Hirasawa, M. and Murasugi, K.
Osaka J. Math.
44 (2007), 11-70

FIBRED DOUBLE TORUS KNOTS WHICH ARE BAND-SUMS
OF TORUS KNOTS

Mikaml HIRASAWA and Kunio MURASUGI

(Received May 2, 2005, revised February 23, 2006)

Abstract

A double torus kno is a knot embedded in a Heegaard surfatef genus 2,
and K is non-separating ifH \ K is connected. In this paper, we determine the
genus of a non-separating double torus knot that is a bandexted sum of two
torus knots. We build a bridge between an algebraic condiiad a geometric
requirement (Theorem 5.5), and prove that such a knot isdfilifréand only if)
its Alexander polynomial is monic, i.e. the leading coeéfiti is +1. We actually
construct fibre surfaces, using T. Kobayashi's geometraratterization of a fibred
knot in our family. Separating double torus knots are alsecuised in the last
section.

1. Introduction

A knot (or link) K in S* is called adouble torus knofor link) if K can be em-
bedded in the Heegaard surfateof genus 2 (i.e., a standardly embedded closed sur-
face of genus 2). In [6] and [7], such knots are extensivelidisd. Double torus
knots form a large family of knots that contains torus kn@daridge knots, knots with
(1, 1)-decomposition (i.e., genus one bridge one knots) tandel number one knots.
However, the class of double torus knots is not excessialyel with some 3-bridge
knots outside the category. (Also, double torus knots hawadl number at most 2.)

Other interesting examples of double torus knots are Berd@ubly primitive knots
[1], and Dean’s twisted torus knots [3] [11]. The class of s knots is conjectured
(cf. [5]) to cover all knots which yield lens spaces via Dehungery. They are known
to be fibred knots [14], [7]. Some twisted torus knots yielda#inseifert fibred spaces
via Dehn surgery, and so far, all examples which yield tho#h finite fundamental
groups are known to be fibred.

In general, it is not easy to decide whether or not a given kaat fibred knot,
and to study fibred knots, both algebraic and geometric ndstiiave been used.

In this paper, we study double torus knots of type (1, 1), (o, (1, 1)-double
torus knots). These should not be confused vgihbl knots. For a detailed descrip-
tion of such knots, se&2 or [7]. We characterize completely fibred (1, 1)-doubleusor
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knots, and establish a method to determine whether or noten dil, 1)-double torus
knot is fibred. We also determine the genera of (1, 1)-doutnest knots.

If K is embedded in a double toris so thatH \ K is connected (resp. discon-
nected), therK is callednon-separatingresp.separating. Note that a non-separating
K may be embedded il in a different way so thaK is also called separating, and
vice versa.

Double torus knots of type (1, 1) are, in general, satellitetk, and their pattern
knots are also of type (1, 1) which are, if non-separatinghon knots and hence slice
knots [7].

Our main theorem proved in this paper is as follows;

Theorem A. A non-separating double torus knoty Kf type(1,1)is fibred if and
only if its Alexander polynomialk,(t) is monig i.e,, the leading coefficient oA, (t)
is £1.

In Section 14, we deal with separating (1,1)-double torustknThey are of genus
at most one, and we determine which of them are fibred (i.¢ercéne when they are
the unknot, the trefoil knot or the figure-eight knot).

The Alexander polynomial rarely determines the fibrednels&nots, except for
limited situations like alternating knots. Although ourettem does not hold in gen-
eral for all double torus knots, there are other classes abléotorus knots for which
a similar theorem holds. As one of such classes, satellitgskaf tunnel number one
are discussed in [8].

Recall that if a knotK is fibred, thenA (t) is monic [2, Proposition 8.16]. The-
orem A is proved as follows: First we note that (1, 1)-douldeu$ knotKg is, in gen-
eral, a satellite knot of a satellite knot, where the compasiare torus knots and the
final pattern knot, denoted b = K(n, p|«, B), is also a non-separating (1, 1)-double
torus knot (Proposition 2.2).

Then we prove:

Theorem A'. The knot Kn, p|«, B) is fibred if and only if its Alexander poly-
nomial is monic

This is the first and crucial step toward the proof of TheorerhIA fact, the most
of this paper is devoted to the study Kf(n, p|«,8). To prove Theorem A we define
the graphH and the notion of the graph beiragmissible

We establish a quick algorithm that calculatag (t) using this graphH (K) for
K = K(n, pl«a,B). This algorithm also works for all 2-bridge knots (Corojla4.9),

1For the fibredness, Theorem A does not immediately follownfiéheorem A See [2, Corol-
lary 4.15 and the following Remark].
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and we see that iH(K) is admissible, them\ (t) is monic. Then our proof of Theo-
rem A splits into two parts: one is algebraic and the other is gedmi nature. In
the algebraic part, we show:

Theorem B. If Ag(t) is monig then H(K) is admissible

In the geometric part, we define (in Section 12) the notion awfnfissibl¢ word
W(K) of K, and show thatW(K) is admissible if and only ifH(K) is admissible
(Proposition 12.9). WheiV(K) is admissible, we actually construct a fibre surface for
them. Using T. Kobayashi’s theory gire-fibre surfaceqsee [10], or Section 12 for
definitions) we show the following theorem which completes proof of Theorem A

Theorem C. If W(K) is admissiblethen K is fibred

Using the fibre surface foK (n, p|«, 8), we construct a fibre surface for the satel-
lite knot Ko, and complete the proof of Theorem A.

Then, we construct a minimal genus Seifert surface for ¢tidlble torus knots,
and prove the following:

Theorem D. Let Ky be a non-separating double torus knot of tyfie 1). Then
the genus of Kis exactly half of the degree of the Alexander polynomial gf K

If K is separating, neither Theorem A nor Theorem D holds. In, fémt genus
of a separating double torus knot is at most one. Howeverhénlast section, we
determine the genus of such knots and characterize fibrets.kno

This paper is organized as follows: Section 2 begins with iaf lmescription of
double torus knots, particularly, those of type (1,1). Ircts 3, we prove some basic
properties of non-separating double torus knots of typd)1Jn Section 4, we define
the graphH (K) of K = K(n, p|«, ), and the notion oH(K) being admissible. Then
we provide an easy algorithm to calculate, usidgK), the Alexander polynomial of
K, and also that of any 2-bridge knot. The following five sew$i;5-9, are devoted to
a proof of Theorem 5.5, called the Non-Cancellation Thegnetrich is one of the key
theorems in our paper. Theorem B, proved in Section 10, isasy eonsequence of
Theorem 5.5. In Section 11, we classiy(n, p|«, B8) into six classes according to the
monicity of their Alexander polynomiala (t) (i.e., Ax(0) =+£1). In Section 12, we
review basic tools to prove fibredness (Stallings twistsl ERbanding of pre-fibre sur-
faces), and define the woM/(K). In Section 13, we first construct fibre surfaces for
the pattern knot¥K (n, p|«, 8) whose wordW(K) is admissible (Subsection 13.1), thus
proving Theorem C. In 13.2, we construct fibre surfaces fbmah-separating (1, 1)-
double torus knots and prove Theorem A. We then constructnmingenus Seifert
surfaces for (1, 1)-double torus knots whose word is not seardy admissible (Sub-
section 13.3), thus proving Theorem D. In Section 14, westeaparating (1,1)-double
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Fig. 2.1. K ={(3,3,3;3,3,34)(1,0, 1, 1)(0~1, 1, 1).

torus knots. Using theorems proved in [6], we determine tvisieparating (1,1)-double
torus knots are fibred knots (i.e., the unknot q@rdd 4).

2. Preliminaries

In this section we state some properties of (1, 1)-doublaest&nots. For the self-
containedness, we begin with a few necessary definitionsweMer, for details, we
refer to [6] and [7].

Throughout this paper, we consider almost exclusively &noot links, unless spec-
ified otherwise. Also, we do not consider orientations of tkno

Let K be a knot embedded in a standard double tdarlus As in Fig. 2.1, we
regard H as being obtained by glueing two once-punctured Tri(on the left side)
and Tgr (on the right side) along the circl®. Then,K is cut by O into parallel classes
of arcs properly embedded i, and Tr. If K misses one of the toriK is a torus
knot. Therefore, we assum@ cuts K non-trivially.

On each torusK \ O consists of at most three parallel classes. Then as in Fig. 2.
we denote byrfi, ny, N3, N}, N5, n5) the numbers of constituent arcs. Of course we have
the equalityn; + n, + n3 = nj +n, + n; := n. Denote by ,s), (u, v) the slopes of
the first and second parallel classes of arcsTin and the slope of the third is au-
tomatically r + u,—s + v). Also denote by r(,s), (U, v") the slopes of the two
of the parallel classes ifg. The convention of ordering the arcs and that of the
slope should be inferred from Fig. 2.1. Finally, in gluingethrcs along?, we have
a choice, which is denoted byn < p < n. Then by arranging the above numbers as
in K ={(ny, n2, n3; n}, N5, ng | p)(r,s,u, v)(r’, s, u’, v)} we can express a double torus
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knot K. When K has only one parallel class of arcs on bdth and Tg, K can be
denoted by

(2.1) K={(n,0,0;n0,0]| p)r,s,—, =)', s, —, )},

and we say thaK is of type(1,1), or simply a (1,1)-double torus knot. As other types,
we have (1, 2)-, (1, 3)-, (2,2)-, (2,3)- and (3, 3)-types. Vdlg thatK is separatingif
H \ K is disconnected, and otherwisk, is non-separating

If n=1, K is a connected sum of two torus knots and heKcés fibred. There-
fore, we assume hereafter that- 1.

The following is the starting points of the study of (1, 1)utdde torus knots.

Proposition 2.1 ([7, Proposition 4.5]). Let K be a(1,1)double torus knot Then
(1) gedf, p) =1, and
(2) K is non-separating if and only if n is odd

For K ={(n,0,0;n,0,0]| p)r,s,—, —)(r’',s,—, )}, ifany of r,s,r’, s equals O,
then K is a torus knot (or a trivial knot). Since all torus knots aterdd, we assume
rsr's’ # 0.

Since our knots are, in general, satellite knots, we firsterewhen our knots are
satellite knots and what the pattern knots are.

Proposition 2.2 ([7, Theorem 4.4]). LetK={(n,0,0;n,0,0 p)(r,s,—,—)(r",s,—,—)},
n > 2 be a(1, 1}double torus knotIf |r]|,|s|, |r’|,|s'| > 2, then K is a satellite knot
To be more precise
Q) If Ir] = 2 and |s|] > 2, then K is a satellite knot with companion a torus knot
T(r,s), and its pattern knot Kis a (1, 1ydouble torus knot of the form

K’ ={(n,0,0;n,0,0| p)(a,rs, —, =)', s, —, -)}

(2) If further |r’| > 2 and |s'| > 2, then K is a satellite knot with companion a torus
knot T(r’, —s'), and its pattern knot K is a (1, 1}double torus knot of the form

K”={(n,0,0;n,0,0| p)1,rs,—, —)(1,r's, —, —)].

REMARK 2.3. By Proposition 2.4 below, it is justified to assume thme pattern
knot of a (1,1)-double torus knot is of the following form, @re« and 8 are non-zero
integers.

K ={(n,0,0:n,0,0| p)(L, 0, =, =)(L, B, = =)},

For simplicity, the knot of the above form will be denoted Byn, p|«, B). (If
a=0or B =0, thenK is a trivial knot.)
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Fig. 2.2.
Proposition 2.4. If |r|] = 1 or |s| = 1, then K is ambient isotopic to K=

{(n,0,0;n,0,0| p(,rs,—,=)r',s,—, =)} If [r'|=21or |5 =1, then K is ambient
isotopic to K’ ={(n, 0, 0;n, 0, 0| p)(r,s, —, =)(,r's, —, —)}.

Proof. General cases are understood by a typical deformatid-ig. 2.2. ]

3. Non-separating (1, 1)-double torus knots

We assume, from this section through Section 13, that out){dpuble knots are
non-separating, and hence we assume:

(3.1) n is odd and gcd( p)=1.

(Separating knots are discussed in the last section, Setg

In this section, we prove some basic properties of non-s¢ipgr(1,1)-double torus
knots. As is found in [7]K = {(n,0,0;n,0,0]| p)(r,s,—,—)(’,s',—,—)} is obtained by
a band-connected sum of a split union of two torus knots oétfps) and ¢’, —<').
See Fig. 3.1 for a special case. If anyrgfs,r’, s’ equals 0, therK is a torus knot.
Since all torus knots are fibred, we assurse’s’ # 0.

Now the pattern knoK (n, p|«, 8) is obtained from the split union of two unknots
by banding. See in Figs. 3.1 and 3.2 for exam{€5b, 2| 2, 2) andK(7,4]2,2) in a
schematic form, where the band is depicted by an arc. Morgaecan prove that the
full-twists of the arcs can be removed without affecting fibeedness, while preserving
the Alexander polynomials. (See Proposition 3.5 §id.)

By rotating, twisting Tr, taking mirror images, and isotopies, we have the
following:

Proposition 3.1. We have the following equivalenceghere —K means the mir-
ror image of K K(n,p|a,8) = K(n,—pla,B) = K(n,n—pla,B) = K(n,p|-B,—a) =
_K(n! p | IB!a)'

Proof. We can defornK(n, p|«, 8) into K(n,n+ p|«, B) by twisting Tr (right
half of the double torus) byr. In particular, we have the second equivalence. Other



FIBRED DOUBLE TORUS KNOTS 17
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5,

A double torus knot K(n,p|a, 3) is a band-sum of two unknots.

Fig. 3.2. K(7,4] 2, 2).

equivalences are demonstrated by Fig. 3.3, where ‘rotatt@ans ax-rotation along
the axis vertical to the paper, and ‘mirror' means the siemgbus crossing changes.
Note that &, 8) becomes {8, —«) by a rotation, because of the difference of the con-
vention of positive twists inf. and Tg. Refer to Figs. 2.1 and 3.1. O

As a consequence of Remark 2.3 and Proposition 3.1, we have:

Corollary 3.2. Let K be a non-trivial non-separating(1, 1)-double torus knot
K(n, pla, B). Then n> 3, n is odd gcdf, p) =1 and o # 0. Furthermore without
loss of generalitywe may assume that:a p > 0 and« > |B] > 0.

REMARK 3.3. In drawing figures and just calculating the Alexanddypomials,
it is sometimes convenient to assume tlpats even.

The Alexander polynomial of (1, 1)-double torus knots hasrbebtained in the
following proposition. (In Section 4, we see that the polynal f(t) below is shown
to coincide withh(t) defined in Definition 4.4.) We denote bg(n, p) the 2-bridge
knot of type €, p) using Schubert’s notation.
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K(n,pla, 9) K(n,—plB, a)

[ isotopy isotopy I

K(n, —ple, 5) K(n,p| — a,—f)

Fig. 3.3. Deformation oK (5, 2| «, B).

Proposition 3.4 ([7, Theorem 4.7]). LetK={(n,0,0;n,0,0 p)(r,s,—,—)(r’,s,—,—)}.
Then K is a band sum of a split union of two torus knots,¥) and T(r’, —<), and
the Alexander polynomial of K is of the form

Ak () = Ate 9O AT —sy() T F (™)

for some {t). Moreoveyif rs =r's' = «, then f(t) = Agp,p)(t).

This is the first place where we can see an algebraic rel&iijprizetween the 2-
bridge knotB(n, p) and the knot{(n, 0, O;n, 0, 0| p)(r,s, —, —)(r’, s, —, —)}. Inspired
by this, T. Nakamura has given a geometric interpretatiortheke relationships for
K(n, pll,1) [12].

Proposition 3.5 ([12, Proposition 3.3]). The double torus knot Kk K(n, p|1,1)
can be deformed bytwistings of bandsinto the connected sum of (i p) and its
mirror image —B(n, p). Moreover the twistings preserve the Alexander polynamial

Fig. 3.4 illustrates the former half of Proposition 3.5. &ldhat by constructing
Seifert surfaces in Section 13, we can see that the twistinpaods are realized by
Stallings twists on minimal genus Seifert surfaces. Howewegeneral, the Seifert sur-
face obtained by smoothing the ribbon singularities of ihban disk is not of minimal
genus.
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connected sum

Fig. 3.4. The connected sum &f(5,4) and—B(5,4). PutB(5,4)

on this side of the sheet andB(5, 4) on the other side. Mak-
ing the connected sum is equivalent to cutting ‘the band’sat (
and we obtain a ribbon knot consisting of two unknots coregect
by a band along ‘the half’ of Schubert’s diagram. Compare to
Fig. 3.1 regardingr = g = 1.

