Silberger, A. J.

AN ELEMENTARY CONSTRUCTION OF THE REPRESENTATIONS OF SL(2, GF(q))

Allan J. SILBERGER

(Received February 10, 1969)

1. Introduction

Let $G F(q)$ be a field containing q elements, q odd. Let G denote $G L(2, G F(q))$, the group of non-singular two-by-two matrices with entries in $G F(q)$, and let G denote $S L(2, G F(q))$, the subgroup of G consisting of matrices with determinant one. In this paper, assuming a knowledge of certain of the characters of \mathcal{G}, we construct all the irreducible unitary representations of G. Our construction involves essentially no technique beyond the theory of induced representations and the orthogonality relations on a finite group. For a similarly elementary computation of the characters of \mathcal{G} we refer the reader to [3]. In future papers we shall generalize the methods employed in this paper to construct the representations of the $n \times n$ matrix groups $G L(n, G F(q))$ and $S L(n, G F(q))$.

Kloosterman [2] was the first to describe all the irreducible matrix representations of $S L(2, G F(q))$. Weil in [5] generalizes and gives an alternative construction for Kloosterman's representations. In [4] Tanaka uses Weil's theory to construct representations and presents a complete and unified description of the representations of G. We also mention the paper [1] of GelfandGraev, which classifies but does not detail the actual construction of all the representations of G.

2. The representations

Let B be the upper unipotent, D the diagonal, and T the upper triangular subgroups of G. Then $T=D B$. G has order $q\left(q^{2}-1\right)$ and contains an abelian subgroup R (unique up to conjugacy) of order $q+1$. Except for plus-or-minus the identity of G elements of R have characteristic roots in $G F\left(q^{2}\right)-G F(q) . \quad R$ is isomorphic to the subgroup of $G F\left(q^{2}\right)^{\times}$comprised of elements of norm one.

The $q+4$ equivalence classes of irreducible representations of G break up roughly into two main classifications. The $\frac{1}{2}(q+5)$ representations of the

[^0]"principal series" all contain B-invariant vectors. Those $\frac{1}{2}(q+3)$ inequivalent representations which do not contain B-invariant vectors we call discrete series.

More precisely, the principal series include:
(1) The trivial representation of degree $1, U \equiv 1$;
(2) A q-dimensional representation U_{1}^{1} which occurs with $U \equiv 1$ in the induced representation $\operatorname{ind}_{T \uparrow G} 1$;
(3) $\frac{1}{2}(q-3)$ irreducible induced representations $U^{a b}=\operatorname{ind}_{T \uparrow G} \alpha$, where α is a one-dimensional representation of T which is not real-valued. U^{a} has degree $q+1$ and $U^{a \prime}$ is equivalent to U^{a} if and only if $\alpha^{\prime}=\alpha$ or α^{-1}.
(4) Let $\alpha=\operatorname{sgn}$, where $\operatorname{sgn} \equiv 1$ and $\operatorname{sgn}^{2} \equiv 1$. Then $\underset{T \uparrow \xi}{\operatorname{ind}} \operatorname{sgn}=U^{\mathrm{sgn}}=U_{1}^{\mathrm{sgn}}$ $+U_{2}^{\mathrm{sgn}}$, the direct sum of two inequivalent irreducible representations, each of degree $\frac{1}{2}(q+1)$.
The discrete series are as follows:
(5) If π is a non-trivial character of R, then there is a representation U^{π} of G of degree $q-1$ associated with $\pi . \quad U^{\pi}$ is characterized by the fact that it does not occur in $\operatorname{ind}_{R \uparrow \sigma} \pi . \quad U^{\pi}$ is irreducible if and only if π is not real-valued. U^{π} is equivalent to $U^{\pi^{\prime}}$ if and only if $\pi^{\prime}=\pi$ or π^{-1}, so there are $\frac{1}{2}(q-1)$ inequivalent irreducible representations of degree $q-1$.
(6) If $\pi \equiv 1, \pi^{2} \equiv 1$, then $U^{\pi}=U_{1}^{\pi}+U_{2}^{\pi}$, the direct sum of inequivalent representations of degree $\frac{1}{2}(q-1)$.

3. The construction of principal series

The construction of the representations of the principal series as induced representations is well-known. For completeness we discuss this problem in detail.

