AN ELEMENTARY CONSTRUCTION OF THE REPRESENTATIONS OF SL(2, GF(q))

ALLAN J. SILBERGER

(Received February 10, 1969)

1. Introduction

Let GF(q) be a field containing q elements, q odd. Let \mathcal{Q} denote GL(2, GF(q)), the group of non-singular two-by-two matrices with entries in GF(q), and let G denote SL(2, GF(q)), the subgroup of \mathcal{Q} consisting of matrices with determinant one. In this paper, assuming a knowledge of certain of the characters of \mathcal{Q} , we construct all the irreducible unitary representations of G. Our construction involves essentially no technique beyond the theory of induced representations and the orthogonality relations on a finite group. For a similarly elementary computation of the characters of \mathcal{Q} we refer the reader to [3]. In future papers we shall generalize the methods employed in this paper to construct the representations of the $n \times n$ matrix groups GL(n, GF(q)) and SL(n, GF(q)).

Kloosterman [2] was the first to describe all the irreducible matrix representations of SL(2, GF(q)). Weil in [5] generalizes and gives an alternative construction for Kloosterman's representations. In [4] Tanaka uses Weil's theory to construct representations and presents a complete and unified description of the representations of G. We also mention the paper [1] of Gelfand-Graev, which classifies but does not detail the actual construction of all the representations of G.

2. The representations

Let B be the upper unipotent, D the diagonal, and T the upper triangular subgroups of G. Then T=DB. G has order $q(q^2-1)$ and contains an abelian subgroup R (unique up to conjugacy) of order q+1. Except for plus-or-minus the identity of G elements of R have characteristic roots in $GF(q^2)-GF(q)$. R is isomorphic to the subgroup of $GF(q^2)^{\times}$ comprised of elements of norm one.

The q+4 equivalence classes of irreducible representations of G break up roughly into two main classifications. The $\frac{1}{2}(q+5)$ representations of the

"principal series" all contain B-invariant vectors. Those $\frac{1}{2}(q+3)$ inequivalent representations which do not contain B-invariant vectors we call discrete series.

More precisely, the principal series include:

- (1) The trivial representation of degree 1, $U \equiv 1$;
- (2) A q-dimensional representation U_1^1 which occurs with $U \equiv 1$ in the induced representation ind 1;
- (3) $\frac{1}{2}(q-3)$ irreducible induced representations $U^{\sigma} = \inf_{T+\sigma} \alpha$, where α is a one-dimensional representation of T which is not real-valued. U^{σ} has degree q+1 and $U^{\sigma'}$ is equivalent to U^{σ} if and only if $\alpha' = \alpha$ or α^{-1} .
- (4) Let $\alpha = \text{sgn}$, where $\text{sgn} \equiv 1$ and $\text{sgn}^2 \equiv 1$. Then $\inf_{T \uparrow G} \text{sgn} = U^{\text{sgn}} = U^{\text{sgn}}_1 + U^{\text{sgn}}_2$, the direct sum of two inequivalent irreducible representations, each of degree $\frac{1}{2}(q+1)$.

The discrete series are as follows:

- (5) If π is a non-trivial character of R, then there is a representation U^{π} of G of degree q-1 associated with π . U^{π} is characterized by the fact that it does *not* occur in $\inf_{n+\sigma} \pi$. U^{π} is irreducible if and only if π is not real-valued. U^{π} is equivalent to $U^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1} , so there are $\frac{1}{2}(q-1)$ inequivalent irreducible representations of degree q-1.
- (6) If $\pi \equiv 1$, $\pi^2 \equiv 1$, then $U^{\pi} = U_1^{\pi} + U_2^{\pi}$, the direct sum of inequivalent representations of degree $\frac{1}{2}(q-1)$.

3. The construction of principal series

The construction of the representations of the principal series as induced representations is well-known. For completeness we discuss this problem in detail.

Let α be a one-dimensional representation of T. Since B is the commutator subgroup of T, $\alpha(btb')=\alpha(t)$ for any b and $b'\in B$ and $t\in T$. T/B is canonically D, so α is the extension to T of a character of the abelian group D. The mapping which identifies $d\in D$ with its upper diagonal entry regarded as an element of the multiplicative group $GF(q)^{\times}$ is an isomorphism. In this section, when convenient, we regard α as a function on $GF(q)^{\times}$ via this identification. Let U^{α} denote the representation of G induced from α .

