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It is well known that any solution # of the parabolic differential
equation

ou /ot —o*u/ox* = 0

belongs to a Gevrey’s class, namely for any compact set K there exist
constants M, and M such that

sup |(@/0t)”(0/0x)"u(x, t)| < MM "I'(n+1)"(2m+1)
x,$HEK

for any non-negative integers m and x. In this paper this result is
generalized to more general weighted elliptic boundary value problems
of first order in ¢ (cf. [2] for the definition of weighted ellipticity):

Du(x, H)+ A(x, £, D)u(x, t) = f(x, 1), xEQ, 0.1)
Bj(x) t) Dx)u(x7 t) = gj(x) t)) xeaﬂv j:]-) e, m, (0' 2)

where A(x, ¢, D,) is a linear differential operator of order 2m and Q is
a bounded domain in the z—-dimensional Euclidean space. The boundary
system {Bj(x, t, D,)} is assumed to consist of differential operators of
order <2m; however, it need not be normal. Throughout this paper
a function % (resp. ¢) of (x,¢) (resp. x) is said to belong to Gevrey’s
class G(o, 7) (resp. G(7)), o, 7=1, if with some constants M, and M

sup | DD h(x, £)| < M,M* (| |o + D) (Ir +1)
xEQ,¢t
(resp. sung;gb(x)l >=MM™I'(|k)o+1))

for any / and «, and the boundary 0Q is said to be of Gevrey’s class
G(o) if some open part of 9 containing each point of 9Q is mapped
onto a part of a hyperplane by means of a one-to-one mapping of the
class G(¢). It will always be assumed that the elliptic boundary systems
(£D;"+ A(x, t, D,), {Bj(x, t, D))}, QX {y: —co<y<oco}) satisfy the



164 H. TANABE

Complementing Condition ([3]) for each fixed £. Under this assumption
it will be shown that any solution of (0.1)—(0.2) belongs to Gevery’s
class G(o, 2mo) provided that all the coefficients of A4, {B;} and f, {g;}
belong to the class G(o, 2mo) and 0Q is of the class G(s). This result
gives an affirmative answer to the conjecture of J.L. Lions and E.
Magenes [4].

In section 3 the property of the solution considered as a function
of ¢ with values in H,,(Q) will be investigated. The main result in
that section is that if all the coefficients of A, {B;}, and f, {g;} belong
to Gevrey’s class G(7), 7=1, as functions of #, then so does the solution
u of (0.1)—(0.2) as a function of ¢ with values in H,,(Q), namely with
some constants L,, L

1D tu(#)l|om = Lo L*T(kr +1)

for all integers #=0, where || ||,,, is the norm of H,,(Q). In this result
the known functions need not belong to Gevrey’s class in x.

In the last section it will be shown that # belongs to the class
G(o, 2mo) with the aid of the result in section 3. As in [7] it will
first be proved that the Cauchy data of # on the boundary belong to
G(o, 2ma). Unlike the case of analyticity Cauchy-Kowalevskii theorem
and Holmgren's theorem cannot be used, therefore we estimate all
derivatives of the solution following the technique of C.B. Morrey and
L. Nirenberg [5].

It is quite probable that the same result remains valid for problems
of arbitrary order in ¢:

A(x, ¢, D, D)u(x, ) = f(x, 1), x€Q, (0.3)
Bj(x; Z Dx) Dt)u(x, t) = gj(x) t)) xean, ]:1’ e, My (0' 4)

however, the computation in that case would be extremely lengthy, so
we shall investigate only the simpler situation.

1. Notations and assumptions. We denote by Q a domain in the
n-dimensional Eucidean space E, and by 9Q its boundary. Let (x, )=
(x4, **+, x,, 1) be the generic point in E,,,. We write D,=(D,, -+, D,)
=(—1)""%8/ox,, --+, 0/0x,), D,=(—1)""?9/0t and denote by D3, a=(«a,, -+,
a,), the x-derivative D{1--- Dy». |a| stands for the length of the
multi-index of «: |a|=a,+ - +a,. For any non-negative integer k we
denote by H,(Q) the class of all complex valued functions whose
distribution derivatives of order up to k are square integrable in Q,
the norm of H,(Q) being denoted by



SoLUTIONS OF WEIGHTED ELLIPTIC BOUNDARY VALUE PROBLEMS 165

e = 33 | 1Dz dx
|8|=kJQ

H,_ ,,(0Q) is to be the class of functions ¢ which are the boundary

values of functions belonging to H,(Q). In this class of functions we

introduce the norm

<¢>k,aa = inf””“k,g,

where the infimum is taken over all functions v in H,(Q) which equal
¢ on 9.

A(x, t, D,) is a linear differential operator in x of order 2m with
coefficients defined in O X {f: —oco <t< oo} :

A(-x’ Z, Dx) = Zlmlézmaaﬁ(x) t)D: .

For each j=1, .-, m, Bx, t, D,) is a linear differential operator in x of
order m; with coefficients defined on 0Q X {f: — oo <t <o} :

Bj(x’ t) Dx) = Zlﬂlémjbj,ﬁ(x’ t)Dg .

