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Let C(X) be the algebra of all complex-valued continuous functions
on a compact Hausdorff space X and let A be a function algebra on X,
that is, a closed (by supremum norm) subalgebra in C(X) containing
constants and separating points of X. A closed set F, in X is said to be
an interpolation set of A (or a closed restriction set of A) if A|F,=C(F,)
(or A|F, is closed in C(F,)), where A|F,={f|F,, f€ A} and f|F, is the
restriction of f on F,. In [4] I Glicksberg characterized interpolation
sets and closed restriction sets on general function algebras A, and also
showed that in a Dirichlet algebra, any closed restriction set of A is an
intersection of peak sets, but we see that the above fact is false in the
case of a non-Dirichlet algebra. The main purpose of this paper is to
consider problems of interpolation and closed restriction on a function
algebra A which is not a Dirichlet algebra and which has the property
that the restriction A|9A of A by its Silov boundary is an essential
maximal algebra. Our main theorems are the following: Let A be a
function algebra on a compact metric space having the above property
and some additional properties (Properties (B) and (D), cf. §2, 3.). Then,
(1) if F, is a closed restriction set of A for a closed set F,, F, contains
2A or F,~92A is a countable set whose cluster points are in 94 (Theorem
2.2). (2)if F,is an interpolation set of A, then F,(]9A is an interpolation
set of A|9A and F,~9A is an H~-interpolating sequence, and the con-
verse is also true (Theorem 3.2). ((2) was pointed by ([7], p. 208) in the
case of the function algebra of continuous functions on the unit closed
disc which is analytic on its interior, and it is a generalization).

1. Preliminaries

Let A be a linear subspace of C(X). Then A is said to be a function
algebra on a compact Hausdor ff space X if it satisfies the following condi-
tions; (i) f-g€ A for any f,g€ A, (ii) A is closed with the supremum
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norm of C(X), (iii) A contains the constant function 1 and (iv) for any
distinct two points x, y in X, there is an f€ A with f(x)==f(y). First,
we define the Silov boundary 94 and the essential set E of A as follows.
The Silov boundary of A is the smallest closed subset F' of X such that
|f| takes its maximum value on F for any f€ A. The essential set of A
is the minimal closed subset E of X such that if f(E£)=0 for a continuous
functions f on X, then f€ A. A is an essential algebra if the essential
set of A is X (cf. [1]). A is said to be an antisymmetric algebra (or
an analytic algebra) if any real-valued function in A is always constant
(or any function in A vanishing on a non-empty open set in X is always
identically zero) (cf. [6]). A function algebra A is said to be a sequen-
tially analytic algebra if any function f in A vanishing on an infinite
closed set in X~0A is always identically zero. If X is a metric space,
we can take a sequence of points converging to a point in X~09A4 in
place of an infinite closed set in the above definition. For a sequentially
analytic algebra, we can easily prove the following.

(@) Let A be a sequentially analytic algebra on X. Let X have no
isolated point and let OA be non dense in X. Then A is analytic.

(0) If A is a sequentially analytic algebra and if X~2A has a non-
isolated point, then A is an integral domain, that is, fg=0 implies f=0
or g=0 for f, g€ A.

Let A be a function algebra on X and let F, be a closed set in X.
We say “F, determines A” if f=0, whenever f(F,)=0 for an f€ A. For
arbitrary function algebra, 9A determines A. F, is said to be an inter-
polation set of A (or a closed restriction set of A) if A|F,=C(F,) (or
A|F, is closed in C(F,), where A|F, denotes the set {f|F,; f€ A} and
f|F, denotes the restriction of f on F,. If F, is an interpolation set of
A, then any continuous function on F, can be extended to a function
in A.

For a function algebra which is an integral domain, we have

Theorem 1.1. Let A be a function algebra which is an integral
domain and let P—F,\)---JF,, where P determines A, F; is closed set in
X and F; is a closed restriction set of A for any i. Then F,™D2A for
some k.

Proof. If we assume that f=O0 whenever f(F,)=0 for an f€ A, the
complex homomorphism %— A(x) of A|F, is well-defined for any x¢€ X.
Since A|F} is a Banach algebra, |#(x)|<||%]||r;, so [|k||x=I|%]||F, for any
h€ A, where ]]hllpk=§gp|h(x)| and ||hl|X=§1€1})|h(x)l. Therefore F,D2A.

k

If for any i, F;_D3A, there is an f;€ A such that fy(F,)=0 and f,;==0.
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But, since f,f,f;-f»=0 on P, f,f,-f,=0 on X. This is a contradiction
since A is an integral domain..