4. The Alexander polynomial of K(n, p|«, B) and the sequence of signs

For a (1,1)-double torus knd€ (n, p|«,B), we define the key notions of this paper,
namely, the sequence of signs far, p), the graphH(K), and the polynomiah(t) =
hn,pia,p)(t). We assumen is odd.

4.1. Sequence of signs.Given a pair of co-prime integers,(p) with n > p >
0, consider a sequencé®= {p, 2p, ..., (n — 1)p}. Choose the representatikp, (1 <
k < n—1) mod2 so that—n < kp < n, and define a new sequence of integers
S={p.2p,...,(n—1)p}. Let g be the sign okp, i.e., & =kp/|kp|. The sequence
of signs for the pair(n, p) is defined to beS = {e1, &2, ...,en_1}. In the following,
when we refer to the pair of integers,(p), we always assume gad(p) = 1 and
n > p > 0, unless otherwise specified. The following is an importiaat which
relatesK (n, p | «, ) and the 2-bridge knoB(n, p).

Fact 4.1. The sequenc§, (or more generallythe sequence)Sor the pair (n, p)
recovers the Schubert normal form of the diagram for Zeridge knot Bn, p).

Now we prove two simple propositions d

Proposition 4.2. (1) If p is eventhen S is skew-symmetrice., ex = —en_k.
(2) If pis odd then S is symmetrid.e., ek = en—x.

Proof. (1) Suppose is even, i.e.,p=2r. (i) If e =1, thenkp > 0, and hence,
for somem, kp = 2mn+q, where O< g < n. Then, 6—k)p =2rn—(2mn+q) = 2n(r —
m) —q. Since O< q < n, we have(h — K)p < 0 and hence, ¢ = —1. (i) If gx = -1,
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thenkp = 2mn— g, where O< q < n. Thus 6 —Kk)p = 2n(r — m) + g, and hence
en—k = 1. (2) Supposep is odd, i.e.,p=2r +1. (i) If ex = 1, thenkp=2mn+q, for
somem, where O< q < n. Thus, o—k)p =n(2r +1)—(2mn+q) = 2n(r —m)+(n—q).
Since 0< n—q < n, we havee,_x = 1. (i) If ex = =1, thenkp = 2mn— q, where
O0<q<n. Thus oi—Kp=2nr —m)y+(n+qg)=2n(r —m+1)—(n—q), and hence
En—k = -1 ]

We can relate the sequence of signs forg) and g, n — p) as follows:

Proposition 4.3. Let S= {e1,...,en_1} be the sequence of signs for the pair
(n, p), and S={e},..., &, ,} for (n,n — p). Thengc = (—1)*1g;.

Proof. We may assume, without loss of generality, thas odd. (1) Suppos&
is even, i.,e.k =2a. (i) If & =1, thenkp=2mn+q, for somem, where 0< q < n.
Thereforek(n — p) = 2an — (2mn+q) = 2n(a — m) — g, and hences; = —1. (ii) If
ek = —1, thenkp = 2mn—q, where O< q < n. Thereforek(n— p) = 2n(a—m)+q, and
henceg, = 1. (2) Suppos& is odd, i.e..k =2a+1. (i) If & =1, thenkp=2mn+q,
where 0< q < n. Thereforek(n — p) = (2a+ 1)n — (2mn+q) = 2n(a — m) + (n — Q).

Since 0< n—q < n, we haveg, = 1. (ii) If &x = —1, thenkp = 2mn — g, where
0 < g < n. Thus similarly,k(n— p) =2na—m)+n+q=2n(a—m+1)— (n—q),
and henceg, = —1. O

4.2. Graph H(K) and polynomial h(t) of K. In this subsection, we introduce
two basic tools.

DEFINITION 4.4. LetS={e1, &2, ...,6n_1} be the sequence of signs fam, (),
wheren is odd, p is even andh > p > 0. _
Let Q ={qi} = {0,—Be1,ae2, —Be3,...,—Béen_2,0en 1}, and R = {r;} = {Z'k:lqk}.

Define the polynomial by:

h(t) = h(n,p \ Ot,ﬂ)(t) = Z(—l)itri.

i=1

DEFINITION 4.5. The graphH(K) of K(n, p|«, 8), wherep is even, is defined
as follows: H(K) consists ofn vertices with coordinates (6), (1,r2), (2,r3),...,(n—
1,ry) in the xy-plane and edges connecting adjacent vertices, wirgyas defined in
Definition 4.4. The vertices oA (K) are bi-colored, black and white alternately, so that
the first and the last (tha-th) are black. We say that the graph(K) is admissible
if H(K) has exactly one highest vertex and one lowest vertex.

Note that we can read offl (K) from the half of Schubert’s diagram d@(n, p),
as in Fig. 4.1, by following one underpath from the left eradAp and recording from
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degree of ¢
2

) 5=
@ B e a———

Fig. 4.1.

#@ — #0
1

which direction (above or below) one goes under the overpétheach step, they-
coordinate of the vertices changes pyor « alternately.

REMARK 4.6. We can read offi(t) from H(K):
(the coefficient fort!) = #(black vertices on the ling = j)
— #(white vertices on the same line),

where # indicates the number of elements.

See Fig. 4.1 for example whete(n, p| «, ) = K(11, 8] 2, 1).
S={8,-6,2,10,—4,4,-10,-2,6,-8},
s={1,-1,1,1,-1,1,-1,-1,1,-1},
Q={0,-1,-2,-1,2,1,2,1-2,-1,-2},
rR={0,-1,-3,-4,—2,-1,1,2,0,—-1,-3}.
hit)= -t *+2t 3+t 2 -3t 1+2+t —t2

EXAMPLE 4.7. See Figs. 4.2, 4.3 for the cases off) = (7,2) and (7, 4) for
various ¢, f8).

Now we state some applications bt). Usingh(t), we can calculate the Alexan-
der polynomial ofK(n, p|«, B).

Theorem 4.8. Suppose that = 3, n > p > 0, and that p is even Then for
K=K(n, p|a, B), we haveAg (t) = h(t)h(t™1).

A proof will be given in Section 10.

By Theorem 4.8 and Proposition 3.5, we can calculate the aklégr polynomial
of B(n, p) as follows:

Corollary 4.9. For a 2-bridge knot K= B(n, p) with p evenwe haveAg(t) =
hg(t), where K =K(n, p|1,1).



22 M. HIRASAWA AND K. MURASUGI

(n,p) = (7,2)
(a,8) = (1,1) (a,8) = (2,1)
h(t) =2t — 3t +2 h(t)=t' =22+t +1
H(K) : non-admissible admissible
K : non-fibred fibred
Fig. 4.2.
(n,p) = (7,4)

(a,8) = (1,1) (a,8) = (2,1)

-4 -4
\VJ) h(t) = 2% =3t +2 h(;)igt3,2t2,t+2

H(K) : non-admissible non-admissible
K : non-fibred non-fibred
Fig. 4.3.

REMARK 4.10. If (@,B) = (1, 1), cancellations of the terms imt) never oc-
cur, because the vertices of the gragiiK) with the samey-coordinate have the same
color. However in general, as seen (7, 2| 2, 1), some terms oh(t) may cancel
each other. Moreover cancellations among terms of local maxi may happen: try
for example,K(11,2]2,1). Cancellations among terms of the highest degree nelg vyi
a ‘non-fibred knot with a monic Alexander polynomial.” Hovesy Theorem B asserts
it never happens.

REMARK 4.11. As 2-bridge knotsB(7,2) = B(7,4), and hence they have the
same Alexander polynomial. However, as seen in the aboven@ra the ways terms
appear are different. This difference causes the folloviimigresting fact. The 2-bridge
knot B(7, 2) =B(7, 4) is non-fibred, and hend¢(7,2|1,1) andK(7,4| 1, 1) are non-
fibred. HoweverK(7,2|2,1) is fibred, whileK(7,4|2,1) is non-fibred. See Section 11
for a further discussion.

Finally, we can use the diagrammatic calculationsAgf(t) to have a straight for-
ward explanation to the facts found in [7]. For example, ttel half of Theorem 3.4
is understood as follows: FdK = K(n, p|«, B) with p even, the graptH(K) is ob-
tained by expanding each edge of the graphKdr= K(n, p|1,1) « times. Therefore
hk (t) = hg/(t*). Meanwhile, by Proposition 3.5, we have (t) = Agn, p(t). There-
fore, Axn,pi1,1)(t) is monic if and only if Agp, p(t) is monic.
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We give one more application. The following was pointed ouf4, p.636]. We
understand this by seeing that the Alexander polynomialoisnmonic.

Proposition 4.12. For any non-zerax, K(n, p|«, —«) is not a fibred knat

Proof. Assumep is even. Then thg-coordinates of the vertices, . ..,v,—; are
as follows:

{0, 1, xe1 + g0, ey +aer ez, ..., 61 taso + - - - +aen_1}.

By the skew-symmetry ofey, ..., en_1}, (Proposition 4.2), we see that the above
is equal to

{0,e1, xe1 + aep, e tagp +ags, ..., a8 + @y + g3, e + ey, aey, 0}

Since the number of vertices &f(K) is odd (=n), this means that the bi-colored
graph H(K) is symmetric with respect to a vertical line which goes tlglo the center
vertex vin—1y2. In other words, each vertex other thap_1)» has its counterpart of
the same color at the sanyecoordinate. Therefordjk (t) is not monic, and hence by
Theorem 4.8, neither i\ (t). ]

REMARK 4.13. After our first manuscript was completed, Y. Marumotidl tos
that T. Yasuda had introduced a graph similat¢K) in [15]. In fact, Yasuda studied
in [15] ribbon n-knots with m-fusions in S™?,n > 2, and he calculated the Alexander
polynomial Agn(t) using his graph. Our graphi (K) coincides with his graph when
m =1, and therefore, it is shown th&gn p1.1)(t) = Akz(t) for some ribbon 2-knoK?
with 1-fusion.

5. Non-Cancellation theorem

In this section, we state Theorem 5.5, which is the key thmote prove Theo-
rem B. A proof of Theorem 5.5 will be given in Sections 5 thrbug Given a pair
of co-prime integersn, p) with n > p > 0, consider a sequence of signs defined in
Section 4: S = {e1,¢2,...,6n-1}. We associate witlS a graphG(n, p) on the xy-
plane, called thegraph of a pair (n, p). The graphG(n, p) consists ofn vertices
Po, P1, ..., Pr_1, and f— 1) edges connectingx and P71, 0 < k < n— 2, where P
has the following coordinates:

P():(0,0), Pk:(k181+82+"'+8k), 1Skfn—1
REMARK 5.1. The graphs(n, p) is related to the grapi (K(n, p|«,8)) defined
in Section 4 as follows:

_[H(K(n,n—=p]|—1,-1)), if pis odd,
cn.p)= {H(K(n, pl1,-1)), if pis even.
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DEFINITION 5.2. Leta and g be positive integers witke > g > 0. Then for a
vertex P of the graphG(n, p), the level of Py, lev(P), is defined as its/-coordinate,
i.e., levP) = e+ ex+--- + g, and theindex of Py, ind(P), is defined as ind¥) =

e1+e3+- - +ep, wherek is the maximal odd integer not exceedikg

To each vertexP, we associate the terfk, whered, = ind(P)a + [lev(Py) —
ind(P)]B. Therefore,dp =0 and, ifk is even,dx = (e + ez +- - -+ e 1)a + (e2 + 4+
cot+g)B, and ifk is odd,dg = (e1 + e+ -+ )at+ (soteqt+ -+ ekl1)B.

Using these terms, we define the polynomgl p. s (t) by

n-1
(5.1) ¢(n,p|a,ﬂ)(t) = Z(_l)ktdk-

k=0

In other words, each vertex @(n, p) corresponds to a term i, pja,p)(t). Since
the degreedy corresponds to verte®y, it is called thedegreeof Pc. The degree is
determined by ind?) and levPs). An edge of G(n, p) connectingPx and Py is
called anodd edge (resp. arvenedge) ifk + 1 is odd (resp. even). Therefore, the
first edge is an odd edge.

We will show later that the polynomiahp o6 (t) determines the Alexander poly-
nomial of K(n, p|«, B) (Proposition 10.4). Also, we will show a relationship betmn
O, plep)(t) and hp pie.p)(t) (Proposition 10.2).

ExampLE 5.3 (see Fig. 5.1). Fom(p) = (7, 3), we have:

(3,6, 9, 12,15,1B Py P, P, P53 Py Ps Ps
{3,6,—5,—2, 1, 4, level 01 2101 2
1,1,-1,-1, 1, 1

n nl m
I

index 0 110011

and
D7 3a,p) () =22t — th + opeth

ExampPLE 5.4 (see Fig. 5.1). Fom(p) = (7, 5), we have:

{5, 10, 15, 20, 25,30 Po P1 P> P3 Py Ps Ps
{5,-4, 1, 6,-3, 2, level 0 1 01 2 1 2
{1,-1, 1, 1,-1, 1} index 0 1 1 2 2 1 1

n wnlwm
1

and

A7 5 p)(t) =1 — 2% + te=B _ t2a—B 4 2 4 jatp

- _t2a—2ﬂ +t2a—ﬂ +tot—2ﬂ _Zta—ﬂ +t“ +t_ﬂ.
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Fig. 5.1.

Throughout the rest of this paper, the gra@ln, p) may be denoted by, if no
confusion occurs. One of the key theorems to prove Theorem &s ifollows:

Theorem 5.5 (Non-cancellation Theorem).Let G(n, p) be the graph of(n, p).
Assumex > B > 0. Let B, Pj,,..., P, be the vertices of G with the highest level
Then for any vertex P(0 < k < n—1), maxind(P;,), ind(P;,), . . .,ind(P;)} > ind(Py).
Similarly, let Py,, Pm,, ..., Pm, be the vertices of G with the lowest leveThen for
any vertex R (0 <k <n—1), min{ind(Py,), iNd(Py,), . . ., ind(Pm,)} < ind(P).

A proof of Theorem 5.5 will be given in Sections 5 through 9. eQof the imme-
diate consequence of Theorem 5.5 is the following:

Corollary 5.6. The terms of the highest degreedg ) (t) correspond to ver-
tices of the maximal index in the highest levBimilarly, the terms of the lowest degree
IN ¢m,ple.p)(t) correspond to vertices of the minimal index in the lowesellev

Proof of Corollary 5.6. Let ind®;)=r; and levP;)=m. Let rc=maxry,
ro,...,Nn}. Thendj, =rex+(m—r¢)B, andd; =ria +(m—r;)B. Sincea > g > 0,
andr¢ > ri, we seedj, —dj = (rc —ri)a+(ri —rc)B = (fc —ri)(e — B) > 0 and that
the equality holds if and only if; = ri. Now let P; be a vertex of a non-highest
level, and indPs) = s and levf) = g. Then sinceq < m ands < r., we see
di, —tk =rca+(M—r)f—(se+(@—95)B) = (c—Sa+(M—0gq—rc+s)p =
(re —s)(@ — B)+(m—q)B > 0. Hence the degree of a vertex of a non-highest level
is strictly less thard;,.. The statement for the terms with the lowest degree is proved
analogously. ]

REMARK 5.7. Theorem 5.5 and Corollary 5.6 show that the terms wighhiigh-
est (resp. lowest) degree i pja,p)(t) correspond to some vertices of the highest
(resp. lowest) level. Since two vertices of the same levekehhe same parity on their
indices, the terms corresponding to the pair never canadl ether. This is a reason
Theorem 5.5 is called the Non-cancellation theorem.

From Remark 5.7, we see immediately the following corollary
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Corollary 5.8. Foranya > g >0 and n> p > 0, ¢n pjap(t) is monic if and
only if there exist exactly one vertexy Bnd one vertex @in G(n, p) such that both
lev(Py) and ind(Po) (resp lev(Qp) and ind(Qp)) are maximum(resp minimun).

