Takeuchi, Y.
Osaka J. Math.
2 (1965), 137-145

ON GALOIS EXTENSIONS OVER COMMUTATIVE RINGS
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In [2], M. Auslander and O. Goldman introduced the notion of Galois
extension of commutative rings. Recently, in [5], S. U. Chase, D. K.
Harrison and A. Rosenberg gave a generalization of the fundamental
theorem of Galois theory.

In the first section of this note, we shall extend to a case of non-
commutative rings the definition of Galois extension which is defined by
Chase, Harrison and Rosenberg in the case of commutative rings. Then
we shall establish a half of the fundamental theorem of Galois theory
by the method that is completely similar to the method used by Chase,
Harrison and Rosenberg.

In the second section, we shall study on a Galois extension over
commutative rings and we shall show that if a ring I" is an inner
Galois extension of its center C, then I' is generated by units of T
over C.

1. Galois extensions

Throughout this note it is assumed that every ring has the identity
element, every subring has the common identity element and every
group is of finite order.

Let T" be a ring, A a subring of T" and G a finite group of automor-
phisms of T" which fix all elements of A. We shall denote a crossed
product of T" and G with trivial factor set by A(T, G) i.e. AT, G) is a

free T'-module >)T'¢ with the elements of G as free generators, in which
ceG

a multiplication is defined by (ac)(bt)=ac(b)or for a,b=T, o, 7G. Then
T is a left A(T, G)-module by setting (ac)-x=as(x) for a, xT, c=G.
Let ¢ be a homomorphism of A(T, G) into Hom (I",, T",) defined by
Plac)(x)=ac(x) for a, x€T, c=G. For u AT, G) and x€T, $(u)(x)
will be denoted by #(x). On the other hand #x will mean the product
of # and x in A(T, G). t; will denote >'o which is the sum of all
elements of G in A(T, G) and ¢($a) will be also written by ;. By

T'¢ we shall mean the fixed ring of T" by G, i.e. T'C is the set of elements
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of T" left invariant by G.

DerFmNITION. Let T', A and G be as above. Then T is called a Galois
extension of A relative to a group G if the following conditions hold :

(1) There exists an element z of I" such that £4(2)=1.

@2) A=I°¢

(3) There are elements x,, x,, -+, %, and ¥,,¥,, -, ¥, of I" such that
for all ¢ in G
1 if o=1

2 %io(3:) = {o if o+1.

When T is a Galois extension of A relative to a group G we shall denote
this situation by (T, A, G) and call x,, %,, -, x, and y,, ,, **, ¥, as above
Galois generators of (T, A, G).

Theorem 1. If T is a Galois extension of A relative to a group G
and H is a subgroup of G, then T is a Galois extension of T'# relative
to H. Moreover if H is a normal subgroup of G, T'® is a Galois extension
of A relative to the factor group G/H.

Proof. Since I" is a Galois extension of A relative to G, there is
an element 2, of T" such that #;(z,)=1. Now we shall show that there
is an element 2z of I' such that fy4(2)=1. Let o, o,, -*-, o, be coset
representatives for G/H where o,=1. Then we have t,,(ia,-(zo))=tc(zo)
=1 and i‘,o—,-(zo) is an element of I'. Let x,,x,, ', %, and ¥,, ¥, ***, ¥
be Galois generators of (I, A, G). Then we have for any 7 in H

L 1 lf T=1
Xim(Yi) = .
Do) =y 1.

Therefore T" is a Galois extension of I'* relative to H.
Assume that H is a normal subgroup of G. It is clear that G/H
is a finite group of automorphisms of T'¥ if we define the operation by

(cH)(x)=0(x) for c=G, xT# and that (TH)®H=A. Set zlzfjai(zo).

i=1

Then we have for £=1,2, .-, k
3 @) oultu()) = 2} 3 @) r(x) oup(n)
= 31 3 w(a) rlxirau(5))

i=1T,pEH
B {1 if k=1
lo if k+1
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where #,(z,x;) and t4(y;) (1=1,2,---,n) are elements of I'”. Therefore
T'# is a Galois extension of A relative to G/H.

Lemma 1. If T is a Galois extension of A relative to a group G,
then A is a direct summand of T' as A-module.

Proof. Since {; mapsT onto A, it is clear that A is a direct sum-
mand of T" as A-module.