{Bj(x, t, D,)} is a system of operators which defines boundary conditions,
and in what follows we shall assume that all the coefficients of {B;}
are defined in the whole of O X {f: —co <t<oo}. Let y be an auxiliary
real variable and we denote by @ the infinite cylinder: @ = {(x, ) : x=Q,
—oo<y<oo}. For each fixed ¢, D3+ A(x, t, D,) are differential oper-
ators in (x, y) of order 2m with coefficients defined in Q.

Assumptions (I). For each fixed #, D2+ A(x, ¢, D,) is an elliptic
operator of order 2m in Q.

(II) The order m; of B; is smaller than 2m for each j.

(III) The Complementing Condition ([2]) is satisfied by the system
(£DI+ A(x, t, D,), {B;(x, t, D,)}7,, Q) for each fixed ¢.

The assumption concerning the smoothness of the coefficients will be
stated in each of the following sections and in the last section 9Q will
be required to satisfy a more restrictive assumption. By a solution of
(0.1)—(0.2) we always mean a function % with the properties that (i)
u(t)=u(x, -)e H,,,(Q) for each £, (ii) »(t) is continuous in ¢ in the strong
topology of H,,(Q) and (iii) » satisfies (0.1)—(0.2).

Let + and & be real numbers such that +=1, o=1.

DErINITION 1. A function u(#), — oo <t < oo, with values in a Hilbert
space X (in many cases in what follows X will be the set of all com-
plex numbers) is said to belong to Gevrey's class G(r) if for any positive
constant R there exist constants H, and H such that
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sup_g<<rllDiu(®)||< HHI'(rg+1)
for all integers ¢=0, where || || is the norm of X.

DEFINITION 2. A numerical valued function #(x,¢) defined in QX
{t: —co<t< oo} is said to belong to Gevrey's class G(o, v) if for any
positive constant R there exist constants H, and H such that
sup |D{Du(x, t)|=HH""™I (o |x| +1)](rg+1).
R

xeQ,-R<t<

for any « and ¢=0.

From now on we shall write || ||,, < >, omitting Q and 0Q if there is
no fear of confusion.

2. Preliminary lemmas. In this section we assume that all the
coefficients of A, {B;} have derivatives in ¢ of all orders which are
continuous in O X {f: —oco <¢t<co} and that f, g;,7=1, -, m, are infini-
tely differentiable functions of ¢/ with values in L*Q) and H,,_, (Q)
respectively. Let p be a positive number satisfying p<1, and 7, § be
positive numbers such that »+8<p. ¢ is to be a smooth function such
that @(t)=1for —r<t<r, @(t)=0 for [¢|>r+3, and |@'(!)| <K/6 where
K is a positive number independent of » and 8. In what follows in
this section we denote by C,, C,,--- constants depending only on the
assumptions stated in the preceding and the present sections. If 7% is
a function of (x,t), we denote by /4 its Fourier transform with respect
to t:
e~ OV x )dE

o

Wz, ) = (27,)—1/25

and by A its derivative in ¢ of order ¢:

Wo(x, ) = Dz, t).

We shall use the following notations

ek s, ) = ([ 1rowigar)”, @1
&gy 748 = ({7 g0 aon,dt)”
([ aniemmmipgmmoiyan) 2.2

i, ) = ([ juonga)e+ ([ weop.a)” @)
for ¢=0,1, 2, ---.
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Let » be a smooth function of ¢ such that »(#)=1 for —1<#<1,
7(t)=0 for |¢|>2. Let M,, ¢=0,1,---, be positive numbers such that

for all a, B, «,j with |a|=2m, |B|=m;, |k|=2m—m;, j=1, -, m,
| Diau(x, )| <M,, @4
IDIDzb;alx, B S My, 2.5)
| 10D 7 Wy v =y, (2.6)
[* injemmprem| D1, 5 (e, ) AN =M, @.7)

in Qx {t: —1<t<1} or Q.

Lemma 2.1. If p is sufficiently small, then for any positive numbers
7, 8 such that r+3<p and for any non-negative integer q the following
inequality holds for any solution u of (0.1)-(0.2):

i, YSCo{ed f, 7+8)+ Tfuse, g5 7+ 9)

+ ([ [ipceyigar)” + 2 §) M, pd w, 7+5)
+ (M ([ ipmipar) ) (2.8)

This lemma is essentially proved in [6] and [7]. However, for the
sake of convenience we give below an outline of the proof.

