. Since $[e_{\beta}R, e_i R] \pm 0$ for any $e_{\beta}R, E \supset \sum_{K_i,J} \oplus e_i R^{(K_i)} \supset R$ for suitable indices K_i . We assume $E \pm \sum_{K_j,J} \oplus e_j R^{(K_j)}$. Then there exists $g \in$ $[e_k R, E]$ such that $\operatorname{Im} g \oplus \sum_{i=j} \oplus e_i R^{(K_j)}$. On the other hand, we obtain $g' \in [e_k R, E_0]$ such that $g' | g^{-1}(E_0) = g$ from the proof of Lemma 5, where E_0 is a finite coproduct of $e_j R$'s. Then $(g-g') | E_0 = 0$. Therefore, g=g' by Lemma 5, which is a contradiction.

REMARK. The fact $[e_{\beta}R, e_{\alpha_j}R] \neq 0$ is equivalent to the validity of Lemma 3 for the above \mathfrak{A} .

Theorem 4'. Let \mathfrak{A} be a semi-perfect, semi-artinian and locally PP-Grothendieck category with generating set of small projectives. Then \mathfrak{A} is QF-3⁺ if and only if \mathfrak{A} contains projectives $P_{\mathfrak{a}}$ in the first block and all of such $P_{\mathfrak{a}}$ are injective and for any indecomposable projective P, there exists $P_{\mathfrak{a}}$ such that $[P, P_{\mathfrak{a}}] \pm 0$. Hence, $\{P_{\mathfrak{a}}\}$ consist of all projective and injective indecomposable objects. In this case \mathfrak{A} is QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).

Proof. We assume \mathfrak{A} is $QF-3^+$. Let S be the socle of $E = \mathbb{E}(R)$ and $S = \sum \bigoplus S_{\gamma}$, where S_{γ} 's are minimal objects in E. Then $E = \mathbb{E}(S)$ and $E_{\gamma} = \mathbb{E}(S_{\gamma})$ is imdecomposable and projective by the assumption. Hence, from [8], Corollary 1 to Lemma 2 $E_{\gamma} \approx e_{\gamma} R$, which belongs to the first block. Let $e_{\beta} R$ be any indecomposable ideal. Then $\mathbb{E}(e_{\beta}R) \subset E$. Hence, $[e_{\beta}R, e_{\gamma}R] \neq 0$ by Lemma 1 and the proof of Lemma 5. Since each $e_{\gamma}R$ has the non-zero socle, \mathfrak{A} is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The converse is similarly proved as in the proof of Theorem 4.

Lemma 6. Let \mathfrak{A} be as in Theorem 3 (resp. Theorem 4') and e_1R in the first block. Let η be the last (resp. first) element in R(1). Then R(1)=C(η). If \mathfrak{A} is as Theorem 4, R(1)^{γ} \supseteq C(γ) for any $\gamma \in$ R(1) and for any δ and $\delta' \in$ (1) there exists ε in R(1) such that $e_{\delta}Re_{\varepsilon} \neq 0$ and $e_{\delta'}Re_{\varepsilon} \neq 0$, where R(1)^{γ} $= \{\alpha \mid \in \mathbb{R}(1), \alpha \leq \gamma\}$ and C(η)= { $\delta \mid \in I$, $e_{\delta}Re_{\eta} \neq 0$ }.

Proof. Let γ be in R(1) and δ be in $(I-R(1))^{\gamma}$. Then $e_{\varphi(\delta)}Re_{\delta} \neq 0$ and $\varphi(\delta) \neq 1$. We assume $e_{\delta}Re_{\gamma} \neq 0$. Then $e_{\varphi(\delta)}Re_{\gamma} \supset (e_{\varphi(\delta)}Re_{\delta})(e_{\delta}Re_{\gamma}) \neq 0$ by Theorem 1. We take non-zero element x, y in $e_{\varphi(\delta)}Re_{\gamma}$ and $e_{1}Re_{\gamma}$, respectively. Consider a mapping $\psi: xR \rightarrow yR$ such that $\psi(xr) = yr$. Then ψ is well defined and R-homomorphic by Theorem 1. Hence, $[e_{\varphi(\delta)}R, e_{1}R] \neq 0$, which is a contradiction. Therefore, $R(1)^{\gamma} \supset C(\gamma)$. Let x be a non-zero element in $e_{1}Re_{\gamma}$. Then xR is a projective and indecomposable ideal in $e_{1}R$ by the assumption. Hence, $xR \approx e_{q}R$ for some q. Put $\psi(x) = e_{q}r$. Then $\psi(x) = \psi(xe_{\gamma}) = e_{q}re_{\gamma}$. This implies $q \leq \gamma$ (resp. $q \geq \gamma$). Similarly, we have $q \geq \gamma$ (resp. $q \leq \gamma$). We assume R(1) contains the last (resp. first) elemeny η . Then $e_{\gamma}Re_{\eta} \approx xRe_{\eta} =$ (the socle of $e_{1}R) \neq 0$. Hence, $R(1)=C(\eta)$. Let $\gamma' \in R(1)$. Then $e_{\gamma}R$ and $e_{\gamma'}R$ are monomorphic to $e_{1}R$. Since $e_{1}R$ is injective, their images have a non-zero intersection x. Hence, $xe_{s} \neq 0$ for some ε . Therefore, $e_{\gamma}Re_{s} \neq 0$ and $e_{\gamma'}Re_{s} \neq 0$.

