RADICALS OF GROUP ALGEBRAS

Yukio TSUSHIMA

(Received December 9, 1966)

1. Introduction. Let k be a field of characteristic $p \neq 0, G$ be a finite group whose order is divisible by p and H be its normal subgroup. By \mathfrak{R} and \mathfrak{R} we denote the radical of the group algebra $K G$ and $k H$ respectively. We know $\mathfrak{R} \subset \mathfrak{\Re}$ by the theorem of Clifford [1]. Hence $\mathfrak{R}=k G \cdot \Re=\Re \cdot k G$ is a two sided ideal of $k G$ contained in \mathfrak{R}. We investigate in this note some properties between \mathfrak{R} and \mathfrak{Z}, (especially when $[G: H]=p$) and also we show if G is p-solvable, $\mathfrak{R}^{p^{n}}$ $=0$, where p^{n} is the order of a p-Sylow subgroup of G. Throughout this note, we adhere to the above notation and the following conventions; modules are finitely generated left modules, $\otimes=\otimes_{k H}$, and for a positive integer e and a module $M, e M$ means a direct sum of e copies of M. And finally, if M is a $k G$-module, M_{H} is the $k H$-module obtained by restricting the operators to $k H$.

The author is indebted to H. Nagao and M. Harada for their directions and for a generalization of his original result.
2. Lemma 1. Let M be an irreducible $k G$-module. If $k H$-module N is a composition factor of M_{H}, then M is a composition factor of $N^{G}=k G \otimes N$.

Proof. $\operatorname{Hom}_{k G}\left(N^{G}, M\right) \cong \operatorname{Hom}_{k H}(N, M)$. The right hand side is not 0 , since N is a direct summand of M_{H}. So there is a $k G$-epimorphism $N^{G} \rightarrow M$, which shows our assertion.

Here we recall the theorem of Clifford [1].
Let N be any $k H$-module. A conjugate of N means $g \otimes N(\subset k G \otimes N)$, considered naturally as $k H$-module, where $g \in G$. The inertia group of N, denoted by $H^{*}(N)$, means $H^{*}(N)=\{g \in G \mid g \otimes N \cong N$ as $k H$-modules $\} \supset H$.

Let M be an irreducible $k G$-module and N be any irreducible $k H$-submodule of M_{H}. Then we have $M_{H}=e\left(N_{1} \oplus N_{2} \oplus \cdots \oplus N_{r}\right)$, where the N_{i} 's are non isomorphic conjugates of $N_{1}=N, r=\left[G: H^{*}(N)\right]$, and e is a positive integer.

Lemma 2. We use the above notation. If $H^{*}(N)=H$, then we have $N^{G} \cong M$, equivalently, if the inertia group of an irreducible $k H$-module N is H itself, then N^{G} is also irreducible.

Proof. $r=[G: H]$ by the assumption. From lemma $1 \operatorname{dim} N^{G} \geqq \operatorname{dim} M$.

On the other hand, $\operatorname{dim} N^{G}=[G: H] \operatorname{dim} N$ and $\operatorname{dim} M=e r \operatorname{dim} N=e[G: H]$ $\operatorname{dim} N$. Therefore, we have $\operatorname{dim} N^{G}=\operatorname{dim} M$, that is $N^{G} \cong M$ and $e=1$.

Proposition 1. If $[G: H]$ is prime to p, then $\mathbb{R}=\mathfrak{R}$.
Proof. It is well known that in this case $k G$ is just a semisimple extension of $k H$. In other words, any $k G$-module is $(k G, k H)$-projective in the sense of Hochschild [5]. And so $k G / \Re$ is also a semisimple extension of $k H / \Re$ by [6]. However, $k H / \Re$ is a semisimple algebra in an usual sense, so is $k G / \Re$. Therefore, $\mathcal{Z}=\mathfrak{R}$.
3. In the section, we assume k is a splitting field for $k G$ and $[G: H]=p$. Hence for any $k H$-module N, its inertia group is H or G.

Lemma 3. Let N be any irreducible $k H$-module. Then N^{G} is either irreducible or its composition factors are all isomorphic to each other, and the number of them is equal to p. More precisely, the former case holds if $H^{*}(N)=H$, and the latter holds if $H^{*}(N)=G$.

Proof. Anyway, there exists an irreducible $k G$-module M such that N is a composition factor of M_{H}. If $H^{*}(N)=H$, then we have $N^{G} \cong M$ by lemma 2 . If $H^{*}(N)=G$, then $M=e N$ (since $r=1$). Suppose M appears a times as a composition factor of N^{G}, then $a \neq 0$ from lemma 1.

We have $\operatorname{dim} N^{G} \geqq a \operatorname{dim} M \geqq a e \operatorname{dim} N$, that is $p \operatorname{dim} N \geqq a e \operatorname{dim} N$. On the other hand, the group character of N^{G}, as is easily to be shown, is 0 . However the distinct irreducible characters of G are linearly independent over k, since k is a splitting field for G. Hence we have $p \mid a$. Combining with the above inequality, we have $p \geqq a e \geqq p$, that is $a=p, e=1$ and $\operatorname{dim} N^{G}=p \operatorname{dim} N M$. This completes the proof.

Remark. From the proof, we know for any irreducible $k G$-module M, M_{H} is either irreducible or its decomposed into a direct sum of non isomorphic irreducible $k H$-modules.