By the definition of U^{α} , G acts by right translation in the space V^{α} which consists of complex-valued functions ψ on G satisfying

$$\psi(tg) = \alpha(t)\psi(g)$$

for all $t \in T$ and $g \in G$. Any such function is determined by its restriction to a set of representatives of $T \setminus G$. Since two matrices in G with the same lower entries differ only by a left factor in B, $\psi \in V^{\sigma}$ implies $\psi(g) = \psi(g_{21}, g_{22})$, g_{21} and

 g_{22} the lower entries of $g \in G$. Equation (3.1) entails

$$\psi(d^{-1}g_{21}, d^{-1}g_{22}) = \alpha(d)\psi(g_{21}, g_{22})$$

for $d \in GF(q)^{\times}$, g_{21} and g_{22} as before, so ψ is actually determined by its values, which may be chosen arbitrarily, on a set of representatives for the projective line over GF(q).

Theorem 3.1. Let α be a one-dimensional representation of T. Let U^{α} be the representation of G induced from α . U^{α} is right translation in the space V^{α} defined by relations (3.1) and (3.2).

- (1) The degree of U^{α} is q+1.
- (2) U^{α} is irreducible if and only if $\alpha^2 \equiv 1$.
- (3) $U^{\alpha'}$ is equivalent to $U^{\alpha'}$ if and only if $\alpha' = \alpha$ or α^{-1} .
- (4) U¹ decomposes into the direct sum of an irreducible representation of degree q and the unique one-dimensional representation of G.
- (5) U^{sgn} , where $\text{sgn} \equiv 1$ but $\text{sgn}^2 \equiv 1$, decomposes into the direct sum of two inequivalent representations of degree $\frac{1}{2}(q+1)$.

Proof.

- (1) A set of representatives for the projective line over GF(q) (e.g. $\{(0, 1), (-1, z) | z \in GF(q)\}$) has cardinality q+1. In view of the above remarks this proves that V^* has dimension q+1.
- (2) The proofs of the remaining parts of this theorem depend upon an analysis of the commuting algebra of U^{α} .

Let C^{σ} be the convolution algebra of all complex-valued functions f on G satisfying $f(tgt') = \alpha(tt')f(g)$ for any t, $t' \in T$ and $g \in G$. Then $U^{\sigma}(g_0)(f * \psi) = f * U^{\sigma}(g_0) \psi$ for any $g_0 \in G$ and $\psi \in V^{\sigma}$, since $f \in C^{\sigma}$ acting from the left by convolution keeps V^{σ} stable and commutes with right translation. Frobenius' reciprocity theorem says precisely that C^{σ} is large enough to be the full commuting algebra of U^{σ} .

 $f \in C^{\alpha}$ is determined by its values on a set of representatives for the double cosets $T \setminus G/T$, e.g. $\left\{ e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$. Clearly, dim $C^{\alpha} \le 2$. Dim $C^{\alpha} = 2$ if and only if $f(w) \ne 0$ for some $f \in C^{\alpha}$, if and only if $\alpha(t) f(w) = f(tw) = f(wt^{-1}) = \alpha^{-1}(t) f(w)$ for all $t \in D$. Thus dim $C^{\alpha} = 2$ if and only if $\alpha^{2}(t) = 1$, so (2) is true.

- (3) The space of intertwining operators between V^{ω} and $V^{\omega'}$, $\alpha \neq \alpha'$, is canonically the vector space $T^{\omega,\omega'}$ of complex-valued functions on G satisfying $f(tgt') = \alpha(t)f(g)\alpha'(t')$ for all $t, t' \in T$ and $g \in G$. It is spanned by any function f which satisfies $\alpha(t)f(w)=f(w)\alpha'(t^{-1})$ for all $t \in D$. $f(w) \neq 0$ implies $\alpha'=\alpha^{-1}$.
- (4) V^1 contains the constant functions on G as a stable subspace. The orthogonal complement of this one dimensional module must be an irreducible q-dimensional representation space for G.

(5) By the analysis in (2) we know that U_1^{sgn} decomposes into the direct sum of two inequivalent representations, $U_1^{\text{sgn}} + U_2^{\text{sgn}} = U^{\text{sgn}}$. By Frobenius' reciprocity theorem res U_{ν}^{sgn} , for $\nu = 1$ or 2, contains sgn and no other one-dimensional representation of T. Since $G/\{\pm e\}$ is a simple group, G has no non-trivial one-dimensional representations. Therefore, Lemma (4.3) implies that the degree of U_{ν}^{sgn} is $\frac{1}{2}(q+1)$, $\nu = 1$ or 2.