Let α be a one-dimensional representation of T. Since B is the commutator subgroup of $T, \alpha\left(b t b^{\prime}\right)=\alpha(t)$ for any b and $b^{\prime} \in B$ and $t \in T . \quad T / B$ is canonically D, so α is the extension to T of a character of the abelian group D. The mapping which identifies $d \in D$ with its upper diagonal entry regarded as an element of the multiplicative group $G F(q)^{\times}$is an isomorphism. In this section, when convenient, we regard α as a function on $G F(q)^{\times}$via this identification. Let U^{a} denote the representation of G induced from α.

By the definition of U^{a}, G acts by right translation in the space V^{a} which consists of complex-valued functions ψ on G satisfying

$$
\begin{equation*}
\psi(t g)=\alpha(t) \psi(g) \tag{3.1}
\end{equation*}
$$

for all $t \in T$ and $g \in G$. Any such function is determined by its restriction to a set of representatives of $T \backslash G$. Since two matrices in G with the same lower entries differ only by a left factor in $B, \psi \in V^{a}$ implies $\psi(g)=\psi\left(g_{21}, g_{22}\right), g_{21}$ and
g_{22} the lower entries of $g \in G$. Equation (3.1) entails

$$
\begin{equation*}
\psi\left(d^{-1} g_{21}, d^{-1} g_{22}\right)=\alpha(d) \psi\left(g_{21}, g_{22}\right) \tag{3.2}
\end{equation*}
$$

for $d \in G F(q)^{\times}, g_{21}$ and g_{22} as before, so ψ is actually determined by its values, which may be chosen arbitrarily, on a set of representatives for the projective line over $G F(q)$.

Theorem 3.1. Let α be a one-dimensional representation of T. Let U^{a} be the representation of G induced from $\alpha . \quad U^{a}$ is right translation in the space V^{a} defined by relations (3.1) and (3.2).
(1) The degree of U^{a} is $q+1$.
(2) U^{a} is irreducible if and only if $\alpha^{2} \equiv 1$.
(3) $U^{a \prime}$ is equivalent to U^{a} if and only if $\alpha^{\prime}=\alpha$ or α^{-1}.
(4) U^{1} decomposes into the direct sum of an irreducible representation of degree q and the unique one-dimensional representation of G.
(5) U^{sgn}, where $\operatorname{sgn} \equiv 1$ but $\mathrm{sgn}^{2} \equiv 1$, decomposes into the direct sum of two inequivalent representations of degree $\frac{1}{2}(q+1)$.

Proof.
(1) A set of representatives for the projective line over $G F(q)$ (e.g. $\{(0,1)$, $(-1, z) \mid z \in G F(q)\})$ has cardinality $q+1$. In view of the above remarks this proves that V^{a} has dimension $q+1$.
(2) The proofs of the remaining parts of this theorem depend upon an analysis of the commuting algebra of U^{a}.

Let C^{∞} be the convolution algebra of all complex-valued functions f on G satisfying $f\left(t g t^{\prime}\right)=\alpha\left(t t^{\prime}\right) f(g)$ for any $t, t^{\prime} \in T$ and $g \in G$. Then $U^{a}\left(g_{0}\right)(f * \psi)=$ $f * U^{a}\left(g_{0}\right) \psi$ for any $g_{0} \in G$ and $\psi \in V^{a}$, since $f \in C^{\infty}$ acting from the left by convolution keeps V^{a} stable and commutes with right translation. Frobenius' reciprocity theorem says precisely that C^{∞} is large enough to be the full commuting algebra of U^{a}.
$f \in C^{a}$ is determined by its values on a set of representatives for the double cosets $T \backslash G / T$, e.g. $\left\{e=\left\|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right\|, w=\left\|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right\|\right\}$. Clearly, $\operatorname{dim} C^{a} \leq 2 . \quad \operatorname{Dim} C^{\infty}=2$ if and only if $f(w) \neq 0$ for some $f \in C^{\infty}$, if and only if $\alpha(t) f(w)=f(t w)=f\left(w t^{-1}\right)=$ $\alpha^{-1}(t) f(w)$ for all $t \in D$. Thus $\operatorname{dim} C^{a}=2$ if and only if $\alpha^{2}(t) \equiv 1$, so (2) is true.
(3) The space of intertwining operators between V^{a} and $V^{\alpha^{\prime}}, \alpha \neq \alpha^{\prime}$, is canonically the vector space $T^{a, \alpha^{\prime}}$ of complex-valued functions on G satisfying $f\left(\operatorname{tgt}^{\prime}\right)$ $=\alpha(t) f(g) \alpha^{\prime}\left(t^{\prime}\right)$ for all $t, t^{\prime} \in T$ and $g \in G$. It is spanned by any function f which satisfies $\alpha(t) f(w)=f(w) \alpha^{\prime}\left(t^{-1}\right)$ for all $t \in D . \quad f(w) \neq 0$ implies $\alpha^{\prime}=\alpha^{-1}$.
(4) V^{1} contains the constant functions on G as a stable subspace. The orthogonal complement of this one dimensional module must be an irreducible q-dimensional representation space for G.
(5) By the analysis in (2) we know that $U^{\text {sgn }}$ decomposes into the direct sum of two inequivalent representations, $U_{1}^{\mathrm{sgn}}+U_{2}^{\mathrm{sgn}}=U^{\mathrm{sgn}}$. By Frobenius' reciprocity theorem $\underset{G \Downarrow T}{\text { res }} U_{\nu}^{\text {sgn }}$, for $\nu=1$ or 2 , contains sgn and no other onedimensional representation of T. Since $G /\{ \pm e\}$ is a simple group, G has no non-trivial one-dimensional representations. Therefore, Lemma (4.3) implies that the degree of $U_{\nu}^{\text {sgn }}$ is $\frac{1}{2}(q+1), \nu=1$ or 2 .