Lemma 7 (cf. [12]). Let Δ be a division ring and I a well ordered set. Let $\{e_{ij}\}_I$ be a set of matrix units. Put $R = \sum_{i \leq j \in I} \bigoplus e_{ij} \Delta$. Then $e_{11}R$ is injective and hence, R is hereditary and QF-3 in \mathfrak{M}_R^+ . R is QF=3 if and only of I contains the last element.

Proof. We first note that each $e_{ii}R$ contains only right ideals of form $e_{ij}R$ $i \leq j$ and $[e_{ii}R, e_{11}R] \approx \Delta$. Let

be a given exact diagram in \mathfrak{M}_R^* . We shall extend f to M by the standard argument. We obtain a maximal extension $f_0: N_0 \rightarrow e_{11}R$ such that $N_0 \supset N$ and $f_0 | N = f$. If $M \neq N_0$, there exists *m* in *M* such that $me_{ii} \notin N_0$, since $\{e_{ii}R\}$ is a generating set. Put $M' = N_0 + me_{ii}R$ and $\mathfrak{r} = \{x \mid e_{ii}R, mx \in N_0\}$. Then \mathfrak{r} is a right ideal in $e_{ii}R$. Hence, $\mathfrak{r} \approx e_{ij}R$ for some j > i. We define $g: \mathfrak{r} \rightarrow e_{11}R$ by setting $g(x) = f_0(mx)$ for $x \in \mathfrak{r}$. Then $e_{1i} | \mathfrak{r}$ and g are in $[\mathfrak{r}, e_{11}R] \approx e_{j1}\Delta \approx \Delta$. Hence, $g = \delta(e_{1i} | \mathfrak{r})$ for some δ in Δ , namely $g(x) = \delta e_{1i} x$ for any x in \mathfrak{r} . Therefore, we have an extension $f_0': M' \rightarrow e_{11}R$ by $f_0'(n_0+mx) = f_0(n_0) + \delta e_{1i}x$. Hence, $N_0 = M$. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect and $J(R) = \sum_{i \in i \neq i} \bigoplus e_{ij} \Delta$. Since J(R) is projective, R is hereditary by [9], Lemma 3. Therefore, R is QF-3⁺ by Theorem 4. If R is QF-3, $e_{11}R$ is a minimal faithful module by Theorem 3. Hence, I has the last element by Theorem 3. Conversely, I has the last element, then $e_{11}R$ contains the unique submodule $e_{17}R$. It is clear that $e_{11}R$ is faithful module. Let M be a faithful module in \mathfrak{M}_R^+ . Then there exists m in M such that $me_{1\nu} \neq 0$. Hence, we have a monomorphism f of $e_{11}R$ to M by $f(e_{11}r) = me_{11}r$. Therefore, R is QF-3.

Lemma 8. Let Δ be a division ring and $\{e_{ij}\}_I$ a set of matrix units. Put $S = \sum_{i} \bigoplus \Delta e_{ij}$ and $R = \sum_{i>i} \bigoplus \Delta e_{ij}$. Then

1) R is semi-hereditary.

2) R is semi-hereditary and QF-3 (or QF-3⁺) if and only if I has the last element.

3) R is hereditary and $QF-3^+$ (or QF-3) if and only if I is finite, (cf. [12]).

