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1. Introduction

The purpose of this paper is to give a detailed proof of an analogue of the
Paley-Wiener theorem for the euclidean motion group which was announced in
[3]- Restricting our attention to bi-invariant functions (with respect to the rota-
tion group) we obtain an analogue of the Paley-Wiener theorem for the Fourier
-Bessel transform.

2. Unitary representations
Let G be the group of all motions of the #-dimensional euclidean space R".

Then G is realized as the group of (z+1)X(n+1)-matrices of the form g T),

(ke SO(n), x R™). Let K and H be the closed subgroups consisting of the ele-

ments ((]; (1)>, (k= SO (n)) and ((1) ‘T), (x=R™), respectively. Then G is the

semi-direct product of H and K. We normalize the Haar measure dg on G
such that dg=dxdk, where dx=(2z)""*dx,---dx, and dk is the normalized Haar
maesure on K.

For any subgroup G, of G we denote by G, the set of all equivalence classses
of irreducible unitary representations of G,. For an irreducible unitary repre-
sentation o of G, we denote by [o] the equivalence class which contains o.

’5 ?)EK and x&R" with ((1) ’1‘)

€H. Denote by <, > the euclidean inner product on R”. Then we can identify
H with R” so that the value of £ H at xe H is ¢/<¢*>, Because H is normal,
K acts on H and therefore on H naturally: <k, xp=<§, k7'x>. Let K; be the
isotropy subgroup of K at Ee H. If £+0, K; is isomorphic to SO(n—1).

The dual space G of G was completely determined by G. W. Mackey [4]
and S. It6 [2] as follows.

Let 9=L,(K) be the Hilbert space of all square integrable functions on K.
We denote by U* the unitary representation of G induced by ¢ H. Then for

For simplicity we identify k= SO(n) with (
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_(k x
g‘(o 1)EG
(UEF)(u) = &<+**>F(k '), (FE9, ueK).

Let X, and d, be the character and the degree of [¢] K, respectively. Let L
and R be the left and right regular representations of K, respectively. We also
denote by L and R the corresponding representations of the universal enveloping
algebra of the Lie algebra of K defined on C=(K), respectively. If o(m)=
(7pe(m))(1=p, g=d,), we put

P = d,jKEXC,(m) R, dem

and
j das 7 odm) Raden,

where dgm is the normalized Haar measure on K;. Then P° and P are both
orthogonal projections of . Put $°=P°9 and H;=P;9D. The subspaces D
(1=9=d,) are stable under U¢ and the representations of G induced on 9}
(1=¢=d,) under U* are equivalent for all g=1, ---,d,. We fix one of them and
denote by U¥°. It is easy to see that

Uk = RUIR,(keK, tcH, gG). (2.1)

Two representations U&® and Ut are equivalent if and only if there exists an
element k= K such that &=k and [o]=[07*], where

o¥(m) = o/(kmk™"), (meKj) .

First we assume that £20. Then U*° is irreducible and every infinite
dimensional irreducible unitary representation is equivalent to one of U¥’,

(80, [[]=Ry). Since 9= @ ° and §7=HD5, we have

[oIeRg
Ut~ @ (U*D---apU*’). (2.2)
OlEks 5 o

d, times

Next we assume that £=0. Then U¥“ is reducible and K;=K. For any
[s]eX we define a finite dimensional unitary representation U° of G by Uj=
a(k), where gz(k x)eG. Then we have U =U°P---PU’ and U’= P

01 et
d, times fre®

U*°. Moreover every finite dimensional irreducible unitary representation of G
is equivalent to one of U?, ([¢]eK).

We denote by (G).. and (G), the set of all eqiuvalence classes of infinite and
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finite dimensional irreducible unitary representations of G, respectively.