6. Proof of Theorem 5.5 (I): The sequence of signs

The following several sections will be devoted to the probfTheorem 5.5.

However, we concentrate on the proof of the first statementhaforem 5.5. The
proof of the second statement will be done simultaneousig we omit it to avoid
unnecessary complications. But to help readers, we progitugh information for
the proof of the second statement.

As the first step, we study the sequenSeof signs of a pair 1f, p), and prove
several basic properties f@. First we introduce new notations.

Let S be an arbitrary sequence of signs, i.e., of +1-dkr. In S, the consecutive
sequence of +1 (or—1) k times is denoted by(k) (or (—k)). For example,
{1,1,1,-1,-1} = {{3)(—2)}. Using this notationS can be written as

S= {(ar)(—b1) (@) (=) - - - (@—1) (—b—1) (@) (—bn)}

whereag, a,...,a > 0 andby, by, ..., b > 0, buta; or —b, may be missing. By
abuse of notations, we also ca#;) or (—b;) terms of S

Proposition 6.1. Let n be an odd integen > p > 0 and gcdf, p) = 1. Write
n=mp+r, where m>1and0 <r < p. Let S= {(a1)(—bi)(a)(—by) - -- (@) (—b)}
be the sequence of signs of the péir p), where only b may be missing Then we
have the following
(1) & and by are either m or mt+ 1,

(2) a; =m and the last term of S i&m,

(3) The number of time$tm) appears in S is p-r + 1, and the number of times

(£(m+1)) appears in S is 1. The total number of+£m) and (£(m+1)) in S is p
Thus if p is odd then a =m and b is missing while if p is evenb =m.

Proof. LetA =(ip), 1<i <n-—1ben—1 points in the open interval (8,),
and By, 1 <k < p, the first point in{A;} appeared in the intervall{ 1)n,kn). (Note
that Ay determines:;.) The x-coordinate ofBy is written asxx +(k—1)n, 0 < xx < p.
Sincen=mp+r, 0 <r < p, each interval — 1)n,kn) containsm or m+1 points in
{Ai}. This proves (1). Further, the intervak( 1)n, kn) containsm+ 1 points if and
only if 0 < x¢ < r. Therefore, the number of such intervals is exactlyl, and hence
(£(m+1)) appearg —1 times inS. Consequently{m) appearsp—r +1 times. This
proves (3). Finallya; (and the last terna or by) cannot bem+ 1, sincen = mp+r.
Hencea; = m. This proves (2). The last conclusion follows from Proposit4.2. [
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Proposition 6.2. Suppose r= mp+r, where m>1and0 <r < p. Let S be

the sequence of signs f@n, p). Then we have the following
(1) Suppose that in ,S(m) is followed by(—m), or (—m) is followed by(m), like

--{m)(—m)--- or ---(—my(my---. (We say(+m)’s occur consecutively Then(m+
1) cannot be followed by—(m+ 1)), or (—(m+ 1)) cannot be followed bym+1). We
say then(m+ 1)’s are isolated
(2) Analogously if (m+ 1) is followed by(—(m + 1)) (or (—(m + 1)) is followed by
(m+ 1)), then (xm)’s are isolated

Proof. (1) Supposém) is followed by (—m). Then M — p+(M—1L)p+p <
2n < (2m + 1)p, namely, (i) (In — 1)p < 2n < (2m+ 1)p. On the other hand, if
(m+ 1) is followed by (—(m + 1)), (or (—(m+ 1)) is followed by (m + 1)), then the
same argument shows that (i)nf2+ 1)p < 2n < (2m + 3)p. However, (i) and (ii)
cannot hold simultaneously. The proof of (2) is analogous] & omitted. ]

Proposition 6.3. Let n=mp+r, where m> 1 and0 < r < p. Somewhere in
S, suppose(xm)’s occur consecutively k timgsnaximally. Then at any other places
(m)’s occur at least(k — 1) times consecutivelyThe same is true whefitm) and
(£(m+ 1)) are interchanged

Proof. Supposen points in{A;} appear in each open intervah(( +1)n),...,(( +
k—1)n, (| +k)n). Then we have

(6.1) (mk—1)p < kn < (mk+ 1)p.

Suppose there are exactty— 2 (+m)’s between a pair of£(m + 1))’s.

Consider consecutivie intervals consisting ok—2 intervals containing thesgktm)
and two intervals, before and after these—2) intervals. Then we apply on thege
intervals the same argument as above, and obta{k{2)—1)p+(mM+1)p+(m+1)p <
kn, and hencenkp+ p < kn, which contradicts (6.1). Ul

Proposition 6.4. Let n=mp+r, where m>1and0<r < p.
(1) Suppose S begins with the following form

S={(m) (=(m+I)(m+1) - (E(m+I)(Fm)---}.

k times k1

Then in $ (=(m+ 1))’s always occur at least k times consecutively
(2) Suppose S begins with the following form

S={(my(—=m) - - (EM(F(M+1))---}.

k times k-1
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Then in $ (+m)’s occur at most k times consecutively

Proof. (1) By Proposition 6.3(+(m + 1))’s occur either K + 1) times or k — 1)
times consecutively. Suppoge-(m+1))’s occur k— 1) times consecutively somewhere
in S. Then there ard&+ 1 consecutive intervals such that the first and the lastvate
containm points from{A;j}. Therefore, we have:

(6.2) [k—1)(m+1)+2m—1]p < (k+1)n < [(k — 1)(m+ 1)+ 2m+ 1]p.
On the other hand, the original assumption ®1yields the following inequality:
(6.3) [(m+Dk+m]p < (k+1)n,

since each ok consecutive intervalsn(2n), (2n, 3n),. .., (kn, (k+1)n) contains (h+ 1)
points. The second inequality of (6.2) and inequality (&) inconsistent. (2) A proof
is analogous and hence is omitted. ]

7. Proof of Theorem 5.5 (II): Reductions

In this section, we introduce two reduction operatiansand t, on the sequence
of signs S, and study their effects on the graph.

7.1. Reduction operations. Let S = {(c;)(—C)(C3) - - - (£Cq)} be the sequence
of signs of @, p). Letn=mp+r, wherem>1 and O<r < p.

CASE (A). Supposem > 2, orm =2 andr > 1. By Proposition 6.1¢; > 2 for
1 <i <q. Then we define a new sequence of sigby S = {(c])(—C5)(C5)- - (e},
wherect = ¢ — 2. If the firsts terms inS; are 0 and theg(+ 1)* term is non-
zero, then by Proposition 4.2, the lastterms of S; are also 0 and theg(— s — 1)
term is non-zero. In this case, we delete thesez&os fromS;. Further, ifcj = 0,
s+l1<j<q—-—s—1, then (ic}*_l)(oxic}‘ﬂ) is written as (i(c]*_1 + c’j*+l)). We
repeat these removals of zeros until no zeros are left. Tl fionm thus obtained is
our new sequenc&*. This reductionS — S* is the first operation and is denoted by
71. (See Examples 7.3 to 7.5 below.)

CAseE (B). Supposem =1, i.e,n=p+r,and O<r < p—1. The second
reduction is a bit complex. Note th& contains only(£1) or (+£2). Sincen=p+r,
cy = ¢q = 1. First, we remove thes&;) and (cy). Next, we replace every+2) by
(0) so that we obtain a new sequengg consisting of only(+1) and (0). On this
new sequence, we apply the process of removB) defined in the case (A) until no
zeros are left. Finally, we change every sign in the resgilsequence. The sequence
thus obtained is denoted Iy, and the reductior§ — S* is our second operatioty.

It should be noted that we do not defimgif n=2p+1, andr, if n=2p—1. If
n=2p+1, Sconsists of only(+2), and if n = 2p — 1, then allcj's are 2, except;
andcq (both of which are 1). Also, we do not define either reductidmewp = 1.
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0 rp-rpP n=p+r
np2P o 0 pnopnpn
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(11,3) — (5,3) by 7. (9,7) — (5,3) by 7.
Fig. 7.1. Reductions by; and 7.

Now we will show thatS* is the sequence of signs for some pair of co-prime
integersn*, p*, wheren* > |p*| > 0.

Proposition 7.1. Write n=mp+r, where m> 1 and p>r > 0. Let S be the
sequence of signs @h, p). Then we have the following

Case (A) m > 2. S' =14(9) is the sequence of signs @f*, p*) = (n — 2p, p).
Here if n —2p < p, then(n — 2p, p) is interpreted agn — 2p, p — 2(h — 2p)).

Case (B) m=1. S =1(9) is the sequence of signs @f*, p*) = (n—2r,p—2r).

REMARK 7.2. Even if p* < 0, the original definition in Section 4 is applied to
obtain the sequence of signs. In this caser —1.

Proof of Proposition 7.1. To prove Proposition 7.1, we useedl-known fact that
the sequencé of signs of @, p) is obtained from Schubert's normal form of a 2-bridge
knot B(n, p). We note that the-th signe; of Sis +1 if and only if the curve joining
two points(i — 1)p andip underpasses the right (resp. left) bridge from the upper par
(resp. lower part). Consider Schubert’s normal form of arilge knot B(n, p).

Case (A). We see the removal of consecutive two same gighstl} or {—1,—1}
from each block(xm) and (£(m+ 1)) in S corresponds to the delation of arcs on the
boundaries of the shaded regions in Fig. 7.1 (a). The resudhown in Fig. 7.1 (b),
where the partial overpath, i.e., the bridges, connectirgy gointsn — 2p to n have
been removed. We can naturally connect the remaining arben H*, p*) is easily
determined as follows. By the above operatian 2p points are removed from each
overpath of the old normal form, and hence=n—2p. Further, since 0 is connected
to p in the new form (and the old form, too), it follows that* = p. This proves
Proposition 7.1 for Case (A).

Case (B). Removal of2), (—2) and (cy), (+Cy) from S corresponds to elimina-
tion of the arcs on the boundary of the shaded regions in Eiy.(@). The result is
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Fig. 7.3.

Fig. 7.1 (d), where partial overpaths connecting points 0,t@andp ton (= p+r)
have also been removed. We can naturally connect the remyjaaics.

Before we determinen(, p*) for Case (B), we first note the following fact. Let
S = {e1,62,...,6n_1} be the sequence of signs fam, (p), wheree; is defined at the
beginning of the proof, when we follow the underpath startat 0. However, if we
follow the underpath starting at the end pomi= p +r) of the right bridge, then the
sequenceS = {¢},¢5,. .., _,} of signs obtained in the same way as before is equal to
—S. Because, forany=1,2,...,n—1, we sees; =n+ip/|n+ip| ands =ip/|ip|.

Now we return to the proof for Case (B). Since Roints are removed from each
bridge, we haven* =n —2r = p —r. Further, the old pointpp —r in the old normal
form now corresponds t@ — 2r in the new normal form, and hencg* = p — 2r.
Finally, from the above remark, it is evident that the newussge of signs forr(*, p*)
is exactly 7,(S). ]

ExamMPLE 7.3. (, p) =(11,3),n=11=3x 3+2, S={(3)(—4)(3)}. Therefore,
71: S = S = {(1(-2(1)}, (n*, p*) = (5,3). On the deformation of the graph, see
Proposition 7.8 in Subsection 7.2 and Fig. 7.2.

EXAMPLE 7.4. (,p) = (13,5),n = 13 = 2x 5+ 3, S = {{2)(—3)(2)(—3)(2)}.
Therefore,7;: S — S* = {{0)(—1)(0)(—1)(0)} = {{(—2)}, (n*, p*) = (3,5) — (3,—1).
See Fig. 7.2.

EXAMPLE 7.5. (,p)=(13,9),n=13 = 1x9+4, S= {(1)(—=1)(2)(—=1)(2)(—1)(2)
(=1(1)}. Therefore,rz: S — {(1)(=1)(0O)(—=1){O(=1)(0)(=1)(1)} — {(D(=4(1)} —
S = ((4)} (n*, p*) = (5,1). See Fig. 7.3.

7.2. Reduction onG(n,p). In this subsection, we study the change of the graph
G(n, p) by applications ofr; and ». This is an important step to our inductive proof
of Theorem 5.5.
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First, we introduce a few terminologies.

DEFINITION 7.6. A vertexP of G(n, p) is called apeakif P is a local maxi-
mal vertex. Two peak®, P’ are calledconsecutivef the path inG connectingP and
P’ has no peaks other thaR and P’. We call P and P’ neighboring peaks Every
peak P has two neighboring peaks unlegsis the end ofG. A set of consecutive

peaks,Py, P, . .., P of the same level is called klock (of peak$ if neither the pre-
ceding peak toP; nor the following peak fromPx is on the same level aB,. Or
equivalently, {Py, ..., P} is not a proper subset of another set of consecutive peaks
containing{P4, ..., P}. In particular, if the peak preceding t8, and the following

peak from P have strictly lower level, then the block is said to bemé&ximal type
A vertex V is calledeven(resp.odd) if lev(V) is even (resp. odd).

Analogously, we call a local minimal vertex kattom A block of bottomsand a
block of minimal typeare also easily understood.

Proposition 7.7. Let n=mp+r, where m>2and0 <r < p. Let S be a se-
qguence of signs din, p) and G(n, p) the graph of(n, p). Then the graph of1(S) = S*
is obtained as follows Let A, Ay, ..., Ay be all the peaks of (&, p). First remove
two consecutive edges before and after(iA=1, 2,. .., a), and then identify two ver-
tices G and G, the ends of the edge¢SeeFig. 7.4.) The graph thus obtained is the

graph of Qn*, p*).
Proof. Evident from the construction. O

Proposition 7.8. Under the same notation iRroposition 7.7assume that ns 1
i.e, n=p+r. Then @n* p*), the graph ofr;(S) = S, is obtained as follows
(i) Remove all two consecutiepgoing or downgoingedges so that @, p) is de-
composed into several connected componentsG3, . . ., Gg.
(i) Each connected component; & in between say level | and level I+ 1 (see
Fig. 7.5). Then each G is reflected along the central horizontal line between level
| and |+ 1, to getG;. Therefore the initial vertex ofG; and the last vertex o6;_,
are on the same levelnd hence they are identified on this levdlhus we obtain a
connected grapltG.
(iii) Remove the first and the last edges frém The graph thus obtained is @, p*).
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Fig. 7.5.

Proof. This also follows from the construction. (Recall Eyges 7.3-7.5.) [

8. Proof of Theorem (IV): Index

In this section, we prove a few lemmas on the index of peakshattbms.

To each proposition about peaks, we can also prove, in aasif@khion, the cor-
responding proposition about bottoms. Therefore, we otdjesthe propositions about
bottoms without proof.

We begin with the following easy lemma without proof.

Lemma 8.1. Let V be a non-peak vertex of(g p), and let P be the peak before
or after V. Then we have

lev(V) < lev(P) and ind(V) < ind(P).

Lemma 8.2. If B is a vertex not a bottom of G(n, p) and if Q is a bottom
before or after B thenlev(B) > lev(Q) and ind(B) > ind(Q).

Let S be the sequence of signs aof, p): S= {(a;)(—b1)--- (a)(—h)}. We note
that a peakP of G(n, p) is a turning point from an up-going path corresponding &y, s
(&) to down-going path corresponding te-bj). To illustrate this, we writeG(n, p) as

G = (a1) Pi(—by) (@) Po(—hp) - - - (&) R (—ly),
where Py, P,, ..., B are peaks.

Lemma 8.3. LetP ={PR,P+1,...,P;} be a block of peaks of @, p). Write the
part of G(n, p) involvingP as - - - B _1(—by _1)(&) P (—bi) - - - (a;) P (—=bj)(@j+1) Pj+1- - -.
Then we have the following
(1) If by is eventhenind(R) =ind(P+1) = - - - = ind(P;).
(2) Suppose jbis odd Then
(2-1) If P; (and hence all 1<k < j) is an even peakhenind(P) = ind(P,) —
(k—1i), forany k(=i,i+1,...,]j).
(2-2) If P; is an odd peakthenind(P) = ind(R) + (k — i), for any k (= i,i +
1,....,)).
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Fig. 8.1. Thick edges indicate odd edges.