Lemma 2.2. If v is a solution of

D(x, t)+ A(x, 0, D)o(x, t) = f(x, t), xEQ, —co <t <o, 2.9
Bj(x) O) Dx)v(xy t) = gj(x> t)a xeaﬂ, — o0 <t<oo’ ]:1’ e, m, (2' 10)

and if the support of v considered as a function of t with values in
H,,(Q) is compact, then

[ iDaizar+ |l
<c{|" nr@igde " niem g oliyan
350 g OB dt+ | ez at) (2.11)
Proof. The Fourier transform 4 of v with respect to ¢ satisfies

AM(x, M)+ A(x, 0, D)B(x, \) = f(x, \), xEQ, (2.12)
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Bj(xa 0» Dx)ﬁ(x’ 7\') = gj(x’ )")1 x€0Q, j:1) e, M. (2' 13)
Following S. Agmon [1] let us consider the functions

w.(%, 3, p) = ¢(y) exp((—1)"up)b(x, +up*™),

where ¢ is a smooth function such that &(»)=1 for |y|=<1/2 and {(y)=0
for |y|=1, and p is an arbitrary real number. Due to (2.12) and (2.13)
w, satisfies

(£D3"+ A%, 0, D)w.(x, 3, n)=5(3) exp((—1)"*uy) f (%, +p™")
+ 335 (DIt expl(— )i, ), xS0, (2.14)

Bj(x, 0, Dyw.(x, y, p)=t(y) exp ((— 1)’ uy)g;(x, +p*™),
x€0Q, j=1,.-,m. (2.15)

It is easy to show that

“( iDim + A(xv 0» Dx))w:t“o,Q
SCAIS (£ ™o+ QA+ [ P DA ™)} (2.16)
{Byx, 0, Dx)wj:>§m—m]-,80 = {¢ exp((— 1)1/2My)§j(i#m)>§m—mj,aq
<|lt exp (—1)"*u)& (£ 1) 3m-m; 0
SCRET™ (A + [ )*18 (£ ™) 3m—m; -k -

Hence with the aid of the well known inequality

20|21 ;- £ S Col | §525% /A= o ||~ ™7

we get

<Bj(x’ 0» Dx)w:i:>2m—ml-,39
=Gl (% 1" Nlam-m; + A+ ()™~ ™3]18;( £ ™)} - (2.17)

As is easily seen
] 13m 0= 20%0 | 11| #10( £ ™) |3t - (2.18)
Using (2.16), (2.17) and (2.18) in the Agmon-Douglis-Nirenberg inequality

-] lom,e = Cs{l|(£ Dy + A%, 0, D))w.lo0
+ 2371 <Bj(%, 0, D)W Do ;00 + 102 lo,0}

which can be applied to w, in @ by assumption and then putting A=
+u®”, we get
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IX B o+ DO e
SCAIF Qo+ 27 [ [0 8,0,
+ SO o, - 1OV o} (2.19)

for any real number . Integrating the squares of both sides of (2.19)
over —oo <A <oco and then applying Plancherel’s theorem, we get (2.11).

Lemma 2.3. Let v be a solution of (0.1)-(0.2). If the support of v
considered as a function of t is contained in a sufficiently small neigh-
bourhood of the origin, then the same estimate as (2.11) holds replacing
C, by another constant if necessary.

Proof. The lemma is easily proved considering +r(#)v(x, #) where »
is a smooth function which has a small compact support and identically
equals 1 on the support of v.

Lemma 2.4. If p is sufficiently small, then for the solution u of
(0.1)-(0.2)
i, N=C el £, 7+8)

r+§
#3058 v+ O+ 5 | Iu@liat)

whenever r—+38<p.

Proof. The lemma is easily proved if we apply Lemma 2.3 to
p)u(x, t).

Lemma 2.1 can be obtained if we differentiate both sides of (0.1)-
(0.2) ¢ times in ¢ and applying Lemma 2.4 to Diu.

Lemma 2.5. If a=1 and B3>0, then
I'a+B)=I'()(B+1). (2. 20)
If a=1 and =1, then
2948 N+ DB+ 1) =T (a+B+1). 2.21)
If 0o’z and 0XB'<, then

ra'+p'+1) _ I'a+B+1) 1+a+p
Mo +0)IE+1)~ IMNa+ DB+ 1+’ + 5

(2. 22)

If v=1, then for any pair of non-negative integers p and q satisfying
P=q
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q I'(rq+1)
(P) =TGh+ DI (+(g—p)+1)° (2.23)

Proof. (2.20), (2.21) and (2.22) are all simple consequences of

L@@ _ (e -1
s = Sot (1—t)P-dt .

(2.22) implies

7\~ 1lg+1) I(rg+1) rq+1
<1’>_f GFDIg—p+ D)= T+ DI (g —HTD) g+1° &2

(2.23) is a direct consequence of (2.24).

3. Estimates for derivatives in #. In this section we assume that

(V) the coefficients of A and the derivatives in x of the coefficients
of B; of order up to 2m—m;, j=1, ---, m, all belong to Gevery’s class
G(7) as functions of # uniformly. Hence there exist positive constants
M, and M such that

M, MM (rg+1) 3.1)

for all integers ¢=0 (cf. (2.4)~(2.7) for the meaning of M,);

(VI) f and g;, j=1,---, m, belong to Gevrey’s class G(r) when
they are considered as functions of # with values in L(Q) and H,,_,, (Q)
respectively. Hence there exist positive constants N, and N such that

I f 2@, < NN (rqg+1), —1<t<1, (3.2)
g P lom-m, SN, N (rq+1), —1<t=1, j=1,-, m. 3.3)
We introduce the notation
N, [(u)=1I(rq+ 1)‘1’)/21})< Au, )P =) (3.4)
for ¢=0,1,2, - .

