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Introduction

We begin this note by pointing out that a few modifications in some
of the notations and arguments of [13] will make these fit in more
closely with results in the literature. We also complete the results of [13]
in several points. In particular we point out that the spectral sequence
used in [13] is not quite a genuine generalization of the Hochschild-Serre
spectral sequence in Galois cohomology. However with a slightly different
spectral sequence the results of [13] can also be obtained and we shall
show in section 2 that this is indeed a genuine generalization of the
Hochschild-Serre sequence for Galois cohomology. In section 3 we shall
use some of the results of [13] to derive an exact sequence comple-
mentary to that of Proposition 7. 8 of [13] from which we deduce the
following result first pointed out to us by S. Shatz: Let C be a field,

Cs its separable algebraic closure and C its algebraic closure. Then if

λ is the lift map [2, Def. 2.3.], we have that λ: Hr(CJC)-^Hr(C/C) is
an isomorphism for r = l, 2, •••.

1. Notations and preliminary results

Throughout we use the notations and definitions of [13] with the
following modifications : The complex ®(F/C) is now defined by (£W(F/C)
= (Fn+l}* « = 0,1, 2, •-. Thus for wφO, Hn(F/C) as defined in [13] is the
nth cohomology group of G£(F/C) as defined here and the only difference
is in H°(F/C). We also carry out a corresponding modification in the
definition of the double complex <£(/£, F/C) of [13, §4]; now E%'n=
(Km+1 <g) Fn+1)* if m, n ̂  0 and 1 otherwise. The two derivations

ΔJ " :£?•"-*Ey "*1, ΔJ" :£?'"-* E?+lfli are defined just as in [2 and 13]

by Δ?w- Σ(-ir+<(l®5ί) and ΔS- n= Σ(-1)'+1Φ®1), written additively

1) Work done while B. Pareigis was partially supported by Nato-Research-Fellowship 4-s

nato 2/3 gf and A. Rosenberg by N.S.F. grant G-23834.
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for the sake of convenience. We shall use the notation Tot (£(/£, F/C) for
the canonical associated single complex of (£(/£, F/C), whose cohomology
groups we denote, as in [13], by H(K, F/C). Adhering to the notation
of [13], we find for the two spectral sequences of (£(/£, F/C)

ΈT* = Hn(Km+l®F/Km+l) "EΓ " = Hm(K®Fn+l/Fn+1) .

We shall have occasion to use the following two hypotheses
A m.Ό

(eK)W): l-^(Km+ί)*-*(K'n+1®F)*-^(Km+1®F2)* is exact

(eFfn) : 1 -> (FM+1)* - (K®Fn+l)* >(K2®Fn+l)* is exact,

where in each case the first mappings are given by x~^x®\, x in
(Km+l)* and y-*\®y, y in (Fn+1)* respectively.

Lemma 1. 1. // F is a faithfully flat C-algebra (eκ>m\ w = 0, 1, 2, •••
holds. If K is a faithfully flat C-algebra (eF n), n = Q, 1, 2, ••• holds. If
(eκ>m) holds, then Έ? °^(Km+ί)* if (eF>n) holds, then "Er*-(FM+1)*.

Proof. If F is a faithfully flat C-algebra then by [5, Prop. 5 p. 48],
Kmi-l®F is a faithfully flat /Γ*+1-algebra. But then, taking into account
our slight change in numbering, Lemma 3. 1 of [13] asserts precisely
that (eκm) is exact. The rest of the proof is then clear.

Lemma 1.2. // F is a K-algebra (eFn) hold for n = 0, 1, 2, ••• .
Furthermore, "E?-n=Q for m>0, "El'n^(Fn+*)* and the injection map ψ
of "Eι>n into Tot &(K, F/C) induces an isomorphism of cohomology ψ1* :

Hn(K, F/C).

Proof. Following [2, Theorem 2. 9] we define a C-algebra homo-
morphism * : Km+1®Fn+1-+Ktn®Fn+1? m,n = Q,l,2,- by ^(k,® ••• ®km+1

®/ι® ®Λ+ι) = *ι® ®*«+ί/ι®/2® ®/ι +ι It is shown in [2, Theorem
2. 9] that K is a contracting homotopy for &(K®Fn+l/Fn+1). Hence it
follows that "Er0 = 0 if m>0. Furthermore, κ(l®y)=y for y in FM+1,
so that y-*l®y is a monomorphism. Moreover, if u in (K®Fn+1)* is
such that ^n(u) = l, an easy computation shows that u = l®/c(u) so that
(eF>n) holds and ^^^(/r^1)*. The last assertion of the lemma is then
a direct consequence of [9, Theorem 4. 8. 1 p. 89].