Lemma 8.4. Let Q ={Q, Qi+1,. .., Qq} be a block of bottomsWrite the part
of G(n, p) involving @ as Q_1(a)(—by) Qi (&+1) - - - (—=bg) Qq(ag+1). Then we have the
following:

(1) If by is even thenind(Q) =ind(Qj+1) = - - - = INd(Qg).
(2) Suppose bis odd then we have
(2-1) If Q; (and hence all @1 <k <q) is an even bottom then

ind(Qx) =ind(Q)) +(k—1), forany k(=I,1+1,...,Qq).
(2-2) If Q; is an odd bottomthen
ind(Qy) =ind(Q)) —(k—1), forany k(=I,1+1,...,Q).

Proof of Lemma 8.3. First we note that = &+1 =--- = bj_1 =a;. Now (1) is
obvious.

(2-1) In the path joiningP, to P, there are exactlyb( + 1)/2 downward odd
edges andg+1 — 1)/2 upward odd edges, and hence iRd() = ind(P) — 1. (See
Fig. 8.1 (a).) Inductively we obtain (2-1).

(2-2) If B, is an odd peak, then the numbers of downward (resp. upward) od
edges isl§ — 1)/2 (resp. &+1 + 1)/2). and hence ind.,) = ind(P) + 1. (See
Fig. 8.1 (b).) Inductively, we obtain (2-2). Ul

Now suppose that Theorem 5.5 does not hold. Namely, thestseaivertexy or
a vertexZ of G(n, p) such that

@ii) ind(Y) = ind(Y’), for any vertexY’ of G(n, p), and in particular,
(i) ind(Y) > ind(Y’) if Y is on the highest level.

(i) lev(Z) is not minimum inG(n, p)
(8.2) {

@) lev(Y) is not maximum inG(n, p),
(8.1) {

(i) ind(Z) <ind(Z’), for any vertexZ’ of G(n, p), and in particular,
(i) ind(Z) <ind(Z) if Z' is on the lowest level.

We see from Lemma 8.1 or 8.2 that must be a peak and that must be a
bottom. LetYy be a peak satisfying (8.1), and suppose tfais on the highest level
among peaks satisfying (8.1Y( is one of the counter-examples to Theorem 5.5.)
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Similarly, let Zo be a bottom satisfying (8.2) and suppose thAgtis on the lowest
level among the bottoms satisfying (8.2).

We will prove such a pealy (or a bottomZy) does not exist. Our proof will
be done by induction on the number of peaks@fn, p). However, first we prove
Theorem 5.5 for special cases.

Lemma 8.5. Theorem 5.5olds for the following three special cases = mp+1,
n=2p—1and p=1.

Proof. For the first two cases, it follows from Propositiod §3), all peaks (and
bottoms) except the ends have the same level. Thereforeala (pesp. a bottom) sat-
isfying (8.1) (resp. (8.2)) does not exist. For the last cdgeorem 5.5 holds trivially.

[

Next, we study some propertiég (or Zg) should have.

Lemma 8.6. Let Yy be a peak and a counter-example Theorem 5.5.Let P =
{P, P+1, ..., P;} be the block of peaks containing.YThenP is of maximal type

Lemma 8.7. Let Q ={Q, Qi+1,..., Qq} be the block of bottoms containing,.Z
Then Q is of minimal type

Proof of Lemma 8.6. FirsG contains a part,
Pi—1(=bi_1)(@) R (=h) - - - (@j) Pj (—=bj)(@j+1) Pj+1,

and Yy is one of P, above. Note thab; = a1 =--- = a;. Suppose thaP is not of
maximal type. Then the following two cases can occur.
(1) lev(Pi_1) > lev(R).
(I1) lev(Pj) < lev(Pj+1).
Since a proof is analogous, we only show that case (ll) leads ¢ontradiction.
CAse (A). Supposes; is even. By Lemma 8.3, we see that ifg(= ind(P+1) =
---=ind(P;) and hence, we may assun¥g= Pj. Now since levP;) < lev(P;+1), the
following two cases can occur.
(A-1) a; = bj and aj+1=4aj + 1.
(A-2) bj =a; — 1 and dj+1 = Qj.
In either case, ind¥j+1) > ind(P;) = ind(Yo). This contradicts the choice ofo.
(Yo should be a counter-example to Theorem 5.5 with the maximal.)
CAsEe (B). Supposes; is odd.
(1) If P;j is an odd peak, thely = Pj, since ind@) < ind(P+1) < - - - < ind(P;).
Then there are two cases to be considered.
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(1-a) b; =a; andaj+1 =a; + 1.
(1-b) bj =aj — 1 andaj+1 =a;.
For (1-a), ind@j+1) > ind(P;), and for (1-b), indP;+1) = ind(P;). (See Fig. 8.2.)
Therefore, in either case, it contradicts the choicergf
Finally, we consider the case (2P; is an even peak. In this casg = R, since
ind(R,) > ind(R+1) > - - - > ind(P;). This case requires a more careful observation.
Now we consider the blocR’ immediately aftefP. Write P’ = {Pj41, Pj+2,. . ., Py}
Then G has the following part:

- Po(=bi_) (@) R (=bi) - - - (a)) Pj (=bj)(@j+1) Pj+1(=bj+a) - - - (8g) Py(—bg) - - -

There are two cases (as we considered before). (See Fiy. 8.3.

(2-a) a; > bj anda; = aj+1 = bj+1:
(Z-b) a,- = bj < aj+1 and bj = bj+1.

First we consider the case (2-a): df < by, thenb;_; = b;, and hence ind¢_;) >
ind(P) = ind(Yp), a contradiction. Therefores;, = b, and then(a;)(—b;) - - - (a;) in S
represents 3(— i) + 1 consecutive(t(a))’s. By Proposition 6.3, it must be followed
by at least 2[ —i) consecutive(+(a;))’s, that is(aj+1) (—bj+1) - - - (=bg) - - -, and hence,
q—]j > j—i. Since indPj+1) = ind(P;) +1 and P;+; is an odd peak ir”’, it follows
that ind(Py) = ind(Pj+1) + (@ — j — 1) =ind(®) — (j —i) +(q — ]) = ind(R) = ind(Yo).
This contradicts the choice ofy.

Next we consider the case (2-b)=Db)(a+1) - - - (—bj) in S represents also 2(-
i) + 1 consecutive(+(a+1))’s, and it is followed by at least 2(— i) consecutive
(£(a+1))’s. They are(—bj+1)(@j+2)- - -(8q)- - - and hencegg—j—1> j—i. SincePj.+;
is an odd peak ir?’, we have indPy) = ind(Pj+1) + (0 — j — 1), and also ind®j+1) =
ind(P;). Therefore indPy) = ind(P;)) +(q—j+1) =indP)+@{ —j)+@—j—1) >
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ind(P) = ind(Yp), a contradiction. U
Using Lemmas 8.6 and 8.7, we can prove Theorem 5.5 for angfezial case.

Proposition 8.8. Suppose that botkhm) and (m + 1) are isolated Then Theo-
rem 5.5holds

Proof. Since(m) and (m + 1) are isolated, there is only one block of peaks of
maximal type, (and one block of bottoms of minimal type) arehde Theorem 5.5
holds trivially. O

9. Proof of Theorem 5.5 (V): Conclusion

In this section, Theorem 5.5 is finally proved by induction thie numbery of
peaks inG(n, p).

In the initial case, whereg = 1, it is obvious by Lemma 8.1 (or Lemma 8.2).

Suppose, for induction, Theorem 5.5 holds for any gr&th, p) with x(G) < d.
SupposeG(n, p) has exactlyd peaks, P, P,, ..., Py. Our proof is divided into two
cases:

CASEA: n=mp+r,m>2,0<r <p

CASEB: n=p+r,0<r <p.

Case A is further divided into two subcases:

CASE (A-1): m> 3,

CASE (A-2): m=2.

First, consider subcase (A-1). By applying on G(n, p), we obtain a new graph

* = G(n*, p*), wheren* =(m—2)p+r, m—2> 1. Let S= {{a)(—by) - - (a)(—b)}

be the sequence oh(p). Then the sequenc&" of the new pair f*, p*) is S* =
{(@ =2 (=(b1 —2))(a2—2) - - (& — 2)(—(y — 2))}. Sincea;,bj >3 for1<i, j<I,
G(n*, p*) has as many peaks &(n, p) has.

Write:

G = (a1) Pr(—b1)(a2) Po(—by) - - - (&) B (—h),
and
G* = (a) Py (—bp) (@) Py (=) - - - (&) B (—hy),
wherea* =g —2 andb’=b — 2, 1<i <|I.
Then levP) = Yoy a + Yicr (—b), while lev(Py) = Y-y (ax — 2) + Yjci(—(bi —
2)) =Y heg & — 2 + X yr(—bo) + 20 — 1) = lev(R) — 2.
On the other hand, in®&) is the sum of the ‘odd terms, i.e., the sum of all the

i-th terms withi odd. inS, and ind@*) is the sum of the odd terms i6*. Since
one positive term inay) is cancelled with one negative term {r-by), it follows that
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Fig. 9.1.

ind(P)—ind(P*) is equal to the difference between the number of positigaessin (&)
and that of(a*), that is 1, and hence inB() = ind(R) — 1. SinceYy (= Ps for some
s) is a counter-example of Theorem 5.5 18(n, p), Y = P¢ is also a counter-example
for G*.

(It is evident that if Q¢ is a bottom of G(n, p), then levQy) = lev(Qx) and
ind(Qy) = ind(Qxk), and henceZ§ is also a counter-example to Theorem 5.5 @t.)

Repeated applications af reducem to 1 or 2.

SUBCASE (A-2): m=2,i.e,n=2p+r.

For the subcase (A-2), and the case B, the number of pgég may be de-
creased by applications af or .. Therefore, we need a careful examination of the
levels and indices of the peaks f@& and for G* = t1(G) or 2(G).

Now we are concerned about the highest peaks and the particedkY,. These
peaks belong to some blocks of maximal type. Therefore, wdyshow theses peaks
behave under; and r,. First we divide the set of peaks @& into blocks. Let us
denote them byPy, P, ..., P.

DEFINITION 9.1. We define the level and index of a blogk as

(9.1) {'ev(Pi) =lev(P), forany P e P

ind(P;) = maxeep, {ind(P)}.

Now we consider subcase (A-2):

SUBCASE (A-2): There are two cases to be considered.

CAsSE (A-2-1): (£3) is isolated, and hencgt2) occurs consecutively. (The case
where both(2) and (3) are isolated is excluded by Proposition 8.8) /&t P, ..., P
be the blocks of peaks d&(n, p). Then, an application otf; collapses all peaks in
eachP; to one vertexV;* (not necessarily a peak) @*. See Fig. 9.1.

(Note that if 7 is of maximal type, thenV;* is a peak.) Further in this case, we
have ind@;) = ind(P) and lev(®) = lev(P) for any P € 7, and lev{*) = lev(P;) — 2.
Also, we see that ind{*) = ind(P;) — 1.

Since the highest peaR, of G(n, p) collapses to a highest pedk" of G*, and
since Yp also collapses to a pea¥; of G*, it follows again thatY; is a counter-
example to Theorem 5.5 faB*. However x (G*) < x(G), (since each block contains
at least two peaks), and hence by induction hypothesis, aystakY; does not exist,
a contradiction.
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Fig. 9.2.

(For the bottoms, similarly, we see that some botta@s. . ., Qq collapse to one
bottom Qf, but lev(@Q) = lev(Q) and ind@;) = ind(Q). Therefore,Z§ is again a
counter-example to Theorem 5.5, a contradiction.)

CASE (A-2-2): (£2) is isolated.

Let Py, P, ..., P be blocks of peaks o6(n, p). Suppose thaP; is of maximal
type. It is, for example, of the form:

- (B=2)(3)(=3) - - (3(=3)(2(=3) - - -
By an application ofry, it is reduced to

— - (MO DD (=10 (-1) - - -
= QENOENE2) -

Other cases are similar, and we see RY(= lev(P;) — 2. (See Fig. 9.2.)

The number of peaks ifP; is equal to that ofP’, but two peaks, the one that
precedes the first peak and the other that follows the ladt pE&®;, are not peaks in
G*. Thus the total number of peaks & is decreased at least by 2. Since elimination
of edges ofG always occurs in pairs, we see ifitf) = ind(P;)—1. Therefore1(Yo) =
Yg is also a counter-example f@*. However, sinceyx(G*) < x(G), such a peakry
does not exist, by induction hypothesis.

(For the bottoms, we see again 1&) = lev(Q;) and ind@;) = ind(Q;), and
hence induction works.)

Finally, we consider the case Bn=p+r.

In S, & andb; are either 1 or 2. There are two subcases.

SUBCASE (B-1). (+£1) is isolated.

SUBCASE (B-2). (£2) is isolated.

Consider subcase (B-1). Sincgetl) is isolated, (+2) appears consecutively.
Let Py, P1,..., P: be blocks of peaks forG(n, p). Then we can writeS as:
S = (80)Po(81) P1(82)P2(83) - - - Pi(8+1), wheredo =1 andsj = +1, j =1,.. ., t. Ap-
plying 72 on S, we obtain a new sequence* = (—§81)(—82)(—33) - - - (—3t), because
eachP; involves only (+2). Now we study the level and the index of peaksG@nand
G*. SupposeP; is of maximal type. (See Fig. 9.3.) Theh = —1 and i+ = +1.
Also, for any peakP in P;, we have

lev(P;) =lev(P) and
{ind(Pi) = ind(P).
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Fig. 9.4.

Now by 7, all peaks inP; collapse to one verteX;* in G*. Since—4 = 1 and
—8+1=—1, V/* is in fact a peak ofG*. Further, obviously, lew(*) = lev(?) — 1.
We evaluate the index dP;.

Lemma 9.2. (1) ind(Pg) = 1.
(2) For 1 <Kk, ind(Px-1) =ind(Px) =1— (81 +d3+---+3dx 1)

Proof. (1) is evident. To prove (2), suppose = 1. Since indPy) = 1 and
lev(Py) = lev(Py) — 1, we have indP;) = 1—1 = 0. See Fig. 9.4 (a). I6; < O,
then lev(P;) = lev(Pp) + 1, and hence in;) = 2. See Fig. 9.4 (b).

Next, we compute ind?,). Sinced, is an odd termg, is always counted, but
it is cancelled with the odd term if2) that follows (2) or precedess,). Therefore
ind(P,) = ind(P1) = 1 — §;. Now exactly the same argument proves the formula for

general case. O

Now by Lemma 9.2, ind@) =1—68; — 83— --- — &, wherei’ =i ori —1 so
thati’ is odd. SinceV,* is a vertex ofG* on whichP; collapses, we have ind() =
—81 — 83 — -+ - — &y Therefore, ind(;*) = ind(P;) — 1, and hencerx(Yo) = Y is also

a counter-example fo&*. Since x(G*) < x(G), it is impossible.

(For the bottoms, we see |a¥*) = lev(Q;) + 1, while indfV*) = ind(Q;), and we
can apply induction hypothesis.)

This eliminates the subcase (B1).

Finally, we consider the case (B-2)(+2) is isolated. We compar& with S*.
Consider for example:

S= ) (=)(IM(=1) - - (=D 2) (=D(D(=1)(1) - - - (=1)(A)(=1) - - -.

P1 P2
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Then

S = (1)(=1) - (I(=1)(2) (=1)(1) - - - (=1)(2)(=1) - - -,

P1 P

where the number of peaks /" is exactly one less than that &f. (If (2) is replaced
by (—2), the same argument works.)

Therefore,S* is obtained fromS by deleting(+1)(—1) or (—1)(+1) from each?P;.
This interpretation ofr, simplifies our proof considerably. L& and G* be the graphs
of (n, p) and f*, p*) respectively. The following lemma is evident:

Lemma 9.3. If i is odd (resp even, thenP; is of odd(resp even type

Therefore, we have: (1) l1efX) = lev(P) for any P € P;, and (2) ifi is odd
(resp. even), then ingX) is equal to the index of the last peak (resp. first peakpof

Now to obtainS* from S, we drop the last paif+1)(—1) or (—1)(1) from Py _;
and the first paifl)(—1) or (—1)(1) from P,. Graphically, it means that the last peak
of P,_1 and the first peak ofP; are eliminated. LefP" be a peak obtained frorR,
by this ‘new operation'ro. If B = B* undert,, i.e., P is not affected byr,, then
lev(P) = lev(P*) and ind@) = ind(P*). (See Fig. 9.5.) In fact, itib is an odd edge
of G, thende is also an odd edge.

