NOTE ON ORDERS OVER WHICH AN HEREDITARY ORDER IS PROJECTIVE

Manabu HARADA

(Received December, 21, 1966)

Let R be an integral noetherian domain with quotient field K, and Σ a semi-simple K-algebra with finite dimension. An R-algebra Λ in Σ is called an R-order when Λ is R-finitely generated and $\Lambda K = \Sigma$.

The author has studied essential properties of hereditary orders in [2] and [3], (briefly h-order), which has the property that every one-sided ideal in Λ is Λ -projective.

In this short note we shall show the following theorem as a corollary to [3], Proposition 5.1.

Theorem. Let R be an integral noetherian domain with quotient field K and Σ a K-separable semi-simple algebra. Let Λ be an R-order in Σ . We assume that there exists an h-order Γ over R which properly containing Λ and is left Λ -projective. Then there exists an h-order Γ_0 such that $\Gamma \supseteq \Gamma_0 \supseteq \Lambda$.

From this theorem we shall give some criteria of order being hereditary, which contain [6], Theorem 5.1: If every maximal order containing Λ is Λ -projective, then Λ is hereditary, whenever Σ is a central simple K-algebra.

Finally, we shall give another criterion in a special case that Λ is an h-order if and only if Λ has a unique irredundant representation by maximal orders, (see the below for the definition). Hijikata has already shown the above fact in [5] by a direct computation. We give here a proof by the method in [3].

First we assume that R is an integral noetherian domain with quotient field K and Σ a semi-simple K-algebra. Let Γ be an h-order in Σ and Z the center of Γ .

Lemma 1. Let R, Γ , Z and Σ be as above, and Λ an R-order contained properly in Γ . If Γ is left Λ -projective, then $\Gamma \neq \Lambda Z$ and Γ is left ΛZ -projective.

Proof. Let $C = \operatorname{Hom}_{\Lambda}^{l}(\Gamma, \Lambda)$. Then C is right Λ -projective, since Γ is left Λ -projective. We put $\Lambda' = \Lambda Z$. Then C is right Λ' -projective and Γ is left Λ' -projective from [2], Lemma 1.3. Furthermore, $C' = \operatorname{Hom}_{\Lambda'}^{l}(\Gamma, \Lambda')$

152 M. Harada

is also right Λ' -projective. We know from [2], Lemma 1.3 and Proposition 1.6 that $\Gamma = \operatorname{End}_{\Lambda'}^r(C) = \operatorname{End}_{\Lambda'}^r(C) = \operatorname{End}_{\Lambda'}^r(C')$ and hence C = C' from [2], Lemma 1.5 and Proposition 1.6. If $\Gamma = \Lambda'$, $C' = \Lambda'$, which would imply $\Lambda = \Gamma$.

Let $\Sigma = \sum_{i=1}^{n} \oplus \Sigma_{i}$ be the decomposition of Σ into simple algebras Σ_{i} and $1 = \sum_{i=1}^{n} e_{i}$, where the e_{i} 's are identities in Σ_{i} . Then every h-order Λ is written as $\Lambda = \sum \oplus \Lambda e_{i}$. Therefore, if we are interested in an order Λ which is contained in a Λ -projective h-order Γ , we may assume from Lemma 1 that Σ is a simple K-algebra.

Proof of Theorem. From Lemma 1 and the above remark we may assume that Σ is a central simple K-algebra and Λ is an order over Z. Furthermore, we may restrict ourselves to a case of R being a discrete rank one, valuation ring by [2], Theorem 2.6. Let $C=\operatorname{Hom}_{\Lambda}^{i}(\Gamma,\Lambda)$, then $C\Gamma=\Gamma$, since Γ is Λ -projective. Let N be the radical of Γ , and A=C+N. Since $C\Gamma=\Gamma$ and $C \neq \Gamma$, A is not a two-sided ideal in Γ . Hence, $\Gamma_0=\Gamma \cap \operatorname{End}_{\Gamma}^{i}(A)$ is an horder by [3], Proposition 5.1. Furthermore, since A is a right Λ -module, $\Gamma_0 \supseteq \Lambda$. It is clear that $\Gamma \supseteq \Gamma_0$.

Corollary 1. We assume that Σ is a central simple K-algebra and R is a discrete rank one, valuation ring. If an R-order Λ is contained in a minimal h-order¹, which is left Λ -projective, then Λ is hereditary.

We have defined a rank of h-order Λ in [3], p. 10 under the assumption of Corollary 1 which is equal to the number of maximal two-sided ideals in Λ .