REMARK. Lemma 1. 2 is the main difference between the results of
[13] and this note. With the double complex of [13], in case F is a
/Γ-algebra, one has Hn(K/C)^H"(K, F/C) [13, Lemma 4.2].

2) For notational convenience we set K° = C,
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With our definition of (£(/£, F/C) some of the exact sequences of
[13] are direct consequences of standard theorems on spectral sequences
and it is also easier to compute some of the maps explicitly. We begin
with

Lemma 1.3. Let Eξq=$>Hn be a spectral sequence such that E$q = Q
P

if either p or q is less than 0 and such that E\Λ = E\Λ = Q then there are
maps to make

£0,1 _^ £2,0 _, ff2 ^ £0,2 _^ £3,0 _^ #3

exact.

Proof. We apply [6, Prop. 5. 7 p. 326] with r=n=p=k=2 to find
that there is an exact sequence

Z?2,0 ^ TT2 ^ Z7Ό,2
A^2 ~^ fl ~* ^2

Next [6, Prop. 5.9 p. 327] with p = Q, q = r=2, 5-3 yields an exact
sequence

Finally we use [6, Prop. 5. 9(a) p. 328] first with p=s=3, q = Q, r=2 and
then with p = s=2y q = Q, r=2 to obtain two exact sequences

El'2 -> JEi ° -> H3 and
£° 1

 > £2.0 > ΓT2

From the cited propositions it is clear that whenever in these four exact
sequences two maps have the same domain and range, they are equal.
Hence by composing all these sequences we obtain our result. Of course,
it is easy to give a direct proof of the lemma based solely on the usual
elementary properties of spectral sequences.

We now begin to recover some of the exact sequences of [13].

Lemma 1.4. // H\Km+l®FIKm+l) = Q, m = 0,l,2 and (eKrJ m-1,2,
3, 4, holds then there are homomorphisms to make

0 -> H\K/C) - H\K,F/Q -> H2(K®F/K)° 3)->

H\K/C) - H\K, F/C)

exact.

3) As in [2, p. 16] we set H*(K®F/K)° = Ker (d^n: ΈJ."-^^'") i.e. the elements in
H\K®F/K') for which £?(*) = **(*) where εf are the mappings on Hn(K®F/K}-+Hn(K2®F/K2}
induced by the ε, : K-+K2,
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Proof. By hypothesis ΈTl = H1(Kfn+1®F/Km+l)=0J m = 0y 1, 2. Hence
Lemma 1. 3 is applicable and yields the exact sequence

0 _> '£|.o ̂  H*(K> F/C) - Έl>2 - Έl ° - H\K, F/C) .

Since (eκ>m) holds for w=l,2,3,4, Lemma 1.1 shows that ΈΓ°~(#m+1)*
for w = l',2,3,4. Hence, clearly, ΈΓ°=#"WC), m = 2,3. Finally '£? 2

= H2(K®F/K) so that Έl'2 = H2(K®F/K)° by definition completing the
proof of the lemma.

REMARK. If ^ ° = 'Έf 0^''^1 = 0, for which H1(K®F/F) =
H2(K®F/F) = H\K®F2/F2) = 0 is sufficient, since these are "E\\ "E\\
"E\'1 respectively, it is readily verified that the injection ψ : (Fw+1)* -»
"Eϊ 11-* Tot (£(#, F/C) induces an isomorphism ψ* : H\F/C} ^ H\K, F/C).
If "E| ° - "ES ° - "F^'1 - "E\Λ = "EY2 = 0 for which H\K®F/F) =
H\K®F/F) = H\K®F2/F2} = H2(K®F2/F2} = H\K®FZ/F3} = Q is sufficient,
since these are "E\>\ "E\>\ "E\ \ "Eϊ\ "E\'2 respectively, it is readily
verified that -ψ * : H\F/C)^H\K, F/C) is an isomorphism. Combining
this with Lemma 1. 3 we recover the long exact sequence of £13, Prop.
5.3].