Proof. 1) Let **r** be a right ideal generated by $\{x_1, x_2, \dots, x_n\}$. Since $x_i = \sum_a x_i e_a$ and $x_i e_a \in \mathbf{r}$, we may assume that $x_i \in Re_{a_i}$, where $e_{a_i} = e_{a_ia_i}$. Let $\alpha_i = \max(\alpha_i)$. Considering Re_{a_i} as a Δ -vector space, we may assume x_1, \dots, x_t are linearly independent over Δ . If $\sum_{i=1}^{t} x_i r_i = 0$ for $r_i \in R$ and $x_1 r_1 \neq 0$, then $r_1 e_i \neq 0$ for $\mathcal{E} \leq \alpha_1$. Considering in S, we have $\sum_i x_i e_{a_i} r_1 e_{ea_i} = 0$ and $e_{a_i} r_1 e_{a_i} \neq 0$. Therefore, $\sum x_i R = \sum \bigoplus x_i R$. Put $\alpha_2 = \max(\{\alpha_i\} - \alpha_1\}$. We consider a vector space V_2 generated by $\{\sum_{i=1}^{t} \bigoplus x_i Re_{a_2}, x_j e_{a_2}\}$. We may assume $V_2 = \sum \bigoplus x_i Re_{a_2} \oplus y_1 \Delta \oplus \dots \oplus y_s \Delta$, where $y_j = x_k e_{a_2}$ for some k. We shall show that $\sum \bigoplus x_i R + \sum y_j R = \sum \bigoplus x_i R \oplus \sum \bigoplus y_j R$. We have already shown that $\sum y_i R = \sum \bigoplus y_i R$. Let $\sum x_i r_i = \sum y_j r_j'; r_i, r_j' \in R$. If $r_1' \neq 0, r_1' e_{e'} \neq 0$ for some \mathcal{E}' . Then multiplying $e_{e'a_2}$ in the above, we have $\sum x_i e_{a_1} r_i e_{e'a_2} = \sum y_i e_{a_2} r_i' e_{e'a_2}$ and

 $e_{\omega_1}r_ie_{\varepsilon'\omega_2} \in Re_{\omega_2}, \ \delta_1 = e_{\omega_2}r_1'e_{\varepsilon'\omega_2} \neq 0.$ Hence, $\sum y_i\delta_i = \sum x_ie_{\omega_2}r_ie_{\varepsilon'\omega_2} \in \sum x_iRe_{\omega_2}$, which is a contradication. On the other hand, $x_iR \approx e_{\omega_1}R, \ y_jR \approx e_{\omega_2}R.$ Repeating this argument, we show that \mathfrak{r} is projective.

2) We assume that I has the last element α . We shall show that $e_{\alpha\alpha}R$ is injective as an analogy of Lemma 7. Let r be a right ideal in some $e_{\beta\beta}R$. Put $R(r) = \{\gamma \mid \in I, re_{\gamma\gamma} \neq 0\}$. If R(r) contains the last element δ in R(r), then $r_{\delta} = \sum_{\delta' \leq \delta} e_{\beta\beta\delta}Re_{\delta'\delta'} \approx e_{\delta\delta}R$. Let ε be the least element in I - R(r). If ε is not a limit element, R(r) contains the element. We assume ε is limit. Then $r = \bigcup_{e' < e} r_{e'}$. We shall show $[r, e_{\alpha\alpha}R] \approx \Delta e_{\alpha\alpha}$. Let $f \in [r, e_{\alpha\beta}R]$ and put $f_{\epsilon'} = f \mid r_{\epsilon'} \in [r_{\epsilon'}, e_{\alpha\alpha}R]$ $\approx [e_{\epsilon'\epsilon'}R, e_{\alpha\alpha}R]$. Then $f_{\epsilon'} = \delta_{\epsilon'}e_{\alpha\alpha}$ for some $\delta_{\epsilon'} \in \Delta$. For $\varepsilon' \varepsilon''$ we have $\delta_{\epsilon'}e_{\alpha\epsilon'}$. Thus, we have prepared necessary facts to use the proof of Lemma 7. Therefore, $e_{\alpha\alpha}R$ is injective in \mathfrak{M}_R^+ and R is QF-3⁺ and QF-3 by Theorem 4'. The converse is clear from 1) and Theorems 3 and 4'.