Proposition 1. Let Σ and R be as in Corollary 1. We assume that an h-order Γ of rank r contains an R-order Λ and that Γ is left Λ -projective. If $C \cap N/CN$ contains s non-isomorphic irreducible components as a right Λ/N -module, then Λ is contained in an h-order of rank r+s, where $C=\operatorname{Hom}_{\Gamma}^{l}(\Gamma,\Lambda)$ and N is the radical of Λ .

Proof. Let $\{\Omega_i\}_{i=1}^r$ be the set of maximal orders containing Γ and C_i Hom $_{\Lambda}^r(\Omega_i, \Lambda)$. Since Ω_i is left Γ -projective, Ω_i is left Λ -projective. Hence, C_i is a minimal two-sided idempotent ideal in Λ by [2], Lemma 5,1. It is well known that $\Gamma = \operatorname{End}_{\Lambda}^r(C)$ and $\Gamma/N_{\Gamma} = \operatorname{End}_{\Lambda/N}^r(C/CN)$, where N_{Γ} is the radical of Γ , (see [2], Propositions 1.6 and 4.4). Furthermore, $C/CN \approx C + N/N \oplus C \cap N/CN$ as a right Λ -module and $C+N/N \supseteq C_1+N/N \oplus \cdots \oplus C_r + N/N$ by [3], Lemma 3.2. Since Γ/N_{Γ} contains only r simple components, $C+N/N = C_1+N/N \oplus \cdots \oplus C_r+N/N$. Let $A=C+N_{\Gamma}$ and $A/N_{\Gamma} = \sum_{i=1}^r \oplus \bar{L}_i$,

¹⁾ See [3], p. 3 for the definition of minimal order.

where \bar{L}_i is a left ideal in a simple component Γ_i of $\Gamma/N\Gamma_i$. Since $C = \sum_{i=1}^r C_i$ and $\Gamma/N_{\Gamma} \approx \operatorname{End}_{\Lambda/N}(C/CN)$, $\bar{L}_i \neq (0)$ for all i. Furthermore, since $C(C \cap N/CN) = (0)$, the number of non-isomorphic irreducible components of $C \cap N/CN$ is equal to the number of \bar{L}_i such that $\bar{L}_i \neq \bar{\Gamma}_i$. Hence, the rank of $\Gamma_0 = \Gamma \cap \operatorname{End}_{\Lambda}^r(A)$ is equal to r+s by [3], Theorem 5.3.

REMARK. Corollary 1 is not true if we replace a minimal h-order by an arbitrary h-order containing Λ , (see the example below).

Lemma 2. Let R be a Dedekind domain and Ω an order containing an order Λ . Then there exists only a finite many of orders between Ω and Λ .

Proof. Since $r\Omega \subseteq \Lambda$ for some $r \neq 0$ in R, if a prime ideal p in R does not divides r, then $\Omega_p = \Lambda_p$. If p divides r, then $\Omega_p / r\Omega_p = \Sigma \oplus R_p / rR_p$. Hence, we have the lemma.

Let Λ and Λ' be orders. We have called in [2], p. 281 that Λ and Λ' are the same type if there exists $\Lambda - \Lambda'$ ideal A such that $\operatorname{End}_{\Lambda}^{i}(A) = \Lambda'$ and $\operatorname{End}_{\Lambda'}^{r}(A) = \Lambda$.

Proposition 2. Let R be a Dedekind domain and Σ a separable, simple K-algebra. Let Λ be an order over R. If every h-order belonging to the same type and containing Λ is left Λ -projective, then Λ is hereditary.

Proof. Let Γ be an h-order containing Λ and Z the center of Γ . We note that Z is also a Dedekind domain. We put $\Lambda' = \Lambda Z$. Then there exists a minimal one Γ' among h-orders over Z containing Λ' by Lemma 2. Let p be a prime in Z, and Γ_1 , Γ_2 ,..., Γ_n be the set of h-orders containing Λ which belong to the same type as Γ_p . Then $\tau_{\Lambda p'}^l(\sum_{i=1}^n \oplus \Gamma_i) = \Gamma_{p'}$ by [2], Theorems 3.3 and 4.3. Hence, $\tau_{\Gamma'}^l(\Sigma \oplus \Gamma'') = \Gamma'$, where Γ'' runs through all h-orders of same type containing Λ' . Therefore, Γ' is a direct summand of $(\Sigma \oplus \Gamma'')^m$ for some m. Hence, Γ' is a left Λ' -projective² by Lemma 1, which implies from Theorem that $\Lambda' = \Gamma'$. Furthermore, since $\Sigma \oplus \Gamma''$ is Λ -projective, Γ' is Λ -projective. Every h-order contains Z by [2], Proposition 2.2. Hence, we obtain $\Lambda' = \Lambda$ from Theorem.