The maps Έ^^Hn(K,FjC} and HH(K, FIC)-*Έϊn that occur in
the above sequences are the edge homomorphisms of the spectral sequence
Έ. We next wish to compute these explicitly in case F is a /f-algebra
and (eκ>M) holds. We bsgin by defining a chain map of Tot &{K, F/C)
to (£(F/C) in case F is a ίί-algebra : Let Θm+l>n+l : Km

be the C-algebra homomorphism defined by Θm+l'n+\k,
®fn+ι} = (kl l)®.~®(kn.l}®kn+,fl®-®fn+1 where 1 is the identity
element of F. A routine computation then shows that for any u

in (Km+l®F*+l)*9 ^+2 "+\ΛJf+1 ll+l(M)) β>if+1 <i+2(Δ?+1 "+1(M)) = ΔF(θm+1'n+\u})
where ΔF is the derivation of K(F/C). We therefore define φ :
Ύot&(K, F/C)-*K(F/C) by φ(τiί+j=fn+2uiJ) = τLθί^(uiJ} with ufj in

* and clearly have that φ is a homomorphism of complexes.

Lemma 1.5. // F is a K-algebra, the homomorphism φ*:Hn(K,F/C)
-*Hn(F/C) is the inverse of the isomorphism ^ : Hn(F/Q-*Hn(K, F/C)
of Lemma 1. 2.

Proof. By Lemma 1. 2, ψ1* is induced by the map of complexes
ψ: &(F/C) ->(£(#, F/C) which sends a unit # in Fn+1 to the element l®v
in £o'n But then clearly φty is the identity map on (£(F/C) and thus
<p*ψ* is the identity map on Hn(F/C). Since -ψ1* is an isomorphism, the
result follows.

We recall, next, that if F is a /f-algebra, the C-algeb.ra homomor-
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phism K-*K lζ=F induces an algebra homomorphism Kn+1-*Fn+1 which
in turn induces a homomorphism λ: Hn(K/C)->Hn(F/C) called the lift
map [2, Definition 2.3]. Furthermore the C-algebra homomorphism
F-*K®F defined by x->l®x for x in F is always defined and induces
a map p: Hn(F/C)^H"(K®F/K) which is called the restriction map
[2, Definition 2.1].

Proposition 1. 6. Let F be a K-algebra such that (eKm) holds. Then
Έ™'G^(Km+1)*> the isomorphism being given by x-*x®l for x in (Km+1)*.
Composing the isomorphism ψ * : Hn(FIC)-^Hn(Ky F/C) with the edge
homomorphism Hn(Ky F/C)-+Έ*2

 n = Hn(K®F/K)° yields the restriction
map p: Hn(F/C) -> H"(K®F/K). Composing the edge homomorphism
ΈT°~Hm(K/C)^Hm(K,F/C) with the isomorphism φ* : Hm(K, F/C)->
Hm(F/C) yields the lift map λ: Hm(K/C)-^Hm(F/C).

Proof. The first assertion is already contained in Lemma 1.1. By
[11, Theorem 8.1 p. 346] the edge homomorphism <η* : Hn(K, F/C)-*Έ°2'

n

is induced by the mapping of complexes η: &(K, F/C)-+1£(K9 F/C)/
F'(&(K, F/C)) where F' is the first filtration, Σ, >0£o'J in this case. Thus
a cochain uQ>n ul'n~l- un'Q is mapped to the class of u°'n, where uitj lies
in (/iΓ<+1<g)F>+1)* Thus if u in (F"+1)* is a cocycle, η*φ*u is simply the
class of \®u in Hn(K®F/K) which proves the second assertion. For
the last assertion, we again note by [11, Theorem 8.1 p. 346] that the
edge homomorphism ξ* : Έ2>Ό-*Hn(K, F/C) is precisely the map on
cohomology induced by the inclusion ξ: Έ? °->Tot K(ίί, F/C). Hence,
if u is a cocycle in (Kn+1)*> since θn+1'\u) is just w l, 1 the unit element
of F, it is clear that φ(u) = u l. Thus φξ(u) = u l so that φ*ξ* on the
class of u is λ on the class of u.

Corollary 1. 7. Let F be a K-algebra and suppose in addition that
(eκ>m) holds and that H\Km+1®F/Km+l) = Oy w = 0,l,2. Then we have an
exact sequence

0 - H2(K/C) ^ H\F/C) £ H2(K®F/K)° - H\K/C) ^ H\F/C).

Proof. By Lemmas 1.4 and 1.2 we see that we have this exact
sequence with the maps not identified. But by the proof of Lemmas
1.2 and 1.3 it is clear that the labelled maps all arise from edge
homomorphisms and an appeal to Proposition 1. 6 completes the task.