Lemma 2. Let T be a ring, G a group of automorphisms of T' and
A a subring of T which is contained in TC. If there are elements x,, x,,
vy Xy and ¥y, Yoy 5 Y Of T which satisfy the following condition (C):
for all o=G
if =1

. 1
2 %o () = {0 if o1,

then T is a projective Frobenius extension of A with t; as a Frobenius
homomor phism, so that we have t;-I'==Hom (I"',, T",) as left A-right T'-
modules and t;-T is a free T'-module with t; as a gemerator. Moreover
if A is a commutative ring and T is an algebra over A, then T is separable
over A.

Proof. Let x,, x,, -, X, and ¥,, ¥,, ***, ¥, be elements of I" which
satisfy the condition (C). Then we have for all z in T

Nite(n2) = B (B xio()el) = 2

-
and

E‘ te(223)y; = 2 ; o(2)o(x;07(y;) = 2

By Cor. 1 to Theorem 1 in [9], T' is a projective Frobenius ex-
tension of A with #; as a Frobenius homomorphism, so that we have
te+T~Hom (T, A,).

Now assume that A is a commutative ring and I" is an algebra

over A. We consider the element E"}x,@y? in T®T°’. Then we have
i=1
for all ¥ in T" ~

2 ax@9 = 3 2,4e(y, 2 5) B = 3] 1,0(tel 3,55 3.)
= 25,0 .

A mapping « of T'" into I'QT° defined by a(x)=éxx,~®y‘,? for xeT’
A i=1

is a '®I'-homomorphism and splits whence ix;y,:l. Since T is
A i=1
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T'®TI’-projective, T'" is a separable algebra over A.
A

Lemma 3. Let T', A and G be as above. T is a Galois extensions
of A relative to G if and only if the following conditions hold :

(@) t(T)=A

(b) There are elements x,, Xy, *++y X, and 3,y ¥,, -+, ¥, of T' such that
for all o in G
1 if o=1

21 %io(y:) = {0 if o1,

Proof. It is trivial that the conditions (a) and (b) hold if T" is a Galois
extension of A relative to G. Conversely, assume that the conditions
(a) and (b) hold. It follows from the condition (a) that there exists an
element z of T" such that #4(2)=1. Then we have x=uxt;(2)=1s(x2) for
any x in T°. It is clear that A is contained in I'¢, hence A=T¢.
Therefore T' is a Galois extension of A relative to G.

Proposition 1. Let R be a commutative ring and T;, A; (i=1, 2)
algebras over R such that A1(§A2 is not zero. If T'; is a Galois extension
of A; relative to a group G; for i=1,2, then 1*1§1"2 is a Galois extension
of Al(? A, relative to the group G, X G,, where G, XG, is regarded as a group
of automorphisms of I‘,@I‘2 by means of (o,Xa,)(*,Q%,)=0,(%)Ro,(x,)
for o:;€G;, x;€T;.

Proof. By Lemma 1, AI(%A2 is a direct summand of I‘1§I‘z. There-
fore A,QA, is a subring of I',®T,, so that T',®TI,+0. Let x{®, x5, ---,
x5 anclie Y0, Y50, e, 95, be G:lois generators l’:)f T, Ai, Gy). Then we
have for all o,Xo, in G, XG,

(1) #(2)

@ RxP){(0, X 0,) (¥ R352)}

1
K& (1) @ 2
= pa 200, (PR 252 o, (¥5P)

k=1[=

k=1 l=

B {1 if o,Xo,=1
Lo if o Xe,*1
where r"®x® and y{’Ry® are elements of I'®T,. Since we have
R
Lo xe,(TiQT)=AQA,, T'QT, is a Galois extensions of A,®A, relative
R R R R

to G, XG, from Lemma 3.
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2. Galois extensions over commutative rings

We shall now study on Galois extensions over commutative rings.

Lemma 4. Let T be a ring, G a group of automorphisms of T and
A a subring of the fixed ring T¢. IfT is a projective Frobenius extension
of A with t; as a Frobenius homomorphism, then the subrving T -t;-T' of
AT, G) is isomorphic to Hom (T',, T',).

Proof. Assume that T is a projective Frobenius extension of A with

tc as a Frobenius homomorphism. Then we have f;-I'=Hom (T",, A,).