REMARK. We see easily that the theorem is false in the case of
antisymmetric algebras.

Corollary 1.2. Let A be a sequentially analytic algebra on a compact
metric space X, and let F, be a closed restriction set of A for a closed set
F,in X. Then either F,,00A or F,~2A is a countable set whose cluster
points are in A (if it is an infinite set).

Proof. Put G,={x; x€ X, d(x, aA)<—’11—}, where d(x, y) denotes the

metric function on X. Then if F,~G, is an infinite set for some #,
F,~G, is a set which determines A since A is a sequentially analytic
algebra. Since Fy~G,CF, and Al|F, is closed in C(F,), F,D9A by
Theorem 1.1. (In the corollary, it is unnecessary that A is an integral
domain).

Let A be a function algebra on a compact Hausdorff space X. By
the maximal ideal space M of A we mean the set of all maximal ideal
of A. M can be regarded as the set of all non-zero complex homomor-
phisms of A. I is a compact Hausdorff space for its weak topology
and MDOX. A maximal ideal M is said to be a point x in X if M=M,
={f: f(x)=0, f€ A}. A ideal N in A is said to be a principal ideal if
N=f,-A={f.f; f€ A} for an f,€ A.

Glicksberg [5] has proved the following theorem.

Therem 1.3. Let A be a function algebra on a compact Hausdor ff
space X. If F is a closed restriction set of A for any closed F in X,
then A=C(X).

The following corollary is clear from Theorem 1. 3.

Corollary 1.4. Let A be a function algebra on a compact Hausdor ff
space X, and let F, be a closed set in X. F, is an interpolation set of A
if and only if for any closed set F—F,, F is a closed restriction set of A.

For any closed set F' containing 2A, we see that A|F is closed in
C(F). Conversely, we have (cf. [9])

Theorem 1.5. Let A be an essential algebra on X and let F, be a
closed subset in X. If F is a closed restriction set of A for any closed

subset F containing F,, then F, contains the Silov boundary 2A of A.

Corollary 1.6. Let A be an arbitrary function algebra on X and let
F, be a closed subset in X which is contained in the essential set E of A.
If F is a closed resrtiction set of A for any closed subset F containig F,,
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then F, contains the Silov boundary Q4 of the function algebra A|E
(see the next Remark).
From Corollary 1.6 we can prove Theorem 1.3.

RemMark. (1) In Corollary 1.6 we can prove the converse, that is, for
any closed set F containing 04,z F is a closed restriction set. For, let
FDO0u g, then || flle=|lflloas=Ifllr for any f€ A. Since E(JFDE, we
see that E(JF is a closed restriction set, that is, for any f in A, there
is a g€ A such that ||g||x<v||fllzur and g=f on E{JF. (Theorem 2.1)
Therefore ||gllx=v||fllevr=7||fllr and g=f on F, so F is a closed
restriction set by Theorem 2. 1.

(2) 2A()E always contains 04 (cf. [8]) and we can have an example
with 9A()E==04,z, so the conclusion (F,09A(]E) of Theorem 2 of [9]
is false (see the above (1)).

(3) If X is a compact metric space, we have that F, DP(|E5=¢ as
the conclusion, under the hypothesis of Corollary 1.6. P here denotes
the minimal boundary of A (it is the set of peak points of A and is also
equal to the Choquet boundary of A) (cf. [3]). For, it is clear since
2452P()E.

2. Closed restriction sets

Let A be a function algebra on a compact Hausdorff space X and
let F, be a closed subset in X. A closed restriction set of A is charac-
terized as follows.

Theorem 2.1. Let A be a function algebra on a compact Hausdorff
space X and let F, be a closed subset in X. Then F, is a closed restriction
set if and only if for any f€ A thereis a g€ A such that ||g|lx=7I|fllF,
and f=g on F,, where v is a positive number which is independent of f.

Proof. If A|F, is closed in C(F,), by Glicksberg ([4], P. 420), A|F,
is isomorphic to A/kF, (kF,={f€ A: f(F,)=0}), so the necessity of the
theorem is clear. The sufficiency can also be proved easily.