Theorem 3.1. Under the assumptions (1)~(VI) any solution of (0.1)-
(0.2) considered as a function of t with values in H,,(Q) belongs to
Gevrey's class G(7).

Proof. Let us multiply both sides of (2.8) with §=(p—7)(g+1)"’
by I'(rq+1)"(p—r)?"". If we notice 6=(p—7—3)/q we get
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I(rq+1)7'd(u, r)(p—r)**
<Ce(l+ q-l){r(ﬂ; 1) e (f, 74+ 8)(p—r—8)TH
+1(rqg+1)720n.e; (85, 7 +8)(p—7r—8)*
+ql'(rg+1)7"dy_y(u, 7 +8)(p—7—8)*
+ M2 555 (rp+ 1) "M #7d (u, 7+ 8)(p— 7 —8)*
+7TMg22826 (rp+ 1) M*7d,_(u, 7 +8)(p — 7 — 3)*
r+8 1/2
Mg ([ 7 Imoizat) p—r—oy}.
From (3.2) it follows that
(g +1)7e,(f, 7+8)(p—r—8)""'<\/2P PN,(PN)* .
Noting |[»|®" 7 < x| +1 and
g +7+1)=227" " (rg + 1) (r+1)
which follows from (2.21), we can easily show
I(rqg+1)"e; (g, r +8)(p—7r—38)**
=V2p {27 (v +1)N,pN(2'pN)* +(2p + Kq)N,(PN)} .
Using (3.4) and
I(rq+1) = 7qI'(rq) = 7q[(v(¢—1)+1+7—1)
27ql(+(@—1)+ 1) (r) = I'(r+ gl (r(g—1)+1
which follows from (2.20), we get
gl (rg+1)7"dy_(u, r +8)(p—7—8)'=<I'(+1)"'N, o_,(u) .
Similarly
L(rp+1)""M*d (u, r+8)(p—r—8)"" = (pPM)?"?M, ,(u),
ql(rp+1)""M2d,_(u, r+8)(p—r—38)?
=I'(r)"'gp™(PM)? "N, »_,(u) .

From (3.5)~(3.11) and gp~'<e? ? it follows that

171

(3.5)

(3.6)

3.7

(3.8)

3.9

(3.10)

(3.11)

N, @) =Croe(1+ q-l>[\/ﬁ ©2m+1+2""mI(r+1)N}pN,2 PN’

+/2p mENg(eNY + I(r+1)"N, 4_,(1)

+ M2 3526(PM )Ny y(u) + 1'(7) "M, 2335 (epM)?™?N, p-()

+ Myaemy({” uear)” ]

(3.12)
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We want to show that there exist constants H,, H=0 such that for any
non-negative integer q

N, (u)<H,H* . (3.13)

With the aid of (3.12) we can proceed by induction without difficulty
to verify (3.13) provided that H, and H are so large that

12Cyen/2p{2m~+1+2""'ml(r+1)N}pN,< H,,
_— 1)2
12C,en/2P mEN,<H,, 12 cmeMo(S" ”u(;);;gd;) <H,,
-p

max(2'pN, epN, 2epM) <H, 12C,el'(++1)'<H,
24 CerMpM<H, 24 I'(7)"'C,,e’M,oM<H"*.

The proof of the theorem has been completed.

Next we show that # belongs to the same class in the space H,,(Q)
under the following more restrictive assumptions :

(V) the derivatives in x of the coefficients of A of order up to
2m and those in x of the coefficients of B; of order up to 4m—m;,
j=1,---, m, all belong to Gevrey’s class G() as functions of # uniformly ;

(VI') f and g;, j=1,--, m, belong to Gevrey’s class G(r) when
considered as functions of ¢ with values in H,,(Q) and H,,_,(Q)
respectively.

Theorem 3.2. Under the assumptions (I)~AV), (V"), (VI') any solu-
tion of (0.1)-(0.2) belongs to Gevrey's class G(v) when considered as a
Function of t with values in H,,(Q).

Proof. By assumption and Theorem 3.1 there exist constants M,,
M, N,, N and L,, L such that for all ¢g=1, 2, ---

sup|DiDsay(x, )| MM (rq+1), |k|<2m, (3.14)
sup |DiD3b; o(x, )| MM (1q+1), |k|<4dm—m;, j=1,-- ,m, (3.15)
| OO m=N,N(rg+1), (3.16)
18CO lim-m, < NN L(rg+1), j=1, -, m, (3.17)
D)oy < L LI (tq+1) . (3.18)

We want to show that there exist constants I, and L such that
ID (@)= L LI (vq +1) (3.19)

for all integers ¢=0. Supposing that (3.19) is true for ¢=0,1,.--,/—1,
let us prove that the same is true for ¢=/. In view of the Agmon-
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Douglis-Nirenberg inequality concerning the system (A(x, ¢, D,), {B,(x, ¢,
D)}, @)