Corollary 2. Let R and Σ be as above and Λ an R-order. Λ is an h-order if one of the following conditions is satisfied.

- 1) Every maximal order containing Λ is left Λ -projective.
- 2) We have an h-order Γ containing Λ such that there exists a maximal chain $\Gamma = \Gamma_1 \supset \Gamma_2 \supset \cdots \supset \Gamma_n = \Lambda$ between Γ and Λ and furthermore, each Γ_i is left Λ -projective, (cf. [2], Theorem 5.3 and [6], Theorem 5.1)

²⁾ This is an analogy to Silver's method in [6].

154 M. HARADA

Proof. It is clear from Proposition 2 and Theorem.

Next we shall consider a condition that an h-order Γ is Λ -projective for an order $\Gamma \supseteq \Lambda$.

Lemma 3. Let $\Gamma \supseteq \Lambda$ be orders. Then Γ is left Λ -projective if and only if $C\Gamma = \Gamma$, where $C = \operatorname{Hom}_{\Lambda}^{\iota}(\Gamma, \Lambda)$.

Proof. It is clear from the standard map: $C \underset{\Lambda}{\otimes} \Gamma \rightarrow \operatorname{Hom}_{\Lambda}^{i}(\Gamma, \Gamma) = \Gamma$.

Proposition 3. Let Λ be an order in Σ and C an idempotent two-sided ideal in Λ . If $End_{\Lambda}^{r}(C) = \Gamma$ is an h-order, then Γ is left Λ -projective, C is left and right Λ -projective and $C = \operatorname{Hom}_{\Lambda}^{r}(\Gamma, \Lambda)$.

Proof. Put $C^{-1}=\operatorname{Hom}_{\Lambda}^{r}(C,\Gamma)$. Since Γ is an h-order, $CC^{-1}=\Gamma$ by [4], p. 84. Hence, $C\Gamma=CCC^{-1}=CC^{-1}=\Gamma$. Since $C'=\operatorname{Hom}_{\Lambda}^{r}(\Gamma,\Lambda)\supseteq C$, $C'\Gamma=\Gamma$. Therefore, Γ is left Λ -projective by Lemma 3 and C is left Λ -projective. Furthermore, $\operatorname{End}_{\Lambda}^{r}(C)=\Gamma'$ is an h-order by [4], Theorem 1.1. Exchanging left and right in the above, we obtain that C is right Λ -projective. Hence, C'=C by [2], Proposition 1.6.

Corollary 3. Let Λ be an order and Γ an h-order containing Λ . If $C = \operatorname{Hom}_{\Lambda}^{\iota}(\Gamma, \Lambda)$ is idempotent, every two-sided idempotent ideal contained in C is left and right Λ -projective and there exists an h-order Γ_0 ($\supseteq \Lambda$) such that Γ_0 is Λ -projective. Especially if Γ is a maximal order, then Γ is left Λ -projective if and only if C is idempotent.

Proof. Let D be an idempotent ideal in C. Then $\operatorname{End}_{\Lambda}^{r}(D) \supseteq \operatorname{End}_{\Lambda}^{r}(C)$, since CD = D. Hence, $\operatorname{End}_{\Lambda}^{r}(D)$ is an h-order by [2], Corollary 1.4.

Finally, we shall give one more characterization of h-orders which is a converse of [2], Theorem 3.3.

We only consider a central simple K-algebra Σ and orders Λ over a discrete rank one, valuation ring R.

Let $\{\Omega_{\alpha}\}_{\alpha\in I}$ be the set of maximal orders containing Λ . If $\Lambda = \bigcap_{\alpha\in I} \Omega_{\alpha}$ and $\Lambda \subseteq \bigcap_{\beta\in I-\alpha} \Omega_{\beta}$, then we shall call Λ has a unique irredundant representation by Ω_{α} .

Proposition 4. Let Σ and R be as above. The intersection of any two distinct maximal orders is contained in an h-order of rank two.