After now, we consider function algebras satisfying the following
properties :

(A). The function algebra A|OA is an essential maximal algebra.

(B). Any maximal ideal in A which is not a point of 9A is always
principal (cf. §1).

The main theorem of this paragraph is the following

Theorem 2.2. Let A be a function algebra on a compact metric space
X satisfying the properties (A) and (B), and let F, be a closed set in X.



INTERPOLATION OF SOME FUNCTION ALGEBRAS 157

If F, is a closed restriction set of A, then either F,>2A or F,~2A is a
countable set whose cluster points are in 9A (if it is an infinite set).

Proof. The proof is clear by Corollary 1.2 (§1) and the next lemma.

Lemma 2.3. Lef A be a function algebra on a compact -Hausdor ff space
X satisfying the properties (A) and (B). Then A is a sequentially analytic
algebra.

Proof. Let F, be an infinite closed set in X~9A and let f(F,)=0
for an f,€ A. Then we have to prove that f,=0. Let x, be a point in
F, which is not an isolated point. Since M,={f: f(x,)=0, f€ A} is a
maximal ideal in A, by the hypothesis, M,=g,A for some g,€ A. Since
f{x)=0, f,=ga, for an a,€¢ A. We see here that x, is the sole point
satisfying g(x,)=0, so a,(F,~(x,)=0, a(x,)=0 and a,€ M,. Therefore,
a,=gw, for an a,€ A. By repeating the same argument, we have a
sequence {@,} of functions in A such that

fo = ga, = ggaz P ggak S= eee eeesssees (]_)

Now, since the function g, does not vanish on 0A, g;'|0A€ C(0A). But
g5'19A can not be extended to any function in A since g(x,)=0, that is,
go'|0A ¢ A|oA. Since A|0A is a maximal algebra, the closed subalgebra
spanned by g;'/9A and A|9A is identical to C(2A), so for any /4 € C(2A4)

and for any €_>0,

[ h—(ag+,ge'+ oo + g ) ba< &  eeeeerens (2)
, where «; ¢ A.
By (1), gitfo=ar on 94  (k=1,2,3,-) e (3)
By (2) and (3),

[hfo— (@ fot@a,+ - +ap)lloa = €|l folloa
Since &, f,+@a,+--+a,a,€ A, hf,€A|DA.
C(0A)-f,— Al2A.

Put 94A=Y and B=A|Y. Then B is an essential algebra on Y. C(Y).
f,—B. From this we can prove that f,=0 on Y, hence f,=0 on X.
If f,==0 on Y,Z={x:x€Y, f(x)=0} is a closed subset in Y and Z==Y.

We can take two open sets U, V such that
ZcVcVcUcCUSEY.

Since A|Y is essential, there is a function p€ C(Y) such that p(U)=0
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and that p cannot be extended to any function in A. We put

hy(x) = p(x)/ f{x) if xeY~V,
=0 if xeV,

then h,f,=p. Since k, is continuous on Y, this is a contradiction, so
=0 on X.

Corollary 2.4. Let A be a function algebra on a compact metric space
X which has the property (A) and is generated by function f,. Then if
F, is a closed restriction set of A for a closed set F, in X, either F,"O0A
or F,~0A is a countable set whose cluster points are in 0A (if it is an
infinite set).

Proof. This is clear by Theorem 2.1. and next lemma.

Lemma 2.5. If A is generated by a function f,, then any maximal
ideal in A which is not a point in DA is principal, that is, A satisfies the
broperty (B).

Proof. Let M be a maximal ideal in A which is not a point in 2A.
Then M={f: ¢{f)=0} for some non-zero complex homomorphism @,.
Since A is generated by a function f,, for any f€ M and for any & >0,
there is a polynomial of f, such that

f=(@ta, fot o +a, fOI<E e (1)

, where «; is a complex number.