It follows from Prop. A.1 in [1] that a mapping p: T®Hom (T",, A,) into
A

Hom (I',, T',) defined by u(z® f)(x)=zf(x) for x,z€T', fHom (T, A,)
is an isomorphism. If » is a mapping of I'®?;-T" into A(T, G) defined
A

by v(x®tsy)==xtcy for x, yeTI, then we have p=¢v. Therefore
v(l"(%tcof‘) (=T+t;-T) is isomorphic to Hom (T',, T',).

ReMarkg. [cf. 7,8] We can show by using Lemmas 2 and 4 that
a ring T" is a Galois extension of its subring A relative to a group G
if and only if the following conditions hold :

(@) ta(T)=A

(b) T is a finitly generated projective right A-module,

(¢) A, G) is isomorphic to Hom (I',, I')) by ¢.

Let R be a commutative ring. If M is a finity generated projective
R-module, M%)Rp is R, ~free for all non zero prime ideals p of R. If

Rp—module M(X)Rp is of rank » for all non zero prime ideals p of R, we
i

call # the rank of M and denote it by rank, M [cf. 3].

Proposition 2. Let T be a ring and R a subring of T which is an
integral domain and is contained in the center of T. Then T is a Galois
extension of R relative to a group G if and only if the following condi-
tions hold :

(@) rankp I'=|G]|

(0) t(T)=R

(¢) T is a projective Frobenius extension of R with t; as a Frobenius
homomor phism.

Proof. Assume that T" is a Galois extension of R relative to G.
Then it is clear that the conditions (b) and (c) hold. Now we shall prove
that the condition (a) holds. T®R, is a free R,-module for all non zero

R

prime ideal p of R. Set rankg, I‘®Rp=n. Then we have rankg,
R
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Hom (F%}Rp, IF'®@R,)=n* and rankg, ATQ®R,, G)=n|G|. It follows from
R R
Remark that A(I‘(?Rp, G) is isomorphic to Hom (1"®Rp, 1"®Rp), so that
R R

we have »=|G|. By the definition of rank of projective module, we
get rank, '=|G|.

Conversely, assume that the conditions (a), (b) and (c) hold. Then
by Lemma 4 T'-{;-T is isomorphic to Homg (I', T) by ¢ where T-fs-T"
is a subring of A(T,G). By the condition (a), the factor R-module
A(T, G)/T+t;-T is a torsion module. Since the R-module A(T,G) is
torsion free, A(T, G) is isomorphic to Homg (', T'). It follows from the
condition (b) and Remark that T" is a Galois tension of R relative to G.

Lemma 5. Let S be a commutative ring with no idempotent other
than O or 1 and R a subring of S. Then S is a Galois extension of R
relative to a group G if and only if the following conditions hold :

(@) R=S°¢

(b) S is a separable algebra over R

(¢) S is a finitly generated projective module over R.

Proof. See Theorem 1.3 in [5].

Lemma 6. Let T, be a ring, T, a subring of T, and G a finite group
of automorphisms of T, and T,. If the fixed rvings of T, and T, by G

are the same ring N and there are elements x,, x,, -+, X, ANA V.5 Y55 *** Yn
of T, such that for all ¢ in G
Xi i) = .
2 %o (3) {o if o1,

then we have T,=T,.

Proof. We have for all z in T,
intc(yiz) = g ;;xicr(y;)a(z) = 2.

Since #5(y;2) is in A for i=1,2, .-, s, T, is generated by x,, %,, ***, X,
over A, hence T',=T,.

Theorem 2. Let T be a ring such that its center C has no idempotent
other than O or 1 and R a subring of C. Then T is a Galois extension
of R relative to a group G if and only if T is a Galois extension of C
relative to H where H= {c|c G, o(x)=x for all x=C} and C is a Galois
extension of R relative to the factor group G/H.

Proof. Necessity. Assume that I' is a Galois extension of R relative
to a group G. Then T is separable over R, so that its center C is
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separable over R and C is a direct summand of I" as a R-module. Since
T" is R-projective, C is R-projective. By Lemma 5, C is a Galois exten-
sion of R relative to G/H. Since we have (I'H)%H=R=CC%H we get
C=T% by Lemma 6, so that I" is a Galois extension of C relative to H.