1D im=Ci{llA(x, ¢, D)Dt(®)l].m
+2?=1<Bj(x’ t’ Dx)Dgu(t)>4m—mj + HD%u(t)Ho} . (3° 20)

Differentiating both sides of (0.1)-(0.2) we get
A(x, t, D)Du(x, t) = — DV 'u(x, £)+ DLf(x, b)
—22;5( ; JA4-B(x, 1, DIDiu(x, 1), xQ, (3.21)
B/(x, t, D)D'u(x, t) = Dig,x, 1)
- z:z( £>B<t-k>(x, t, D)Dhu(x, £), x=0Q, j=1, -, m, (3.22)

where AY ® and B¢ ® are differential operators obtained by differenti-
ating the corresponding coefficients of A and B; /—k times with respect
to t respectively. In view of (3.14) and an elementary calculation we
get

[JA“=®(x, t, DD u(t)||pyy < C o, M M *I(1(I — k) + 1)| D tu()| |, »

and hence with the aid of (3.16), (3.18), (3.21) and the induction hypo-
thesis we obtain

1A%, ¢, D)D ()|l < L L' F(v(+1) +1)
+ N N'I'(rl+ 1)+ C,,M,L 323 M!7*L* . (3.23)

Estimating <B;(x, ¢, D,)D{u(#)>4-, in a similar manner and using (2.23)
we can show without difficulty that (3.19) holds provided that L, and
L are sufficiently large.

4. Estimates for derivatives in all variables. In addition to the
assumptions in section 1 we assume in this section that

(VII) all the functions a,, |@|<2m, b;s, |B|=m;, f and g;, j=1,
..., m, belong to Gevrey’s class G(o, 7);

(VIII) T=2mao ;

(IV’) Q is a bounded domain of the class G(s) in the sense that
each point of 9Q is contained in some open subset of 9Q which can be
mapped onto a subset of a hyperplane by means of a one-to-one mapping
of Gevrey’s class G(o).

Under the assumptions above we show that any solution of (0.1)-
(0.2) belongs to the class G(o, 7)=G(s, 2mos). In this section we denote
by C, C,,, --- constants depending only on the assumptions stated so
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far. By (IV’) we may suppose that the origin is located on a part of
00 which is contained in the hyperplane x,=0. First we prove that
the Cauchy data of # are in Gevrey’s class G(o, 7) near the origin.

We shall employ the following semi-norms and norms :

0l = lolta = 3 | 1Dio(@) "dx, “.1
01z, = 32 |Diax) 4.2)
Iki=i Jx|<r,zn>0
lolli , = 2410l . (4.3)
We may choose constants ¢, and ¢, in such a manner that
vl =colv| ¥ |0]F~2 +elvls, (4.4)
[vl;,=clol o7 +er™ o], . (4.5)

for 0<i<j<2m and O0<r. From now on we shall distinguish the
normal variable x, from tangential space variables x’'=(x,, --*, x,_,) and
by V? we denote any derivative of order p in x’. We denote by Af#
and Bf the principal parts of A and B; respectively :

AXx, t, D,) = 30\a1-m@s(X, £)D7, (4.6)
Bi(x, t, D,) = 2ip1=m;0; p(x, £)D5, j=1, -, m. 4.7

Let p(<1) be a positive number such that
{(, 2,): |x] <Py, ,>0}CQ. (4.8)

Let 7, be a smooth function such that »,(f)=1 for |¢|<1, 7,(#)=0 for
|t| =2. For p, ¢=0,1,2, - we denote by M, , constants such that for
all a, B, «,j with |a|<2m, |B|=m;, |k|=2m—m;, j=1,-,m,

IDngam(xy t)l éMP,q ’ (4° 9)
ID:ngpbj,B(x) t) l éMﬁ,q ’ (4' 10)
[ 1001928, (5, M dr= M, (4.11)
[* inpemmorm) D328, 7, V) AN < M, (4.12)

in QX (—o0, o) or Q. We shall use the following notations :
4 1/2
dp (u, r) = max{(S ]D;’“V"u(t)l%,dt)
r 1/2
([ 1Deveuy g at) "

era £, 7) = max({ |Dver@)13, at)",
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for p,¢=0,1,2, .., 0<r<p,, with the maximum taken over all deriv-
atives V? of order p. Let ¢ be a function stated in the preceding
section. Then as in [7, pp. 181-187] we get

Lemma 4.1. If p, is sufficiently small, then for any 8>0, r>0 such
that r+8<p,

dp s NS Cl €4, 1, 7+9)
+ E;L(Sl( A |@mmplm | (oDIVrg YA | (,,,H)de)l’z
3 MU TOT "
ex ([ Drvrg s aat)”

1)2

r+s
+(r + 8 +E)d, (u, r+8)+& 7" 3-2m<$_+-8 | DIVPU(t) |3 s dt)
+2’< Z’ >< ﬁ' >Mﬁ—ﬁ’,q—q’dp',q'(u, r+98)
r+8 "
—|—8—2m2’< Z’ )(fz’ )Mp—p/,q—q’<g_r_s|D%’Vﬁ’u(t)lg,”adt) ] , (4.13)

where Y means that the summation extends over all (P, q’) satisfying
0p'<p, 0<q'<q excetd (p, q)=(P, q), and & is an arbitrary positive
number.