If we put off)=«ca, ¢(f,—a)=0. For the above polynomial, we set
g=a,+a,f,+ - +a,fo=(fo— )Y f)+B, where Y(f,) is a polynomial of
foand Bis a complex number. We easily see that ¢(g)=8. By (1) we
have |B|< & By (1) again,

f=(fo— WAl = I f—g+BIl < [ f—gll+B]< 28 -oone (2)

Now, the function f, cannot take the value « on 9A. For, if f(x,)=«
for some x,€9A, by (2) f(x,)=0 for any fe M. Since M is not a point
in 94, this is a contradiction. Therefore, by (2) we have

1

fo_
PR A

, where & 212311 | f{x)—«a| and V,( f,) is a polynomial of £, for any #. Since

"["n(fo)eA’ f/fo_aE AlaA7 SO f=(f0—a)h on 9A (he A) f:(fo_a)h on X.
This shows that M is principal.

pA~ 5.0
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Corollary 2.6. Let A be the algebra of all continuous functions on
the closed unit disc (in the complex plane) which are analytic in its interior
and let F, be a closed restriction set of A. Then F, contains A (=the
unit circle) or F, is an interpolation set of A.

Proof. Let F, be a closed restriction set of A. By Corollary 2. 4.,
F, contains the unit circle K in the unit disc or F,~K is a countable -
set whose cluster points are in K. Therefore, if F, does not contain
K, F,[\K<K and F,~K is a countable set whose cluster points are in
K, so F,=(F,(\K){J(F,~K) does not divide the complex plane and is also
a non dense set in the complex plane. It follows that A|F, is dense in
C(F,) by the Lavrent’ev approximation theorem, so A|F,=C(F,), that is,
F, is an interpolation set.

Corollary 2.6. can be extended to the case which A is a more general
algebra.

3. Interpolation sets

Let A, be the function algebra of all continuous functions on the unit
disc which are analytic in its interior. Then Hoffman ([7], P.208) has
pointed that the following two statement are equivalent for a sequence
of distinct points {z,} in the open unit disc: (a). If g is any continuous
function on the closed unit disc, there exists f€ 4, such that f(z.)=g(zs),
k=1,2,3,.--. (b). {z,} is an interpolating sequence for H>, and the set of
accumulation points of {z,} on the unit circle has Lebesgue measure zero.

In this paragraph we consider a generalization of the above fact
(Theorem 3.2.).

Let A be a function algebra on X. A is said to be a Dirichlet algebra
if the set of all real parts of A, Re A is dense in Cx(X), where CiX) is
the set of all real-valued continuous functions on X. In §2 we see that
if a function algebra A satisfies the property (A) and has a function f,
as its generator and if F, is a closed restriction set of A (and hence, if
F, is an interpolation set of A), then either F,/00A or F,~92A is a
sequence of points whose cluster points are in 94. Let A have a func-
tion f, as its generator. Then we can assume that A satisfies the follow-
ing property: Let P be a compact set in the complex plane having a
connected complement and let I" be the boundary of P.

(*). A is gemerated by a function f, such that ' f(X)=P, where
f(X)={f{x): x€ X}.7

1) Put P=C~U..,, where C is the complex plane and U. is the connected component of
C~fo(X) containing . Then P satisfies (%). If A=FC(X), Pi==¢.
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Let Y=1{9,, ¥, -, ¥, -} be a sequence of points in X~0A. Y is
said to be an H=-interpolating sequence if for any bounded sequence of
complex numbers {«,, «,, -+, &, ---}, there is an f € H” such that f(y)=q;
for any i, where H* denotes the set of all bounded function f on X~0%A
such that there is a sequence of function {f;} in A and f; converges
uniformly to f on any compact set in X~0A. We easily see that if
X is a compact metric space H~ is a Banach algebra with the norm
f Ilm=x€§u;;A| f(x)|. We call H* the -Hardy class relative to A.

We consider the following property for H>:

(D). For any fc H”, there is a sequence of functions {f,} in A such
that || f,||<38||fl| and f, converges to f on any compact set in X~03A,
where v is independent of f.

Let A, be the set of all continuous functions on the unit disc which
are analytic in its interior, and let H* be its «-Hardy class, that is, the

set of all bounded analytic functions on the open disc. For any fe H™,

we put f,,(z)=f{(1—%)z} (n=1,2,3,---). Then f, can be defined as a

function in A,. We easily see that ||f,||<||f|l. and f, converges to f
on any compact set in the open unit disc.
First, we shall prove the following theorem.

Theorem 3.1. Let A be a function algebra on a compact metric space
X which has the property (A) and is generated by a function f,. Then

if F, is an interpolation set of A for a closed set F, in X, the following
conditions are satisfied :

(i) F,(\2A is an interpolation set of A|2A.
(¢7) For any finite set {y,, ¥,, -, ¥,} in F,~9A and for any finite set
{¢;» €2y -+, ¢,} of comlex numbers, there is an fe A such that f(y;)=c;
(t=1,2, ---,n) and || f||<vsup|c;|, where v is a positive number which is
isn
independent of {y,,,, -, ¥,} and of {c,, c,, *+, C,}.