3. The Plancherel formula

Let f be the Lie algebra of K. We denote by A the Casimir operator of
K (In case n=2, we put A=—X?* for a non-zero X&f). By the Peter-Weyl
theorem we can choose a complete orthonormal basis {¢,};c; of 9, consisting
of the matricial elements of irreducible unitary representations of K, that is,
¢;=d./*1 4 for some [fleK (T=(7,4)) and p, ¢=1, ---,d,. First, we prove the
following

Lemma 1. Let T be a bounded operator on $=L,(K) which leaves the
space C=(K) stable. If for any non-negative integers | and m, there exists a con-
stant C*™ such that

[A'TA™| | <CH™,
then the series 33 |(T'd;, ¢;)| converges.
i,jEJ

Proof. For the sake of brevity we assume that #=3. In case n=2 the
same method is valid with a slight modification. Let t be a Cartan subalgebra
of £. Denote by f° and t° the complexifications of ¥ and t, respectively. Fix
an order in the dual space of (—1)/*t. Let P be the positive root system of f°
with respect to t°.  Let & be the set of all dominant integral forms. Then Ae
& is the highest weight of some irreducible unitary representation of K if and
only if it is lilfted to a unitary character of the Cartan subgroup corresponding to
t. Let &, be the set of all such A’s. For any A€ ¥, we doente by 7, a repre-
sentative of [7,]& K which is a matricial representation of K with the highest
weight A. Then the mapping A—[7,] gives the bijection between &, and K.
Let d,, be the degree of 7,. Denote by ], be the set of j& J such that ¢ ;=d,*
(74) pq for some p, g=1, ---, d,. Let (, ) be the inner product on the dual space
of (—1)"t induced by the Killing form and put |A|=(A, A)¥*. As usual we

put p=% >'a. We use the following known facts (i)~ (iii):
acP
(i) Forevery A€, and je J,, we have (A+|p|®)p,=|A+p|’p; .
(ii) For every A€¥,,d Azﬂ‘”—epw , (Weyl’s dimension formula).

ser(p, @)
iii) The Dirichlet series ——  converges if s [—] .
) W23, A s oo

(see [1(a)] and [9])
By (1)

27 .
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Therefore
1
Té,, T z )
B2 T 8 = 31 S (Tt |1,
(At pl9™py) | = 1 ST (A1 p 1" T(A+ 1 o1, 63)1 -

[A+p|* A+ p|™ G aiET

On the other hand by the assumption of the lemma we can prove that there exists
a constant C{"™ such that

(A4 p )" T(A+ | p]?) | | =CP™

Then
S (T )l S——— S (@, )y
anday T S A p [ A
=Cl»m 1 HwEP(A+P’ a)z(A,+p) a)z
[A+p|*|A+p ™™ IT.ex(p, @)
<cimllaer(@, @) 1 CHY)
Macrlp, @) [Ap[F R | AT p|m-rco-restom
Therefore if put /=m, we have
T <Cv a1laep(a, o) 1 ’ 2
2 I( ¢]7 ¢)I NEP(P, a) AGZEF(]lA_,_pIz] —-n{n— 1)/2+[n/2]> (3 )

; n("z _ ; dim K, using the property (iii) we obtain

23 (T )| <+oo.
Hjce]

If we take I=m>

qg.ed.

Corollary. If T is an operator on O satisfying the conditions of Lemma 1,
T is of the trace class.

For the proof of this corollary, see Harish-Chandra [1(a), Lemma 1].
For any feC3(G). We put

Tk o) = f@Uid (&40, [k,
Then
(THE, o)F)(u) = SKKf(E, o; u, v)F(v)dv (veK),

where
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R ) 4 ) e (453 4,

It is easy to see that T 4(&, o)F € C~(K) for any f& C7(G) and FeC~(K).