Remark. To complete our description of the representations of the principal series we need to be more specific about the G-stable subspaces $V_{1}^{\text {sgn }}$ and $V_{2}^{\text {sgn }}$ of $V^{\text {sgn }}$. Set $\phi(-1, z)=\Phi(z)$ for $z \in G F(q)$, where Φ is an additive character of $G F(q)$; let $\phi(0,1)=0$. Then ϕ extends uniquely to a function in $V^{\text {sgn }}$ and $U^{\operatorname{sgn}}(b(u)) \phi=\Phi(u) \phi$, where u is the super diagonal entry of $b(u) \in B$. Moreover, $U^{\operatorname{sgn}}(d) \phi(-1, z)=\operatorname{sgn}(d) \phi\left(-1, d^{-2} z\right)=\operatorname{sgn}(d) \Phi\left(d^{-2} z\right)$ for all $z \in G F(q), d \in D$ (identified with $\left.G F(q)^{\times}\right) ; U^{\text {sgn }}(d) \phi(0,1)=0$. Let $\Phi \equiv 1$. Then the $\frac{1}{2}(q-1)$ functions ϕ^{\prime} which correspond to characters Φ^{\prime} such that $\Phi^{\prime}\left(d^{-2} z\right)=\Phi(z)$ for some $d \in G F(q)^{\times}$belong to $V_{\nu}^{\text {sgn }}$; the other non-trivial additive characters of $G F(q)$ must correspond to elements of $V_{\nu}^{\mathrm{sgn}}, 1 \leq \nu \neq \nu^{\prime} \leq 2 . \quad V_{\nu}^{\mathrm{sgn}}$ also contains a vector ψ satisfying $\psi\left(t g t^{\prime}\right)=\operatorname{sgn}\left(t t^{\prime}\right) \psi(g)$ for all $t, t^{\prime} \in T, g \in G$. In fact ψ may be chosen to be an idempotent in C^{sgn}.

Proposition 3.2. Set

$$
\begin{aligned}
\psi(g) & =\frac{1}{2} \frac{|G|}{|T|} \operatorname{sgn}(t), \quad \text { if } g=t \in T ; \\
& =\frac{1}{2} \frac{|G|}{|T|}(q \operatorname{sgn}(-1))^{-1 / 2} \operatorname{sgn}(t),
\end{aligned}
$$

if $g=t w b$, with $t \in T, b \in B$, and $w=\left\|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right\|$.
Then ψ is an idempotent in the algebra C^{sgn}. There are two choices ψ, ψ^{\prime} depending on the sign of $[\operatorname{sgn}(-1)]^{1 / 2}$. Clearly, $\psi+\psi^{\prime}$ is the identity in C^{sgn}. The function ϕ defined in the preceding remark and corresponding to the non-trivial character Φ of $G F(q)$ belongs to the same G-irreducible subspace of $V^{\text {sgn }}$ as ψ if and only if $\sum_{x \neq 0} \operatorname{sgn}(x) \Phi(-x)=[q \operatorname{sgn}(-1)]^{1 / 2}$ (with the same choice for the sign of the right hand side as in the definition of $\psi)$.