Conversely, the conditions (i) and (it) imply that F,is an interpolation
set of A.

The main theorem of this paragraph is the following

Theorem 3.2. Let A be a function algebra on a compact metric space
X satisfying the property (A) and having a generator f,. Then if F, is
an interpolation set of A, the following conditions are satisfied :

(1) F,(\12A is an interpolation set of A|2A.

(t1") F,~2A is an H>-interpolating sequence.

Conversely, if the co-Hardy class H” relative to A has the property
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(D), then the conditions (i) and (ii') imply that F, is an interpolation set
of A.

Proof of Theorem 3.1. (i) Let f be any continuous function on
M=F,(]124, and let f* be a continuous extension of f on F,. Since
A|F,=C(F,), there is a function g€ A such that g=f* on F,, so g=f
on M.

(ii) Let {c,, ¢, *++,¢,} be a sequence of complex numbers and let %
be a continuous function on F, such that

h(yx) = C; (l = 1) 2» %y n)
h(x) =0 (xEFo~{y1’ yz""’yn})-

Since A|F,=C(F,), there is an f€ A such that f(x)=4(x) on F,. We here
can assume that ||f|[x=<v||%||r, (v is independent of /) by Theorem 2.1,
so f(y)=c; (i=1,2, -, m) and || fllx=vsup|c].

Conversely, let A satisfy the conditions (i) and (ii). We will show
that A|F,=C(F,). Put M=2A[|F,. For any continuous function f on
F,, fIMe C(M). By (i) there is an f’€ A such that f'=f on M. If we
put f,=f'—f, then f(M)=0. If we prove that f,=g on F, for a function
g€ A, then f=h on F, for some %€ A, so the theorem will be proved.
Therefore, for any f,€ C(F,), f{(M)=0, we are only to prove that f,=g
on F, for some g€ A. We can assume that ||f,||r,=1. By Theorem 2.2
we put F,~9A=1{y,, ¥, s, -~+}. Since f(M)=0, there is a positive integer
n, such that

{yi”fl(yi)l = 1/4} - {yu Yoy Vs o0 ynl} .

Since A|2A is a maximal essential algebra, M==0A. And since M is an
interpolation set of A|JA, there is a function Y€ A|9A such that (M)
=1, ¥==1 and |[V|l,a=1" (cf. [4]). Since y; ¢4, by ([2] or [6], §5),
YW y:)|<1 ((=1,2,3,--). By taking a sufficiently large integer m, the
value of 1—+" on y; (i=1,2, ---, n,) can be arbitrarily near 1. Also, since
J(M)=1, there is a positive integer #, (n,==n,) such that {y;: [(1—v")(3:)|
< 1/49}AYn,41> Yupres -}, Where v is that in the condition (ii). By (ii)
there is a function p€ A, such that p(y,)=f(y,) (=1,2, ---, n)), p(9:)=0
((=n+1,-,m)and |[p||<vllfillr,=7. For asufficiently large integer m,

|(1—‘1"m)(yi)'p(yi)—f1(yi)|<1/2 (i=1, 2, -, n!)
(A=) (50 D)< 1/4 (G=m+1, n+2, ),
so (X=X y)p(y:)—fy:)1<1/2 (i=mn+1, n,+2, ).

2) Since fo(M)CT (Lemma 3.3. Footnote) we can find the function ¥ by the similar
method as the proof of Lemma 3. 3.
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Put (1-¥™)p=g,, then g €A, ||fi—gllr,1/2 and ||gllx=2y. If we
gf=rfi—g., gf(M)=0 and || g¥||r,<1/2. By repeating the same argument,
we have a sequence {g,} —A such that ||g,|[x<2 " ®.y and g¥=f,—g,
— &, — &, satisfies that gX¥(M)=0 and ||g¥|/r,<27" for any ». Put
h,=g,+ 8+ - +8u, then h,€A. If m>n, [|hp—lyllx= 118+ =+ +Znuillx
< gmllxt s + | @piallx <2 "%y, so h, converges to some k€ A, and
[ fi=hallr,=1g%lp,<27". This shows that f,=#% on F, for some k€ A.
Before the proof of Theorem 3.2 we need the following lemmas.