We denote by A and u the left and right regular representations of G, respe-
ctively. We also denote by A and u the corresponding representations of the
universal enveloping algebra of G defined on C~(G). We regard each element
Xet as a right invariant vector field on K. So that we have L(X)=-—X.
Since

(TAE, o) F(exp(—tX)u) = (Tacexpix05 (£, 0)F)(w)  (tER),

we have

(=X)T A&, 0)F) (u) = (TacoAE, 0)F) (4)

for FEC~(K). Therefore for any non-negative integer /
AT (&, 0) = Taars(§, o) -
Also we have
Ty, o)A™ = Tuarmp(E,0)  (m=0,1,2,-)
by a similar way. On the other hand we notice that
ITAE o) 1= 17(6)1de.
Hence |

AT am 1= 10vay sa)fie)lds

Thus the opreator T(, o), f€C7(G), satisfies the assumptions of Lemma 1.
By the corollary to Lemma 1, T'«(&, o) is of the trace class.
As it can be easily seen that K (&, o; u, v)e C”(K X K), we have

THTAE o) = | KA o5 u u)du
(see [1(b), Lemma 5]). Making use of the relation
dGSKEa-qq(mlmml_’)dgml — X,(m),

we have the following proposition.

Proposition 1. For any f €C3(G), T#(&, o) (E+0, [c] K) is of the trace
class and
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Tr(Tf(gr a-)) = sKQX;(ﬁj dEmSHfo<u ”Z)u_l T) ei<§,u—1x> dx du .

Let R, be the set of all positive numbers and let M be the subgroup consis-

100
ting of the elements (0 m 0) , (meSO(n—1)). Then for any £ H of the form

a 001

g=| 0 (@eR.,), we have K;=M. It follows from the results of §2 that (G)..
0 a

can be indetified with R, X M. For E= O (ac R,), we write briefly T »(,0)

0
=T,(a, o). Then we have the following Plancherel formula for G.

Proposition 2. For any fC7(G)
2 2, ,n-1
[ 1)1 = g 3, 1170 01 liada,

where | | | |, denotes the Hilbert-Schmidt norm.

Proof. It is enough to prove that

>3 dS TH(T fa, o))a""da .

oleir

10
7 (0 1) 2"/2I‘(n/2) [
For any fe C7(G), we put

T = | fe)Uidg (eeh).
a

As above we write T (§)=T(a) for £=| 0 | (acR,). Then by (2.2)
0
T (&)= @ (T )P BT/ (E 0) (£+0).

7le A d, times

Therefore
Tr(T /(%)) = Z; d,Tr(T (&, o)) .
CEKE
Hence it is enough to prove that

/ ((1) (1)> - ?%MSMT’(Tf(a))a"“da. (3.3)
Since

P(m) = SHfo(u "(I)u_l 9{) e <E“T>dxdy
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is a central function on K,

pm) = 33 ([, plm) Xm,) dem,) X, (m)

[cle K¢

(see [7], §24). Hence by Proposition 1 we have

(1) = 34|, $m) X,(m) dem

[cle K¢

= 2 d,Tr(T (£, 0)) -

[le K¢
Thus we have

THTAE) = (1) = [ (g 7)<t > dnau

HxK

=[G e eceae

Hence
[,7(5 ) au=§, Tz qepeies=at,
where d£=(2%)m dE,---d€,. When x=0,

75 9) =, T aepae (34)

By (2.1) we have Tr(T (kE))=Tr(R:T ()R, ")=Tr(T ((E)).
Hence Tr(T (£))=Tr(T (1£l)). So that we have (3.3) from (3.4).
q.e.d.

Let B (D) by the Banach space of all bounded linear operators on . We
define the Fourier transform of f& C7(G) by the B(9)-valued function T, on
H. 1In terms of this transform Proposition 2 becomes the following

Corollary. For any fe C3(G)

[ 17(0)1%de = gy |, 11T A@)] 30" da

4. The Fourier-Laplace transform

For each ¢ e H°(=C") we define a bounded representation of G on £ by

(USF)(u) = e<¢*">F(k7'), (FE9, ucK),

where g=< x)eG. For fe C3(G), put

k
01
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76 = | _fousds.

Then T, is a B(D)-valued function on H°. We shall call T, the Fourier-
Laplace transform of f.