Sufficiency. Assume that T'" is a Galois extension of C relative to
H and C is a Galois extension of R relative to G/H. Then we have
tG(P):tG/H(tH(F)):tG/H(C):R~ Let Xy Xas % X and Yis Vor = Im be
Galois generators of (T, C, H) and v,, v,, ---, v, and w,, w,, ---, w, Galois
generators of (C, R, G/H). Then we have for all + in H

; =. x:0;7(W;9:) = ; éx;vjwﬂ(y;) = Z x;7(3:)
B {1 if r=1
Lo if 71

and for all ¢ in G, c&&H
SV 00w, ) = 2 ]_lelxivm(wj)a(yz) =0

i=1 j=1
If we set x; ;=x,;v; and y; ;=w;y;, then we obtain for all ¢ in G
1 if o=1
0 if o=+1.

Therefore T is a Galois extension of R relative to G.

m

2> lei,jd(yi,j) = {

=1

Lemma 6. Let a ring T be a Galois extension of its center C relative
to a group G. Then if |G|=n, we have n-C=C.

Proof. By Lemma 2 and Theorem 2,1 in [2], F@F" is isomorphic
to Hom. (I, ). By Remark, F<§§>I‘° is isomorphic t6 AT, G). Since
F%E)I“’ is a Galois extension of 1"(?1, A(T, G) is a Galois extension of T.
If we write A for AT, G), AQA is a two sided A-module by setting
2(xQy)=2x®y and (x®y)z=§:®yz for xQYEARA, zeA. Let x, x,,
-, %, and vy, y,, -+, y, be Galois generators of AIEF, G). Then we have

for all z in A

2(’;2’1 x:Qy;) = i Rx: QY = ]5_.:1 X h(y;22:)Ry;

i, j=1

x;Qh(y;2x:)y; = (; ;)2

where > x;Qy; is the element of AQA and % is a Frobenius homomor-
i=1 r

phism of A/T. If we set ixi@)yi: 2 2,.0Q7(2,.€T), then we get
i=1 T e
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for all zin T
D22, 00T = 2 2,,0Q0T2 = 2 2,,.07(2)c@
o TEG ’ ocrec oreq

so that zz,.=z,.07(2) for all 5,7 in G and all z in T. Therefore z,,
is contained in C. Since we have for all p in G

P E Zo“v'o—®‘r = 2 p(zar,q')po-®7 = z p(z9_18,7)3®7
o TER o TER T,PEG
and on the other hand,
P Z 2(,'70'@1' = 2 za','ro-®7-p = 2 za',Mp_lo-®M’
oTEG o TEG oped
we have p(2,-1,.)=2, .1 for all o, 7,p in G. Hence z,,=2,,-1 for all

o in G. It follows from the equation Zn]x,-y,«zl that >} z,.07 is the
i=1

o, TEG

unit element, so that 1= 32z, ,-1=#n2z,,, which completes the proof.
== !

Theorem 3. Let T be a Galois extension of its center C relative to
a group G. If all element of G are inner automorphisms of T, then T
is gemerated by units of T' over C.

Proof. Let u, (¢ =G) be a unit in T' which induces o. If we set
U, 4. =c¢, ., then {c,.} (¢, 7=G) is a factor set of units in C. If we
denote by I a subring of T" which is generated by all «, with ¢ in G
over C, then T" is a homomorphic image of a generalized group ring of
G over C with the factor set {c,.}. I”is a central separable C-algebra
whence this generalized group ring is a separable C-algebra by Lemma 4
in [6]. Then, by Theorem 3 in [2], we have VL (VL(IV))=TI' where
Va(A) is the commutor ring of a ring A in T". On the other hand, we
get Vo (Vo(I))=T whence V. (I')=C. Therefore I" is generated by the
units #, (c€G) in T over C.

ExampLE. We shall give here an example of Galois extension satis-
fying the assumptions in Theorem 3. Let R be the ring of quotients
of the ring of rational integers with respect to the prime ideal (3) and
D a quaternion algebra over R with basis 1, 7, j and k& We denote
1, 4,7 and k by x,, x,, x, and x,.

Now if G is the group of inner automorphisms o; of D which is
induced by x; (i=1,2,3,4), then D is a Galois extension of R relative
to G. For we have for all j

4 N 4x1 (jzl)
S ={g" (G,
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Added in proof. After submitting this paper I learned that Theorem 3

has been obtained independently by Frank R. DeMeyer in his paper which
will appear in this Journal.