Proof. To show that ψ is an idempotent in $C^{\text {sgn }}$ it suffices to show that $\psi * \psi(e)=\psi(e)$ and $\psi * \psi(w)=\psi(w)$. We have

$$
\begin{aligned}
\psi * \psi(g) & =\frac{1}{|G|} \sum_{x \in G} \psi(x) \psi\left(x^{-1} g\right)=\frac{|T|}{|G|} \sum_{x \in G / T} \psi(x) \psi\left(x^{-1} g\right) \\
& =\frac{|T|}{|G|}\left\{\psi(e) \psi(g)+\sum_{u \in G F(G)} \psi(w) \psi\left(w^{-1} b^{-1}(u) g\right)\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\psi * \psi(e)= & \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^{2}}{|T|^{2}}\left\{1+[q \operatorname{sgn}(-1)]^{-1} \operatorname{sgn}(-1) q\right\} \\
= & \psi(e) \cdot \\
\psi * \psi(w)= & \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^{2}}{|T|^{2}}\left\{[q \operatorname{sgn}(-1)]^{-1 / 2}+[q \operatorname{sgn}(-1)]^{-1 / 2}\right. \\
& +[q \operatorname{sgn}(-1)]_{\substack{-1}}^{\substack{u \in G \mathcal{F}(q) \\
u \neq 0}} \mid \\
& \operatorname{sgn}(-u)\} .
\end{aligned}
$$

The last term on the right, being a character sum, is zero. It arises from the relation
*

$$
\begin{aligned}
w^{-1} b^{-1}(u) w & =\left\|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right\|\left\|\begin{array}{rr}
1 & -u \\
0 & 1
\end{array}\right\|\left\|\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right\| \\
& =\left\|\begin{array}{cc}
-u^{-1} & -1 \\
0 & -u
\end{array}\right\|\left\|\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right\|\left\|\begin{array}{ll}
1 & u^{-1} \\
0 & 1
\end{array}\right\|, \quad \text { if } \quad u \neq 0 .
\end{aligned}
$$

Thus, $\psi * \psi(w)=\psi(w)$.
Finally, since ψ is a minimal idempotent in $C^{\mathrm{sgn}}, \psi * \phi=\phi$, if $\psi \in V_{\nu}^{\text {sgn }}$ and $\phi \in V_{\nu}^{\text {sgn }}$. If $\phi \notin V_{\nu}^{\text {sgn }}$, then $\phi \in V_{\nu^{\prime}}^{\text {sgn }}$, so $\psi * \phi=0$.

$$
\begin{aligned}
\psi * \phi(w) & =\frac{|T|}{|G|} \sum_{x \in G / T} \psi(x) \phi\left(x^{-1} w\right) \\
& =\frac{|T|}{|G|}\left\{\psi(e) \phi(w)+\psi(w) \sum_{u \in G F(q)} \phi\left(w^{-1} b^{-1}(u) w\right)\right\}
\end{aligned}
$$

Using relation $*$ as well as the definitions of ψ and ϕ, we obtain

$$
\psi * \phi(w)=\phi(w)\left\{\frac{1}{2}+\frac{1}{2}[q \operatorname{sgn}(-1)]^{-1 / 2} \sum_{u \neq 0} \operatorname{sgn}(-u) \Phi(u)\right\},
$$

which implies the last part of the proposition.

4. The construction of discrete series for $\boldsymbol{G L}(2, G F(q))$

Let Π be a character of $G F\left(q^{2}\right)^{\times}$whose restriction to the elements of norm one is non-trivial. Then Π corresponds to a representation \mathcal{V}^{π} of the discrete series of $\mathcal{G}=G L(2, G F(q))$ (i.e. res $\mathcal{Q}^{\text {II }} \neq 1$). It turns out that res $\mathcal{V}^{\text {II }}$ is an $\mathcal{G} \downarrow B \quad \mathcal{G} \downarrow \mathcal{G}$ irreducible representation of \mathscr{I}, the triangle subgroup of \mathcal{G}. To determine a space of functions which transforms under G as $V^{I I}$ we find an irreducible representation m of \mathscr{I} such that $m=\underset{\mathcal{G} \downarrow \mathscr{G}}{\operatorname{res}} \mathcal{V}^{I I}$. Then, using the trace of \mathcal{V}^{π} (which we assume known) we extend the matrix coefficients of m to \mathcal{G}. To determine the discrete series of G we study res \mathcal{V}^{I}.