REMARK. To complete our description of the representations of the principal series we need to be more specific about the G-stable subspaces $V_1^{\rm sgn}$ and $V_2^{\rm sgn}$ of $V^{\rm sgn}$. Set $\phi(-1,z)=\Phi(z)$ for $z\in GF(q)$, where Φ is an additive character of GF(q); let $\phi(0,1)=0$. Then ϕ extends uniquely to a function in $V^{\rm sgn}$ and $U^{\rm sgn}(b(u))\phi=\Phi(u)\phi$, where u is the super diagonal entry of $b(u)\in B$. Moreover, $U^{\rm sgn}(d)\phi(-1,z)={\rm sgn}(d)\phi(-1,d^{-2}z)={\rm sgn}(d)\Phi(d^{-2}z)$ for all $z\in GF(q)$, $d\in D$ (identified with $GF(q)^\times$); $U^{\rm sgn}(d)\phi(0,1)=0$. Let $\Phi\equiv 1$. Then the $\frac{1}{2}(q-1)$ functions ϕ' which correspond to characters Φ' such that $\Phi'(d^{-2}z)=\Phi(z)$ for some $d\in GF(q)^\times$ belong to $V^{\rm sgn}_\nu$; the other non-trivial additive characters of GF(q) must correspond to elements of $V^{\rm sgn}_\nu$, $1\leq \nu\neq \nu'\leq 2$. $V^{\rm sgn}_\nu$ also contains a vector ψ satisfying $\psi(tgt')={\rm sgn}(tt')\psi(g)$ for all $t,t'\in T,g\in G$. In fact ψ may be chosen to be an idempotent in $C^{\rm sgn}$.

Proposition 3.2. Set

$$\psi(g) = rac{1}{2} rac{\mid G \mid}{\mid T \mid} \operatorname{sgn}(t), \quad if \quad g = t \in T;$$

$$= rac{1}{2} rac{\mid G \mid}{\mid T \mid} (q \operatorname{sgn}(-1))^{-1/2} \operatorname{sgn}(t),$$

if g=twb, with $t \in T$, $b \in B$, and $w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

Then ψ is an idempotent in the algebra C^{sgn} . There are two choices ψ , ψ' depending on the sign of $[\operatorname{sgn}(-1)]^{1/2}$. Clearly, $\psi+\psi'$ is the identity in C^{sgn} . The function ϕ defined in the preceding remark and corresponding to the non-trivial character Φ of GF(q) belongs to the same G-irreducible subspace of V^{sgn} as ψ if and only if $\sum_{x \neq 0} \operatorname{sgn}(x) \Phi(-x) = [q \operatorname{sgn}(-1)]^{1/2}$ (with the same choice for the sign of the right hand side as in the definition of ψ).

Proof. To show that ψ is an idempotent in C^{sgn} it suffices to show that $\psi * \psi(e) = \psi(e)$ and $\psi * \psi(w) = \psi(w)$. We have

$$\psi * \psi(g) = \frac{1}{|G|} \sum_{x \in G} \psi(x) \psi(x^{-1}g) = \frac{|T|}{|G|} \sum_{x \in G/T} \psi(x) \psi(x^{-1}g)$$
$$= \frac{|T|}{|G|} \{ \psi(e) \psi(g) + \sum_{u \in GF(g)} \psi(w) \psi(w^{-1}b^{-1}(u)g) \}.$$

Therefore,

$$\psi * \psi(e) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{1 + [q \operatorname{sgn}(-1)]^{-1} \operatorname{sgn}(-1)q\}
= \psi(e) .$$

$$\psi * \psi(w) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{ [q \operatorname{sgn}(-1)]^{-1/2} + [q \operatorname{sgn}(-1)]^{-1/2}
+ [q \operatorname{sgn}(-1)]^{-1} \sum_{\substack{u \in GF(q) \\ u \neq 0}} \operatorname{sgn}(-u) \} .$$

The last term on the right, being a character sum, is zero. It arises from the relation

Thus, $\psi * \psi(w) = \psi(w)$.