By assumption there exist constants N,, N, M, and M such that for
any pair of integers p, ¢=0

sup|DiV2f(x, t)| NN [(cp+1q+1), (4.14)

sup|DzDiV?g(x, t)| S NN?**[(cp+7q+1), (4. 15)
k| =2m—my, j=1,--,m,

My ;< MM?* [ (cp+1)(rg+1). (4.16)

Then as in section 3 we get
er o f, 7+ 8)SCLNN?T(ap+rq+1), (4.17)
(17 v 1em=msirm oD3wrg) M o)
< CIS{NONP“”‘I’(ap brgtr+l)
+(1+ K8 )N,N**T(gp+7q+ 1)} , (4.18)

r+8 1/2
(17, 1D19%,8) 30, 10t) SCNNFOT(oprg +1),  (4.19)
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7+ 1/2
(17" 1Deveg )13, udt) " SCNNPT(op+rg+1).  (4.20)

With the aid of (4.13), (4.16)~(4.20) and (2.23) we get

Lemma 4.2. Under the assumptions of the preceding lemma the
Jollowing inequality holds for any pair of integers p=2m and ¢=0:

dp oty NS CL NN? T (op g +7+1)

+8"NN? [ (op+71g+1)+(r+8+6E)dp (u, ¥+ 5)
+ a—zmel—zmdﬁ—zmﬂ(u’ r+ 8)

L(ag+ 1) 1I(ap+1) prp-pria-ar ’
+70M, Tlrg +1) P(ap’+1)M Ay o (u, v +3)

I ToM, v ['(rq+ 1) I'(cp+ 1) Me-v/+a-q
3" S (g’ +1) I(op’+1)

oMy sv I(rg+1) I(@p+ 1) yrp-pria-ar
0" pom I'(rq’ +1) I'(ap'+1)

r+8 , , 1/2
(17 IDYvrun, dt) |, 4.21)

/dﬁ'—zm,ql(u) r+8)

_|_

We introduce the notation

N pou) = I'cp+rq+ 1)“‘,5:;1,1@)< pdp,q(u, F)p—r)rtatm (4. 22)

for p,q=0,1, 2, ---.

Lemma 4.3. [f p(<p,) is sufficiently small, there exist constants H,

and H such that
Ny () =HH?"? (4. 23)
for any pair of integers p, ¢=0.

Proof. Suppose p>2m and §=(p—7)/(1+op+7qg). Let us multiply
both sides of (4.21) by I'(cp+7g+1)"(p—7)?"4**". Noting §=(p—7r—3)/
(ep+7q), p—r={1+(cp +79) " }(p—7r—28) and {l+(gp + 7q) '} 9"*"<¢’
we get

I(ap+1q+1)""dp o(, r)(p— 1)+ 7H*"
<CI+1T+1IT+1IV+V+ VI VII), (4. 24)
where
I=T(cp+rq+1)'NN?* ' (op+rq+7+1)p—r)Preta,
II < e(op+7g)" NN (p—r—208)**7,
IIT = (p+ & (ap+1g+1)""dy o(us, ¥+ 8)(p—r— 8?77,
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IV = &€ (op+1q)"(cp+1q+1)'dp s, (0, ¥+ 8} —7—38)?"7,

= ’ P(Tq + 1) F(o‘p - 1) Mp~pi+q_q/
X dﬁ’,a’(u, r+8)(p—r—§)prerm

— 2m /P(Tq+1)r(a-p+1)
VI = éroMop-+raf™ 3V Trg+1) I(op'+1)

di"—Zm,q'(uv r+ 8) (P —r— 8)p+q ’

Me-v/+a-a’
*T(oh+rq+1)

_ om g+ 1) I'ep+1)
VII = éraM(op+7q) p/gm g +1) [op +1)

Me-t'+a-d’ (9 Py 2 12 e
Xm S-p]DtV u(t)lo,r+sdt) (p r 8) .

Since by Lemma 2.5

Fop+rqg+r+1)2°27 " [+ D) (e + 1) (cp+7q+1), (4.25)
we get

I<27'(++1)p"™N,N(2°pN)?(2'pN)? . (4. 26)

It is easy to show
II<EN(ap+1g)"(PN)?**?, (4.27)
IIT<(p+E)E’N, p o(u) . (4. 28)

It follows from Lemma 2:5 that
Io(p—2m)+7rq+1)SI'2mo—2m+1)"'I'(cp+79+1—2m) (4.29)
for p=2m, and hence

(ep+7q)" I c(p—2m)+71q+ 1) (cp+T1q+1)"
<(op+797"I'Cmo—2m+ 1) I'(cp+rq+1—2m)[(cp+T1q+1)"
=(ap+719)"I'Cmoc—2m+1)" {(cp+79)cp+19—1)-

c(opt+Tg+1-2m} < Cm)y"I'2mos—2m+1)"". (4. 30)
From (4.22) and (4.30) it follows that
IV=e@2my™e " I'2mo—2m+1)"N, p_sp, (%) . (4.31)