Since K is compact, for each f & C7(G) there exists a positive number a such

that Supp(f)C{(S T)EG; x| <a, keK%, where Supp(f) denotes the sup-

port of f. We denote by 7, the greatest lower bound of such a’s. Throughout
this section we assume that 7 +=a for a fixed acR,.

Lemma 2. There exists a constant C=0 depending only on f such that
[ITA(E) I =C exp a|Im £].

Proof. Making use of the Schwarz’s inequality we have

T F s A( L A(E 3 1esmee (P dvdkf? au

o 8 )
§e2“'"’"§‘g{ ( ( )|a’x)?dks |F(k“u)|2dk}du

- e”"”’”‘»"s (S |f( )ldx)zdkl |F||*

for any F€®. Therefore it is enough to put

= ([ (517t %) asyar)” s

Lemma 3. The B(D)-valued function T, on H° is entire analytic.

Proof. For any n-tuple (m,, ---
bounded operator T' ™" by

, m,) of non-negative integers we define a

mm _ kux\ m...m 5o
(T, F)(u)_SHfo(O 1>x1 x, " F (k7 u)dx dk
X

where x:( 31). Then we have

Xn
ezl )

Hence for any fixed {=(¢, -+, §,)& C" the series
o 1
mzzlo P Z m! Tfml...mnclml..‘é‘"mn

My = ml ! cee mn!
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converges in B (D)-norm. It is easy to see that this series is equal to 7'«(¢).

X q.e.d.

For any polynomial function p on H°, we define a differential operator p(D)

on H by p(D):p(i, 0 TN l i) A polynomial funciton p on H® is called
i 0x, i Ox,

K-invariant if p(k £)=p() for any k€K and {cH. As is easily seen, T (9]
leaves the space C=(K) stable.

Lemma 4. 1) For any non-negative integers | and m we have A'T ,(£)A™
=Tt 4(£), (C€H"). )
2) For any K-invariant polynomial function p on H°, we have p(§)T (§)=
Tp*<p>f(§), (e H), where p*(§)=p(—7F).

The statement 1) can be proved by a similar way mentioned in §3. The

statement 2) is easily proved, using the fact ai e <E">=if ¢<¢*> and the in-
Xj
tegration by parts. From Lemma 2 and Lemma 4 we have the following

Proposition 3. For any K-invariant polynomial function p on H° and for any
non-negative integers | and m, there exists a constant C';™ such that

L p(O)A'T (E)A™ || <CY™ exp a|Im | .

Finally from the definition of T', we have the following functional equations
for T,.

Proposition 4. T (k{)=R.T ({)R}’ (teHl°, keK).

5. The analogue of the Paley-Wiener theorem

Theorem 1. A B (9)-valued function T on H is the Fourier transform of f
€C7(G) such that r ;< a (a>0) if and only if it satisfies the following conditions:

(I) T can be extended to an entire analytic function on H°.

(I1) For any {€H°, T(¢) leaves the space C*(K) stable. Moreover for
any K-invariant polynomial function p on H° and for any non-negative integers |
and m, there exists a constant CY;™ such that

HpE)ATE)A™ | =C," exp a|ImE| .
(III) For any ke K
T(kt) = RT(QOR; (=HY).
Proof. We have already proved the necessity of the theorem in §4. In
the following we shall prove the sufficiency of the theorem.

Let T be an arbitrary B(9)-valued function on H statisfying the conditions
(I)~(III) in the theorem. Let {¢,},c; be the complete orthonomal basis of D
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which we have chosen in §3. If |Im{|<b(b>0), by the condition (II) for any
non-negateive integers / and m there exists a constant C*;™ such that

[[A'T(E)A™| | <C*™ exp ab .
Therefore by Lemma 1 the series
2 [(T©);, ¢
i, jET

converges and T'({) is of the trace class. We assume that n=3. If ¢ ;=d{*(74) 50
we have | ¢ (u)| <dY{*® because |7,(u),,| =<1. So we have

SN S (T @), b:) bilw) $,(0) | < CI™e™ (g yrdyy .