3) If *I* is finite, *R* is a hereditary and *QF*-3 artinian ring by [4], Theorem 3. We assume that *R* is hereditary and *QF*-3 or *QF*-3⁺. Then *I* has the last element by Theorem 4. We assume that *I* contains a limit number α . Consider $J(e_{\alpha}R) = \sum_{\alpha < \gamma} \bigoplus e_{\alpha\gamma} \Delta$. Let $x = \sum_{i=1}^{n} e_{\alpha\gamma_i} \delta_i$. Then $x = \sum e_{\alpha\gamma_i+1} \delta_i e_{\gamma_i+1\gamma_i} \in J(e_{\alpha}R) J(R)$ $\subseteq J^2(e_{\alpha}R)$. Hence, $J(e_{\alpha}R) = J^2(e_{\alpha}R)$, which implies $J(e_{\alpha}R)$ is not projective by [8], Proposition 2. Therefore, *I* does not contain the limit number, but contain the last element, Hence, *I* is finite.

From the above proof and [9] Lemma 3 we have

Corollary. Let R be as above. Then R is hereditary if and only if $|I| \leq \aleph_0$ and does not contain the last element.

Theorem 5. Let \mathfrak{A} be a perfect or semi-perfect and semi-artiniam, and locally PP-Grothendieck category with generating set of small projectives. If \mathfrak{A} is QF-3⁺ or QF-3, then \mathfrak{A} is equivalent to $\Pi\mathfrak{A}_{\infty}$, where \mathfrak{A}_{∞} 's are of the same type as \mathfrak{A} and \mathfrak{A}_{∞} is not expressed as a product of full subcategories.

Proof. Let R be the induced ring from \mathfrak{A} and $\sum e_i R$ the coproduct of projectives in the first block. We shall show $e_{\mathfrak{e}}Re_{\mathfrak{e}'}=0$ for either $\mathfrak{E} \in \mathbb{R}(i)$, $\mathfrak{E}' \notin \mathbb{R}(i)$ or $\mathfrak{E} \notin \mathbb{R}(i)$, $\mathfrak{E}' \in \mathbb{R}(i)$. If $\mathfrak{E} \in \mathbb{R}(i) e_{\mathfrak{e}}R$ is monomorphic to a submodule of $e_i R$. Hence, $e_{\mathfrak{e}}Re_{\mathfrak{e}'}=0$ if $\mathfrak{E}' \notin \mathbb{R}(i)$. Next, we assume $\mathfrak{E}' \in \mathbb{R}(i)$. If $e_{\mathfrak{e}}Re_{\mathfrak{e}'} \neq 0$ for $\mathfrak{E} \oplus \mathbb{R}(i)$, $0 \neq e_{\mathfrak{e}}Re_{\mathfrak{e}'}=0$ if $\mathfrak{E}' \oplus \mathbb{R}(i)$. Next, we assume $\mathfrak{E}' \in \mathbb{R}(i)$. If $e_{\mathfrak{e}}Re_{\mathfrak{e}'} \neq 0$ for $\mathfrak{E} \oplus \mathbb{R}(i)$, $0 \neq e_{\mathfrak{e}}Re_{\mathfrak{e}'}e_{\mathfrak{e}}Re_{\gamma_i} \subset e_{\mathfrak{e}}Re_{\gamma_i}$ for some $\gamma_i \in \mathbb{R}(i)$ (or the last (resp. first) element in $\mathbb{R}(i)$) by Lemma 1, which contradicts to a fact $\mathbb{R}^{\gamma_i}(i) \supset \mathbb{C}(\gamma_i)$. Put $R_i = \sum_{\mathfrak{e}, \mathfrak{E}' \in \mathbb{R}(i)} e_{\mathfrak{e}}Re_{\mathfrak{e}'}$. Then $R = \sum \oplus R_i$ as a ring by Theorems 3, 4 and 4'. It is clear that each R_i is $QF-3^+$ or QF-3 and directly indecomposable. Hence, we have the theorem.

From the above theorem, we may restrict ourselves to a case of indecomposable categories if \mathfrak{A} is as in the theorem.

Theorem 6. Let A be an indecomposable semi-perfect Grothendieck category with generating set of finitely generated objects. Then we have

1) A is perfect, (semi-) hereditary and $QF-3^+$ (resp. QF-3) if and only if A is equivalent to $[I, \mathfrak{M}_{\Delta}]^r$, where I is a well ordered set (resp. with last element).