If bcis an odd edge then so isf. Thus these two edges are not counted in
the evaluation of the index. By the same reasoning, we hawig = lev(P;) and
ind(P") = ind(P;) — 1.

Now Yy belongs to somé;, and indlfp) = ind(P;). Therefore,Y; is eliminated by
7. However, a new blockP’ also contains ag with ind(Y]) = ind(P"), and hence
ind(Yg) = ind(Yo) — 1. While, a peakP; in P, on the highest level that has maximal
index is also eliminated by,. However, P} contains another peaR; on the highest
level having the maximal index, and irfff) = ind(Po) — 1. ThereforeYy is again a
counter-example to Theorem 5.5 f@*. Since x(G*) < x(G), such aY; does not
exist, a contradiction.

(For the bottoms, we see l&¥f) = lev(Q) and that indQ*) = ind(Q), and hence
we can apply induction hypothesis.)

This proves Theorem 5.5. U
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10. Proof of Theorem B

In this section, we prove Theorem B and also Theorem 4.8. ®wepthem, we
first study two polynomialsp(n,pja,s)(t) and hg pjas)(t) defined in§§4-5.

Let {e1,€2,...,6n_1} be the sequence of signs far, ). We define two sequences
of integers:

)\.1 =0
n+1
A =&r+e3+--+ey 3, for k=2,3,...,1 +l:T.
n1=0 L
n+
Uk =€xteqgt -+ e 2, for k=2,3,...,l+1= >
Now we recall that, for an arbitrary integgr > 0,
[
(10.1) Pplep(t) = Y (1 — teean)perwtio gk,
k=1
and for an even integep > O,
[
(10.2) hn.plap)(t) = Z(l — tPeaca ) —Phcun 4 p—Bhiarenia

k=1

Most of the following propositions are immediate conseqesraf these definitions.

Proposition 10.1. For any n and p with n> p > 0, and for anyx and g, we have

(10-3) ¢(n,p|a,—f3)(t) = ¢(n,n—p|a,ﬂ)(t)-

Progf. If S={e1,62,...,6n 1} ig the sequence of signs fon,(p), then the se-
quenceS of signs for O,n — p), is S = {e1, —€2, €3, —¢€a, ..., —en_1} (S€e Proposi-
tion 4.3). Therefore, (10.3) follows immediately. ]

A similar argument proves the next proposition.

Proposition 10.2. For any n and even g with & q > 0, and for anyx and g,
we have

(10-4) h(n,q\a,ﬁ)(t) = ¢(n,n—q\—ﬂ,—a)(t),

or equivalently

(10-5) h(n,q\a,ﬁ)(t_l) = ¢(n,n—q\ﬂ,a)(t)-
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Proof. If {e1,€2,...,en_1} is the sequence of signs fon,Qq), then {e1, —&2,
€3, ..., —en_1} IS the sequence of signs fon,(h —q). Therefore, we have
[
bin—qi—pa)(t) = Z(l — tBeact)p Pl 4 g Phirtann = hingle.s) (). ]
k=1

REMARK 10.3. Proposition 10.2 claims not only th&n g« (t) is equal to
din—q—p—)(t), but also from Remarks 4.6 and 5.1 that the terms of the twg-po
nomials are in one to one correspondence. Therefore, thechlocellation Theorem 5.5
for G(n, p) implies that no cancellations occur among the highest amedt vertices
in H(n,q | «, B) with q even.

Proposition 10.4. Suppose p is oddThen for anyx and 8, we have

(10.6) Ak n,plep)t) = Gnpras) (P, plapt )
(10-7) AK(n,p\m,—ﬁ)(t) = ¢(n,n7p\a,ﬁ)(t)d)(n,nfp\a,ﬁ)(t_l)

Proof. For an odd integep, it is shown in [7, Proposition 4.7] thakk (,p|«.g)(t) =
fr.p () fn.p)(t 1), where fn ) is exactly —¢n pjas(t). This proves (10.6). To prove
(10.7), we note that, fop 0dd, Ak (. pja.—p)(t) = . pla—p) ()P ple—p) (t L), Now (10.7)
follows from (10.3). U

As an immediate consequence of Proposition 10.4, we obtain:

Proposition 10.5. Suppose g is everThen for anya and g, we have

(10-8) AK(n,q\a,ﬁ)(t) = ¢(n,n7q|a,B)(t)¢(n,nfq\a,ﬁ)(t_l)
(10.9) Ak(ngla—p)() = BnaienOmaiest ™)

Proof. Sincen — q is odd, it follows from Propositions 3.1 and 10.4 that
Aknalap)(t) = Ak@n-glap) () = don-glas) Ddan-aies -
This proves (10.8). Similarly, we have:

Ak ale—p)(t) = Ann-gla,—p)(t)
= ¢(n,n7q\a,fﬁ)(t)¢(n,nfq|a,fﬂ)(t_l) = ¢(n,q\a,ﬂ)(t)¢(n,q|,a,ﬁ)(t_l)- O

Proof of Theorem 4.8. By Proposition 3.1 we know tian, p|e, 8) = K(n,n—

qlB,a) = —K(n,q|B, @), and henceAK(n,an,ﬂ)(t) = AK(n,q“‘i,ot)(t) = AK(n,n—q|ﬂ,oz)(t)-
Sincen — g is odd, we see further by Propositions 10.4 and (10.4) that

AK(n,nfq\ﬁ,ot)(t) = ¢(n,n7q\ﬁ,a)(t)¢(n,n—q\ﬂ,a)(t_l) = h(n,q\a,ﬂ)(t_l)h(n,qm,ﬂ)(t)- O]
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Now we return to the proof of Theorem B. SUppOAR ( pi«.p)(t), With p even,
is monic. First assume > B > 0. By Proposition 3.1 Akn,pj—p—e)(t) is monic.
Then Proposition 10.20, pj—g—«)(t) = dmn—piap(t) and by Theorem 4.8, they are
monic, i.e., the terms with the highest and the lowest depeee coefficientt1l. By
Remark 5.7, ingmn—pje.p)(t), No cancellations occur among the terms with the highest
or the lowest degree. Therefore, by Remark 10.3 and Remérk#4K) is admissible.
Next assumex > 0 > . Then by (10.4) and (10.30n,pja8)(t) = Prn—pi—p—a)(t) =
dm.p-pa)(t), and by Theorem 4.8, they are monic. In the same manner ag abe
see thatH(K) is admissible. This proves Theorem B. ]

11. Fibredness ofK(n, p|«, B) via 2-bridge knot B(n, p)

11.1. Classification. In Section 3, we saw that for any 7 0, Akn,pja,—)(t) IS
not monic, while A n,pj«)(t) is monic if and only if Agg )(t) is monic, i.e., the 2-
bridge knotB(n, p) is fibred. However, even if\g p)(t) is not monic, it can happen
that A n,pja,p)(t) is monic for somex, f (see Remark 4.11).

In this section, we study how the fibredness Kin, p | «, 8) behaves if we fix
(n, p) and take variousof, 8)'s. From this view point, we classifK(n, p | «, ) into
six types.

For more detailed discussions, the following propositians useful.

Proposition 11.1. Supposex > 0 and g > 0. Then we have
(1) Axn.plep(t) is monic if and only ifAkn,p2,1)(t) is monic
(2) Axnpla,—p)(t) is monic if and only ifAkn,pj2—1)(t) is monic

Proposition 11.2. If B(n, p) is fibred then for anye > 0 and g > 0, Ak n,pja.p)(t)
iS monic

Proof of Proposition 11.1. Theorem 5.5 has been proved foitrary «, 8 with
a > p >0, anda > 0 > B. Therefore, if Ak p2,1) IS MoNic, Ak pje,sy MUst be
monic for any«, B, with « > g > 0. The same holds far > 0 > B. Ul

Proof of Proposition 11.2. SincB(n, p) is fibred, Ak n pj1,1) iS monic. It means
that the graphG(n, p) has only one peak with the highest level, and one bottom with
the lowest level. This follows from the fact that when= g = 1, the number of
vertices of G with level h is the absolute value of the coefficient Bf in Agg p)(t).
Therefore, by Theorem 5.5, for any, 8 > 0, Akn,pja,p) IS MoONIC. O

By Proposition 3.1, we assume without loss of generalityt thas always even
in K(n, pla,B). We see that the monicity of the Alexander polynomial (arhde
fibredness) of our knot& (n, p | «, 8) behaves in one of the six patterns with respect
to various values ofr and 8. By Proposition 11.1 and 11.2, the pattern is determined



44 M. HIRASAWA AND K. MURASUGI

by the pair @, p), listed below, where in each pattern, we give an example péia
(n, p).
Class (A): B(n, p) is fibred.
(1) K(n, pla,p) is fibored«=— o # —B. e.g., @, p) = (25, 18).
(2) K(n,pla,p) is fibred<= ap > 0. e.g., (, p) = (5, 2).
Class (B):B(n, p) is not fibred.
(1) K(n, pla,p) is fiored<— o # £B. e.g., 0, p) = (7, 2).
(2) K(n,pla,p) is fiored< o > 0, « # B. €.9., O, p) = (9, 2).
(3) K(n,pla,p) is fibored< o <0, « # —B. €.0., 0, p) = (17, 10).
(4) K(n, pla,p) is not fibred for anyx, 8 e.g., 0, p) = (9, 4).

REMARK 11.3. In [7, Proposition 5.3], it was proved thitn,n — 1| «, B8) be-
longs to Class Al, by studying the fundamental groups ofieitlgl constructed Seifert
surfaces and their complement.

Note that even if if, p) and ¢/, p’) are different, as 2-bridge knot8(n, p) may
be equivalent taB(n', p'), but K(n, p|a,8) and K(n', p’|«, 8) may belong to different
classes (see Remark 4.11).

At the end of this section, we present an algorithm to deteentd which class a
knot K(n, p| «, B) belongs. Using this algorithm, we can characterize thesp@ai p)
for each class. (See Theorem 11.15.)

11.2. Classes [I] and [ll]. We begin with a definition of two new classes [I]
and [II].

DErINITION 11.4. We say that the paim(p) belongs to [I] (resp. [ll]) if
Ak(n,pla,p)(t) is monic for anya, B > 0, a Z B (resp. Akn,pje—p)(t) is monic for
anya, 8 >0, a #p).

A pair (n, p) may belong to both [I] and [ll], or neither [I] nor [ll]. Forxample,
if B(n, p) is fibred, then i§, p) at least belongs to [I], and probably to [II] as well. If a
fibred knotB(n, p) belongs to both [I] and [lI], therK (n, p|«,8) belongs to Class Al.

REMARK 11.5. Definition 11.4 can be rephrased in termspgfy . g)(t) as fol-
lows: Suppose is an even integer. Them,(q) belongs to [I] (simply §,q) € [1]), if
dmn—qlap)(t) is monic for anyx, 8 > 0 with « # g. On the other hand,n(q) < [lI],
if dnqiep(t) is monic for anyo, g > 0 with o Z B.

Now one of the important consequences of the Non-cancaildtieorem is that if
the graphG(n, p) satisfies certain conditions, the monic property of theypoinial
dnplap(t) is preserved under reduction operationsand 2. More precisely, we
obtain:
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Proposition 11.6. Let p be an arbitrary positive integer
() Let n=mp+r, where m>2and0 <r < p. Letz;: (n, p) — (n*, p*) be the
first reduction operation wherén*, p*) = (n — 2p, p).
(1) Assume ne 3. Then for anye > B > 0, ¢n pja.p)(t) is monic if and only if
b=, p1a,p)(t) iS monic
(2) Assume n¥ 2.
() Suppose(£2) is isolated in $n, p), the sequence of signs of the pair
(n, p). Then for anyx > B > 0, ¢n,pjap)(t) is monic if and only ikppe o o p) (1)
is monic
(i) Supposg=2) is not isolated in 8, p) (and hence+3) is isolated. Then
for anya > B > 0, ¢ pja,p)(t) is NOt monic
() Letn=p+r, where0O <r < p. Let: (n, p) — (n*, p*) be the second reduction
operation where i =n—2r and px=p— 2r.
(i) Suppose that d+2) is isolated in $n, p), or the first three or four terms of
S(n, p) are of the form S= {(1)(—2)(1) ---}, or S={{1)(—2)(2)(—1)---}. Then
for anya > B > 0, ¢(n,pja,p(t) is monic if and only ifpp: p |« (t) iS monic
(i) Supposeg42) always appears in @, p) three (or more) times consecutively
or equivalently that S is of the form

{1 (=2)(2) - - - (£2)(F1) - - - }.
k times k3

Then ¢ pia,p)(t) is not monic

A proof is obtained easily from a careful study of the graptn, p) as we did in
the proof of Theorem 5.5, and hence the details are omitted.

From Proposition 6.4, we see thatrii < 2, then S(n, p) has one of the forms
stated in Proposition 11.6.

We need a few more notations. Lgtbe an even integer with > q > 0. The
(even) continued fraction ofi/q:

:a'l_

o>
[N

b; —

will be denoted by §4, by, a, by, . .., as, bs], wherea;, by (L <i <s) are even £ 0).
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EXAMPLE 11.7.

101 1
— =[4,2,-2,-6]=4—
28 [ ’ il ’ 6] 1 Ll
2— —1
(-2 —
(—6)
141 1
—=[4,-2,2,—6]=4-— .
32 1
(-2 - ———
2_ -
(-6)
Let n/q and ng/do, q, o being even, be two rational numbers represented by an
(even) continued fractiorA = [a;, by, ap, by, ..., as, bs] and its shorter fractiorB =
[az, bo, ..., a5, bs]. For convenience, we writeaf, by, a, by, ..., as, bs] = n/q and

[az, by, . .., as, bs] = No/qo.

Further, since we consider only even continued fractiorfsenever we write

[a1, b1, a2, by, ..., & bs] = n/q, we always assume thgtis even. We note, from
the definition, thatng > 0 if and only if a; > 0. Using Proposition 11.6, we prove a
series of propositions.

Proposition 11.8. Let n/q =[ay, by, a2, by, ..., as, bs]. Suppose a= 2k > 4 and
let A=[a; —2,by,a, by, ..., abs] = A/§. Then we have (n,q) € [I] (resp [Il]) if
and only if (A, §) € [1] (resp [l]).

Proof. Letn’/q’ =[by,az,by,...,as,bs]. Supposed; > 0. Thenn/q =2k—q'/n’ =
2k —q")/n" andf/g = (2k—2)n"—qg)/n’. Nown=2kn'—q' = (2k—1)n'+(n"—q’) =
(2k—1)g+(n —qg)and 0<n'—q <q (=n). Since X—1> 3 andry(n,q) = (A, §),
we have: 0, q) € [ll] if and only if (A, §) < [I].

For the caséy; < 0, the same argument works. Next, we show thmaig € [I]
if and only if (A, §) € [I], or equivalently, thatpnn—_q«p(t) is monic if and only if
d@a—q|e.p)(t) is monic. Now sincen/q = (k' —q')/n’, we seen/(n —q) = (2kn' —
q)/((2k — 1)n" — g'). Supposeb; > 0. Thenn'q > 0. Sincek > 2, it follows
that (X — 2)n" > q and hence R— 1)n" — g’ > n’. Therefore, we can writ& =
(n—q)+q,0<q(=n) <n—-q (=(2k—-21n" —7g). We claim that(£+2) is isolated
in S(n,n —q), or equivalently, thatl) is not isolated. However, it is now evident that
S={{(1){(-=1)---}, since & < 3(h —q). Therefore, by Proposition 11.6n,q) € [I]
if and only if (1, §) € [I]. Since a similar argument works for the cabe < 0, the
details will be omitted. U

By Proposition 11.8, we may assume, without loss of gertgrahata; = 2 in
order to decide whether or nom,(p) € [I] or [ll]. Therefore, hereafter, we will use the
following notations. For an arbitrary non-zero intederA = [2, 2k, ap, by, . . ., &, bs] =
Nk/Ck, B =[ag, by, ..., as bs] = no/do.
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Proposition 11.9. Assume k- 0 and & > 0. Then we have the following
D @ O a)¢ll if k=2

(b) (n1, ) € [I] <= (no, Qo) € [I].
2 @ O ad) ¢, ifk=3.