We end this section by pointing out how the spectral sequence Έ
as defined here yields a proof of an analogue of Proposition 4.1 and
Theorem 4.3 of [13]. Under the hypotheses stated there it follows
that Έ2'n=0 if m and n is nonzero. But then it is clear that Έ^n=
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Ker(δ: 'Eg n->'E5+1 0), 'E*° = 'E$°/8'E%*-1 with δ the appropriate deriva-
tion, Έ™'n=0, m and α nonzero. But then it is clear that 'E%n='E^n

= Hn(K®FjK} and that there is an exact sequence

with the first two arrows being edge homomorphisms. In Proposition
4. 1 of [13] F is faithfully flat over C, thus Lemma 1. 1 shows that

so that we have an exact sequence

- Hn(K/Q -> H*(K, FjC) -> Hn(K®F/K) -> Hn+\K/C) -* -

Now if F is a /f-algebra, Proposition 1. 6 and Lemma 1. 2 yield the
exact sequence

- Hn(K/Q ^ H"(F/C) £ Hn(K®F/K) - Hn+l(K/Q - -

valid, of course, only under the hypotheses of Theorem 4. 3 of [13].

2. Hochschild-Serre spectral sequence in Galois cohomology

In this section we shall show that the spectral sequence Έ reduces
to one of the Hochschild-Serre spectral sequences, as given in [10], for
Galois cohomology in case FiD/fiDC are normal separable field exten-
sions.

Let C be a field and K a possibly infinite-dimensional, normal
separable extension field of C with Galois group @. We consider @ as
a topological group with the usual Krull topology and shall use 9iΛ to
denote the family of closed and open normal subgroups of finite index
which correspond to finite normal extension fields of C in the Galois
correspondence. If A is any discrete ©-module on which ® operates
continuously, equivalently A= []A^<* [7, p. 3; 14, p. 1-8], we denote by
Cc(®, A) the group of continuous homogeneous w-cochains on @ with
values in A. It is known, and easy to verify, that Cj(®, ^4) =
Hm+C*(®/3lΛ, AK»\ where the latter are the ordinary homogeneous

Λ

cochains on the finite group ©/^ [14, p. 1-9]. C?(®, A) is a complex
under the usual derivation whose cohomology groups we denote by
Hn(®, A). Note that 6*(®, A)^]im+H*(®ΓiflΛ, A* ).

Λ

The action of © on K clearly makes, for any extension field F of C,
(K®Fn+l}* into a discrete ©-module on which © operates continuously.
We define a map

v : (Km+l®Fn+l)* -> C?(®, (K®Fn+ψ) by
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with / in Fn+\ Then

Lemma 2.1. v is an isomorphism of the complex &(K®Fn+l/Fn+l)
with Cc(®, (K®Fn+1T).

Proof. This is a very slight recasting of [12, Lemma 2. 2]. It is
shown there that if K^ is the fixed field of 9Ϊ, » yields a complex iso-
morphism

If 9ϊ'd9fc so that KW^KM, it is readily verified that

is commutative where the left vertical arrow is the obvious one induced
by the inclusion K^dK^ and the right vertical map is the usual cochain
map leading to the lift map in the cohomology of finite groups (re-

membering that ®/fts(®/$R')/(5β/gϊ')). Now it is clear that lim+ίφ^®
Fn+l/Fn+l) = &(K®Fn+1/Fn+l) and as noted above Cc(®, (K®Fn+l}*) =

lim^C(®/9l, (Kκ®Fn+l)*} so that the result follows.
It is easily verified that a function from ©x©x ••• x© to any discrete

©-module on which @ acts continuously is continuous if and only if it
is locally constant and finite-valued [14, p. 1-8]. Using this it is easy
to see that C?(®,.) is an exact functor on the category of discrete ®-
modules on which @ acts continuously. Now we make C™(@, (K®Fn+1)*)
into a double complex by using the derivation induced by ( — ϊ)m-lΔF as
well as the standard one on cochains. It is then clear that \> yields an
isomorphism of double complexes

v : £(/£, F/C) -> Cc(®, (/f®FM+1)*) -

By [6, Theorem 7.2, p. 68] ι>*(Έ?'*) = C?(®, Hn(K ®F/K)) and thus
»*('£?•*) = Hm(®, Hn(K®F/K)}. Invoking Lemma 1.2 we have

Theorem 2.2. Let C be a field, FzD/fiDC extension fields, with K
normal separable over C with Galois group @. Then there is a spectral
sequence

Hm(®, Hn(K®FIK)) — > Hr(FjC) ,
m

where H(K®FIK) has a ^-structure via the action of © on K.
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Corollary 2. 3. With the same hypotheses as in Theorem 2. 2 suppose
in addition that F is also normal separable with Galois group 9Jί and that
ξ> is the normal subgroup of 2K leaving K elementwise fixed. Then the
spectral sequence Έ is isomorphic to one of the Hochschild-Serre sequences
[10, Proposition 7]

»(£>, F*)) ==> Hr(W, F*) .
m

NOTE. In the infinite case we take the obvious generalization of the
usual Hochschild-Serre spectral sequence.