2) A is semi-artinan, hereditary and QF-3⁺ (or QF-3) if and only if A is equivalent to $[I, \mathfrak{M}_{\Delta}]^{\prime}$, where I is a finite set

3) A is semi-artinian, semi-hereditary and QF^{-3+} (or QF^{-3}) if and only if A is equivalent to $[I, M_{\Delta}]^{I}$, where I is a well ordered set with last element. Where Δ is a division ring and functors $T_{i,i}$ in $[I, \mathfrak{M}_{\Delta}]$ are equal to $\mathfrak{1}_{\mathfrak{M}_{\Delta}}$, (cf. [2'], Theorem 3.2).

 $[I, \mathfrak{M}_{\Delta}]^r$ is perfect, hereditary and QF-3⁺ by Lemma 7 and [9], Proof. Theorem 3. We assume that I contains the last element. $[I, \mathfrak{M}_{\Delta}]^r$ is QF-3 by Lemma 7. If I is finite, $[I, \mathfrak{M}_{\Delta}]^{I}$ is semi-primary, hereditary and QF-3⁺ (and QF-3) by Lemma 8. Finally, $[I, \mathfrak{M}_{\Delta}]^{l}$ is semi-artinian, semi-hereditary and $QF-3^+$ (QF-3) by Lemma 8 and [9], Proposition 1. Next, we assume that \mathfrak{A} is one of the forms in the theorem. Let R be the induced ring: $R = \sum \bigoplus e_i R$. Then e_1R in the case 1) and $e_{\alpha}R$ in cases 2) and 3) are in the first block by Theorems 4 and 4', respectively, where α is the last element in I. Since, \mathfrak{A} is indecomposable, $e_1 R e_{\gamma}$ (resp. $e_{\alpha} R e_{\gamma}$) $\neq 0$ for any $\gamma \in I$ by Theorem 5, Lemma 3 and Remark. Let \mathfrak{A} be herediary (cases 1) and 2)). If $[e_1 R e_2 : \Delta_2] \ge$ 2 (resp. $[e_{\alpha}Re_{\gamma}: \Delta_{\gamma}] \ge 2$) for any $\gamma \in I$, there exist linearly independent elements x, y over $\Delta_{\gamma} = e_{\gamma}Re_{\gamma}$. Then $xR + yR = xR \oplus yR$ by [9], Theorem 3, which contradicts to the indecomposability of e_1R and e_aR . Let a, b be non-zero elements in $e_1 Re_2$. As the proof of Lemma 6, a mapping $\psi: aR \rightarrow bR$ such that $\psi(a) = b$ gives a *R*-homomorphism. Furthermore, ψ is extended in $[e_1R, e_1R] = \Delta$, Hence $b = \delta a$ for some $\delta \in \Delta_1$. Therefore, $[e_1 R e_2; \Delta_1] = 1$. Similarly, we obtain $[e_{\sigma}Re_{\gamma}: \Delta_{\sigma}]=1$. Next, we assume \mathfrak{A} is semi-hereditary and QF-3⁺ (case 3)). Then $e_{\alpha}R$ is in the first block and injective. Let x, y be non-zero elements in $e_{\alpha}Re_{\gamma}$. Then xR+yR is a projective right ideal in $e_{\alpha}R$. Since $e_{\alpha}R$ contains the unique minimal module and R is semi-perfect, $xR+yR \approx^{\psi} e_{\delta}R$ for some $\delta \in I$. Put $\psi^{-1}(e_{\delta}) = z$, then $z \in e_{\sigma} Re_{\delta}$ and x = zr, y = zr' for $r, r' \in R$. Hence, $r = \delta$ and $x = ze_{\delta}re_{\delta}, y = ze_{\delta}r'e_{\delta}$. Therefore $[e_{\alpha}Re_{\gamma}: \Delta_{\gamma}] = 1$. Similarly to the above, we can show $[e_{\alpha}Re_{\gamma}: \Delta_{\gamma}]=1$. Thus, in any cases e_1Re_{ε} (resp. $e_{\alpha}Re_{\varepsilon}$) is a simple $\Delta_{\mathfrak{e}}$ -module. Hence, if $e_{\mathfrak{e}} Re_{\gamma} \neq 0$, $e_1 Re_{\mathfrak{e}} \bigotimes_{\Delta_{\mathfrak{e}}} e_{\mathfrak{e}} Re_{\gamma} \subset e_1 Re_{\gamma}$ implies $[e_{\mathfrak{e}} Re_{\gamma} : \Delta_{\mathfrak{e}}] =$ $[e_{\mathfrak{e}}Re_{\mathfrak{r}}: \Delta_{\mathfrak{r}}]=1$ from Theorem 1. Let $x \neq 0 \in e_i Re_j$. Then Δ_i is isomorphic to Δ_i by $\xi: \delta_i x = x \xi(\delta_i)$. First we choose non-zero elements m_{1i} in $e_1 R e_i$. Then $e_j R$ is monomorphic to $\sum_{k>i} m_{ik} \Delta$ by the multiplication of m_{ij} from the left side. Hence, we can choose m_{jk} in $e_j Re_k$ such that $m_{1j}m_{jk} = m_{1k}$ (if $e_j Re_k \neq 0$). Then