Finally, since ψ is a minimal idempotent in C^{sgn} , $\psi*\phi=\phi$, if $\psi\in V^{\text{sgn}}$ and $\phi\in V^{\text{sgn}}$. If $\phi\notin V^{\text{sgn}}$, then $\phi\in V^{\text{sgn}}$, so $\psi*\phi=0$.

$$\begin{split} \psi * \phi(w) &= \frac{\mid T \mid}{\mid G \mid} \sum_{x \in G/T} \psi(x) \phi(x^{-1}w) \\ &= \frac{\mid T \mid}{\mid G \mid} \{ \psi(e) \phi(w) + \psi(w) \sum_{u \in GF(q)} \phi(w^{-1}b^{-1}(u)w) \} \; . \end{split}$$

Using relation * as well as the definitions of ψ and ϕ , we obtain

$$\psi*\phi(w) = \phi(w) \left\{ \frac{1}{2} + \frac{1}{2} [q \operatorname{sgn}(-1)]^{-1/2} \sum_{u \neq 0} \operatorname{sgn}(-u) \Phi(u) \right\},$$

which implies the last part of the proposition.

4. The construction of discrete series for GL(2, GF(q))

Let Π be a character of $GF(q^2)^{\times}$ whose restriction to the elements of norm one is non-trivial. Then Π corresponds to a representation \mathcal{Q}^{Π} of the discrete series of $\mathcal{Q}{=}GL(2,\,GF(q))$ (i.e. res $\mathcal{Q}^{\Pi}\!\ni\!1$). It turns out that res \mathcal{Q}^{Π} is an irreducible representation of \mathcal{Q} , the triangle subgroup of \mathcal{Q} . To determine a space of functions which transforms under \mathcal{Q} as \mathcal{Q}^{Π} we find an irreducible representation m of \mathcal{Q} such that $m=\mathop{\mathrm{res}}\limits_{\mathcal{Q}\downarrow\mathcal{Q}}\mathcal{Q}^{\Pi}$. Then, using the trace of \mathcal{Q}^{Π} (which we assume known) we extend the matrix coefficients of m to \mathcal{Q} . To determine the discrete series of G we study $\mathop{\mathrm{res}}\limits_{\mathcal{Q}\downarrow G}\mathcal{Q}^{\Pi}$.

Let \mathcal{D} be the diagonal subgroup of \mathcal{Q} and let α be a character of \mathcal{D} . Ind $\alpha = M^{\alpha}$ is right translation in the space of complex-valued functions on \mathcal{D}

which satisfy $\psi(dt) = \alpha(d)\psi(t)$ for all $d \in \mathcal{D}$ and $t \in \mathcal{D}$. Since B represents $\mathcal{D} \setminus \mathcal{D}$, we may consider $M^{\mathfrak{o}}$ as acting in a vector space $B^{\mathfrak{o}}$ of complex-valued functions on B. We write $\psi \in B^{\mathfrak{o}}$ as a function of the super diagonal entries of elements of B. Then

(4.1)
$$M^{\sigma}(db(u))\psi(x) = \alpha(d)\psi(d_{11}^{-1}d_{22}x+u)$$

for any $d \in \mathcal{D}$ and b(u) the element of B with superdiagonal entry $u \in GF(q)$, d_{11} and d_{22} the non-zero entries of d.

To see how M^{σ} decomposes take as an orthonormal basis of B^{σ} the q characters of B. The operators $M^{\sigma}(b)$ for $b \in B$ obviously diagonalize with respect to this basis. Let Φ_0 be the trivial character of B. Clearly Φ_0 transforms under M^{σ} as the one-dimensional representation α of \mathcal{I} . Now let Φ be a fixed non-trivial character of B. For $i \in GF(q)^{\times}$ set $\Phi_i(x) = \Phi(ix)$ for all $x \in GF(q)$. Then Φ_i is a non-trivial character of B and every non-trivial character of B is of the form Φ_i for some $i \in GF(q)^{\times}$. (4.1) entails that, except for scalar factors, \mathcal{D} acts transitively on the non-trivial characters of B. Since M^{σ} is completely reducible, we see that the (q-1)-dimensional subspace of B^{σ} spanned by the non-trivial characters of B must be irreducible. Call the resulting representation m_{σ} .

Lemma 4.1. An irreducible representation of \mathfrak{I} is either of degree one or q-1. An irreducible (q-1)-dimensional representation of \mathfrak{I} is determined by its restriction to the center of \mathfrak{I} .