Let \mathscr{D} be the diagonal subgroup of \mathcal{G} and let α be a character of \mathscr{D}. Ind α $=M^{\infty}$ is right translation in the space of complex-valued functions on \mathscr{I}
which satisfy $\psi(d t)=\alpha(d) \psi(t)$ for all $d \in \mathscr{D}$ and $t \in \mathscr{I}$. Since B represents $\mathscr{D} \backslash \mathcal{I}$, we may consider M^{a} as acting in a vector space B^{a} of complex-valued functions on B. We write $\psi \in B^{a}$ as a function of the super diagonal entries of elements of B. Then

$$
\begin{equation*}
M^{w}(d b(u)) \psi(x)=\alpha(d) \psi\left(d_{11}^{-1} d_{22} x+u\right) \tag{4.1}
\end{equation*}
$$

for any $d \in \mathscr{D}$ and $b(u)$ the element of B with superdiagonal entry $u \in G F(q), d_{11}$ and d_{22} the non-zero entries of d.

To see how M^{a} decomposes take as an orthonormal basis of B^{a} the q characters of B. The operators $M^{a}(b)$ for $b \in B$ obviously diagonalize with respect to this basis. Let Φ_{0} be the trivial character of B. Clearly Φ_{0} transforms under M^{∞} as the one-dimensional representation α of \mathcal{I}. Now let Φ be a fixed non-trivial character of B. For $i \in G F(q)^{\times}$set $\Phi_{i}(x)=\Phi(i x)$ for all $x \in G F(q)$. Then Φ_{i} is a non-trivial character of B and every non-trivial character of B is of the form Φ_{i} for some $i \in G F(q)^{\times}$. (4.1) entails that, except for scalar factors, \mathscr{D} acts transitively on the non-trivial characters of B. Since M^{a} is completely reducible, we see that the ($q-1$)-dimensional subspace of B^{a} spanned by the non-trivial characters of B must be irreducible. Call the resulting representation m_{α}.

Lemma 4.1. An irreducible representation of \mathcal{I} is either of degree one or $q-1$. An irreducible ($q-1$)-dimensional representation of \mathcal{I} is determined by its restriction to the center of \mathcal{I}.

Proof. If an irreducible representation of \mathcal{I} is not one-dimensional, it is equivalent to a representation m_{α} for some character α of \mathscr{D}. Thus it is ($q-1$)-dimensional. By Frobenius' reciprocity theorem characters α^{\prime} which occur in $\underset{\mathcal{G} \downarrow}{\operatorname{res}} m_{a}$ occur with multiplicity one. Since m_{∞} is irreducible, every $\mathfrak{I} \downarrow \mathscr{D}$
α^{\prime} contained in res m_{a} must have the same values on the center of \mathscr{I} (i.e. the scalars). There are $q-1$ distinct characters of \mathscr{D} which agree on the scalars, so they must all occur in res m_{α}. By Frobenius' theorem, m_{∞} is equivalent to $m_{a^{\prime}}$, for all such α^{\prime}.

Lemma 4.2. Let Φ be a non-trivial character of B. For $i \in G F(q)^{x}$ set $\Phi_{i}(x)=\Phi(i x)$ for all $x \in G F(q)$ (considered as super-diagonal entries of elements of B). The matrix coefficients of the representation m_{∞} with respect to the basis for B^{a} consisting of the $q-1$ non-trivial characters $\left\{\Phi_{i}\right\}_{i \in G F(q)} \times$ of B are the $(q-1)^{2}$ functions

$$
\begin{align*}
m_{i j}^{\alpha}(t) & =\left\langle m_{\infty}(t) \Phi_{j}, \Phi_{i}\right\rangle, \quad i \text { and } j \in G F(q)^{\times}, \tag{4.2}\\
& =\alpha(d) \Phi_{j}(u), \quad \text { if } \quad \Phi_{j}\left(d_{11}^{-1} d_{22} x\right)=\Phi_{i}(x) \text { for all } x \in G F(q) ; \\
& =0, \quad \text { otherwise. }
\end{align*}
$$

In (4.2) $t=d b(u)$, where $u \in G F(q)$ is the super-diagonal entry of the matrix $b(u) \in B$ and d_{11} and d_{22} are the diagonal entries of $d \in \mathscr{D}$.