Proof. As already noted we have an isomorphism of double com-
plexes

, F/C) -> Cc(®,

where ®^9K/ξ>. Suppose first that [F: C]<oo. Then it is shown in
[2, Lemma 5. 5] that the map Θ, defined by ®(Σfc®/ι® — ®/«+ι)
(σ ι , σ 2, •••, σ M+ι) = Σ £Πσt (/, )> k in K, fi in F, σf in 501, yields an iso-

morphism of (K®Fn+l}* with Homccφ)(®1C(50l), F*); the latter in the

notation of [10] is simply M? with Mw-Homc(
M(g)C(aJΪ), F*). Moreover

1

it is readily verified as in [12] that Θ is an isomorphism of the complex

C(K®FJK) with the complex structure of M^ as defined in [10]. Now

if Φ is a function in Mj, an 501 /ξ) structure on M^ is defined in [10]
by setting (τΦ)(σι, •••, σΛ+1) = τΦ(τ-1σ1, — , τ-Vn+1) for T, σι, — , σw+1 in 50Z.

But then ®MΣ*®/ι® — ®Λ+ι)) = ®(Σ<*)®/ι® — ®Λ+ι) = Φ with
Φ(o 1,-,σ- l l+1) = Στ(*)ILrί(/ί), and ['Pθ(Σ*®/ι®-®Λ+ι)] (OΊ, -, σ ll+1) =
τθ(Σ*®/ι®-®Λ+ι) (^"V, •-, τ-1σ-ll+1) = Στ(*)lW/r) so that Θ is an
isomorphism even of 5DΪ/Φ complexes. We thus have shown that in the
finite case (£(/f, F/C) is isomorphic as a double complex to the double
complex constructed in [10, Proposition 7]. In the infinite case it is

clear that (AΓ®F>l+1)*^lim^Homccβ.)( ̂ 0(501,), F*) where F^Kt are the
*Ί !

normal separable finite extensions of C with Galois groups 5DΪ,- and φ, ,

whose union is F and K respectively. Thus FΓn^CiΓ(@, lim^,M?0 Now
since the homology functor commutes with the direct limit functor [6,
Proposition 9. 3*, p. 100], we see by repeating the proof of Proposition
7 of [10] that

Finally, as in the proof of Theorem 2.2, #r(F/C)^#r(2JΪ, F*) so that
the Corollary is proved.
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3. Inseparable extensions

In this last section we find an exact sequence which complements
that of section 7 of [13] : Indeed, let F be an algebraic field extension
of the field C and let K be the maximal separable subfield of F. In
[13] some relations between Hn(K/C) and Hn(F/C) were found by using
a map on cohomology which resulted from raising to pth powers. In the
present section we shall use the lift map λ: Hn(K/C)^Hn(F/Q. Un-
fortunately, we only obtain results in the special case F=K®Ff with F,
purely inseparable over C.

Lemma 3.1. Let C be a field, K an algebraic separable extension
field of C, FΪ a purely inseparable extension field of C, and let F=K®Fi
be an extension field of K4) Then ΈT»=Q if nφO or 2, where '£?•" still
refers to the first spectral sequence of the double complex (K™+1®Fn+1)*,
m, « = 0, 1,2, •••.

Proof. Since K is separable algebraic we may write K= \]KΛ and
p.= [)FΛi with KΛ a finite separable extension field and FΛi a purely
inseparable extension field of finite exponent. Then F= \JFΛ with FΛ =
KM®FΛi. By definition, ΈTn=Hn(Km+l®F/Knt^). Now as was noted in
[13, Proof of Corollary 3.5] H\Km+l®F/Km+l} = \im+Hn(K™+1®FJK™+l\
so that it is sufficient to prove the lemma in case [K: C]<^°° and F
has finite exoponent. In that case it is well known that Km+1 is a direct
sum of fields, Km+1 = *Σ®Lj9 each of which is a /f-algebra. Consequently,
&(Km+1®F/Km+1) is isomorphic to the direct product of the complexes
&(Lj®F/Lj). Now the maps h: LJ®F=LJ®K®Fi->Lj®Fi and g:Lj®Fi
-*Lj®F defined by h(l®k®f) = lk®f and g(l®f} = l®l®f for / in Ljy