Proof. If an irreducible representation of \mathcal{I} is not one-dimensional, it is equivalent to a representation m_{α} for some character α of \mathcal{D} . Thus it is (q-1)-dimensional. By Frobenius' reciprocity theorem characters α' which occur in res m_{α} occur with multiplicity one. Since m_{α} is irreducible, every α' contained in res m_{α} must have the same values on the center of \mathcal{I} (i.e. the scalars). There are q-1 distinct characters of \mathcal{D} which agree on the scalars, so they must all occur in res m_{α} . By Frobenius' theorem, m_{α} is equivalent to $m_{\alpha'}$, for all such α' .

Lemma 4.2. Let Φ be a non-trivial character of B. For $i \in GF(q)^x$ set $\Phi_i(x) = \Phi(ix)$ for all $x \in GF(q)$ (considered as super-diagonal entries of elements of B). The matrix coefficients of the representation m_α with respect to the basis for B^α consisting of the q-1 non-trivial characters $\{\Phi_i\}_{i \in GF(q)} \times$ of B are the $(q-1)^2$ functions

(4.2)
$$m_{ij}^{\alpha}(t) = \langle m_{\alpha}(t) \Phi_j, \Phi_i \rangle$$
, i and $j \in GF(q)^{\times}$,
 $= \alpha(d) \Phi_j(u)$, if $\Phi_j(d_{11}^{-1} d_{22}x) = \Phi_i(x)$ for all $x \in GF(q)$;
 $= 0$, otherwise.

In (4.2) t=db(u), where $u \in GF(q)$ is the super-diagonal entry of the matrix $b(u) \in B$ and d_{11} and d_{22} are the diagonal entries of $d \in \mathcal{D}$.

Proof. Immediate from equation (4.1).

Lemma 4.3. Let m_{α} be an irreducible representation of \mathfrak{I} of degree q-1. Then res m_{α} decomposes into inequivalent representations of degree $\frac{1}{2}(q-1)$. Any irreducible representation of T is either one-dimensional or $\frac{1}{2}(q-1)$ -dimensional.

Proof. Res m_{α} decomposes simply; if res m_{α} decomposes, the component $\mathcal{D} \downarrow B$ $\mathcal{D} \downarrow B$ representations must be inequivalent. By (4.1) $M^{\alpha}(d) \Phi(x) = \alpha(d) \Phi(d_{11}^{-2}x)$ for $d \in D$, so two characters Φ and Φ' of B occur in the restriction to B of the same irreducible subrepresentation of res m_{α} if and only if $\Phi'(x) = \Phi(a^2x)$ for some $a \in GF(q)^{\times}$ and all $x \in GF(q)$. Since half the characters of B satisfy this relation and half do not, res m_{α} contains two irreducible representations, each of degree $g \downarrow T$ and $g \not = g \not= g \not = g \not = g \not= g \not=$

Lemma 4.4. Let G be a finite group and H a subgroup of G. Let U be a unitary representation of G whose degree is d and character is X. Assume res U is irreducible. Then, for any matrix coefficient u_{ij} of U, $1 \le i, j \le d$, and any $g \in G$

$$u_{ij}(g) = \frac{d}{|H|} \sum_{h \in \mathcal{U}} u_{ij}(h) X(h^{-1}g)$$
.

Proof.

$$\frac{d}{|H|} \sum_{h \in \mathcal{U}} u_{ij}(h) X(h^{-1}g) = \frac{d}{|H|} \sum_{h \in \mathcal{U}} u_{ij}(h) \sum_{k=1}^{d} u_{kk}(h^{-1}g)
= \frac{d}{|H|} \sum_{h \in \mathcal{U}} u_{ij}(h) \sum_{k=1}^{d} \sum_{l=1}^{d} u_{kl}(h^{-1}) u_{lk}(g)
= \frac{d}{|H|} \sum_{l,k} u_{lk}(g) \sum_{h \in \mathcal{U}} u_{ij}(h) \bar{u}_{lk}(h)
= u_{ij}(g),$$

by Schur's orthogonality relations on G.