Proof. Immediate from equation (4.1).
Lemma 4.3. Let m_{∞} be an irreducible representation of \mathscr{I} of degree $q-1$. Then res m_{∞} decomposes into inequivalent representations of degree $\frac{1}{2}(q-1)$. Any I $\downarrow T$
irreducible representation of T is either one-dimensional or $\frac{1}{2}(q-1)$-dimensional.
Proof. Res m_{∞} decomposes simply; if res m_{∞} decomposes, the component $\mathscr{G} \downarrow B{ }^{\infty}$ representations must be inequivalent. By (4.1) $M^{a}(d) \Phi(x)=\alpha(d) \Phi\left(d_{11}^{-2} x\right)$ for $d \in D$, so two characters Φ and Φ^{\prime} of B occur in the restriction to B of the same irreducible subrepresentation of res m_{∞} if and only if $\Phi^{\prime}(x)=\Phi\left(a^{2} x\right)$ for some $\mathfrak{I} \downarrow T$
$a \in G F(q)^{\times}$and all $x \in G F(q)$. Since half the characters of B satisfy this relation and half do not, res m_{α} contains two irreducible representations, each of degree ป $\downarrow T$
$\frac{1}{2}(q-1)$. The last statement in Lemma (4.3) follows from the fact that any irreducible representation of T occurs in the restriction to T of some irreducible representation of \mathscr{T}.

Lemma 4.4. Let G be a finite group and H a subgroup of G. Let U be a unitary representation of G whose degree is d and character is X. Assume $\underset{G \downarrow H}{r e s} U$ is irreducible. Then, for any matrix coefficient $u_{i j}$ of $U, 1 \leq i, j \leq d$, and any $g \in G$

$$
u_{i j}(g)=\frac{d}{|H|} \sum_{h \in H} u_{i j}(h) X\left(h^{-1} g\right) .
$$

Proof.

$$
\begin{aligned}
\frac{d}{|H|} \sum_{h \in H} u_{i j}(h) X\left(h^{-1} g\right) & =\frac{d}{|H|} \sum_{h \in H} u_{i j}(h) \sum_{k=1}^{a} u_{k k}\left(h^{-1} g\right) \\
& =\frac{d}{|H|} \sum_{h \in H} u_{i j}(h) \sum_{k=1}^{a} \sum_{l=1}^{a} u_{k l}\left(h^{-1}\right) u_{l k}(g) \\
& =\frac{d}{|H|} \sum_{l, k} u_{l k}(g) \sum_{h \in H} u_{i j}(h) \bar{u}_{l k}(h) \\
& =u_{i j}(g),
\end{aligned}
$$

by Schur's orthogonality relations on G.
Lemma (4.1) implies that for any representation $\mathcal{V}^{I I}$ of the discrete series of \mathcal{G}, res $\mathcal{Q}^{I I}$ is equivalent to an irreducible representation m_{a}, where $m_{a b}$ is, up $G \downarrow 9$ to equivalence, the unique irreducible ($q-1$)-dimensional representation of \mathscr{I} which agrees with $\mathcal{Q}^{[I I}$ on the scalars. Since $\mathcal{G}=\mathscr{I} \cup \mathscr{I} w B, w=\left\|\begin{array}{rl}0 & 1 \\ -1 & 0\end{array}\right\|$, it
suffices to compute the matrix coefficients for $\mathcal{V}^{\Pi \pi}$ at w in order to extend them from \mathscr{I} to all of \mathcal{G}. For this purpose we need the character $X^{\text {II }}$ of $\mathcal{V}^{\text {II }}$ (To find directions for the easy computation of $X^{\text {II }}$ consult [3], p. 227.). Figure 1 presents $X^{\text {II }}$.

Conjugacy Classes on G	Values of $X^{\text {II }}$					
$\lambda\left\\|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right\\|$	$\Pi(\lambda)(q-1)$					
$\lambda\left\\|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right\\|$	$-\Pi(\lambda)$					
$\lambda\left\\|\begin{array}{ll}t & 0 \\ 0 & 1\end{array}\right\\|^{*}$	0					
$\left\\|\begin{array}{ll}\\| \varepsilon^{q} & 0 \\ 0 & \varepsilon\end{array}\right\\| \sim\left\\|\begin{array}{ll}\alpha & \beta \\ \beta \zeta & \alpha\end{array}\right\\|^{*}$	$-\left(\Pi(\varepsilon)+\Pi\left(\varepsilon^{q}\right)\right)$					
$t, \lambda \in G F(q)^{x}, t \neq 1 ; \varepsilon=\alpha+\beta \sqrt{\zeta}, \alpha, \beta, \zeta \in G F(q)$ with ζ not a square and $\beta \neq 0$. * Matrices with the same characteristic roots are conjugate.						