Proof. Let Ω_1 and Ω_2 be maximal orders and $\Lambda = \Omega_1 \cap \Omega_2$. Then there exists an $\Omega_1 - \Omega_2$ ideal A which is contained in Λ by [1]. Let N be the radical of Ω_1 . If $A \subseteq N^i$ and $A \subseteq N^{i+1}$ for some i, $N^{-i}A \subseteq N$. Hence, we may assume that $A \subseteq N$. Then B = A + N is not a two-sided ideal, since $A\Omega_1 = \Omega_1$. Let $\Omega' = \operatorname{End}_{\Lambda}^i(B)$. Since B is a right Λ -module, $\Omega' \subseteq \Lambda$. Therefore, $\Omega_1 \cap \Omega'$

 $(\supseteq \Lambda)$ is an h-order of rank two by [3], Theorem 5.3.

Corollary 4. (Hijikata). Let Σ and R be as above. Then an R-order has a unique irredundant representation by maximal orders if and only if Λ is an h-order.

Proof. If Λ is an h-order then Λ has a unique representation by [2], Theorem 3.3. Conversely, we assume that Λ has a unique representation and $\{\Omega_{\alpha}\}_{\beta\in I}$ be the set of maximal orders containing Λ . Then $\Omega_1 \supseteq \Omega_1 \cap \Omega_2 \supseteq \cdots$ is a chain of orders containing Λ . Hence, I must be a finite set by Lemma 2. Since $\Omega_i \cap \Omega_j$ is contained in an h-order of rank two, which is written uniquely as $\Omega_i \cap \Omega_j'$. $\Omega_j = \Omega_j'$. Hence, Λ is an h-order by [3], Corollary 5.2.

EXAMPLES. 1. We give an example which shows $\Lambda \neq \Lambda Z$ in Lemma 1. Let R be the ring of integers and Q the field of rationals. $L=Q(\sqrt{5})$ and Z is the integrally closure of R in L. Put $Z_0=R+R\sqrt{5}$, then $Z\supseteq Z_0$. Let A be an ideal of Z contained in Z_0 . An maximal order $\Omega=\begin{pmatrix} Z&Z\\Z&Z \end{pmatrix}$ is $\Lambda=\begin{pmatrix} Z&A\\Z&Z_0 \end{pmatrix}$ -projective. However, $\Lambda \supseteq Z$.

2. Let
$$R=R_p$$
, where p is a prime ideal in R . $\Gamma_1 = \begin{pmatrix} R & R & P \\ R & R & P \\ R & R & R \end{pmatrix} \supseteq \Gamma_2 = \begin{pmatrix} R & P & P \\ R & R & P \\ R & R & R \end{pmatrix}$

$$\supseteq \Lambda = \begin{pmatrix} R & P & P \\ P & R & P \\ R & R & R \end{pmatrix}. \quad \text{Then } C_1 = \operatorname{Hom}_{\Lambda} (\Gamma_1, \Lambda) = \begin{pmatrix} P & P & P \\ P & P & P \\ R & R & R \end{pmatrix} \text{ and } C_2 = \operatorname{Hom}_{\Lambda} (\Lambda_2, \Lambda)$$

$$= \begin{pmatrix} P & P & P \\ P & R & P \\ R & R & R \end{pmatrix}.$$
 C_1 and C_2 are idempotent and left and right Λ -projective. Furth-

ermore,
$$\operatorname{End}_{\Lambda}^{r}(C_{2}) = \begin{pmatrix} R & P & P \\ R & R & P \\ P^{-1} & R & R \end{pmatrix} = \Gamma_{3}$$
.

This example shows that $\operatorname{Hom}_{\Lambda}(\Gamma_2, \Lambda)$ is idempotent for an h-order Γ_2 , however $\operatorname{End}_{\Lambda}^r(C_2) \supseteq \Gamma_2$, (cf. [2], Proposition 1.6) and furthermore, h-order Γ_3 is Λ -projective, but Λ is not hereditary (cf. Corollary 2). Moreover, $\Lambda/N = R/p \oplus R/p \oplus R/p$ and $\Lambda \supset C_2 \supset C_1$ is a maximal chain of (projective) idempotent ideals, however Λ is not hereditary (cf. Corollary 2).

OSAKA CITY UNIVERSITY

References

[1] M. Deuring: Algebren, Berlin, 1953.

[2] M. Harada: Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273-290.

156 M. Harada

- [3] —: Structure of hereditary orders over local rings, J. Math. Osaka City Univ. 14 (1963), 1-22.
- [4] ——: Multiplicative ideal theory in hereditary orders, J. Math. Osaka City Univ. 14 (1963), 83-106.
- [5] H. Hijikata: Maximal compact subgroups in p-adic classical groups, Sugaku no Ayumi 10 (1963), 66-97.
- [6] L. Silver: Noncommutative localizations and applications, to appear.