(b) (n2,02) €[] <= (no, qo) < [I1].

(©) (h1, 1) €[] <= (no, %) < [I1].

Proof. First we see that, fdt > 0, ng/qx = 2— 1/(2k — qo/No) = ((4k — 1)ng —
200)/(2kng — qp), and henceng = gk + (2k — 1)ng — go, Where 0< (2k — 1)ng — go < Ok
(= 2kno — ).

CAsE (2). If k> 3, we can shows = {{(1)(—2)(2)(—2) - - - }, or equivalently, that
70k < 4ng. In fact, 4 — 70k = (16k — 4)ng — 8qo — (14kng — 7qp) = (2k—4)ng—qg > O,
sincek > 3. Therefore ik, ak) ¢ [lI] by Proposition 11.6 (II) (ii).

If k=2, then 4, < 70, but 3, < 602 < 4n,, and hences = {(1)(—2)(2)(—=1) - - - }.
Therefore, by Proposition 11.6 (1) (i)n4, g2) € [II] if and only if (ng, qo) € [II].

If k=1, thenn; = 3ng— 209 andq; = 2ng — qo. Then S = {(1)(—1) - -}, since
2n; < 3q;. Thus (2) is isolated, and Proposition 11.6 (ll) (i) shows that,@.) € [I1]
if and only if (ng, go) < [II].

Now to consider the case (1), we usg/(nk — k) = ((4k — 1)ng — 20o)/((2k —
1)ng — qo). We write ng = 2(Nk — g«) + Np, 0 < ng < ng — k. Then we see that if
k>2,S={(2)(-2) -}, since 40k — gk) < 2nx < 5(Nk — k), and hence,ni,q«) ¢ [1]
if k> 2, by Proposition 11.6 (l) (ii).

If k=1, thenny =3ng—2qp andny — g1 = Ng — go. Write o = A(Np — Qo) + 7,
0<r < ng—qo, for somer > 0 andr. Thenn; = (3+A)(ng — o) +r and hence
(ng, a1) € [1] if and only if (ne, o) € [I]. U

Proposition 11.10. Suppose k- 0 and @ < 0. Then we have the following
(1) @ Owae) ¢l if k>2.

(b) (N1, q1) € [I] <= (no, do) € [I].
(2 @ O an) ¢, if k>2.

(b) (N1, q) €[] < (no, —p) € [IN].

Proof. We write Ax = [2, 2k, —ap, by, ...,8s,bs] = nx/gk, @& > 0, and B
[—a2, by, ..., &8s, bs] = —No/Co. Thenny/dk = ((4k — 1)no + 20o)/(2kno + o), and ni
Ok +(2k—1)ng+0p, 0 < (2k—1)ng+0p < 0. If k > 2, thenS= {(1)(-2)(2)(-2)-- -},
since Yk < 4nx. Thus, Qk, ak) ¢ [ll], if k> 2.

If k=1,n; =3ng+ 20 andg; = 2ng + gg, and hencen; = q; + (Ng + o), 0 <
No+Qo < ;. Inequalities §; < 2n; < 4q; < 3n; < 5q; imply that S= {{(1)(—2)(1)- - -}
and hence, sincex(ny, d1) = (No, —Qo), (N1, 1) € [I1] if and only if (ng, —qo) € [l1],

Next, considemy/(nkx — k), whereny = (4k — 1)ng+2q9 andng — g = (2k — 1)ng +
Qo- Thusng =2(Nk — k) +Ng, 0 < nNg < ngk — k. If kK> 2, thenS= {(2)(-2)---},
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since 40k — gk) < 2ng < 5(nx — gk). Therefore(+2) is not isolated inS(n, Nk — Gk)
and fw, o) ¢ [I], if k>2.

If k=1, thenn; =3ng+2qp andny — gy = Ng+qo, and henceny = 2(hy — qy) + No,
0 < np < ng—q;. Since 50; — 1) < 5n3, we see thatS = {(2)(-3)---}, and
hence by Proposition 6.4+2) is isolated inS(ny, n; — ;). Therefore, from Proposi-
tion 11.6 () (i), it follows that @1, qp) € [I] if and only if (no, qo) € [I]. U

Proposition 11.11. Assume a> 0 and k> 0. Then we have the following
1) @ 0«9 ¢ll if k=2

(b) (N-1,0-1) €[] <= (no, qo) € [I].
(2) (N, a-K) ¢ [, if k= 1.

Proof. Note thatn_ /g« = ((4k + 1)ng + 2q0)/(2kng + o) and n_x = 2q_¢ + N,
0<np < Q.

If k> 1, S={(2(-2)---}, since 2_x < 50k, and hencer(_x,q_x) ¢ [ll], if
k > 1, by Proposition 11.6 (1) (ii).

Now considern_y/(n_x — q_x) = ((4k + L)ng + 2q0)/((2k + 1)ng + o) and n_y =
(N-k —Qg-k) + (2kno + o), 0 < 2kng +go < Nk — G k-

If k> 2, thenS(n_,n x—q ) = {{1)(—2)(2)(—2)- - -}, since 70 _x—q k) < 4n .
Therefore, 0, q ) ¢ [I] if k> 2.

If k=1, thenn_; = 5np+2q9 andn_; — g-1 = 3ng + o, andn_; = (N_; —
0-1) +(2ng+qo), 0 < 2ng+qp < N_1 — g—1. ThenS = {{1)(—2)(2)(-1) ---}, since
5(N_1 — g-1) < 3n_1 < 6(N_1 — Qg-1) < 4n_3 < 7(n_1 — q-1). Sincety(n_1,N_3 —
g-1) = (No, —Ng — Qo) = (No, Np — o), it follows that f_1,9-1) € [I] if and only if
(o, do) € [I]. O

Proposition 11.12. Assume a< 0 and k> 0. Then we have the following
1) @ O« g ¢ if k>2.

(b) (n-1,9-1) €[] <= (No, o) € [I].
(2 @ 0O_x.ag-k) ¢ ifk=>2

(b) (n-1,09-1) €[] <= (No, o) € [!1].

Proof. As in the proof of Proposition 11.10, we writdy =[2, —2K, —ay,
by,...,as,bs], wherea, > 0 andk > 0. Thenn_y/q_x = ((4k + 1)ng — 20p)/(2kng — qo)
and n_y = 29 + ng. First, we see that ik > 2, thenS = {(2)(-2)---}, since
2n_x < 5q_k, and hencg+2) is not isolated. Thereforen(y,q ) ¢ [ll], if k> 2.

If k=1, thenn_; = 5ng— 209 andq_1 = 2np — o, andn_; = 291 +np, 0 <
Ng < g_1. Then we seeS = {(2)(—3)---}, since B ;1 < 2n_;, and hence(£2) is
isolated inS(n_1,9-1). Therefore, _1,9-1) € [ll] if and only if (ng, go) € [Il], since
71(N_1,9-1) = (No, 2Ng — o) = (No, —Qo)-
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Now we considem_/(N—k — g-k) = ((4k + 1)no — 200)/((2k + 1)no — do) andn_y =
(n—k — g—k) *+ (2Zkng — qo), 0 < 2kng — go < N_x — g—k. First we see that ik > 2, then
S={(1)(—2)(2)(—=2)-- -}, since 7Th_x —g_k) < 4n_g. Thus _x,q-x) & [Il], if k> 2.

Supposek = 1. Thenn_; = 5np — 2gp andh_; —g-; = 3np — go, andn_; =
(n_1—g-1)+(2ng—qo), 0 < 2ng— o < Nn_1 —g_1. Now we see that+2) is isolated
in S(N_1,N_1 — g-1) or §(N_1,N_1 — 1) = {{(1)(=2)(1) -- -}, since 40_1 — g-1) <
3n_1 <50N_1—q-1). Thus _1,9-1) €[] if and only if (ng, o) € [l]. ]

Finally, we consider the casa = [2, £2K].

Proposition 11.13. We have the following
1) (@ &—-1,%) ¢[l, if k>2.

(b) (3,2)el.
(2) (@ (&K—1,%) ¢, if k=2,

(b) (3,2)e[N].

Proof. Note that [2,B] = (4k — 1)/2Kk. It is easily seen that

S(4k — 1, K) = {(1) (=2)(2) ... (2)(-1)}.
——

(2k—2) times

Hence, ifk > 2, then (k—1,2) ¢ [ll]. On the other handS(4k — 1,2 — 1) consists of
(£2), and hence (@—1,2) ¢ [l], if k > 2. Further, (1) (b) and (2) (b) are obvioud.]

Proposition 11.14. We have the following
1) @ (&+1,X%) ¢][1], if k> 2.

(b) (5,2)€[ll.
2) (4k+1,%) ¢, if k> 1.

Proof. Note that [2;-2K] = (4k+1)/2k. Since S(4k+1, k) consists of only(42),
(4k+1, %) ¢ [ll], if k>1. On the other hand,

Sk + 1,2k +1) ={(1) (=2) - - - (—=2)(1)}.
[ —

(2k—1) times
Hence, ifk > 2, then (& + 1, X) ¢ [I]. However, if k =1, then (5, 2k [I]. Ul

11.3. Characterization. A series of Propositions 11.8-11.14 provide an algo-
rithm that decides to which class,(p) belongs. Using this algorithm, we can now
characterize knot&(n, p | «, 8) in each class by the pain,p).
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Theorem 11.15. Let (n, p) be a pair where p is even an@ < p < n. Denote
by [a1, by, a2, by, . . ., &s, bs] the continued fraction expansion of p, where all & and
by are even(l <i <'s). Then the fibredness of K K(n, p|«, 8) is determined by
the pair (n, p) as follows

CAse 1: The 2-bridge knot Bn, p) is fibred and hence all ds and b’s
are £2.

e K eClass Al {.e, (n,p) € [I] N[lI]) if and only if (11.10)below is satisfied

(11.10) {(a) aib>0foralli (1<i<s)or
' (b) ashs > 0, and wheneveri@ <0 (1<i <s), we have g+ < 0.
Case 2: B(n, p) is not fibred
SUBCASE 2 (i): bj==£2forall j (1<) <s).
e K e Class Blor Class B2.
e K e Class Blif and only if n/p satisfies(11.10).
SUBCASE 2 (ii): Each fj is either &2 or £4, with some b being £4.
e K e Class B3or Class B4.
e K € Class B3if and only if (11.11) below is satisfied
(11.12)
(@) |bs| =2 and abs > 0,
(b) bh=4+2 (1<i<s)= (i) ab >0or (i) b <0and aa.; <0, and
() bj=x4 (1<i <s)= (i) ab > 0 and (i) g+ > 0.

SUBCASE 2 (iii): There exists pwith |bj| > 6.
e K eClass B4.

EXAMPLES. Here we denoten( p) by n/p, and sayn/p € X for some classX
if K(n, p|a,B) belongs to the clas¥.
1) [2,2,-2,2,2,-2,-2,-2]=177/112¢ Al.
@) [2,2,-2,2,2,2,~2,2] =265168¢c A2.
3) [4,2,-2,2,6,—2,—4,-2] =3181/888¢ B1.
(4) [4,2,-2,2,6,2,—4,2] =44121232¢ B2.
(5) [4,4,2,4,2~2,-2,-2] = 875236 ¢ B3.
(6) [4,2,-2,6,6,—2,—4,—2] =88692468< B4.
(7) [4,4,-2,4,2,-2,—-2,-2] =1525404 € BA4.

12. Preliminary for the construction of fibre surfaces

In this section, we first review two methods to prove that afeBeisurface is a
fibre surface. Then we introduce a key notion to construct itei$€fibre) surface for

K, pla,B).
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12.1. Tools to prove fibredness. In this subsection, we review two important
methods to prove that a Seifert surface is a fibre surface. i®&allings twistsand
the otherKobayashi’'s banding on pre-fibre surfaces

A Stallings twistis an operation to produce a new fibre surface from a fibre cairfa
under a certain condition: Let be an unknotted oriented circle embedded in a surface
F in S°. Suppose the linking number tk(c) = 0, wherec’ is a push off ofc in a
normal direction ofF. Then apply+1-surgery alongc. Briefly, the operation is to
cut F by a disk spanned by and then glue it back after a full-twist. Obviously, the
new ambient manifold isS?, but we have a new Seifert surface for a (different) link.
However, J. Stallings [13] showed the following:

Proposition 12.1 ([13, Theorem 4]). Suppose a Seifert surface’ ks obtained
from F by a Stallings twistThen F is a fibre surface if and only if F is too

In [9], T. Kobayashi introduced the notion qire-fibre (Seifer) surfacefor links
and, using that notion, determined when a band connected cfulinks is a fibred
link [10]. In this subsection, we summarize his main resufsr the notion of asu-
tured manifold we refer to [9] or [4].

Let L be a link with a Seifert surfacé. Denote byFg = FNE(L) the restriction
of F in the link exteriorE(L) = cl(S* — N(L)). The sutured manifoldN, §) = (Fg x
I,0Fg x 1) is a product sutured manifoldwhere R.(§) and R_(8) are respectively
Fe x {1} and Fg x {0}. The sutured manifoldN¢, §¢) = (cl(E(L) — N), cl@E(L) — §)),
where R.(8°) = R:(8), is called thecomplementary sutured manifofdr F.

DEFINITION 12.2. A Seifert surfaceS is a pre-fibre surfaceif there exist pair-
wise disjoint compressing diskd* and D~ in N° for R.(5°) and R_(5°) respectively
such that N, §¢) is homeomorphic to a (not necessarily connected) produtired
manifold, whereN denotes the manifold obtained froM® by cutting alongD*U D~
Then there is a pair of compressing disR$ and D~ for S such thatD* N N¢ = D*,
which we calla pair of canonical compressing disksr S.

To determine when a band connected sum of two links are filitexd following
notion is essential. Kobayashi called the following bagdaband of type F but now
after Kobayashi, we call it & -band

Let S be a pre-fibre surface with a pair of canonical compressisgsdd* U D~
Let p; and p_ be properly embedded arcs @ sharing exactly one end poirt C
9S. Their interiors may intersect each other 81 Pushp. (resp. p_) in the positive
(resp. negative) normal direction &, and then puske = p. N p_ off S so that we
obtain an arax in S® such thate N S= da C 3S. Supposex intersects each ob*
and D~ in exactly one point.
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Fig. 12.1. Pre-fiber surfaces for the 2-component triviak.li

DEFINITION 12.3. LetS be a pre-fibre surface anfl a band whose ends are
attached tod S and whose interior misseS. We call 8 a K-band if its core y (fixing
its end points) is isotopic to an arc obtained by the above construction.

Kobayashi obtained the following:

Proposition 12.4 ([10, Proposition A]). Let F be a Seifert surface obtained from
a pre-fibre surface S by adding a bagd Then F is a fibre surface if and only #
is a K-band

REMARK 12.5. Note that the twisting g8 is irrelevant because that can be gen-
erated by Stallings twists usinD®.

ExXAMPLE 12.6. The following sequence of Seifert surfac®y, X,... in
Fig. 12.1 are examples of pre-fibre surfaces. Figstis an annulus, which is obtained
by tubing two disks. Seconds, is obtained fromX; by another tubing, where the
new tube goes through the first tube. NeXg is obtained fromX, again by adding a
tube which goes though the innermost tubeXsf Inductively, we can construcE;’s.
By [10, Theorem 3], any pre-fibre surface for the 2-componamial link is isotopic
to X for somei, where the pair of canonical compressing disks comes framirth
nermost disks amon@® — (Q N %), where Q is the separating 2-sphere for the trivial
link, positioned naturally so that each tube me&sn one essential circle.