Lemma (4.1) implies that for any representation \mathcal{U}^{π} of the discrete series of \mathcal{G} , res \mathcal{U}^{π} is equivalent to an irreducible representation m_{α} , where m_{α} is, up to equivalence, the unique irreducible (q-1)-dimensional representation of \mathcal{G} which agrees with \mathcal{U}^{π} on the scalars. Since $\mathcal{G}=\mathcal{I}\cup\mathcal{I}wB$, $w=\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$, it

suffices to compute the matrix coefficients for \mathcal{Q}^{π} at w in order to extend them from \mathcal{Q} to all of \mathcal{Q} . For this purpose we need the character X^{π} of \mathcal{Q}^{π} (To find directions for the easy computation of X^{π} consult [3], p. 227.). Figure 1 presents X^{π} .

Conjugacy Classes on G	Values of X^{Π}
$\lambda \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	$II(\lambda)(q-1)$
λ 1 0 1 1	$-\Pi(\lambda)$
$\lambda \begin{vmatrix} t & 0 \\ 0 & 1 \end{vmatrix}^*$	0
$\left\ egin{array}{ccc} arepsilon^q & 0 \ 0 & arepsilon ight\ \sim \left\ egin{array}{ccc} lpha & eta \ eta \zeta & lpha \end{array} ight\ ^*$	$-(\varPi(arepsilon)+\varPi(arepsilon^q))$

t, $\lambda \in GF(q)^x$, $t \neq 1$; $\varepsilon = \alpha + \beta \sqrt{\zeta}$, α , β , $\zeta \in GF(q)$ with ζ not a square and $\beta \neq 0$. * Matrices with the same characteristic roots are conjugate.

Figure 1.

Lemma 4.5. Let X^{Π} be the character of a representation \mathbb{C}^{Π} of the discrete series of \mathcal{G} . Let α be a character of \mathcal{D} such that $\alpha(\lambda)=\Pi(\lambda)$ for any scalar matrix $\lambda \in \mathcal{D}$. Then m_{α} is equivalent to res \mathbb{C}^{Π} . Fix a non-trivial character Φ of B. Let $\{m_{ij}^{\alpha}\}_{i,j\in GF(q)}^{\alpha}$ be the matrix coefficients of m_{α} with respect to the basis $\{\Phi_i\}_{i\in GF(q)}^{\alpha}$ of B^{α} (see Lemma (4.2) and relation (4.2)). The matrix coefficients m_{ij}^{α} are the restrictions to \mathcal{G} of matrix coefficients $u_{ij}^{\Pi,\alpha}$ of \mathbb{C}^{Π} . For $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\delta(a, b)$ the diagonal matrix with diagonal entries $\delta_{i1} = a$ and $\delta_{i2} = b$,

(4.3)
$$u_{ij}^{\Pi_{ij}\alpha}(w) = -\alpha^{-1}(\delta(i,j))q^{-1} \sum_{\varepsilon: \varepsilon \in q=ij} \Pi(\varepsilon)\Phi(\varepsilon + \varepsilon^{q}).$$

Proof. By Lemma (4.4) and relation (4.2)

$$egin{align} u^{\mathrm{II},lpha}_{ij}(w) &= rac{(q-1)}{|\mathcal{I}|} \sum_{t \in \mathcal{I}} m^{lpha}_{ij}(t) X^{\mathrm{II}}(t^{-1}w) \ &= q^{-1} \sum_{u \in \mathcal{GF}(q)} lpha(\delta) \Phi_j(u) X^{\mathrm{II}}(b^{-1}(u) \delta^{-1}w) \ , \end{split}$$

where $\delta = \delta(j, i)$ and $b(u) \in B$ has super diagonal entry u. Use of the explicit formula for X^{II} easily yields (4.3).

Theorem 4.6. Let Π be a character of $GF(q^2)^{\times}$ whose restriction to the elements of norm one is not trivial. Let X^{Π} be the character of the irreducible representation of $\mathcal G$ associated with Π . Let α be any character of $\mathcal D$ which agrees

with Π on the scalar matrices. Then m_{α} is res \mathbb{Q}^{Π} and B^{α} , the representation space of m_{α} , is a representation space for \mathbb{Q}^{Π} . Fix a non-trivial character Φ of B and write it as a function of the super-diagonal entries of elements of B. Take as a basis for B^{α} the q-1 non-trivial characters $\{\Phi_i\}_{i\in GF(q)^{\times}}$, where $\Phi_i(x)=\Phi(ix)$ for all $x\in GF(q)$. Matrix coefficients for \mathbb{Q}^{Π} acting in B^{α} are as follows. For $i,j\in GF(q)^{\times}$ set $u_{i,j}^{\Pi,\alpha}=\langle \mathbb{Q}^{\Pi}(g)\Phi_j,\Phi_i\rangle$. If g=db(u), where $d\in \mathcal{D}$ has diagonal entries d_{11} and d_{22} and $b(u)\in B$ has super-diagonal entry $u\in GF(q)$, then

(4.4)
$$u_{ij}^{\Pi_1 a}(g) = \alpha(d) \Phi_j(u), \quad \text{provided } d_{11}^{-1} d_{22} = j^{-1}i;$$

= 0, otherwise.