JESN €T N [A4p|*|AHp|*™
Hence
mza W(T©)$;» D) bi(w) ;(v)]
a0 aer(Q, a) 1 ’ 00
=Ct'e Hwe.P(P> a)5 <A€257'01A+P121—3(”(”_1)/2_[”/2])/2) <+ (5'1)

for 2 1> iy(n_—l)_l[%] In case n=2, |$;|=1forall je J. Therefore

DT @955 6 8iw) :0) = 3 [(TE€) b5 i) | <.
Now let us define the kernel function of T'(¢) (§ € H) by
K w )= 2 (T©) s ¢) () $5(2) - (5:2)

By the facts stated above and the property (I) it is easy to see that for any { < H®
the right hand side of (5.2) is absolutely convergent and that it is uniformly cover-
gent on every compact subset of H°x Kx K. Thus we have the following

Lemma 5. The function H* X Kx K2(¢, u, v)—>K(¢ ; u, v) is of class C*
and entire analytic with repsect to {.

If we adopt the formula (5.1) to p({)T(¢) instead of T'(¢), we have the fol-
lowing lemma by making use of (II).

Lemma 6. For any K-invariant polynomial function p on H°, there exists
a constant C , such that

| POK(E; 4, ©)| <C, exp al Imt|, (€ HF, u, veK).
REMARK. K ({; u, v) is rapidly decreasing on the real axis H.

Let us define a function f on G by the inversion formula corresponding to
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the Fourier transform, i.e.

2

f(g) = 2_”/21‘(_n/2—)

S TH(T(a)U2-1)a""da .
Ry
By the property (III) we have

(T(k{,’ )d’i’ ®;) pi(u) ¢j('0) R
= (ReT(5)Ri 5, i) dil) b;(v) = (TE)R:'D;, Ry b:) bi(u) d,(v) -
Let ¢; = d¥/’r,; and ¢, = d2/’c,,([7], [¢]€K). Then

dr -
V(@) = diiT o (wk ) = A 337, (w) Tai(R)

and
i) = 427 5 () Tl
Therefore
(TE)RS;, Ri'$) di(w) b,(2)
= 50 S T 7,1, 430, )20 (00 L T Ol
Hence

S S (TR T g, AV, )d3 0, (W)d T (o)

p,q=1 7,5=1

=31 ST 1, 4 0m) 3340, W) an(k) X 3 45 70 ()

by l=17r,m=]1

=53, U@ "1, 420 ) k)L 7 (o)

dg

Since K ({5 4, v) = 3] 3 S (T ()7 pa, 8570 ,5)d5 0 () X dyf* T 40(0),

6}, [MER pia=1 7521
we have the following functional equation for K({; u, v):

K(kt; u, v) = K(L; uk, vk). (5.3)
On the other hand
THT(kE)UM) = Tr(RT(E)R,'Uf-1) = Tr(T(§)Ui-), (€ H).
Hence

2 a_ N\, m-17, »
‘ZWS SR+ Tr(T(a)Ug—x)a da = SHTr(T(E)Ug Vg,

where df — —+_ dg,.-dE,. As T(E)F(u) = S K(&; u, 0)F(0)do  (FeD)
(2”)”/2 K
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o (B —k7x _ (k x
and g —<0 1 )forg_ OI)EG,wehave

Ut-1T(E)F(u) = SKe"'<5'“'1"'l">K(§; ku, v)F(v)dv .