k in Ky and / in F, are clearly L^-algebra homomorphisms. They thus
give rise to induced homomorphisms h* : H*(Lj®F/Lj)-+H*(L,®Fi/LJ
and g* : H*(Lj®FiILJ)-*H*(LJ®FIL,\ Since hg is an L,-algebra homo-
morphism of Lj®Fi to Lj®Fi and gh is an L/ algebra homomorphism
of Lj®F to Lj®F it follows from [2, Lemma 2. 7] that hg and gh are
homotopic to the identity so that A*g*=g*A* = l and A*, g* are iso-
morphisms. As already noted, Lj®Ff is a field and clearly a purely
inseparable extension of Ljt But then by [13, Theorem 6.1]
Hn(L,®Fi/LJ) = 0 rcφO,2,5) completing the proof.

Theorem 3. 2. Let C be a field, K a separable algebraic extension
field of C, Fi a purely inseparable extension field of C, and let F=K®Fit

4) If IK: C] and [F, : C] are finite then it is shown in [1, Theorem 2. 31] that F=
is a field. The general case follows immediately from this.
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Then there is an exact sequence

- ΈΓ8'2 -> Hr(K/C) ^ Hr(F/C) -> Έr2~
2'2 - •••

with Έ™'n denoting the E2 term of the first spectral sequence of E(/f, F/C).

Proof. By Lemma 3.1, Έ^n=0 if rcφO, 2. By [9, Theorem 4.6.2,
p. 85] with n = r=2y there is an exact sequence

p
... ΈΓ3'2 -> '£f° - >£Γ(tf, F/C) -> '£Γ2'2 - -

with P the edge homomorphism. By Lemma 1. 1 we have an isomor-
phism of (K r+1)* with Έϊ 0 and consequently Έr

2'°^Hr(K/C). By Lemma
1.2, Hr(K,F/Q^Hr(F/C) and then an appeal to Proposition 1.6 yields
the desired result.

Corollary 3. 3. // K is normal separable (possibly infinite dimen-
sional} with Galois group ©, there is an exact sequence

... Hr~\®, H2(K®F/K}} -> H"(K/Q ^ Hr(F/C)

-* Hr-2(®, H\K®FJK}} -> -

Proof. This follows immediately from Theorems 2. 2 and 3. 2.

Corollary 3. 4. Let C be an algebraic closure of the field C and let

Cs be the separable algebraic closure of C in C. Then λ: Hr(Cs/C)-+

Hr(C/C) is an isomorphism for r=Q, 1,2, ••-.

Proof. Let Ct be the maximal purely inseparable extension field of

C in C, i.e. Ci = Cp~°° in the notation of [4]. It is then well known that

C^C5®C, , although this doesn't seem to have been noted in the literature
explicitly. However, by [4, Proposition 1, p. 127 and Theorem 2, p. 119]
it follows that Ct and Cs are linearly disjoint over C so that C/®C5 is

isomorphic to a subfield C of C. Furthermore, if Λf is any finite normal

subextension of C, Λft its maximal purely inseparable subfield, and Λ^5

its maximal separable subfield it follows by [15, Corollary 3, p. 74] and
[1, Theorem 2.31, p. 34 and Lemma 7, p. 102] that N=NsNf. Thus
C=C.

Hence Corollary 3.3 with K=CS, F=C is applicable. Now since

it is clear that there is an isomorphism of C into CS®C which

5) As we noted earlier the present H° and that of [13] are different which explains why
in [13], ^(Ly&F /Ly^O, but not here.
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sends Cs identically onto C5®1. There also is of course a C5®l-algebra

homomorphism of CS®C to C given by the usual contraction. Hence,

#2(C5®C/Q-#2(C/CS) [2, Theorem 2.8]. Finally it follows by [12,

Corollary 3.17] that H2(C/CS) is the Brauer group of central simple

Cs-algebras. Since Cs is separably algebraicly closed and a central

simple algebra always has a separable splitting field, it follows that this

Brauer group, and hence H2(CJCS\ is 0. Corollary 3.3 completes the

proof.

REMARKS. In a letter to the authors the Corollary has also been

proved by S. Shatz using the results of [13] on inseparable fields and

a spectral sequence from [3]. The fact that Hr(C/Cs) = 0 for r>0 is a

very special case of Theorem 4. 9 p. 93 of [3].
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