 $m_{1i}(m_{ij}m_{jk}) = m_{1j}m_{jk} = m_{1k} = m_{1i}m_{ik}$. Therefore, $m_{ij}m_{jk} = m_{ik}$ if $m_{ij} \pm 0$ and $m_{jk} \pm 0$. Thus, R is a subring of $\sum_{i \leq j} \oplus e_{ij} \Delta$ (resp. $\sum_{i \geq j} \oplus e_{ij} \Delta$) such that all of elements of some (i, j)-entries may be equal to zero, where $\Delta \approx \Delta_i$. We assume $e_i Re_j = 0$ (in cases 1) and 2)). Then $i \pm 1$ (resp. $i \pm \alpha$) and there exists γ from Lemma 6 such that $e_i Re_\gamma \pm 0$, $e_j Re_\gamma \pm 0$. Put $e = e_{11} + e_{ii} + e_{jj} + e_{\gamma\gamma}$ (resp. $e = e_{11} + e_{ii} + e_{jj} + e_{\alpha\alpha}$). Then $eRe = e_{11}\Delta \oplus e_{1i}\Delta \oplus e_{1j}\Delta \oplus e_{ij}\Delta \oplus e_{ij}\Delta \oplus e_{jj}\Delta \oplus e_{jj}\Delta$ is hereditary by [9], Corolalr j to Lemma 2 if R is hereditary. However, we can easily see that eRe is not hereditary (cf. [6], Theorem 1). Therefore, $R = \sum_{i \leq j} \oplus e_{ij}\Delta$, (resp. $R = \sum_{i \geq j} \oplus e_{ij}\Delta$). Finally, we assume that R is semi-hereditay (case 3)). Let $\gamma < \delta$ be in I. Then since $m_{\alpha\gamma}R + m_{\alpha\delta}R = zR$ as before, where $z \in e_{\alpha}Re_{\delta}$. Hence, $zR = m_{\alpha\delta}R \supset m_{\alpha\gamma}R$. Therefore, $0 \pm m_{\alpha\gamma} = m_{\alpha\delta}e_{\delta}e_{\gamma}\gamma$ implies $e_{\delta}Re_{\gamma} \pm 0$. Thus, \mathfrak{A} is equivalent to $[I, \mathfrak{M}_{\Delta}]'$. The remaining parts are clear from Theorems 3, 4 and 4' and Lemma 8.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960) 466-488.
- [2] R.R.Colby and E.A.Rutter: Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968) 253-257.
- [2'] ———: Generalization of QF-3 algebras, Trans. Amer. Math. Soc. 153 (1971), 371–386.
- [3] M. Harada: On semi-primary PP-rings, Osaka J. Math. 2 (1965), 154-161.
- [4] -----: QF-3 and semi-primary PP-rings, I ibid. 2 (1965), 357-368.
- [5] ———: QF-3 and semi-primary PP-rings II, ibid. 3 (1966), 21-27.
- [6] ———: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math.
 J. 27 (1966) 463–484.
- [7] ———: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309–321.
- [8] -----: Perfect categories I, Osaka J. Math. 10 (1973), 329-341.
- [9] ———: Perfect categories II, Osaka J. Math. 10 (1973), 343-355.
- [10] J.P.Jans: Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108.
- [11] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
- [12] H.Tachikawa: On left QF-3 rings, ibid. 32 (1970) 255-268.
- [13] M.R.Thrall: Some generalizations of quasi-Frobenius algebra, Trans. Amer. Math. Soc. 64 (1948) 173-183.
- [14] R.B.Warfield: Decomposition of injective modules, Pacific. J. Math. 31 (1969), 263 -276.