Lemma. 3.3. Let A be a function algebra having a gemerator f, and
let a sequence of points {y,} X~0A converges to point y in X~03A.
Then

P(Yn» y) = §E£If(y,.)—f(y)l/ltf|! converges to 0.
reo
Proof. Since A is generated by f,, the set of all polynomials
a,+a,fo+ - +a,fv(a; is a complex number) is dense in A. For any poly-
nomial g of f,, g=a,+a,f,+ - +a,fy, we put g'(2)=a,+a,z+ -+ +a,2™.
We consider the polynomial g’(2) as function on P. Put ||g’|| zsgplg’(z)].
2€EP

Then there is a complex number z, (z,€I") such that ||g’||=1g"(z,)|. By
the property (), there is a point x,€ X such that z,=f(x,), so [|g’|l=
|a0+alfo(x0)+azf%(xo)+ e ot /2 gb(xo)l _g_ ” g” Therefore,

|g(y)— &I/ I1gll < g’ LAy 1= LA N eereeees (1)

Now, we easily see that f(x)¢1I if x ¢2A. For, let f(x)€T for a point
x¢0A. If f(x)=s(x") for another point x’/, then f(x)=f(x’) for any
f€ A, since A is generated by f,. This contradiction shows that there
exists no point &’ (different from x) such that f(x)=f(x). If we put
u,= f(x), then u,€I'. The function algebra of continuous functions of
I' which admit a continuous extension to P that is analytic on the
interior of P is a Dirichlet algebra ([10]) and the one point set %, is a
closed restriction set. Therefore {«,} is peak set ([4]), so there is a
continuous function Y on P which is analytic on the interior of P such
that Y(«,)=1 and |Y{u)|< 1 for any € P (u,==u). Put h=+of,. Then
k> A, since ¢ is approximated uniformly on P by polynomials of z. We
see that [|#||=1 and x is the sole point satisfying |#(x)|=1. Since x ¢ 94,
this is a contradiction, so f(x)¢I' if x ¢2A.» Coming back argument,
let y,, y¢2A and y,—y. Then f(y,) ¢TI for any n, f(y)¢I and
fly.)— f{y). Since g’(z) is analytic in the interion of P,

3) We can prove that f,(8A4)=TI. For, f, is a homeomorphism of X onto f,(X) and
I'Cfo(XHCP.
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&' L] =& LA/ 1| = MIFLya)—fD)] woemeeeee )

, where M is a constant number which is independent of n. By (1), (2),
|g(y)—gW|/llgll < Mn,,  where #5,—0 for n—oo.

Since the set of all such functions g is dense in A4, p(y,, y)—0.
This lemma implies the following

Lemma 3.4. Let A be a function algebra on a compact metric space
X having a generator f,. Then any equibounded sequence of functions
in A is equicontinuous on any compact subset K in X~2A.

Proof of Theorem 3.2. In order to prove (ii’), let {c,, ¢, =) Cu» ==}
be a bounded sequence of complex numbers. If F,~0A={y,, ¥., =, Yu, '}
by Theorem 3.1 (ii), there is a g,€ A for any » such that g,(y)=c;
(6=1,2,--,n) and || g.llx=vsup|c;|, so {g,} is equibounded. By Lemma

3.4 {g,} is equicontinuous on any compact subset in X~0A. Therefore,
by the diagonal argument, there is a subsequence {g,;} of {g,} such that
gn; converges uniformly to some % on any compact subset in X~0A.
By definition, € H* and #(y;)=c¢; (1,2,3, --). Conversely, let H” have
the property (D). Then since H~ is a Banach algebra and since the
sequence of points {¥,, ¥, ***, ¥, -} (=F,~0A) is an H"-interpolating
sequence, for any bounded function f on {y,, 3., -**, ¥, -} there is an
k€ H" such that f(y)=h(y;) (i=1,2,3,---) and [h|l.<vsup|f(p)l (v is
independent of f) by the same argument as [7] (P. 196). Therefore, we
can prove that F, is an interpolation set of A by the similar method as
Theorem 3.1, since H* has the property (D).

Tokyo JosHI DAIGAKU
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Added in proof. M. Hasumi also proved Theorem 3.2. without the
property (A) by use of the maximal ideal space of A. Some theorems
of this paper can be extended to the case which A is a more general
algebra.