Actually, Kobayashi characterized pre-fibre surfaces fait $inks as follows:
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Proposition 12.7 ([10, Theorem 3]). Let L = L; U L, be a split link with a2-
sphere separating L.and L, in S®. Then L bounds a pre-fibre surface S if and only if
both L; and L, are fibored Moreover the pre-fibre surface S is constructed as follows
(1) Take disjoint fibre surfaces;Fand F, for L; and Lo.

(2) Take az-sphere Q bounding a ball B which meets each ¢faRd F, in a disk
(3) Apply tubing to the two disks in B as Example 12.6.

12.2. The word for K(n, p| e, B). In this subsection, we introduce a notion
of the word for the pair @, p), which is the basic tool to construct a minimal genus
Seifert surface folK(n, p|«, B).

Given a pair of co-prime integens > p > 0, consider the sequence of signs de-
fined in Section 4:S = {e1,2,...,en-1}. For K = K(n, p|e«, B), the primitive word
of K, denoted byW(K), composed ofk, y’'s and their inverses is defined by:

W(K) = yﬂ£1xa82yﬁ€3xas4 o yﬁsnfzxagn—l.

We call the words of the formx'y' or yix} standard syllables The degreeof stan-
dard syllables is defined to be dety') := i, degf/'x}) := —j. A word T composed
of standard syllables is called raormalized word of Kif it satisfies the following:

(1) T is reduced to a word of the formk\TV(K)y' for some integerk and| (possi-
bly 0).

(2) The number of standard syllables This exactlyn.

(3) Syllables of the formx"y" andy'x' appear alternately. (As a resuk®y® or y°x°
may appear as syllables, which may be abbreviated as 1.)

(4) T starts withxkyk and ends withx'y'. (If k = 0 (resp.| = 0), thenT starts with
(resp. end with)x°y°, which we never omit.)

Note that a normalized word dK is uniquely determined by each choice of the
degreek of the initial syllable, and we can easily normalize a wordnfrleft to right.
For example, letk = K(11, 8] 2, 1). ThenW(K) = yix2ylx2y-1x2y-1x-2ylx -2 |f
we setk = 0, then we have

2 2

Xoyo Y- X—3y—3 . y4x4 X~ y—z CYX- XY y‘zx‘ . Xoyo Y- X—3y—3_

In a normalized word, adjacent syllables have differentreleg, The list of degrees
of syllables in the above word i€,—1,—-3,—4,—2,—1,1,2,0-1,—3}, which by con-
struction, coincides with the sequenB&efor (n, p|«, 8) = (11, 8] 2, 1) defined in Sec-
tion 4. Therefore, we can also easily read the primitive wiordK (n, p|«,8) from the
Schubert diagram foB(n, p), by travelling along the underpath recording from which
direction (above or below) one goes under the overpath. 8pe4H.

Note that if we change the initial degree, say fréano k+h, then the new normal-
ized word is obtained by changing the degrees of all sylableh. This corresponds
to the slide of H(K) along they-axis. Now consider sliding the graph so that the

vertices of the minimal degree have tlyecoordinate 0. A normalized word is called
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strictly normalizedif the initial degree is chosen so that the minimal degreeytifs
bles is 0. We denote bW(K) the strictly normalized word oK. For example, by
sliding up by 4, we se&V(K) for K = K(11,8]2,1) is

—3y—3 —3y—3 —6,,—6 —3y—3 . l 1

XAy y xSty YOO Py y xR YRy OO Ayt y xRy
where the list of degrees &, 3,1,0,2,3,5,6,4,3}1

DEFINITION 12.8. LetK = K(n, pla, ). We say that the strictly normalized
word W(K) is admissibleif W(K) has exactly one syllable of the maximal degree and
one syllable of the minimal degree. Accordingly, we say that primitive Word\TV(K)
or its normalized word is admissiable, if its strictly nodimad word is admissible.

Then we have the following:

Proposition 12.9. For K = K(n, p|«, B), the graph HK) is admissible if and
only if W(K) is admissible Moreover (1/2) degAk (t) = maxdegrees of syllables
of W(K)}.

Proof. The first statement is obvious from the constructibhe second statement
follows from Theorem 4.8 and Remark 10.3. O

13. Minimal genus (fibre) Seifert surface forK

In this section, we first construct a fibre surface f¢n, p | «, 8) with an admis-
sible word, usingK-bandings of a pre-fibre surface and prove Theorem C, andehenc
Theorem Ais proved. Then we construct fibre surfaces for satellitd }touble torus
knots whose pattern knd€ (n, p|«, 8) has an admissible word, and prove Theorem A.
Finally, we construct a minimal genus Seifert surface fon-separating (1, 1)-double
torus knots, and prove Theorem D.

By Corollary 3.2 we may assume:

(*) n>3 isodd, p iseven, n>p>0, gcdh,p)=1 and « > |B|> 0.

13.1. K(n, p|e, B) with an admissible word. Suppose that the strictly normal-
ized wordW(K) for K = K(n, p|«, 8) is admissible. Denote by dagf) the maximal
degree of the syllables o (K).

Basically, the construction of a Seifert surface #ris as follows: K is obtained
by attaching a band@ to connect two split unknots spanning disks and Dg. The
band transversely intersecB and Dg, and we eliminate the intersections by remov-
ing small disks fromD, and Dg, and then connecting the resulting small holedDin
and Dr with a tube (annulus). However, this cannot be done immelgia{Otherwise,
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(n,pla, B) = (5,2]4,3), deg(W) = 7
Fig. 13.1. Construction of for the 2-component trivial link.

we obtain a non-orientable surface, or a surface of nonmahigenus.) We must first
isotope the band to increase the intersection points.

As we explain below, the process is divided into the follogvivo steps:

STep 1: Disregarding the band3, construct a Seifert surfac& for the 2-
component trivial linkL by tubing two disksD, and Dg. We will see thatX is a
pre-fibre surface having deg() tubes.

STEP 2: Using W(K), bend the band3 ‘nicely’ so that B meetsX only at its
ends. Then we will prove thak U B is a K-banding onX, and hence by Theo-
rem 12.4,% U B is a fibre surface folK.

First we deal with the casg > 0.

Step 1. Let L be the 2-component trivial link spanning two disjoint disks
and D shaped as in Fig. 13.1.

Let A be an arc as in Fig. 13.1 having its endpoints in ntU Dg) such that
#(A N D) = #(A N DR) = degW). As a convention, the thin box indicates a full-
twist of whatever goes through, in positive way nd2ay and negative way neaDgr
(consistent with the convention of twisting direction inc8en 2). Now denote by
{ldegwy, - - -+ 2,11, 11,12, . ., Taeggyy} the intersection points afl and D U Dg named
from the left end of A. Apply a tubing along the subard;(r;), then apply another
tubing along the subard,(r,) through the first tube. By repeating this operation of
tubing degWV) times, we obtain a Seifert surface for denoted byx. Now we have
the following:

Proposition 13.1. The tubed surfac& is a pre-fibre surface

Proof. Use the sequence of isotopies depicted in Fig. 131% first step is to
twist the subdisks, and the second and third steps are te giEl end ofA along the
boundary of the disk. This induces an isotopy of the tube& dbward the standard
form of a pre-fibre surface in Fig. 12.1, and we see fiat a pre-fibre surface fok.

O
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Fig. 13.2. Isotopings into the standard form of a pre-fibre
surface.

Denote byTy, Ty, . .. Taegwy the tubes so thal; is the first widest one containing
the other tubes and thaegw) is the last narrowest tube. Define tdepthof T; by

dep(;) =i.

CONVENTION. By convention, the outside (resp. inside) of the tuletouches
the face (resp. back) af. At this time, thoughD_ and Dg do not exist any more, we
still assume virtually they are there. So we could say: weepateD, and Dr several
times as we travel along the band. We always assume that ¢hB &epresenting the
band connecting the two unknots) is oriented fr@n to Dg. As seen in Fig. 13.1,
DL (resp.DR) hasa (resp.p) subdisksDy,, Di,,..., D, (resp.Dr,, Dg,, ..., Dg,)
named so thafl; connectsD, and Dg,. We say that two tubed;, T; are locally
adjacent to each other on D(resp.Dg) if the difference of their depths ig (resp.p).
Note that the feet of locally adjacent tubes lie next to eattteroin a subdisk oD
or Dg.

Before proceeding to the next step of construction of a filméase, let us briefly
explain our way usingk = K(5,2|2,1) as an example. (Fig. 13.3).

The primitive word is yx?y~'x~2, and hence the strictly normalized word is
W(K) =xy-1-x?y?.y=3x~3.xy. Fig. 13.3 (a) depictsK, where the band is depicted
by an arcB. Note that each box contains a full twist. In Fig. 13.3 (b) wiel she
endsB along the boundaries dd, and Dg. Then we forget the twist boxes, and con-
tinue the construction for the new knot. We remark that thisresponds to Stallings
twists, and once we have constructed a fibre surface, we adly ezodify it to a fibre
surface forK. Actually, these untwistings and twistings are introdugeest to simplify
the figures. Now isotopé as in Fig. 13.3 (c) so that we can re&d(K) from the
itinerary, and that we can superimpose the pre-fibre surdacan Fig. 13.3 (d). Then
we show that the band is i-band.

STEP 2. We start with a figure oK = K(n, p|«, 8) as in Fig. 13.4, wher&K
is expressed as the union of two unknots and anrepresenting the band. Regard
the unknots and3 as lying slightly above the double tords. The intersection3 N
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Fig. 13.3. Construction of a fiber surface f&r(5, 2| 2, 1).

(DL U DR), which happens in the longitudinal disks #f, is indicated by dots. We
can read the primitive WOI’(WNV(K) of K by following B from the left end and record
from which way one penetratd3, and Dr. Note that the number of letters W(K)

is equal to the number of dots. The hollow dots, explainedr|awill indicate new
intersection points to be created so that the total numbelotsf and hollow dots equals
that of the letters in the strictly normalized wowil(K). Remark that there are exactly
n subarcs connectin®, and Dg. This corresponds to the facts that the length of the
sequence of signs fon(p) (defined in Section 4) is exactly— 1, and that the strictly
normalized wordW(K) has exactlyn syllables.

Now we subdivide55 into 2n+1 = 2 +n + (n — 1) subarcs classified into three
classes as in Fig. 13.4 (b): The both ends emd-arcs which are short. Between the
end-arcs, there anme long-arcsand n — 1 flat-arcs appearing alternately. The long-arcs
run betweenDgr and D, and flat-arcs are short straight arcs between long-arcs.

When we show that we have K-banding, we will push end-arcs and flat-arcs
(resp. long-arcs) to the disk part (resp. tube part)sof Assign the " syllable of
W(K) to the j! long-arc counted from the left end &. Then define thedegreeof
each long-arc as that of the corresponding syllable.

Our strategy is to us&V(K) as a guide to slide the ends 8f and drag the flat-
arcs stretching the long-arcs (id) so that we can read the strictly normalized word
W(K) from the new form of 3. We see this is possible, becaud4K) is obtained
from \TV(K) by prependingxX, appendingy' (recallk > 0, | > 0) and by insert-
ing x'x~ and yly~1 for variousi, j’s. This corresponds to adding the hollow dots
to B as in Fig. 13.4 (a), which indicate newly created interemsiof 3 and D U Dg.
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(b)

Fig. 13.4. K = K(5,2|2,1), W(K) = yx2y x 2, W(K) =
Xy-1-5x2y?-y—3x=3.xy.

i 1 j
Yy
) Yy ]
2! 2212 Yy x

Fig. 13.5.

Note that the dots and hollow dots are put only on the long-afdow we establish
a correspondence between a syllabléwitK) and dots along a long-arc. Suppose we
have already stretched and pushed a long-arc,ysanto the back (resp. face) side of
a tubeT of depthi, then we read'y' or y'x' (resp.x'~1y' =1 or y (-Dx-(-1),
(See Fig. 13.5.) Note that reads 1 if and only ify is pushed onto the face side of
the tube of depth 1, and that readsx9e9W)ydedW) gr -~ degW)y —dedW) if and only if

y is pushed onto the back side of the narrowest tube. By thenrgdin thatW(K)

is admissible, each case occurs exactly once. Therefoch, @anponent of the pair of
canonical compressing disks @f is penetrated by3 exactly once. (This is necessary
to have aK-banding.)

Also note thaty readsx'y' or y='x=', (1 <i < degW)) in two cases: on the
back side of the tube of depithand on the face side of the tube of depth1l. Both
cases may occur several times. By definition, the strictlymadized word has no syl-
lables of negative degree, i.x9y9% and y=9x~9 with g < 0. Hence we do not need a
tube attached to the back &, and Dg.

Now we have to move3 properly so that other conditions of lé-banding are
satisfied. First, we specify to which tube and to which sidepush the subarcs, and
specify one particular flat-arc (markeéd which passes the boundary Bf_ or Dg ex-
actly once. We put the mark on the unique flat-arc just before (resp. after) the long-
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Fig. 13.6. Sliding the end oB in K = K(5,2|2,1). we now
readx - yx2y~Ix=2.y.

arc which corresponds to the unique syllable 1, if the sidldbappears after (resp. be-
fore) the unique syllable of the maximal degree.

Let B\0d = B1UB,, where3; (resp.32) contains the long-arc of degree 0 (resp. de-
gree ded{V)). ThenB; (resp.B,) is pushed into the face side (resp. back sidepof
Accordingly, we call the arcs if8; (resp.B;) top arcs(resp.bottom arcy. For exam-
ple, for K(5,2|2,1), B; is the first half of 5\ 9, i.e., the part that contains the left end
of B. For K(5,4|2,1), B; is the second half of5\ 9 and contains the right end .
(Recall B is oriented from the left end.) See Fig. 13.7. By the obs@waabove, we
see that a top (bottom) long-arc of degreés pushed onto the face (reps. back) side
of the tube of depth + 1 (resp. depth).

We simplify the figures by ‘untwists’ which will turn to be Sliags twists, but
before that we must slide the ends Bfas shown in Fig. 13.6. Recall that the strictly
normalized word is of the formkkyk...x'y', with k > 0 andl > 0. For K =
K(5,2]2,1),k=1=1. Slide the endpoint o8 along D (resp.Dg) so that|3N D |
(resp.|B N Dg|) increases by (resp.l). Note that sincek,| > 0, we slide3 counter-
clockwise (resp. clockwise) alongD, (resp.dDg).

Fig. 13.7 depicts actual examples ¥{5,2|2,1) andK (5,4]2,1), with twist boxes.
Note that in the former, the left end-arc is a top arc, and @ Ittiter, the left end-arc
is a bottom arc.

See Fig. 13.8 for general situations fBr . For Dg, just reflect the figure by a
vertical line in the paper.

Fig. 13.8 (a) (resp. (b)) depicts the situation where thé éefd-arc is a top arc
(resp. bottom arc), and hence will be pushed to the top sidéhefsubdiskD,,
(resp. the back side of the subdigk ,). Note also that in Fig. 13.8 (a) (resp. (b)),
the long-arcy connected to the left end-arc corresponds to the first dgllaby® in
W(K) and will be pushed to the top side of the tube of dedteel (resp. back side
of the tube of degre&).

Here, to simplify the figures, we forget the twist boxes in.Fi@.8, denoting the
results by’ and X’'. If we draw figures on the double torus, we do not need such
an operation, but the figures become too complicated. OBblio®X’ inherits the pair
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(a) K(5,2[2,1) (b) K(5,4/2,1)
zy-1-ga2y? y3z73 . zy. 20y8 -y 05 BBy 22 1

Fig. 13.7. Sliding of the end-arcs.

Fig. 13.8. Sliding of the end-arc, wheke= 6.

of canonical compressing disks and we will arrarfgfeso that it is aK-band onX’.
Then we apply Stallings twists o8’ U X" so that it becomes &-banding ofx. Our
Stallings twists will use simple closed curves which aresely parallel to each bound-
ary of the subdisk,,,...,Dr,, Dg;,... Dg,.