With the aid of

L(rg+ 1) I(cp+ 1) I'(ap'+7¢'+1) oCp-p+1Ca—a’
Tqd+ 1) Fop+1) Toptrg+i) = a-ab (4.32)

which follows from Lemma 2.5, we get
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V<erraM,3Y (epM)? 2 ('pM)? VN, p /(1) . (4. 33)
(4.29) with p, ¢ replaced by p’, ¢’ implies
I'(cp/+1¢'+1) = (cp/ +7¢'Yap + 79" —1)-+-
wlop +1¢ +1-2m) () +7¢ +1—2m)
=>(op' +7¢ +1=2my"I2mo —2m+ 1) (a(p' —2m)+7¢'+1) (4.34)
for p’=2m. If p=p'=2m and g=¢’
op+1q _ 1+¢r(p—p’)+-r(q—q’)+2m—1
op/+7¢'+1—-2m op+7¢+1—-2m
Sl+4e(p—p)+7(g—q)+2m—1
<exp(a(p—p)+1(g—q)+2m—1). (4.35)
With the aid of (4.34) and (4.35)

VIS ot Mg+ (2me — 2m+ 1)~
X SV (€M (e MY N, i (W) (4.36)

p/22m

By Theorem 3.2 there exist constants R, and R such that
ID3(E)| i, 0= RR(7g +1) (4.37)

for any integer ¢=0. We may assume R=2M. Hence

1/2 o
(" 1Dyv?uty i3, i) “svzs RROTGa+D).  (4.39)
-p

Noting

Iep+1) I'(rg+1) _(cp+rg+1y”

(ep+T1g)™ Fop + )T ocp+rq+ 1= TI(cp'+1)

which is also a simple consequence of Lemma 2.5, we easily obtain

VII<2\/2p ¢roMR, 33573 Iop/ + 1) M
X (cp+7g+1y"p? " MPRC. (4.39)

Using (4.26), (4.27), (4.28), (4.31), (4.33), (4.36), (4.39) and then choosing
p and ¢ sufficiently small, we obtain

N, 5, {) < C, L N\N(@2°pN)?(2'pN)? + N p + g™ (PN ) **
+ Np,ﬁ—m,q(u) + MOZ/(eGPM)p_p/(eTPM)q—q, p,p’,q’(u)
+M, Z' (e‘z'”““""pM)"“"(e‘z'”‘f"*pM)"‘“’N,,,p/_zm_q/(u)

p/ =2m

+ MR (cp-+7q+1)y™p?* MPR] . (4. 40)
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(4.37) implies that (4.23) is true for 0<p=<2m, ¢=0, 1, 2, --- with some
constants H, and H. If H, and H are so large that
6C,N,<H,, 6C,NN=<H, 6C,MR=<H,
¢€pPN<H, 6C,<H*™ 2¢*"*"pM<H,
12C,,M,pM(2¢"+e¢°)<H ,
12 C,,\M,pM(2 @™+ 27 - gm0 < {1 |
(ep+7q)"=(p7'N'H)**?,
(ep+79)"<(p7'R'H)***
for all p and ¢, then with the aid of (4.40) we can first verify that
(4.23) is true for ¢=0, p=0,1, 2, --- and then that the same is valid

for all p and ¢ by means of the induction argument concerning p-gq.
Thus the proof of Lemma 4.3 is completed.

So far we have not used r=2mo. Especially if r=0=1, (4.23)
implies the analyticity of the Cauchy data of %, and hence with the
aid of Holmgren’s theorem and Cauch-Kowalevskii theorem it follows
that » is analytic near the origin ([7]).

In what follows we denote the normal variable by y (ie y=x,),
and introduce the notation

_ p/2 1)2
Ny o) = max([" |DsVeDIE) 3 pudt) (4.41)
-pl2
for p, k, q=0, 1, 2, --- with the maximum taken over all derivatives V,
of order p.
Lemma 4.4. There exist constants L,, L and 0<1/2 such that
Np o () S L Lo#ok 799249 (g p + 7k +7g + 1) (4.42)

for all p, q, k=0. L,, L and 0 may depend on p, but are independent of
b a4, k.