Since T'(£) is of the trace class, so is UfT(£). Moreover the function K X K =
(u, ©) > e i<ETETE>K (£ Ry, v) s clearly of class C*. Hence

TH(T(E)t-1) = THUE-T(E)) — S TR TIS K by u)du |
K
Therefore the equation (5.3) and the remark to Lemma 6 imply that
£ | — —i<kuf, x> .
SHTr(T(E)Ug )dE sHSKe K(%; ku, u)dud

= S S e <E>K(uT'RT'E; ku, u)dE du
K

H

- SKS cI<ESK(E; 1, K)E du

H
= | ook 1, K.
H

Thus we have
k x\ _ —i<g x> . -1
F(ET) = ememkie 1, ke, (54)

(keK, xe H). It follows from Lemma 5 and the remark to Lemma 6 that f is
of class C*. Making use of Lemma 6, it follows from the classical Paley-Wiener

theorem that if |x|>a, f (g ‘T):O for any ke K.
Finally we have to check that 7 ,=T. Since

T (£)F(u) = SKK AE: u, 0)F(v)do

where

Kf(g; u, ‘Z)) = SHf (ug_l 'f)'ei<§.u“1x>dx ,

so it is enough to prove that

K(&;u, v)= SHf (u:);‘l J;) f<EuTIE> g

By the relation (5.4),

747 3) = (=K 1, o
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= SHe“<5'”>K(u"E; u, v)dE .
Hence

KW't u,v)= SHf (ug_l ch) e<E*>(dx

If we replace u¢ for &,

Kt =1 (7 e

L e
H

This completes the proof of the theorem.

6. The Fourier-Bessel transform

Let C7(K\G/ K) be the set of all complex valued K-bi-invariant functions on
G which are infinitely differentiable and with compact support. For feC7(G),
put

@n@=1 7(g(}%)) e

and

(@) ()= | £ (gudu.

For feC7(K\G/K) it is easy to to see that

@) (§ 3)=(],7(32) b)) pe) 6.)
where

Pe(x) = S et >y |

K

RemarRk. The formula (6.1) is regarded as an analogue of the Poisson inte-
gral for semisimple Lie groups (see [5]). And the function ¢ is the zonal sphe-
rical function.

Let us define the Fourier-Bessel transform 3% f of fe C7(K\G/K) by

@gn@© = 7(}7) sy
7 a
If x = 0 , (r>0) and & = 0 , (a>0), we can prove that
0 0
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(3)
V2
(7))
](n 2)/z(ar)
P( 2 > (ar)‘” [ ar\ ™%
2
(see [8] for the the notation of the Bessel function J, (7)).

1 0 «r

Pe(x) = S e 37 °°%0 5in*"%0 df

=]

Ifg, = 0 "'1 0 , (r=0), we write briefly f(r)=f(g,). Then for any

0.0 1
feCz(K\G/K) f is uniquely determined by f(r), (r=0). Let C~(K\H) be the
set of all complex valued K-invariant functions on H which are infinitely differ-
a
entiable. If £= 0 , we write F(§)=F(a) for Fe C""(K\I:I). It is obvious
\ 0
that BF fe C~(K\H) for fe C7(K\G/K). Moreover we have

(ar) ™D -

BFf)(a dr (a>0).
@EN@ =, 108 (@0
Since for fe C7(K\G/K)

(BLf)(&) = SHfo (1 “:y) &<62>dydy

0
ngK

(57506 30 o

LB,

~

we have
/ ((1) L;) = S [(BEf) () <tr>dg
- 5 S(BFf)(E)b-y)dE .

On the other hand we remark that ¢_g(x)=¢¢(x) for any £ H and xc H.
Hence we have the following inversion formula

10)= {,, (97N (@ Leele) e

)(" 2)/2

Then we can easily prove the following analogue of the Paley-Wiener theorem
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for the Fourier-Bessel transform.

Theorem 2. A function F on H is the Fourier-Bessel transform of f&C?
(K\G/K) such that r ;<a (a>0) if and only if it satisfies the Jollowing conditions :

(I)  F can be extended to an entire analytic function on H".

(II) For any K-invariant polynomial function p of H® there exists a constant
C, such that

|pE)F ()| =C,y exp alImt| (teH").
(IIT) For any ke K

F(kt) = F(£) (teh).
ReMARK. In case n= 2, we have
(8%f) (@) = | S aryar
This is the classical Fourier-Bessel transform [8].
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