Now we drag the flat-arcs through, and Dr and stretch long-arcs so that we
can readW(K) from B’. As in Fig. 13.7, we add hollow dots t6’ to indicate newly
created intersections o8’ and D, U Dg, i.e., to see how far we should drag each
flat-arcs. Note that, except for those hollow dots corredpranto prepending and
appendingy' to B, the hollow dots which indicate new intersection points ¢éodoeated
are arranged in pairs near the flat-arcs (see Fig. 13.7). \Ag flat-arcs along the
guide line indicated by the broken line in Fig. 13.9 (a). To rbere precise, when
we drag a flat-arc, say, that is a bottom arc, then we will stop it below a subdisk
immediately after the hollow dots are replaced by newly ta@antersection points.
On the other hand, ify is a top arc, thery is dragged further so that it lies on the
top side of the next subdisk. See Figs. 13.9 (b) and (c) réispBc

When we finish dragging a flat-arne, we put it near the boundary of a sub-disk
of D_ or Dg so that if ‘inner flat-arc’ should be dragged further, thee ttonnected
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U ( bottom arcs

Fig. 13.10. Arrangement of dragged flat-arcs.

long-arcs go undey. Moreover, the end-arcs are also placed so that other larsy-ar
go under them. See Fig. 13.10 (a) (resp. Fig. 13.10 (b))fprwith the left end-arc
being a bottom (resp. top) arc, where all flat-arcs depictedbattom arcs.

Claim 1. At this stagewe can superimpos&’ and B’ so thatX' N5 =d5'.

Proof. First place the feet of tubes as in Fig. 13.11 (lefthe we can push each
flat-arc (except for the one with the ma#j and end-arcs to the face or back side of
the disk part ofX’. Because the long-arcs adjacent to a flat-arc ri@ar(resp. Dg)
have the gap of the degree exaatly(resp.8). We can also push the ends of long-arcs
properly as in Fig. 13.11 (right).

Secondly we arrange the long-arcs along the tubes. All thg-&cs run paral-
lel to each other, except for the neighborhood of the middi¢he tubes. Now place
the long-arcs near the middle of the tubes as in Fig. 13.2.nTadially move each
long-arc toward the core of tubes until it sits in the propetesof the proper tube.
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Fig. 13.12.

By extending this projection toward the end of the tubes, a&e place the long-arcs
properly. Therefore, we have Claim 1. [

Next, we show the following:
Claim 2. We can push3’ to ¥’ so that5’ is a K-banding

Proof. Since our purpose is to construcKabanding onX by B, we can techni-
cally omit the proof thatX’ is a pre-fibre surface, though actually it is. Recall that
W(K) is admissible and that each component of the pair of caabmiompressing
disks of X’ is penetrated exactly once ky. In the proof of Claim 1, we have al-
ready seen that each long-arc can be pushed onto the faceckrsloe of the tubes
without intersections among them. Now we push flat-arcs éféite or back side of
a subdisk of D or Dg. By construction, there are no intersections among them as
shown in Fig. 13.13, where the rectangle depicts a subdiskofor Dr. (The inter-
section in the middle of Fig. 13.13 does not violate the ctiowliof K-banding.)

Therefore, we are left with only the flat-art with the markd. See Fig. 13.14.
By symmetry, we may suppose thdt is on the subdiskD,,. Note thatf lies on
the face side ofD_, because one long-arc, labelétl connected to it corresponds
to the syllable 1 inW(K). We can move the part of the long-arc, labelgdas in
Fig. 13.14 (b). To prove that it is always possible, it suffite show that neither flat-
arc nor end-arcs interfere. Fig. 13.14 (c) depicts the caseaftsy; and y, which
interfere.
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I

Fig. 13.14.

First, from Fig. 13.8, we see that the dots on the long-arel&abs are not the
newly created ones. However, by construction, there areewdyncreated dots to the
left of the original ones, and hence the grc never exists. Moreover, by reading
W(K), we see that the arg, corresponds to the unique syllable 1. Sing&K) is
admissible, we do not have,. Now Fig. 13.14 (d)—(g) covers all the cases of end-
arcs. By sliding the endpoint df’, we see that they do not interfere with each other.
(Note that Fig. 13.14 (d) never occurs, since bgttand §' corresponds to the sylla-
ble 1, which is impossible sinc#/(K) is admissible. We have proved Claim 2. []

Now we have seen thdf U X’ is a K-banding. To recover the twist boxes as in
Fig. 13.8, apply Stallings twists along circles closely gt to each boundary of the
subdisksDy , ..., Di,, DRy, ..., Dg,. By construction, these circles are not ‘linked’
with the moved flat-arcs, and hence we can recover a Seifefidceus U X for K.
Moreover, sinces’ is pushed ontax nicely to satisfy all requirements for K-band,
we see that3 is also aK-band onX. Therefore, by Proposition 12.4 is a fibred
knot. Therefore, Theorem C is now proved for the cgse 0 in K(n, p|«, B).

Finally we describe the casg < 0. Since we can handle this case almost in
the same manner as in the cgée> 0, we only show one example and explain the
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Fig. 13.16. K = K(5,4/3,-2). W(K) = x2y?.y 4x~4.xy-y3x 3., 1.

slight difference in the figure. Whef < 0, we use the pre-fibre surface constructed
as before by the guide lingl, but this time it appears as in Fig. 13.15, and the right
disk Dg is facing the same was d3,. Fig. 13.16 depictK = K(5,4|3,—-2). The
strictly normalized wordW(K) = x2y? - y=4x~4 . xy -y 3x3.; 1. Using W(K), we
add hollow dots and stretch as in Fig. 13.16. Then as we proved before, we have a
K-banding.

This completes the proof of Theorem C. Il

13.2. Fibre surfaces for satellite (1,1)-double torus knat whose pattern
knot has an admissible word. In the previous subsection we constructed a fibre
surface F for K =K(n, pla«, ) with an admissible word. In this subsection,
we first construct a Seifert surfacEé for the satellite double torus knoK =
K{(n,0,0;n,0,0| p)(1,«, —, —=)(r', S, —, =)}, whose pattern knot i« and compan-
ion knot is the torus knof = T(r’, —5'), whereg =r’s’. Then we show thaf is a
fibre surface. Consider a lodp in E(K) such thatS® is split into two solid toriN(L)
and E(L) as depicted in Fig. 13.17.

We regardK as a knot in the solid torug(L), and N(L) N F is a meridian disk
for N(L). Then construct a Seifert surfade for K as follows. Lety be a homeo-
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Fig. 13.17. A patterrK(n, p|«,r’s’) and a meridian of the com-
panion torus.

morphism which takesE(L) to N(T) so thate(F N dE(L)) is null-homologous in
E(T). Then letF be a Seifert surface foK obtained by capping(F N E(L)) with a
fibre surface, sayrr for T along ¢(F NJE(L)).

Now we prove the following:

Claim 13.2. The Seifert surfacé is a fibre surface forK.

Proof. It suffices to show the is a K-banding of a pre-fibre surface for the split
link consisting of an unknoD_ and T, see Fig. 13.1. Recall the pre-fibre surface
for the 2-component trivial link constructed in the prevdosection. Note thaF is of
the form & N E(L)) U (X N N(L)) U B, where & N N(L)) is a disk andB is a K-
band. In the construction of in the proof of Proposition 13.1, we may assume that
the attached tubes are containedB(L). Then the isotopy of the tubes depicted in
Fig. 13.2 is not interfered by.. Therefore, we see that(X N E(L)) U Fy = f\@(B)
bounds the split linkT U dD,, and it is a pre-fibre surface by Proposition 12.7. In
the proof thatB is a K-band onX, we may assume thd is completely contained
in E(L) and pushed ont® in E(L). Therefore,¢(5) is a K-band on the pre-fibre
surfacel?\w(B). Claim 13.2 is now proved. U

Once we construct a fibre surfade, we can construct, usingt’ in Fig. 13.17
in the same manner, a fibre surface for the original sate(litel)-double torus knot
K{(n,0,0;n,0,0]| p)r,s,—, =)(r’', s, —,—)}, wherers =a.

Therefore, we have the following:

Proposition 13.3. K{(n,0,0;n,0,Qp)(r,s,—, —)({’,s,—,—)} is fibred if its final
pattern knot Kn, p|rs,r’s) is fibred

Proof of Theorem A. We only prove the ‘if’ part, since the ‘gnif’ part is a
well-known fact. By Proposition 8.23 in [2] on the Alexandeolynomial of satellite
knots in terms of that of the pattern and companion knots, ae hthe following:



66 M. HIRASAWA AND K. MURASUGI

Proposition 13.4. Let K be a non-separatingl,1}double torus kngtand K',K”
its pattern knots(as in Section 2). If one of K, K’ and K’ has a monic Alexander
polynomial then the other two also have a monic Alexander polynamial

Suppose thak = K{(n,0,0;n,0,0| p)(r,s,—,—)(r’,s’,—,—)} has monic Alexander
polynomial. Then the pattern kndt(n, p|rs,r’s’) has a monic Alexander polynomial.
By Theorem B, Proposition 12.9, and Theorem K(n, p | rs,r’s) is fibred. Finally
by Proposition 13.3K is fibred. L]

13.3. Minimal genus Seifert surfaces for those without adnsisible words. In
this subsection, we first construct a minimal genus Seiferfase for K(n, p | «, 8)
which does not necessarily have an admissible word. Then amstrmict a minimal
genus Seifert surface for a general (1, 1)-double torus, kavad prove Theorem D.

We construct a Seifert surfad®@U X similarly as we did in Subsection 13.1. The
only difference is that the strictly normalized wok¥(K) may have many syllables
of the maximal degree and/or the minimal degree. Recall th@tmaximal syllable
(xdeaW)ydegW))+1 (resp. minimal syllable 1) can be read only when the cornediny
long-arc runs along the back (resp. face) side of the tubereFore, if (4e9W)ydegi)y+1
and 1 alternates several times, must be switched from the face side to the back
side several times. Since we only need to construct a (mingeaus) Seifert surface
and do not need to pusB onto X, we only specify all long-arcs, except for those
corresponding to the syllable 1, to lie on the back side ofttiiees. So we put the
mark 9 exactly before and after each syllable 1. Then as in the pobdZlaim 1 in
Subsection 13.1, we can bring so that we can superimpose. Now we have the
following.

Proposition 13.5. The Seifert surfaces E X U B for K(n, p|«, B) thus con-
structed is of minimal genusFurthermore the genus of Kn, p|«, B) is exactly half
of the degree of its Alexander polynomial

Proof. SinceF is constructed from two disks by adding dég) tubes, we have
g(F) = degW), By construction, dedl/) = degh(t)) defined in Section 4. By Proposi-
tion 10.2 and Remark 5.7, we have 2d&9(= deg@kn,pj«.p)(t)). Since the degree of
the Alexander polynomial of a knot does not exceed the twicthe genus, we have
the proposition. ]

Next we construct a minimal genus Seifert surface for a l#atél, 1)-double torus
knot Ko = {(n,0,0;n, 0, 0] p)(r,s,—, =)(r",s,—, =)}, with n odd, defined in Section 2.

In Proposition 2.2 we saw tha{, is obtained from the pattern knét(n, p|«,8) =
K(n, p|rs,r’'s’) along the companion torus kno®(r,s) and T(r’, —s'). Let V be a
handlebody of genus 2 such tha¥ carriesK(n, p|rs,r’'s) and &\ V)N F con-
sists of two disksD; and D,, where F is the minimal genus Seifert surface we have
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constructed forK (n, p|rs,r’s’) and the two diskdD; and D, come fromD_ and Dg.
By knotting each 1-handle of alongT(r,s) and T(r’,—s'), and replacing each db;
and D, by the fibre surface folf (r,s) and T(r’, —s') respectively, we obtain a Seifert
surfaceS for Kg, with g(S) = g(T(r,s)) +g(T(r’, —s)) +g(K(n, p|rs,r’'s)). Then we
see thatg(S) = g(Ko) by using the following proposition due to Schubert, wherel.

Proposition 13.6 ([2, Proposition 2.10]). Let K be a satellite knot with pattern
knot K, and companion knot ¥ Then we have @) > [l|g(K¢) + 9(K;), where [ is
the linking number between K and the meridian of the tubukigborhood of K.

Finally we prove Theorem D.

By the argument in Section 10 and Proposition 3.4, we seetlieatlegreal of the
Alexander polynomial ofKg = {(n,0,0;n, 0, 0| p)(r,s,—,—)(r',s’,—,—)} is the product
of those of T(r,s), T(r’,—s') andK(n, p|rs,r’'s’). Therefore, we have (2)d = g(Ko).

]

14. Separating (1, 1)-double torus knots

In this section, we study separating (1, 1)-double torustknand prove Theo-
rem 14.1 which is a direct consequence of Propositions T4 and 14.4. LeK =
{(n,0,0;n,0,0| p)(r,s,—,—)(r’,s,—,—)} be a separating (1, 1)-double torus knot. Then
by Proposition 2.1n is even. SinceK, embedded in the double toris, is separating,
each component oH \ K is a genus 1 Seifert surface f&&, and only fibred knots
with genus at most one are the unknot, the trefoil, and thedigight knot.

Theorem 14.1. Let K={(n,0,0;n,0,0| p)(r,s,—,—)(’,s,—,—)} be a separating
(1, 1}double torus kngtwhere n is evenThen we have
(1) 9(K) = (1/2) degAx(t) if and only if rsr's’ = 0, or Irsr's’ # 0, where | is the
linking number of the2-bridge link B(n, p) with an arbitrary orientation
(2) K is the unknot if and only if rss’ =0.
(3) K is a non-trivial fibred knot if and only if == 2, and |rsr's’| = 1.

Conclusion (2) in Theorem 14.1 is guaranteed by Theorem B2®B]. Further-
more, the Alexander polynomial df is calculated as follows:

Proposition 14.2 ([6, Proposition 3.16, 3.18]). Let K be a separating double
torus knot as aboveDenote by | the linking number of thzbridge link B(n, p) with
an arbitrary orientation Then Ak (t) = 6t? + (1 — 20)t + 6, whered = —|%af, a =rs,
and g =r's.

Then, Conclusion (1) follows from (2) and Proposition 14.2.
Now to prove (3), we first prove the following proposition dmetpattern knots.
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Fig. 14.1. K(n, p| o, B) = K(4, 1| 1, 1).

Proposition 14.3. Let K = K(n, p|«,8) be a non-trivial separatindl, 1)ydouble
torus knot Then K is fibred if and only if &= 2 and |ag]| = 1.

Proof. Supposeé =2 and hencep = 1 since gcdg, p) =1 and O< p < n. Then
K(2,1]1,1) is the figure-eight knot an& (2,1|1,—1) is the trefoil knot, which are
both fibred.

Next we show that ifn > 4, thenK is not fibred. Suppose the contrary, where
n> 4 andK is fibred. By Proposition 14.2 we may assume 1 andg = +1. Since
K separates the double tortks into two Seifert surface§ and F; for K, H = FoUF;
separatess® into two handlebodie®, andV; of genus 2. IfK is fibred, Fy is isotopic
to F; and bothVy and Vi should be homeomorphic tB; x [0, 1]. We claim thatVj,
containing the ‘outside’ oH, is not homeomorphic té¢; x[0,1]. To do this, it suffices
to show that an inclusion map: 71(F;) < m1(V1) is not surjective. Now we choose
the set of free generator$a, b} and {x, y}, for =1(F;) and m1(V1) respectively as in
Fig. 14.1.

Then it is easy to see thagt(a) = x~, and ¢(b) = y*1xf2y®3x® . . . y*n-1xn  where
i =41, 1<i <n. Sincen > 4 and¢(b) is a reduced word in the free groug(V1),
it follows that y cannot be expressed in terms ¢fa) and ¢(b), and hencep is not
surjective. This proves Proposition 14.3. ]

Proposition 14.4. Let K={(n,0,0;n,0, 0| p)(r,s, —, —)(’,s,—,—)} be a non-
trivial separating (1, 1}double torus kngtwhere n is evenlf |r| and |s| > 2 (or |r/|
and || > 2), then K is not a fibred knot

Proof. Suppos@® # 0. If |r| and |s| > 2, then the Alexander polynomial of the
pattern knotK(n, p|rs,r’s’) is not monic by Proposition 14.2, and hengeis not
fibred. If 6 =0, then the Alexander polynomial is 1, bt is not trivial and hence is
not fibred. U

Then, Conclusion (3) follows from Propositions 14.3 and414The proof of The-
orem 14.2 is now completed. ]
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