Figure 1.
Lemma 4.5. Let $X^{\text {II }}$ be the character of a representation $\mathcal{Q}^{\mathbb{I}}$ of the discrete series of 9 . Let α be a character of \mathscr{D} such that $\alpha(\lambda)=\Pi(\lambda)$ for any scalar matrix $\lambda \in \mathscr{D}$. Then m_{a} is equivalent to res QII. Fix a non-trivial character Φ of B. Let $\left\{m_{i j}^{\alpha}\right\}_{i, j \in G F(q)} \times$ be the matrix coefficients of m_{a} with respect to the basis $\left\{\Phi_{i}\right\}_{i \in G F(q)} x$ of B^{a} (see Lemma (4.2) and relation (4.2)). The matrix coefficients $m_{\imath, j}^{\alpha}$ are the restrictions to \mathcal{I} of matrix coefficients $u_{i j}^{\Pi, \alpha}$ of $\mathcal{V}^{\mathrm{II}}$. For $w=\left\|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right\|$ and $\delta(a, b)$ the diagonal matrix with diagonal entries $\delta_{11}=a$ and $\delta_{22}=b$,

$$
\begin{equation*}
u_{i j}^{\Pi \pi, \alpha}(w)=-\alpha^{-1}(\delta(i, j)) q^{-1} \sum_{\varepsilon: 8 \mathrm{eq} q=i j} \Pi(\varepsilon) \Phi\left(\varepsilon+\varepsilon^{q}\right) . \tag{4.3}
\end{equation*}
$$

Proof. By Lemma (4.4) and relation (4.2)

$$
\begin{aligned}
u_{i j}^{\mathrm{I}, \alpha}(w) & =\frac{(q-1)}{|\mathscr{I}|} \sum_{t \in \mathcal{I}} m_{i j}^{\alpha}(t) X^{\mathrm{I}}\left(t^{-1} w\right) \\
& =q^{-1} \sum_{u \in \mathcal{F H}^{\prime}(\mathcal{G})} \alpha(\delta) \Phi_{j}(u) X^{\mathrm{I}}\left(b^{-1}(u) \delta^{-1} w\right),
\end{aligned}
$$

where $\delta=\delta(j, i)$ and $b(u) \in B$ has super diagonal entry u. Use of the explicit formula for $X^{\text {II }}$ easily yields (4.3).

Theorem 4.6. Let Π be a character of $G F\left(q^{2}\right)^{\times}$whose restriction to the elements of norm one is not trivial. Let X^{II} be the character of the irreducible representation of \mathcal{G} associated with Π. Let α be any character of \mathscr{D} which agrees
with Π on the scalar matrices. Then m_{α} is res $q^{\Pi 1}$ and B^{α}, the representation space of m_{∞}, is a representation space for \mathcal{Q}^{π}. $\stackrel{S}{\stackrel{I}{I}} \stackrel{\text { Fix }}{ }$ a non-trivial character Φ of B and write it as a function of the super-diagonal entries of elements of B. Take as a basis for $B^{\text {w }}$ the $q-1$ non-trivial characters $\left\{\Phi_{i}\right\}_{i \in G F(q)} \times$, where $\Phi_{i}(x)=\Phi(i x)$ for all $x \in G F(q)$. Matrix coefficients for Q]II acting in B^{a} are as follows. For $i, j \in G F(q)^{\times}$set $\left.u_{i j}^{\mathrm{T}, \alpha}=\langle\mathcal{})^{\mathrm{I}}(g) \Phi_{j}, \Phi_{i}\right\rangle$. If $g=d b(u)$, where $d \in \mathscr{D}$ has diagonal entries d_{11} and d_{22} and $b(u) \in B$ has super-diagonal entry $u \in G F(q)$, then

$$
\left.\begin{array}{rl}
u_{i j}^{\Pi \pi} \alpha \tag{4.4}\\
\hline
\end{array}\right)=\alpha(d) \Phi_{j}(u), \quad \text { provided } d_{11}^{-1} d_{22}=j^{-1} i ; ~=0, \text { otherwise. }
$$

If $g=b(v) w d b(u)$, where $d \in \mathscr{D}$ has diagonal entries d_{11} and $d_{22}, w=\left\|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right\|$, and $b(u)$ and $b(v) \in B$ have superdiagonal entries u and v respectively then

$$
\begin{equation*}
u_{i j}^{\Pi, \alpha}(g)=\Phi(i v+j u)\left[-\Pi\left(d_{11}\right) \alpha^{-1}(\delta(i, j)) q^{-1} \sum_{\varepsilon: 8 q=l} \Pi(\varepsilon) \Phi\left(\varepsilon+\varepsilon^{q}\right)\right] \tag{4.5}
\end{equation*}
$$

where $\delta(i, j)$ is the diagonal matrix with upper entry i and lower entry j and $l=i j d_{11}^{-1} d_{22}$.