Now let $\left\{U_{1} \cdots U_{s}, V_{1} \cdots V_{t}\right\}$ be the full set of non isomorphic irreducible $k H$-modules in which we assume $H^{*}\left(U_{i}\right)=H$, and $H^{*}\left(V_{j}\right)=G$. Then we have $k H / \Re=\oplus \sum f_{i} U_{i} \oplus \sum h_{j} V_{j}$ and $f_{i}=\operatorname{dim} U_{i}, h_{j}=\operatorname{dim} V_{j}$. We put $k G / \Re=A$. Clearly $A \cong k G \otimes k H / \Re$ as $k G$-modules. Hence $A \cong f_{1} U_{1}^{G} \oplus f_{2} U_{2}^{G} \oplus \cdots f_{s} U_{s}^{G} \oplus$ $h_{1} V_{1}^{G} \oplus h_{2} V_{2}^{G} \oplus \cdots h_{t} V_{t}^{G}$.

Proposition 2. V_{i}^{G} is either indecomposable or completely reducible as an A-module.

Proof. Since V_{i}^{G} is A-projective, we can decompose $V_{1}^{G}=A e_{1} \oplus A e_{2} \oplus \cdots$ $A e_{k}$, where $\left\{e_{i}\right\}$ are primitive orthogonal idempotents of A. From lemma 3, V_{1}^{G} has p number of the composition factors which are isomorphic to each other.

Especially we have $A e_{i} \cong A e_{j}$ for all i, j. So if $A e_{i}$ is irreducible, then we have $k=p$, and V_{i}^{G} is completely reducible. If this is not the case, each $A e_{i}$ has the same number of composition factors greater than one. Since p is a prime number, we have $k=1$. This completes our proof.

For a brevity of notations, we put $f_{1} U_{1}^{G} \oplus f_{2} U_{2}^{G} \oplus \cdots \oplus f_{s} U_{s}^{G}=C_{0}, h_{j} V_{j}^{G}$ $=C_{j}$ and $A \cong C_{0} \oplus C_{1} \oplus \cdots \oplus C_{t}$. We identify each C_{i} with its isomorphic image in A.

Theorem 1.

(1) C_{0} is a semisimple algebra and each C_{i} is a block of $A(i \geqq 1)$.
(2) A is a quasi-Frobenius algebra over k.
(3) The composition factors of $\mathfrak{R} / \mathcal{R}$ are those irreducible $k G$-modules which are also irreducible as $k H$-modules. Conversely any irreducible $k G$-module, say M, which is also irreducible as $k H$-module appears as composition factor of $\mathfrak{P} / \mathbb{R}$ with multiplicity $(p-1) \operatorname{dim} M$.

Proof.

(1) We know from lemma 3 and the remark, for $i \neq j, C_{i}$ and C_{j} have no composition factor in common. Hence clearly C_{i} is a block of A for $i \geqq 1$ and C_{0} is a semisimple algebra.
(2) For $i \geqq 1, C_{i}$ has only one irreducible module and C_{0} is a semisimple algebra. hence our assertion is clear from the definition.
(3) Since $\mathfrak{R} / \mathfrak{R}$ is the radical of A, it is contained in $C_{1} \oplus C_{2} \oplus \cdots \oplus C_{t}$. So the first assertion is clear. Let M be an irreducible $k G$-module which is irreducible as $k H$-module. Then $M_{H} \cong V_{i}$ for some i. We have $\operatorname{dim} M=\operatorname{dim} V_{i}=h_{i}$. M appears $p h_{i}=p \operatorname{dim} M$ times as a composition factor of A. On the other hand, M appears $\operatorname{dim} M$ times in $k G / \Re$, since k is a splitting field for G. Hence M appears $(p-1) \operatorname{dim} M$ times between \mathbb{Z} and \mathfrak{R}.

Lemma 4. $\mathfrak{R}^{p} \subset \mathfrak{R}$
Proof. Let e be any primitive idempotent of A. Then by lemma 3 and Theorem 1(1), Ae has at most p number of composition factors. Hence we have $(\mathfrak{R} / \mathbb{R})^{p} e=0$ and since e is arbitrary, $(\mathfrak{R} / \mathfrak{R})^{p}=0$, that is $\mathfrak{R}^{p} \subset \mathfrak{R}$.
4. Theorem 2. If G is p-solvable, then $\mathfrak{R}^{p^{n}}=0$.

Proof. We may assume k is a splitting field for G. If G is a p-group of order p^{n}, our assertion is clear, since in this case $\operatorname{dim} \mathfrak{N}^{n}=p^{n}-1$ by [2]. (or [3] p. 189) Generally, there exists a normal subgroup of G whose index is p or prime to p. Using proposition 1 and lemma 4, it is easy to prove the theorem by induction on the order of G.

Remark. It will be necessary to remark that $\operatorname{dim} \mathfrak{N} \geqq p^{n}-1$ in general. We may also assume k is a splitting field for G, since in the group algebra the
radical is preserved by the extension of the coefficient field ${ }^{1)}$. Then there exists a primitive idempotent e of $k G$ such that $(k G) e / \mathfrak{R} e \cong k$. Hence $\operatorname{dim} \mathfrak{R}$ $\geqq \operatorname{dim} \mathfrak{R e}_{e} \geqq \operatorname{dim}(k G) e-1 \geqq p^{n}-1$.

Osaka City University

References

[1] A.H. Clifford: Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550.
[2] S.A. Jennings: The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[3] C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
[4] H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
[5] G. Hochschild: Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
[6] A. Hattori: Semisimple algebra over a commutative ring, J. Math. Soc. Japan 15 (1963), 404-419.

[^0]
[^0]: 1) This is true in general if the structure constants are in a perfect field contained in the coefficient field.