Proof. From (4.23) it follows that there exist constants L, and L
such that for p=0, ¢=0, 0<k=<2m

/2 12
(S" / |ngpu(t)|ﬁ,,,,2dt) <L Lot*F T (gp+oh+rq+1),
-p/2

L, and L being allowed to depend on p. Hence
Npr )<L L2 % T(op+ok+7g+1) (4.43)

for p=0, ¢=0 and 0<k=<2m. Due to the ellipticity of A we can solve
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(0.1) with respect to D2"x near the origin to obtain

D" u=325"2 ip1=om-uCp, DY Du
+ 3005 11 <om-p-1Cp DY Dju+ cDu +af . (4. 44)

By assumption there exist constants M, and M such that if % stands
for any of the functions cg 4, ¢, @, f, then

sup|D¢D3k| < MM (o || +1)[(rq +1) (4. 45)

for any ¢ and v. Hence with some constants R, and R

(" 1 DrveDyar @3 dt)”

SRR+ (gp+rq+al+T+1) (4. 46)
for any ¢, p,/=0,1, 2, ---. (4.42) is valid for 0<k<2m if
L<L, L=<IL4. (4. 47)

We show by induction that (4.41) is valid for all p, ¢, k if L, and L
are so large and @ is so small that (4.47) as well as the following
inequalities are all true:

Lo=20e, (4. 48)
6dor(r+1)C M <1, (4. 49)
R2or(r+ 1) <1, (4. 50)

320r(r + 1)Mjg o, De@m—k—B)+1)7SL,  (4.51)

4R <L, R<IL#, (4.52)

where C, is the number of B with |G| <2m. To see this we first
differentiate both sides of (4.44) to obtain

”m 4 ”m— l
DivV*Dy™ = 35 12)5I=2m—k< Z! ) (g’)( l’)
X D¥V'V? ¥ DLV ey (- DYDENVI' DY Y+ o (4.53)
Suppose (4.42) is true for 0<k<2m+/—1. When we estimate the right
side of (4.53), we use (2.23) for (Z,) and (l;, ), and for (5,) use

(l )< T+ (ol+1+1)

U )ErGl e+ ) (el —T)+1) (4.54)

which also follows from Lemma 2.5. Hence with the aid of (4.45),
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the induction hypothesis and the inequalities
Irqg+ 1) I'cp+1) (cl+7+ 1)
I'(rq’+1) I'(ap'+1) ['(al +7+1)
<exp2o(p—p)+2r(q—q)+o(-1)),
I'e(p’+ |B)+o(l’ +k)+7q +1)
<I'(cp/+ol'+1¢ +7+ 1) (c@m—Ek—|B|)+1)*

which are consequences of Lemma 2.5, we get

Nﬁ.q,lﬂm(u)éf'(oﬁ +rqg+al+71+1)

% {O‘T(T + 1)M°Eoez¢p+2rq+crtMap+al+1qET

)o-p’+m’<£—>a-1’66(2m 5
eM

O'T(T + 1)M0L0620'p+2'rq+dlMdp+a-l+'rq

szz-:1 s é {;{3 i <E6 )cp’+fq’<£—)ct’

k=0 |Bl<2m - -1 #7=0 ¢’=0 j’=0 2M eM

EO‘(IBHk)

XTe@m—k—[B)+1)

X ﬁ é Z’ <L0 )o-p/+fq,<'£__)61’+E0E€P+7Q+O‘I} .
/=0 g/=0 /=0 eM

+ a'-r(-r + 1)Moioe2o'p+274+a‘IMa-p+dl+'rq Lo

If (4.48) is true, we easily get

Np o r:2m@)<T(ap+7g+ol+7+1)
x {16 C,o7(r + 1)M L Lot+ot+ratrgortrats
+8ar(r+1)M, Lozz”“ll Z_k 1F(a(2m E—|8|+1)*
X [oproltrad+tr-cQoptrd

+801(r 4+ 1)M, L Lo+ atatrgorirate R Roptrator) (4.55)

Thus if (4.48)~(4.52) are all true, it is immediately seen that the right
side of (4.55) is dominated by

L, Leo+oa+mmagorroiD(gp+ o(I+2m) + g +1).

Thus the proof of Lemma 4.4 is completed.

The interior estimates of the derivatives of the solution is easier
to be obtained, and hence we conclude
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Theorem 4.1. Under the assumptions (1), (1I), (III), (VII), (VIII) and

(V") any solution of (0.1)-(0.2) belongs to Gevrey's class G(o, 7).

[1]
[21

[31

[4]

[51]

[6]
[7]

OsakA UNIVERSITY

Bibliography

S. Agmon : On the eigenfunctions and on the eigenvalues of general elliptic
boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147.
S. Agmon and L. Nirenberg : Properties of solutions of ordinary differen-
tial equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-

240.

S. Agmon, A. Douglis and L. Nirenberg : Estimates near the boundary
Jor solutions of elliptic partial differential equations satisfying general
boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-627.

J. L. Lions and E. Magenes : Sur certains aspects des problemes aux limites
non homogénes pour des opérateurs paraboligues, Ann. Scuola Norm. Sup.
Pisa, Ser. 3, 18 (1964), 303-344.

C. B. Morrey, Jr. and L. Nirenberg : On the analyticity of the solutions
of linear elliptic systems of partial differential equations, Comm. Pure
Appl. Math. 10 (1957), 271-290.

H. Tanabe : On differentiability in time of solutions of some type of boundary
value problems, Proc. Japan Acad. 40 (1964), 649-653.

H. Tanabe : On differentiability and analyticity of solutions of weighted
elliptic boundary value problems, Osaka J. Math. 2 (1965), 163-190.