If g=b(v)wdb(u), where $d \in \mathcal{D}$ has diagonal entries d_{11} and d_{22} , $w=\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$, and b(u) and $b(v)\in B$ have superdiagonal entries u and v respectively then

$$(4.5) \quad u_{ij}^{\Pi,\alpha}(g) = \Phi(iv+ju)[-\Pi(d_{\Pi})\alpha^{-1}(\delta(i,j))q^{-1}\sum_{\epsilon:\epsilon eq=1}\Pi(\epsilon)\Phi(\epsilon+\epsilon^q)]$$

where $\delta(i, j)$ is the diagonal matrix with upper entry i and lower entry j and $l=ijd_{11}^{-1}d_{22}$.

Proof. Relation (4.4) is the same as (4.2), so no proof is needed. To prove (4.5) note first that $u_{ij}^{\Pi,\alpha}(b(v)gb(u)) = \Phi_i(v)u_{ij}^{\Pi,\alpha}(g)\Phi_j(u)$. Moreover, $u_{ij}^{\Pi,\alpha}(wd) = \alpha(d)u_{i,jd_{\bar{1}\bar{1}}d_{22}}^{\Pi,\alpha}(w)$. Use of (4.3) to express $u_{i,jd_{\bar{1}\bar{1}}d_{22}}^{\Pi,\alpha}(w)$ as an exponential sum leads to a proof of (4.5).

5. Discrete series of G

Let Π be a character of $GF(q^2)^{\times}$ whose restriction to N^1 , the elements of norm one in $GF(q^2)^{\times}$, is not trivial. Let π be Π restricted to N^1 . Let \mathcal{Q}^{Π} be the representation of the discrete series of \mathcal{Q} associated with Π . Set $U^{\pi} = \operatorname{res} \mathcal{Q}^{\Pi}$. The trace X^{π} of U^{π} is the restriction to G of X^{Π} , so, up to equivalence, U^{π} depends only on the values of Π restricted to N^1 . Furthermore, U^{π} and $U^{\pi'}$ are equivalent if and only if $\pi' = \pi$ or π^{-1} , since, if π' is the restriction to N^1 of a character Π' of $GF(q^2)^{\times}$, $X^{\pi} = X^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1} .

Theorem 5.1. Let π be a non-trivial character of N^1 and let U^{π} be the corresponding representation of G defined above. U^{π} is irreducible if and only if $\pi^2 \equiv 1$. If $\pi^2 \equiv 1$, $U^{\pi} = U_1^{\pi} + U_2^{\pi}$, the direct sum of inequivalent $\frac{1}{2}(q-1)$ -dimensional representations.

Proof. It suffices to show that $|G|^{-1}\sum_{g\in G}|X^{\pi}(g)|^2=1$, if $\pi^2\equiv 1$, and 2, otherwise. The computation is easy and we omit it. In the case that U^{π} is reducible, the components are $\frac{1}{2}(q-1)$ -dimensional and inequivalent, since, according to Lemma (4.3), this statement holds already for res U^{π} . We may use Lemma (4.3) to obtain representation spaces for U_1^{π} and U_2^{π} .

There are q+4 conjugacy classes in G and we have accounted for this many equivalence classes of irreducible representations, so our description of the irreducible representations of SL(2, GF(q)) is complete.

BOWDOIN COLLEGE

References

- [1] I.M. Gel'fand and M.I. Graev: Categories of group representations and the problem of classifying irreducible representations, Soviet Math. Dokl. 3 (1962), 1378-1381.
- [2] H.D. Kloosterman: The behavior of general theta functions under the modular group and the characters of binary modular congruence groups I and II, Ann. of Math. 47 (1946), I: 317-375 and II: 376-447.
- [3] R. Steinberg: The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q), Canad. J. Math. 3 (1951), 225-235.
- [4] S. Tanaka: Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka J. Math. 4 (1967), 65-84.
- [5] A. Weil: Sur certaines groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.