Proof. Relation (4.4) is the same as (4.2), so no proof is needed. To prove (4.5) note first that $u_{i j}^{\mathrm{T}, \alpha}(b(v) g b(u))=\Phi_{i}(v) u_{i j}^{\mathrm{\Pi}, \alpha}(g) \Phi_{j}(u)$. Moreover, $u_{i j}^{\mathrm{\Pi}, \alpha}(w d)=$ $\alpha(d) u_{i, j d_{11}^{1} d_{22}}^{\Pi, \alpha}(w)$. Use of (4.3) to express $u_{i, j d_{11}^{11} d_{22}}^{I \mathrm{II}, \alpha}(w)$ as an exponential sum leads to a proof of (4.5).

5. Discrete series of \boldsymbol{G}

Let Π be a character of $G F\left(q^{2}\right)^{\times}$whose restriction to N^{1}, the elements of norm one in $G F\left(q^{2}\right)^{\times}$, is not trivial. Let π be Π restricted to N^{1}. Let $\mathcal{q}^{I I}$ be the representation of the discrete series of \mathcal{G} associated with Π. Set $U^{\pi}=$ res $\left.{ }^{q}\right]^{I I}$. The trace X^{π} of U^{π} is the restriction to G of $X^{\text {II }}$, so, up to equiva$G \downarrow G$
lence, U^{π} depends only on the values of Π restricted to N^{1}. Furthermore, U^{π} and $U^{\pi^{\prime}}$ are equivalent if and only if $\pi^{\prime}=\pi$ or π^{-1}, since, if π^{\prime} is the restriction to N^{1} of a character Π^{\prime} of $G F\left(q^{2}\right)^{\times}, X^{\pi}=X^{\pi^{\prime}}$ if and only if $\pi^{\prime}=\pi$ or π^{-1}.

We may take as representatives for the conjugacy classes in G those representatives for conjugacy classes in \mathcal{G} which lie in G (see Figure 1.). However, $\left\|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right\|$ and $\left\|\begin{array}{ll}1 & 0 \\ \zeta & 1\end{array}\right\|$, ζ a non-square, are not conjugate in G; similarly $-\left\|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right\|$ and $-\left\|\begin{array}{ll}1 & 0 \\ \zeta & 1\end{array}\right\|$.

Theorem 5.1. Let π be a non-trivial character of N^{1} and let U^{π} be the corresponding representation of G defined above. U^{π} is irreducible if and only if $\pi^{2} \neq 1$. If $\pi^{2} \equiv 1, U^{\pi}=U_{1}^{\pi}+U_{2}^{\pi}$, the direct sum of inequivalent $\frac{1}{2}(q-1)$-dimensional representations.

Proof. It suffices to show that $|G|^{-1} \sum_{B \in G}\left|X^{\pi}(g)\right|^{2}=1$, if $\pi^{2} \neq 1$, and 2, otherwise. The computation is easy and we omit it. In the case that U^{π} is reducible, the components are $\frac{1}{2}(q-1)$-dimensional and inequivalent, since, according to Lemma (4.3), this statement holds already for $\underset{\substack{\text { r } \\ \in \neq T}}{ } U^{\pi}$. We may use Lemma (4.3) to obtain representation spaces for U_{1}^{π} and U_{2}^{π}.

There are $q+4$ conjugacy classes in G and we have accounted for this many equivalence classes of irreducible representations, so our description of the irreducible representations of $S L(2, G F(q))$ is complete.

Bowdoin College

References

[1] I.M. Gel'fand and M.I. Graev: Categories of group representations and the problem of classifying irreducible representations, Soviet Math. Dokl. 3 (1962), 1378-1381.
[2] H.D. Kloosterman: The behavior of general theta functions under the modular group and the characters of binary modular congruence groups I and II, Ann. of Math. 47 (1946), I: 317-375 and II: 376-447.
[3] R. Steinberg: The representations of $G L(3, q), G L(4, q), P G L(3, q)$, and $P G L(4, q)$, Canad. J. Math. 3 (1951), 225-235.
[4] S. Tanaka: Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka J. Math. 4 (1967), 65-84.
[5] A. Weil: Sur certaines groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143211.

[^0]: Research partly supported by NSF Grant GP-7139.

